[IRBuilder] Add Align argument for CreateMaskedExpandLoad and CreateMaskedCompressSto...
[llvm-project.git] / llvm / lib / Transforms / Scalar / Reassociate.cpp
blobbc50f23d8eb27b5549c92f14c35a18da59362e05
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 // For example: 4 + (x + 5) -> x + (4 + 5)
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <utility>
64 using namespace llvm;
65 using namespace reassociate;
66 using namespace PatternMatch;
68 #define DEBUG_TYPE "reassociate"
70 STATISTIC(NumChanged, "Number of insts reassociated");
71 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
72 STATISTIC(NumFactor , "Number of multiplies factored");
74 static cl::opt<bool>
75 UseCSELocalOpt(DEBUG_TYPE "-use-cse-local",
76 cl::desc("Only reorder expressions within a basic block "
77 "when exposing CSE opportunities"),
78 cl::init(true), cl::Hidden);
80 #ifndef NDEBUG
81 /// Print out the expression identified in the Ops list.
82 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
83 Module *M = I->getModule();
84 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
85 << *Ops[0].Op->getType() << '\t';
86 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
87 dbgs() << "[ ";
88 Ops[i].Op->printAsOperand(dbgs(), false, M);
89 dbgs() << ", #" << Ops[i].Rank << "] ";
92 #endif
94 /// Utility class representing a non-constant Xor-operand. We classify
95 /// non-constant Xor-Operands into two categories:
96 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
97 /// C2)
98 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
99 /// constant.
100 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
101 /// operand as "E | 0"
102 class llvm::reassociate::XorOpnd {
103 public:
104 XorOpnd(Value *V);
106 bool isInvalid() const { return SymbolicPart == nullptr; }
107 bool isOrExpr() const { return isOr; }
108 Value *getValue() const { return OrigVal; }
109 Value *getSymbolicPart() const { return SymbolicPart; }
110 unsigned getSymbolicRank() const { return SymbolicRank; }
111 const APInt &getConstPart() const { return ConstPart; }
113 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
114 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
116 private:
117 Value *OrigVal;
118 Value *SymbolicPart;
119 APInt ConstPart;
120 unsigned SymbolicRank;
121 bool isOr;
124 XorOpnd::XorOpnd(Value *V) {
125 assert(!isa<ConstantInt>(V) && "No ConstantInt");
126 OrigVal = V;
127 Instruction *I = dyn_cast<Instruction>(V);
128 SymbolicRank = 0;
130 if (I && (I->getOpcode() == Instruction::Or ||
131 I->getOpcode() == Instruction::And)) {
132 Value *V0 = I->getOperand(0);
133 Value *V1 = I->getOperand(1);
134 const APInt *C;
135 if (match(V0, m_APInt(C)))
136 std::swap(V0, V1);
138 if (match(V1, m_APInt(C))) {
139 ConstPart = *C;
140 SymbolicPart = V0;
141 isOr = (I->getOpcode() == Instruction::Or);
142 return;
146 // view the operand as "V | 0"
147 SymbolicPart = V;
148 ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits());
149 isOr = true;
152 /// Return true if I is an instruction with the FastMathFlags that are needed
153 /// for general reassociation set. This is not the same as testing
154 /// Instruction::isAssociative() because it includes operations like fsub.
155 /// (This routine is only intended to be called for floating-point operations.)
156 static bool hasFPAssociativeFlags(Instruction *I) {
157 assert(I && isa<FPMathOperator>(I) && "Should only check FP ops");
158 return I->hasAllowReassoc() && I->hasNoSignedZeros();
161 /// Return true if V is an instruction of the specified opcode and if it
162 /// only has one use.
163 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
164 auto *BO = dyn_cast<BinaryOperator>(V);
165 if (BO && BO->hasOneUse() && BO->getOpcode() == Opcode)
166 if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
167 return BO;
168 return nullptr;
171 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
172 unsigned Opcode2) {
173 auto *BO = dyn_cast<BinaryOperator>(V);
174 if (BO && BO->hasOneUse() &&
175 (BO->getOpcode() == Opcode1 || BO->getOpcode() == Opcode2))
176 if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
177 return BO;
178 return nullptr;
181 void ReassociatePass::BuildRankMap(Function &F,
182 ReversePostOrderTraversal<Function*> &RPOT) {
183 unsigned Rank = 2;
185 // Assign distinct ranks to function arguments.
186 for (auto &Arg : F.args()) {
187 ValueRankMap[&Arg] = ++Rank;
188 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
189 << "\n");
192 // Traverse basic blocks in ReversePostOrder.
193 for (BasicBlock *BB : RPOT) {
194 unsigned BBRank = RankMap[BB] = ++Rank << 16;
196 // Walk the basic block, adding precomputed ranks for any instructions that
197 // we cannot move. This ensures that the ranks for these instructions are
198 // all different in the block.
199 for (Instruction &I : *BB)
200 if (mayHaveNonDefUseDependency(I))
201 ValueRankMap[&I] = ++BBRank;
205 unsigned ReassociatePass::getRank(Value *V) {
206 Instruction *I = dyn_cast<Instruction>(V);
207 if (!I) {
208 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
209 return 0; // Otherwise it's a global or constant, rank 0.
212 if (unsigned Rank = ValueRankMap[I])
213 return Rank; // Rank already known?
215 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
216 // we can reassociate expressions for code motion! Since we do not recurse
217 // for PHI nodes, we cannot have infinite recursion here, because there
218 // cannot be loops in the value graph that do not go through PHI nodes.
219 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
220 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
221 Rank = std::max(Rank, getRank(I->getOperand(i)));
223 // If this is a 'not' or 'neg' instruction, do not count it for rank. This
224 // assures us that X and ~X will have the same rank.
225 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
226 !match(I, m_FNeg(m_Value())))
227 ++Rank;
229 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
230 << "\n");
232 return ValueRankMap[I] = Rank;
235 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
236 void ReassociatePass::canonicalizeOperands(Instruction *I) {
237 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
238 assert(I->isCommutative() && "Expected commutative operator.");
240 Value *LHS = I->getOperand(0);
241 Value *RHS = I->getOperand(1);
242 if (LHS == RHS || isa<Constant>(RHS))
243 return;
244 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
245 cast<BinaryOperator>(I)->swapOperands();
248 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
249 BasicBlock::iterator InsertBefore,
250 Value *FlagsOp) {
251 if (S1->getType()->isIntOrIntVectorTy())
252 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
253 else {
254 BinaryOperator *Res =
255 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
256 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
257 return Res;
261 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
262 BasicBlock::iterator InsertBefore,
263 Value *FlagsOp) {
264 if (S1->getType()->isIntOrIntVectorTy())
265 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
266 else {
267 BinaryOperator *Res =
268 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
269 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
270 return Res;
274 static Instruction *CreateNeg(Value *S1, const Twine &Name,
275 BasicBlock::iterator InsertBefore,
276 Value *FlagsOp) {
277 if (S1->getType()->isIntOrIntVectorTy())
278 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
280 if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
281 return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
283 return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
286 /// Replace 0-X with X*-1.
287 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
288 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
289 "Expected a Negate!");
290 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
291 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
292 Type *Ty = Neg->getType();
293 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
294 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
296 BinaryOperator *Res =
297 CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg->getIterator(), Neg);
298 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
299 Res->takeName(Neg);
300 Neg->replaceAllUsesWith(Res);
301 Res->setDebugLoc(Neg->getDebugLoc());
302 return Res;
305 using RepeatedValue = std::pair<Value *, uint64_t>;
307 /// Given an associative binary expression, return the leaf
308 /// nodes in Ops along with their weights (how many times the leaf occurs). The
309 /// original expression is the same as
310 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
311 /// op
312 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
313 /// op
314 /// ...
315 /// op
316 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
318 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
320 /// This routine may modify the function, in which case it returns 'true'. The
321 /// changes it makes may well be destructive, changing the value computed by 'I'
322 /// to something completely different. Thus if the routine returns 'true' then
323 /// you MUST either replace I with a new expression computed from the Ops array,
324 /// or use RewriteExprTree to put the values back in.
326 /// A leaf node is either not a binary operation of the same kind as the root
327 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
328 /// opcode), or is the same kind of binary operator but has a use which either
329 /// does not belong to the expression, or does belong to the expression but is
330 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
331 /// of the expression, while for non-leaf nodes (except for the root 'I') every
332 /// use is a non-leaf node of the expression.
334 /// For example:
335 /// expression graph node names
337 /// + | I
338 /// / \ |
339 /// + + | A, B
340 /// / \ / \ |
341 /// * + * | C, D, E
342 /// / \ / \ / \ |
343 /// + * | F, G
345 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
346 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
348 /// The expression is maximal: if some instruction is a binary operator of the
349 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
350 /// then the instruction also belongs to the expression, is not a leaf node of
351 /// it, and its operands also belong to the expression (but may be leaf nodes).
353 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
354 /// order to ensure that every non-root node in the expression has *exactly one*
355 /// use by a non-leaf node of the expression. This destruction means that the
356 /// caller MUST either replace 'I' with a new expression or use something like
357 /// RewriteExprTree to put the values back in if the routine indicates that it
358 /// made a change by returning 'true'.
360 /// In the above example either the right operand of A or the left operand of B
361 /// will be replaced by undef. If it is B's operand then this gives:
363 /// + | I
364 /// / \ |
365 /// + + | A, B - operand of B replaced with undef
366 /// / \ \ |
367 /// * + * | C, D, E
368 /// / \ / \ / \ |
369 /// + * | F, G
371 /// Note that such undef operands can only be reached by passing through 'I'.
372 /// For example, if you visit operands recursively starting from a leaf node
373 /// then you will never see such an undef operand unless you get back to 'I',
374 /// which requires passing through a phi node.
376 /// Note that this routine may also mutate binary operators of the wrong type
377 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
378 /// of the expression) if it can turn them into binary operators of the right
379 /// type and thus make the expression bigger.
380 static bool LinearizeExprTree(Instruction *I,
381 SmallVectorImpl<RepeatedValue> &Ops,
382 ReassociatePass::OrderedSet &ToRedo,
383 reassociate::OverflowTracking &Flags) {
384 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
385 "Expected a UnaryOperator or BinaryOperator!");
386 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
387 unsigned Opcode = I->getOpcode();
388 assert(I->isAssociative() && I->isCommutative() &&
389 "Expected an associative and commutative operation!");
391 // Visit all operands of the expression, keeping track of their weight (the
392 // number of paths from the expression root to the operand, or if you like
393 // the number of times that operand occurs in the linearized expression).
394 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
395 // while A has weight two.
397 // Worklist of non-leaf nodes (their operands are in the expression too) along
398 // with their weights, representing a certain number of paths to the operator.
399 // If an operator occurs in the worklist multiple times then we found multiple
400 // ways to get to it.
401 SmallVector<std::pair<Instruction *, uint64_t>, 8> Worklist; // (Op, Weight)
402 Worklist.push_back(std::make_pair(I, 1));
403 bool Changed = false;
405 // Leaves of the expression are values that either aren't the right kind of
406 // operation (eg: a constant, or a multiply in an add tree), or are, but have
407 // some uses that are not inside the expression. For example, in I = X + X,
408 // X = A + B, the value X has two uses (by I) that are in the expression. If
409 // X has any other uses, for example in a return instruction, then we consider
410 // X to be a leaf, and won't analyze it further. When we first visit a value,
411 // if it has more than one use then at first we conservatively consider it to
412 // be a leaf. Later, as the expression is explored, we may discover some more
413 // uses of the value from inside the expression. If all uses turn out to be
414 // from within the expression (and the value is a binary operator of the right
415 // kind) then the value is no longer considered to be a leaf, and its operands
416 // are explored.
418 // Leaves - Keeps track of the set of putative leaves as well as the number of
419 // paths to each leaf seen so far.
420 using LeafMap = DenseMap<Value *, uint64_t>;
421 LeafMap Leaves; // Leaf -> Total weight so far.
422 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
423 const DataLayout DL = I->getDataLayout();
425 #ifndef NDEBUG
426 SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
427 #endif
428 while (!Worklist.empty()) {
429 // We examine the operands of this binary operator.
430 auto [I, Weight] = Worklist.pop_back_val();
432 if (isa<OverflowingBinaryOperator>(I)) {
433 Flags.HasNUW &= I->hasNoUnsignedWrap();
434 Flags.HasNSW &= I->hasNoSignedWrap();
437 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
438 Value *Op = I->getOperand(OpIdx);
439 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
440 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
442 // If this is a binary operation of the right kind with only one use then
443 // add its operands to the expression.
444 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
445 assert(Visited.insert(Op).second && "Not first visit!");
446 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
447 Worklist.push_back(std::make_pair(BO, Weight));
448 continue;
451 // Appears to be a leaf. Is the operand already in the set of leaves?
452 LeafMap::iterator It = Leaves.find(Op);
453 if (It == Leaves.end()) {
454 // Not in the leaf map. Must be the first time we saw this operand.
455 assert(Visited.insert(Op).second && "Not first visit!");
456 if (!Op->hasOneUse()) {
457 // This value has uses not accounted for by the expression, so it is
458 // not safe to modify. Mark it as being a leaf.
459 LLVM_DEBUG(dbgs()
460 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
461 LeafOrder.push_back(Op);
462 Leaves[Op] = Weight;
463 continue;
465 // No uses outside the expression, try morphing it.
466 } else {
467 // Already in the leaf map.
468 assert(It != Leaves.end() && Visited.count(Op) &&
469 "In leaf map but not visited!");
471 // Update the number of paths to the leaf.
472 It->second += Weight;
473 assert(It->second >= Weight && "Weight overflows");
475 // If we still have uses that are not accounted for by the expression
476 // then it is not safe to modify the value.
477 if (!Op->hasOneUse())
478 continue;
480 // No uses outside the expression, try morphing it.
481 Weight = It->second;
482 Leaves.erase(It); // Since the value may be morphed below.
485 // At this point we have a value which, first of all, is not a binary
486 // expression of the right kind, and secondly, is only used inside the
487 // expression. This means that it can safely be modified. See if we
488 // can usefully morph it into an expression of the right kind.
489 assert((!isa<Instruction>(Op) ||
490 cast<Instruction>(Op)->getOpcode() != Opcode
491 || (isa<FPMathOperator>(Op) &&
492 !hasFPAssociativeFlags(cast<Instruction>(Op)))) &&
493 "Should have been handled above!");
494 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
496 // If this is a multiply expression, turn any internal negations into
497 // multiplies by -1 so they can be reassociated. Add any users of the
498 // newly created multiplication by -1 to the redo list, so any
499 // reassociation opportunities that are exposed will be reassociated
500 // further.
501 Instruction *Neg;
502 if (((Opcode == Instruction::Mul && match(Op, m_Neg(m_Value()))) ||
503 (Opcode == Instruction::FMul && match(Op, m_FNeg(m_Value())))) &&
504 match(Op, m_Instruction(Neg))) {
505 LLVM_DEBUG(dbgs()
506 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
507 Instruction *Mul = LowerNegateToMultiply(Neg);
508 LLVM_DEBUG(dbgs() << *Mul << '\n');
509 Worklist.push_back(std::make_pair(Mul, Weight));
510 for (User *U : Mul->users()) {
511 if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(U))
512 ToRedo.insert(UserBO);
514 ToRedo.insert(Neg);
515 Changed = true;
516 continue;
519 // Failed to morph into an expression of the right type. This really is
520 // a leaf.
521 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
522 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
523 LeafOrder.push_back(Op);
524 Leaves[Op] = Weight;
528 // The leaves, repeated according to their weights, represent the linearized
529 // form of the expression.
530 for (Value *V : LeafOrder) {
531 LeafMap::iterator It = Leaves.find(V);
532 if (It == Leaves.end())
533 // Node initially thought to be a leaf wasn't.
534 continue;
535 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
536 uint64_t Weight = It->second;
537 // Ensure the leaf is only output once.
538 It->second = 0;
539 Ops.push_back(std::make_pair(V, Weight));
540 if (Opcode == Instruction::Add && Flags.AllKnownNonNegative && Flags.HasNSW)
541 Flags.AllKnownNonNegative &= isKnownNonNegative(V, SimplifyQuery(DL));
542 else if (Opcode == Instruction::Mul) {
543 // To preserve NUW we need all inputs non-zero.
544 // To preserve NSW we need all inputs strictly positive.
545 if (Flags.AllKnownNonZero &&
546 (Flags.HasNUW || (Flags.HasNSW && Flags.AllKnownNonNegative))) {
547 Flags.AllKnownNonZero &= isKnownNonZero(V, SimplifyQuery(DL));
548 if (Flags.HasNSW && Flags.AllKnownNonNegative)
549 Flags.AllKnownNonNegative &= isKnownNonNegative(V, SimplifyQuery(DL));
554 // For nilpotent operations or addition there may be no operands, for example
555 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
556 // in both cases the weight reduces to 0 causing the value to be skipped.
557 if (Ops.empty()) {
558 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
559 assert(Identity && "Associative operation without identity!");
560 Ops.emplace_back(Identity, 1);
563 return Changed;
566 /// Now that the operands for this expression tree are
567 /// linearized and optimized, emit them in-order.
568 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
569 SmallVectorImpl<ValueEntry> &Ops,
570 OverflowTracking Flags) {
571 assert(Ops.size() > 1 && "Single values should be used directly!");
573 // Since our optimizations should never increase the number of operations, the
574 // new expression can usually be written reusing the existing binary operators
575 // from the original expression tree, without creating any new instructions,
576 // though the rewritten expression may have a completely different topology.
577 // We take care to not change anything if the new expression will be the same
578 // as the original. If more than trivial changes (like commuting operands)
579 // were made then we are obliged to clear out any optional subclass data like
580 // nsw flags.
582 /// NodesToRewrite - Nodes from the original expression available for writing
583 /// the new expression into.
584 SmallVector<BinaryOperator*, 8> NodesToRewrite;
585 unsigned Opcode = I->getOpcode();
586 BinaryOperator *Op = I;
588 /// NotRewritable - The operands being written will be the leaves of the new
589 /// expression and must not be used as inner nodes (via NodesToRewrite) by
590 /// mistake. Inner nodes are always reassociable, and usually leaves are not
591 /// (if they were they would have been incorporated into the expression and so
592 /// would not be leaves), so most of the time there is no danger of this. But
593 /// in rare cases a leaf may become reassociable if an optimization kills uses
594 /// of it, or it may momentarily become reassociable during rewriting (below)
595 /// due it being removed as an operand of one of its uses. Ensure that misuse
596 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
597 /// leaves and refusing to reuse any of them as inner nodes.
598 SmallPtrSet<Value*, 8> NotRewritable;
599 for (const ValueEntry &Op : Ops)
600 NotRewritable.insert(Op.Op);
602 // ExpressionChangedStart - Non-null if the rewritten expression differs from
603 // the original in some non-trivial way, requiring the clearing of optional
604 // flags. Flags are cleared from the operator in ExpressionChangedStart up to
605 // ExpressionChangedEnd inclusive.
606 BinaryOperator *ExpressionChangedStart = nullptr,
607 *ExpressionChangedEnd = nullptr;
608 for (unsigned i = 0; ; ++i) {
609 // The last operation (which comes earliest in the IR) is special as both
610 // operands will come from Ops, rather than just one with the other being
611 // a subexpression.
612 if (i+2 == Ops.size()) {
613 Value *NewLHS = Ops[i].Op;
614 Value *NewRHS = Ops[i+1].Op;
615 Value *OldLHS = Op->getOperand(0);
616 Value *OldRHS = Op->getOperand(1);
618 if (NewLHS == OldLHS && NewRHS == OldRHS)
619 // Nothing changed, leave it alone.
620 break;
622 if (NewLHS == OldRHS && NewRHS == OldLHS) {
623 // The order of the operands was reversed. Swap them.
624 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
625 Op->swapOperands();
626 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
627 MadeChange = true;
628 ++NumChanged;
629 break;
632 // The new operation differs non-trivially from the original. Overwrite
633 // the old operands with the new ones.
634 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
635 if (NewLHS != OldLHS) {
636 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
637 if (BO && !NotRewritable.count(BO))
638 NodesToRewrite.push_back(BO);
639 Op->setOperand(0, NewLHS);
641 if (NewRHS != OldRHS) {
642 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
643 if (BO && !NotRewritable.count(BO))
644 NodesToRewrite.push_back(BO);
645 Op->setOperand(1, NewRHS);
647 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
649 ExpressionChangedStart = Op;
650 if (!ExpressionChangedEnd)
651 ExpressionChangedEnd = Op;
652 MadeChange = true;
653 ++NumChanged;
655 break;
658 // Not the last operation. The left-hand side will be a sub-expression
659 // while the right-hand side will be the current element of Ops.
660 Value *NewRHS = Ops[i].Op;
661 if (NewRHS != Op->getOperand(1)) {
662 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
663 if (NewRHS == Op->getOperand(0)) {
664 // The new right-hand side was already present as the left operand. If
665 // we are lucky then swapping the operands will sort out both of them.
666 Op->swapOperands();
667 } else {
668 // Overwrite with the new right-hand side.
669 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
670 if (BO && !NotRewritable.count(BO))
671 NodesToRewrite.push_back(BO);
672 Op->setOperand(1, NewRHS);
673 ExpressionChangedStart = Op;
674 if (!ExpressionChangedEnd)
675 ExpressionChangedEnd = Op;
677 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
678 MadeChange = true;
679 ++NumChanged;
682 // Now deal with the left-hand side. If this is already an operation node
683 // from the original expression then just rewrite the rest of the expression
684 // into it.
685 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
686 if (BO && !NotRewritable.count(BO)) {
687 Op = BO;
688 continue;
691 // Otherwise, grab a spare node from the original expression and use that as
692 // the left-hand side. If there are no nodes left then the optimizers made
693 // an expression with more nodes than the original! This usually means that
694 // they did something stupid but it might mean that the problem was just too
695 // hard (finding the mimimal number of multiplications needed to realize a
696 // multiplication expression is NP-complete). Whatever the reason, smart or
697 // stupid, create a new node if there are none left.
698 BinaryOperator *NewOp;
699 if (NodesToRewrite.empty()) {
700 Constant *Poison = PoisonValue::get(I->getType());
701 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), Poison,
702 Poison, "", I->getIterator());
703 if (isa<FPMathOperator>(NewOp))
704 NewOp->setFastMathFlags(I->getFastMathFlags());
705 } else {
706 NewOp = NodesToRewrite.pop_back_val();
709 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
710 Op->setOperand(0, NewOp);
711 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
712 ExpressionChangedStart = Op;
713 if (!ExpressionChangedEnd)
714 ExpressionChangedEnd = Op;
715 MadeChange = true;
716 ++NumChanged;
717 Op = NewOp;
720 // If the expression changed non-trivially then clear out all subclass data
721 // starting from the operator specified in ExpressionChanged, and compactify
722 // the operators to just before the expression root to guarantee that the
723 // expression tree is dominated by all of Ops.
724 if (ExpressionChangedStart) {
725 bool ClearFlags = true;
726 do {
727 // Preserve flags.
728 if (ClearFlags) {
729 if (isa<FPMathOperator>(I)) {
730 FastMathFlags Flags = I->getFastMathFlags();
731 ExpressionChangedStart->clearSubclassOptionalData();
732 ExpressionChangedStart->setFastMathFlags(Flags);
733 } else {
734 ExpressionChangedStart->clearSubclassOptionalData();
735 if (ExpressionChangedStart->getOpcode() == Instruction::Add ||
736 (ExpressionChangedStart->getOpcode() == Instruction::Mul &&
737 Flags.AllKnownNonZero)) {
738 if (Flags.HasNUW)
739 ExpressionChangedStart->setHasNoUnsignedWrap();
740 if (Flags.HasNSW && (Flags.AllKnownNonNegative || Flags.HasNUW))
741 ExpressionChangedStart->setHasNoSignedWrap();
746 if (ExpressionChangedStart == ExpressionChangedEnd)
747 ClearFlags = false;
748 if (ExpressionChangedStart == I)
749 break;
751 // Discard any debug info related to the expressions that has changed (we
752 // can leave debug info related to the root and any operation that didn't
753 // change, since the result of the expression tree should be the same
754 // even after reassociation).
755 if (ClearFlags)
756 replaceDbgUsesWithUndef(ExpressionChangedStart);
758 ExpressionChangedStart->moveBefore(I);
759 ExpressionChangedStart =
760 cast<BinaryOperator>(*ExpressionChangedStart->user_begin());
761 } while (true);
764 // Throw away any left over nodes from the original expression.
765 for (BinaryOperator *BO : NodesToRewrite)
766 RedoInsts.insert(BO);
769 /// Insert instructions before the instruction pointed to by BI,
770 /// that computes the negative version of the value specified. The negative
771 /// version of the value is returned, and BI is left pointing at the instruction
772 /// that should be processed next by the reassociation pass.
773 /// Also add intermediate instructions to the redo list that are modified while
774 /// pushing the negates through adds. These will be revisited to see if
775 /// additional opportunities have been exposed.
776 static Value *NegateValue(Value *V, Instruction *BI,
777 ReassociatePass::OrderedSet &ToRedo) {
778 if (auto *C = dyn_cast<Constant>(V)) {
779 const DataLayout &DL = BI->getDataLayout();
780 Constant *Res = C->getType()->isFPOrFPVectorTy()
781 ? ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)
782 : ConstantExpr::getNeg(C);
783 if (Res)
784 return Res;
787 // We are trying to expose opportunity for reassociation. One of the things
788 // that we want to do to achieve this is to push a negation as deep into an
789 // expression chain as possible, to expose the add instructions. In practice,
790 // this means that we turn this:
791 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
792 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
793 // the constants. We assume that instcombine will clean up the mess later if
794 // we introduce tons of unnecessary negation instructions.
796 if (BinaryOperator *I =
797 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
798 // Push the negates through the add.
799 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
800 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
801 if (I->getOpcode() == Instruction::Add) {
802 I->setHasNoUnsignedWrap(false);
803 I->setHasNoSignedWrap(false);
806 // We must move the add instruction here, because the neg instructions do
807 // not dominate the old add instruction in general. By moving it, we are
808 // assured that the neg instructions we just inserted dominate the
809 // instruction we are about to insert after them.
811 I->moveBefore(BI);
812 I->setName(I->getName()+".neg");
814 // Add the intermediate negates to the redo list as processing them later
815 // could expose more reassociating opportunities.
816 ToRedo.insert(I);
817 return I;
820 // Okay, we need to materialize a negated version of V with an instruction.
821 // Scan the use lists of V to see if we have one already.
822 for (User *U : V->users()) {
823 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
824 continue;
826 // We found one! Now we have to make sure that the definition dominates
827 // this use. We do this by moving it to the entry block (if it is a
828 // non-instruction value) or right after the definition. These negates will
829 // be zapped by reassociate later, so we don't need much finesse here.
830 Instruction *TheNeg = dyn_cast<Instruction>(U);
832 // We can't safely propagate a vector zero constant with poison/undef lanes.
833 Constant *C;
834 if (match(TheNeg, m_BinOp(m_Constant(C), m_Value())) &&
835 C->containsUndefOrPoisonElement())
836 continue;
838 // Verify that the negate is in this function, V might be a constant expr.
839 if (!TheNeg ||
840 TheNeg->getParent()->getParent() != BI->getParent()->getParent())
841 continue;
843 BasicBlock::iterator InsertPt;
844 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
845 auto InsertPtOpt = InstInput->getInsertionPointAfterDef();
846 if (!InsertPtOpt)
847 continue;
848 InsertPt = *InsertPtOpt;
849 } else {
850 InsertPt = TheNeg->getFunction()
851 ->getEntryBlock()
852 .getFirstNonPHIOrDbg()
853 ->getIterator();
856 // Check that if TheNeg is moved out of its parent block, we drop its
857 // debug location to avoid extra coverage.
858 // See test dropping_debugloc_the_neg.ll for a detailed example.
859 if (TheNeg->getParent() != InsertPt->getParent())
860 TheNeg->dropLocation();
861 TheNeg->moveBefore(*InsertPt->getParent(), InsertPt);
863 if (TheNeg->getOpcode() == Instruction::Sub) {
864 TheNeg->setHasNoUnsignedWrap(false);
865 TheNeg->setHasNoSignedWrap(false);
866 } else {
867 TheNeg->andIRFlags(BI);
869 ToRedo.insert(TheNeg);
870 return TheNeg;
873 // Insert a 'neg' instruction that subtracts the value from zero to get the
874 // negation.
875 Instruction *NewNeg =
876 CreateNeg(V, V->getName() + ".neg", BI->getIterator(), BI);
877 // NewNeg is generated to potentially replace BI, so use its DebugLoc.
878 NewNeg->setDebugLoc(BI->getDebugLoc());
879 ToRedo.insert(NewNeg);
880 return NewNeg;
883 // See if this `or` looks like an load widening reduction, i.e. that it
884 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
885 // ensure that the pattern is *really* a load widening reduction,
886 // we do not ensure that it can really be replaced with a widened load,
887 // only that it mostly looks like one.
888 static bool isLoadCombineCandidate(Instruction *Or) {
889 SmallVector<Instruction *, 8> Worklist;
890 SmallSet<Instruction *, 8> Visited;
892 auto Enqueue = [&](Value *V) {
893 auto *I = dyn_cast<Instruction>(V);
894 // Each node of an `or` reduction must be an instruction,
895 if (!I)
896 return false; // Node is certainly not part of an `or` load reduction.
897 // Only process instructions we have never processed before.
898 if (Visited.insert(I).second)
899 Worklist.emplace_back(I);
900 return true; // Will need to look at parent nodes.
903 if (!Enqueue(Or))
904 return false; // Not an `or` reduction pattern.
906 while (!Worklist.empty()) {
907 auto *I = Worklist.pop_back_val();
909 // Okay, which instruction is this node?
910 switch (I->getOpcode()) {
911 case Instruction::Or:
912 // Got an `or` node. That's fine, just recurse into it's operands.
913 for (Value *Op : I->operands())
914 if (!Enqueue(Op))
915 return false; // Not an `or` reduction pattern.
916 continue;
918 case Instruction::Shl:
919 case Instruction::ZExt:
920 // `shl`/`zext` nodes are fine, just recurse into their base operand.
921 if (!Enqueue(I->getOperand(0)))
922 return false; // Not an `or` reduction pattern.
923 continue;
925 case Instruction::Load:
926 // Perfect, `load` node means we've reached an edge of the graph.
927 continue;
929 default: // Unknown node.
930 return false; // Not an `or` reduction pattern.
934 return true;
937 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
938 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
939 // Don't bother to convert this up unless either the LHS is an associable add
940 // or subtract or mul or if this is only used by one of the above.
941 // This is only a compile-time improvement, it is not needed for correctness!
942 auto isInteresting = [](Value *V) {
943 for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
944 Instruction::Shl})
945 if (isReassociableOp(V, Op))
946 return true;
947 return false;
950 if (any_of(Or->operands(), isInteresting))
951 return true;
953 Value *VB = Or->user_back();
954 if (Or->hasOneUse() && isInteresting(VB))
955 return true;
957 return false;
960 /// If we have (X|Y), and iff X and Y have no common bits set,
961 /// transform this into (X+Y) to allow arithmetics reassociation.
962 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
963 // Convert an or into an add.
964 BinaryOperator *New = CreateAdd(Or->getOperand(0), Or->getOperand(1), "",
965 Or->getIterator(), Or);
966 New->setHasNoSignedWrap();
967 New->setHasNoUnsignedWrap();
968 New->takeName(Or);
970 // Everyone now refers to the add instruction.
971 Or->replaceAllUsesWith(New);
972 New->setDebugLoc(Or->getDebugLoc());
974 LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
975 return New;
978 /// Return true if we should break up this subtract of X-Y into (X + -Y).
979 static bool ShouldBreakUpSubtract(Instruction *Sub) {
980 // If this is a negation, we can't split it up!
981 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
982 return false;
984 // Don't breakup X - undef.
985 if (isa<UndefValue>(Sub->getOperand(1)))
986 return false;
988 // Don't bother to break this up unless either the LHS is an associable add or
989 // subtract or if this is only used by one.
990 Value *V0 = Sub->getOperand(0);
991 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
992 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
993 return true;
994 Value *V1 = Sub->getOperand(1);
995 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
996 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
997 return true;
998 Value *VB = Sub->user_back();
999 if (Sub->hasOneUse() &&
1000 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1001 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1002 return true;
1004 return false;
1007 /// If we have (X-Y), and if either X is an add, or if this is only used by an
1008 /// add, transform this into (X+(0-Y)) to promote better reassociation.
1009 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
1010 ReassociatePass::OrderedSet &ToRedo) {
1011 // Convert a subtract into an add and a neg instruction. This allows sub
1012 // instructions to be commuted with other add instructions.
1014 // Calculate the negative value of Operand 1 of the sub instruction,
1015 // and set it as the RHS of the add instruction we just made.
1016 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1017 BinaryOperator *New =
1018 CreateAdd(Sub->getOperand(0), NegVal, "", Sub->getIterator(), Sub);
1019 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1020 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1021 New->takeName(Sub);
1023 // Everyone now refers to the add instruction.
1024 Sub->replaceAllUsesWith(New);
1025 New->setDebugLoc(Sub->getDebugLoc());
1027 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
1028 return New;
1031 /// If this is a shift of a reassociable multiply or is used by one, change
1032 /// this into a multiply by a constant to assist with further reassociation.
1033 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1034 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1035 auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1036 MulCst = ConstantFoldBinaryInstruction(Instruction::Shl, MulCst, SA);
1037 assert(MulCst && "Constant folding of immediate constants failed");
1039 BinaryOperator *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
1040 "", Shl->getIterator());
1041 Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op.
1042 Mul->takeName(Shl);
1044 // Everyone now refers to the mul instruction.
1045 Shl->replaceAllUsesWith(Mul);
1046 Mul->setDebugLoc(Shl->getDebugLoc());
1048 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1049 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1050 // handling. It can be preserved as long as we're not left shifting by
1051 // bitwidth - 1.
1052 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1053 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1054 unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1055 if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1056 Mul->setHasNoSignedWrap(true);
1057 Mul->setHasNoUnsignedWrap(NUW);
1058 return Mul;
1061 /// Scan backwards and forwards among values with the same rank as element i
1062 /// to see if X exists. If X does not exist, return i. This is useful when
1063 /// scanning for 'x' when we see '-x' because they both get the same rank.
1064 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1065 unsigned i, Value *X) {
1066 unsigned XRank = Ops[i].Rank;
1067 unsigned e = Ops.size();
1068 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1069 if (Ops[j].Op == X)
1070 return j;
1071 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1072 if (Instruction *I2 = dyn_cast<Instruction>(X))
1073 if (I1->isIdenticalTo(I2))
1074 return j;
1076 // Scan backwards.
1077 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1078 if (Ops[j].Op == X)
1079 return j;
1080 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1081 if (Instruction *I2 = dyn_cast<Instruction>(X))
1082 if (I1->isIdenticalTo(I2))
1083 return j;
1085 return i;
1088 /// Emit a tree of add instructions, summing Ops together
1089 /// and returning the result. Insert the tree before I.
1090 static Value *EmitAddTreeOfValues(BasicBlock::iterator It,
1091 SmallVectorImpl<WeakTrackingVH> &Ops) {
1092 if (Ops.size() == 1) return Ops.back();
1094 Value *V1 = Ops.pop_back_val();
1095 Value *V2 = EmitAddTreeOfValues(It, Ops);
1096 return CreateAdd(V2, V1, "reass.add", It, &*It);
1099 /// If V is an expression tree that is a multiplication sequence,
1100 /// and if this sequence contains a multiply by Factor,
1101 /// remove Factor from the tree and return the new tree.
1102 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1103 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1104 if (!BO)
1105 return nullptr;
1107 SmallVector<RepeatedValue, 8> Tree;
1108 OverflowTracking Flags;
1109 MadeChange |= LinearizeExprTree(BO, Tree, RedoInsts, Flags);
1110 SmallVector<ValueEntry, 8> Factors;
1111 Factors.reserve(Tree.size());
1112 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1113 RepeatedValue E = Tree[i];
1114 Factors.append(E.second, ValueEntry(getRank(E.first), E.first));
1117 bool FoundFactor = false;
1118 bool NeedsNegate = false;
1119 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1120 if (Factors[i].Op == Factor) {
1121 FoundFactor = true;
1122 Factors.erase(Factors.begin()+i);
1123 break;
1126 // If this is a negative version of this factor, remove it.
1127 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1128 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1129 if (FC1->getValue() == -FC2->getValue()) {
1130 FoundFactor = NeedsNegate = true;
1131 Factors.erase(Factors.begin()+i);
1132 break;
1134 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1135 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1136 const APFloat &F1 = FC1->getValueAPF();
1137 APFloat F2(FC2->getValueAPF());
1138 F2.changeSign();
1139 if (F1 == F2) {
1140 FoundFactor = NeedsNegate = true;
1141 Factors.erase(Factors.begin() + i);
1142 break;
1148 if (!FoundFactor) {
1149 // Make sure to restore the operands to the expression tree.
1150 RewriteExprTree(BO, Factors, Flags);
1151 return nullptr;
1154 BasicBlock::iterator InsertPt = ++BO->getIterator();
1156 // If this was just a single multiply, remove the multiply and return the only
1157 // remaining operand.
1158 if (Factors.size() == 1) {
1159 RedoInsts.insert(BO);
1160 V = Factors[0].Op;
1161 } else {
1162 RewriteExprTree(BO, Factors, Flags);
1163 V = BO;
1166 if (NeedsNegate)
1167 V = CreateNeg(V, "neg", InsertPt, BO);
1169 return V;
1172 /// If V is a single-use multiply, recursively add its operands as factors,
1173 /// otherwise add V to the list of factors.
1175 /// Ops is the top-level list of add operands we're trying to factor.
1176 static void FindSingleUseMultiplyFactors(Value *V,
1177 SmallVectorImpl<Value*> &Factors) {
1178 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1179 if (!BO) {
1180 Factors.push_back(V);
1181 return;
1184 // Otherwise, add the LHS and RHS to the list of factors.
1185 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1186 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1189 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1190 /// This optimizes based on identities. If it can be reduced to a single Value,
1191 /// it is returned, otherwise the Ops list is mutated as necessary.
1192 static Value *OptimizeAndOrXor(unsigned Opcode,
1193 SmallVectorImpl<ValueEntry> &Ops) {
1194 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1195 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1196 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1197 // First, check for X and ~X in the operand list.
1198 assert(i < Ops.size());
1199 Value *X;
1200 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^.
1201 unsigned FoundX = FindInOperandList(Ops, i, X);
1202 if (FoundX != i) {
1203 if (Opcode == Instruction::And) // ...&X&~X = 0
1204 return Constant::getNullValue(X->getType());
1206 if (Opcode == Instruction::Or) // ...|X|~X = -1
1207 return Constant::getAllOnesValue(X->getType());
1211 // Next, check for duplicate pairs of values, which we assume are next to
1212 // each other, due to our sorting criteria.
1213 assert(i < Ops.size());
1214 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1215 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1216 // Drop duplicate values for And and Or.
1217 Ops.erase(Ops.begin()+i);
1218 --i; --e;
1219 ++NumAnnihil;
1220 continue;
1223 // Drop pairs of values for Xor.
1224 assert(Opcode == Instruction::Xor);
1225 if (e == 2)
1226 return Constant::getNullValue(Ops[0].Op->getType());
1228 // Y ^ X^X -> Y
1229 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1230 i -= 1; e -= 2;
1231 ++NumAnnihil;
1234 return nullptr;
1237 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1238 /// instruction with the given two operands, and return the resulting
1239 /// instruction. There are two special cases: 1) if the constant operand is 0,
1240 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1241 /// be returned.
1242 static Value *createAndInstr(BasicBlock::iterator InsertBefore, Value *Opnd,
1243 const APInt &ConstOpnd) {
1244 if (ConstOpnd.isZero())
1245 return nullptr;
1247 if (ConstOpnd.isAllOnes())
1248 return Opnd;
1250 Instruction *I = BinaryOperator::CreateAnd(
1251 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1252 InsertBefore);
1253 I->setDebugLoc(InsertBefore->getDebugLoc());
1254 return I;
1257 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1258 // into "R ^ C", where C would be 0, and R is a symbolic value.
1260 // If it was successful, true is returned, and the "R" and "C" is returned
1261 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1262 // and both "Res" and "ConstOpnd" remain unchanged.
1263 bool ReassociatePass::CombineXorOpnd(BasicBlock::iterator It, XorOpnd *Opnd1,
1264 APInt &ConstOpnd, Value *&Res) {
1265 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1266 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1267 // = (x & ~c1) ^ (c1 ^ c2)
1268 // It is useful only when c1 == c2.
1269 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero())
1270 return false;
1272 if (!Opnd1->getValue()->hasOneUse())
1273 return false;
1275 const APInt &C1 = Opnd1->getConstPart();
1276 if (C1 != ConstOpnd)
1277 return false;
1279 Value *X = Opnd1->getSymbolicPart();
1280 Res = createAndInstr(It, X, ~C1);
1281 // ConstOpnd was C2, now C1 ^ C2.
1282 ConstOpnd ^= C1;
1284 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1285 RedoInsts.insert(T);
1286 return true;
1289 // Helper function of OptimizeXor(). It tries to simplify
1290 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1291 // symbolic value.
1293 // If it was successful, true is returned, and the "R" and "C" is returned
1294 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1295 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1296 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1297 bool ReassociatePass::CombineXorOpnd(BasicBlock::iterator It, XorOpnd *Opnd1,
1298 XorOpnd *Opnd2, APInt &ConstOpnd,
1299 Value *&Res) {
1300 Value *X = Opnd1->getSymbolicPart();
1301 if (X != Opnd2->getSymbolicPart())
1302 return false;
1304 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1305 int DeadInstNum = 1;
1306 if (Opnd1->getValue()->hasOneUse())
1307 DeadInstNum++;
1308 if (Opnd2->getValue()->hasOneUse())
1309 DeadInstNum++;
1311 // Xor-Rule 2:
1312 // (x | c1) ^ (x & c2)
1313 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1314 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1315 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1317 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1318 if (Opnd2->isOrExpr())
1319 std::swap(Opnd1, Opnd2);
1321 const APInt &C1 = Opnd1->getConstPart();
1322 const APInt &C2 = Opnd2->getConstPart();
1323 APInt C3((~C1) ^ C2);
1325 // Do not increase code size!
1326 if (!C3.isZero() && !C3.isAllOnes()) {
1327 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1328 if (NewInstNum > DeadInstNum)
1329 return false;
1332 Res = createAndInstr(It, X, C3);
1333 ConstOpnd ^= C1;
1334 } else if (Opnd1->isOrExpr()) {
1335 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1337 const APInt &C1 = Opnd1->getConstPart();
1338 const APInt &C2 = Opnd2->getConstPart();
1339 APInt C3 = C1 ^ C2;
1341 // Do not increase code size
1342 if (!C3.isZero() && !C3.isAllOnes()) {
1343 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1344 if (NewInstNum > DeadInstNum)
1345 return false;
1348 Res = createAndInstr(It, X, C3);
1349 ConstOpnd ^= C3;
1350 } else {
1351 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1353 const APInt &C1 = Opnd1->getConstPart();
1354 const APInt &C2 = Opnd2->getConstPart();
1355 APInt C3 = C1 ^ C2;
1356 Res = createAndInstr(It, X, C3);
1359 // Put the original operands in the Redo list; hope they will be deleted
1360 // as dead code.
1361 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1362 RedoInsts.insert(T);
1363 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1364 RedoInsts.insert(T);
1366 return true;
1369 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1370 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1371 /// necessary.
1372 Value *ReassociatePass::OptimizeXor(Instruction *I,
1373 SmallVectorImpl<ValueEntry> &Ops) {
1374 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1375 return V;
1377 if (Ops.size() == 1)
1378 return nullptr;
1380 SmallVector<XorOpnd, 8> Opnds;
1381 SmallVector<XorOpnd*, 8> OpndPtrs;
1382 Type *Ty = Ops[0].Op->getType();
1383 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1385 // Step 1: Convert ValueEntry to XorOpnd
1386 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1387 Value *V = Ops[i].Op;
1388 const APInt *C;
1389 // TODO: Support non-splat vectors.
1390 if (match(V, m_APInt(C))) {
1391 ConstOpnd ^= *C;
1392 } else {
1393 XorOpnd O(V);
1394 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1395 Opnds.push_back(O);
1399 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1400 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1401 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1402 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1403 // when new elements are added to the vector.
1404 for (XorOpnd &Op : Opnds)
1405 OpndPtrs.push_back(&Op);
1407 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1408 // the same symbolic value cluster together. For instance, the input operand
1409 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1410 // ("x | 123", "x & 789", "y & 456").
1412 // The purpose is twofold:
1413 // 1) Cluster together the operands sharing the same symbolic-value.
1414 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1415 // could potentially shorten crital path, and expose more loop-invariants.
1416 // Note that values' rank are basically defined in RPO order (FIXME).
1417 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1418 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1419 // "z" in the order of X-Y-Z is better than any other orders.
1420 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1421 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1424 // Step 3: Combine adjacent operands
1425 XorOpnd *PrevOpnd = nullptr;
1426 bool Changed = false;
1427 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1428 XorOpnd *CurrOpnd = OpndPtrs[i];
1429 // The combined value
1430 Value *CV;
1432 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1433 if (!ConstOpnd.isZero() &&
1434 CombineXorOpnd(I->getIterator(), CurrOpnd, ConstOpnd, CV)) {
1435 Changed = true;
1436 if (CV)
1437 *CurrOpnd = XorOpnd(CV);
1438 else {
1439 CurrOpnd->Invalidate();
1440 continue;
1444 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1445 PrevOpnd = CurrOpnd;
1446 continue;
1449 // step 3.2: When previous and current operands share the same symbolic
1450 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1451 if (CombineXorOpnd(I->getIterator(), CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1452 // Remove previous operand
1453 PrevOpnd->Invalidate();
1454 if (CV) {
1455 *CurrOpnd = XorOpnd(CV);
1456 PrevOpnd = CurrOpnd;
1457 } else {
1458 CurrOpnd->Invalidate();
1459 PrevOpnd = nullptr;
1461 Changed = true;
1465 // Step 4: Reassemble the Ops
1466 if (Changed) {
1467 Ops.clear();
1468 for (const XorOpnd &O : Opnds) {
1469 if (O.isInvalid())
1470 continue;
1471 ValueEntry VE(getRank(O.getValue()), O.getValue());
1472 Ops.push_back(VE);
1474 if (!ConstOpnd.isZero()) {
1475 Value *C = ConstantInt::get(Ty, ConstOpnd);
1476 ValueEntry VE(getRank(C), C);
1477 Ops.push_back(VE);
1479 unsigned Sz = Ops.size();
1480 if (Sz == 1)
1481 return Ops.back().Op;
1482 if (Sz == 0) {
1483 assert(ConstOpnd.isZero());
1484 return ConstantInt::get(Ty, ConstOpnd);
1488 return nullptr;
1491 /// Optimize a series of operands to an 'add' instruction. This
1492 /// optimizes based on identities. If it can be reduced to a single Value, it
1493 /// is returned, otherwise the Ops list is mutated as necessary.
1494 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1495 SmallVectorImpl<ValueEntry> &Ops) {
1496 // Scan the operand lists looking for X and -X pairs. If we find any, we
1497 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1498 // scan for any
1499 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1501 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1502 Value *TheOp = Ops[i].Op;
1503 // Check to see if we've seen this operand before. If so, we factor all
1504 // instances of the operand together. Due to our sorting criteria, we know
1505 // that these need to be next to each other in the vector.
1506 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1507 // Rescan the list, remove all instances of this operand from the expr.
1508 unsigned NumFound = 0;
1509 do {
1510 Ops.erase(Ops.begin()+i);
1511 ++NumFound;
1512 } while (i != Ops.size() && Ops[i].Op == TheOp);
1514 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1515 << '\n');
1516 ++NumFactor;
1518 // Insert a new multiply.
1519 Type *Ty = TheOp->getType();
1520 Constant *C = Ty->isIntOrIntVectorTy() ?
1521 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1522 Instruction *Mul = CreateMul(TheOp, C, "factor", I->getIterator(), I);
1524 // Now that we have inserted a multiply, optimize it. This allows us to
1525 // handle cases that require multiple factoring steps, such as this:
1526 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1527 RedoInsts.insert(Mul);
1529 // If every add operand was a duplicate, return the multiply.
1530 if (Ops.empty())
1531 return Mul;
1533 // Otherwise, we had some input that didn't have the dupe, such as
1534 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1535 // things being added by this operation.
1536 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1538 --i;
1539 e = Ops.size();
1540 continue;
1543 // Check for X and -X or X and ~X in the operand list.
1544 Value *X;
1545 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1546 !match(TheOp, m_FNeg(m_Value(X))))
1547 continue;
1549 unsigned FoundX = FindInOperandList(Ops, i, X);
1550 if (FoundX == i)
1551 continue;
1553 // Remove X and -X from the operand list.
1554 if (Ops.size() == 2 &&
1555 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1556 return Constant::getNullValue(X->getType());
1558 // Remove X and ~X from the operand list.
1559 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1560 return Constant::getAllOnesValue(X->getType());
1562 Ops.erase(Ops.begin()+i);
1563 if (i < FoundX)
1564 --FoundX;
1565 else
1566 --i; // Need to back up an extra one.
1567 Ops.erase(Ops.begin()+FoundX);
1568 ++NumAnnihil;
1569 --i; // Revisit element.
1570 e -= 2; // Removed two elements.
1572 // if X and ~X we append -1 to the operand list.
1573 if (match(TheOp, m_Not(m_Value()))) {
1574 Value *V = Constant::getAllOnesValue(X->getType());
1575 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1576 e += 1;
1580 // Scan the operand list, checking to see if there are any common factors
1581 // between operands. Consider something like A*A+A*B*C+D. We would like to
1582 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1583 // To efficiently find this, we count the number of times a factor occurs
1584 // for any ADD operands that are MULs.
1585 DenseMap<Value*, unsigned> FactorOccurrences;
1587 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1588 // where they are actually the same multiply.
1589 unsigned MaxOcc = 0;
1590 Value *MaxOccVal = nullptr;
1591 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1592 BinaryOperator *BOp =
1593 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1594 if (!BOp)
1595 continue;
1597 // Compute all of the factors of this added value.
1598 SmallVector<Value*, 8> Factors;
1599 FindSingleUseMultiplyFactors(BOp, Factors);
1600 assert(Factors.size() > 1 && "Bad linearize!");
1602 // Add one to FactorOccurrences for each unique factor in this op.
1603 SmallPtrSet<Value*, 8> Duplicates;
1604 for (Value *Factor : Factors) {
1605 if (!Duplicates.insert(Factor).second)
1606 continue;
1608 unsigned Occ = ++FactorOccurrences[Factor];
1609 if (Occ > MaxOcc) {
1610 MaxOcc = Occ;
1611 MaxOccVal = Factor;
1614 // If Factor is a negative constant, add the negated value as a factor
1615 // because we can percolate the negate out. Watch for minint, which
1616 // cannot be positivified.
1617 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1618 if (CI->isNegative() && !CI->isMinValue(true)) {
1619 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1620 if (!Duplicates.insert(Factor).second)
1621 continue;
1622 unsigned Occ = ++FactorOccurrences[Factor];
1623 if (Occ > MaxOcc) {
1624 MaxOcc = Occ;
1625 MaxOccVal = Factor;
1628 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1629 if (CF->isNegative()) {
1630 APFloat F(CF->getValueAPF());
1631 F.changeSign();
1632 Factor = ConstantFP::get(CF->getContext(), F);
1633 if (!Duplicates.insert(Factor).second)
1634 continue;
1635 unsigned Occ = ++FactorOccurrences[Factor];
1636 if (Occ > MaxOcc) {
1637 MaxOcc = Occ;
1638 MaxOccVal = Factor;
1645 // If any factor occurred more than one time, we can pull it out.
1646 if (MaxOcc > 1) {
1647 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1648 << '\n');
1649 ++NumFactor;
1651 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1652 // this, we could otherwise run into situations where removing a factor
1653 // from an expression will drop a use of maxocc, and this can cause
1654 // RemoveFactorFromExpression on successive values to behave differently.
1655 Instruction *DummyInst =
1656 I->getType()->isIntOrIntVectorTy()
1657 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1658 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1660 SmallVector<WeakTrackingVH, 4> NewMulOps;
1661 for (unsigned i = 0; i != Ops.size(); ++i) {
1662 // Only try to remove factors from expressions we're allowed to.
1663 BinaryOperator *BOp =
1664 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1665 if (!BOp)
1666 continue;
1668 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1669 // The factorized operand may occur several times. Convert them all in
1670 // one fell swoop.
1671 for (unsigned j = Ops.size(); j != i;) {
1672 --j;
1673 if (Ops[j].Op == Ops[i].Op) {
1674 NewMulOps.push_back(V);
1675 Ops.erase(Ops.begin()+j);
1678 --i;
1682 // No need for extra uses anymore.
1683 DummyInst->deleteValue();
1685 unsigned NumAddedValues = NewMulOps.size();
1686 Value *V = EmitAddTreeOfValues(I->getIterator(), NewMulOps);
1688 // Now that we have inserted the add tree, optimize it. This allows us to
1689 // handle cases that require multiple factoring steps, such as this:
1690 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1691 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1692 (void)NumAddedValues;
1693 if (Instruction *VI = dyn_cast<Instruction>(V))
1694 RedoInsts.insert(VI);
1696 // Create the multiply.
1697 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I->getIterator(), I);
1699 // Rerun associate on the multiply in case the inner expression turned into
1700 // a multiply. We want to make sure that we keep things in canonical form.
1701 RedoInsts.insert(V2);
1703 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1704 // entire result expression is just the multiply "A*(B+C)".
1705 if (Ops.empty())
1706 return V2;
1708 // Otherwise, we had some input that didn't have the factor, such as
1709 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1710 // things being added by this operation.
1711 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1714 return nullptr;
1717 /// Build up a vector of value/power pairs factoring a product.
1719 /// Given a series of multiplication operands, build a vector of factors and
1720 /// the powers each is raised to when forming the final product. Sort them in
1721 /// the order of descending power.
1723 /// (x*x) -> [(x, 2)]
1724 /// ((x*x)*x) -> [(x, 3)]
1725 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1727 /// \returns Whether any factors have a power greater than one.
1728 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1729 SmallVectorImpl<Factor> &Factors) {
1730 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1731 // Compute the sum of powers of simplifiable factors.
1732 unsigned FactorPowerSum = 0;
1733 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1734 Value *Op = Ops[Idx-1].Op;
1736 // Count the number of occurrences of this value.
1737 unsigned Count = 1;
1738 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1739 ++Count;
1740 // Track for simplification all factors which occur 2 or more times.
1741 if (Count > 1)
1742 FactorPowerSum += Count;
1745 // We can only simplify factors if the sum of the powers of our simplifiable
1746 // factors is 4 or higher. When that is the case, we will *always* have
1747 // a simplification. This is an important invariant to prevent cyclicly
1748 // trying to simplify already minimal formations.
1749 if (FactorPowerSum < 4)
1750 return false;
1752 // Now gather the simplifiable factors, removing them from Ops.
1753 FactorPowerSum = 0;
1754 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1755 Value *Op = Ops[Idx-1].Op;
1757 // Count the number of occurrences of this value.
1758 unsigned Count = 1;
1759 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1760 ++Count;
1761 if (Count == 1)
1762 continue;
1763 // Move an even number of occurrences to Factors.
1764 Count &= ~1U;
1765 Idx -= Count;
1766 FactorPowerSum += Count;
1767 Factors.push_back(Factor(Op, Count));
1768 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1771 // None of the adjustments above should have reduced the sum of factor powers
1772 // below our mininum of '4'.
1773 assert(FactorPowerSum >= 4);
1775 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1776 return LHS.Power > RHS.Power;
1778 return true;
1781 /// Build a tree of multiplies, computing the product of Ops.
1782 static Value *buildMultiplyTree(IRBuilderBase &Builder,
1783 SmallVectorImpl<Value*> &Ops) {
1784 if (Ops.size() == 1)
1785 return Ops.back();
1787 Value *LHS = Ops.pop_back_val();
1788 do {
1789 if (LHS->getType()->isIntOrIntVectorTy())
1790 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1791 else
1792 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1793 } while (!Ops.empty());
1795 return LHS;
1798 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1800 /// Given a vector of values raised to various powers, where no two values are
1801 /// equal and the powers are sorted in decreasing order, compute the minimal
1802 /// DAG of multiplies to compute the final product, and return that product
1803 /// value.
1804 Value *
1805 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1806 SmallVectorImpl<Factor> &Factors) {
1807 assert(Factors[0].Power);
1808 SmallVector<Value *, 4> OuterProduct;
1809 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1810 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1811 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1812 LastIdx = Idx;
1813 continue;
1816 // We want to multiply across all the factors with the same power so that
1817 // we can raise them to that power as a single entity. Build a mini tree
1818 // for that.
1819 SmallVector<Value *, 4> InnerProduct;
1820 InnerProduct.push_back(Factors[LastIdx].Base);
1821 do {
1822 InnerProduct.push_back(Factors[Idx].Base);
1823 ++Idx;
1824 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1826 // Reset the base value of the first factor to the new expression tree.
1827 // We'll remove all the factors with the same power in a second pass.
1828 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1829 if (Instruction *MI = dyn_cast<Instruction>(M))
1830 RedoInsts.insert(MI);
1832 LastIdx = Idx;
1834 // Unique factors with equal powers -- we've folded them into the first one's
1835 // base.
1836 Factors.erase(llvm::unique(Factors,
1837 [](const Factor &LHS, const Factor &RHS) {
1838 return LHS.Power == RHS.Power;
1840 Factors.end());
1842 // Iteratively collect the base of each factor with an add power into the
1843 // outer product, and halve each power in preparation for squaring the
1844 // expression.
1845 for (Factor &F : Factors) {
1846 if (F.Power & 1)
1847 OuterProduct.push_back(F.Base);
1848 F.Power >>= 1;
1850 if (Factors[0].Power) {
1851 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1852 OuterProduct.push_back(SquareRoot);
1853 OuterProduct.push_back(SquareRoot);
1855 if (OuterProduct.size() == 1)
1856 return OuterProduct.front();
1858 Value *V = buildMultiplyTree(Builder, OuterProduct);
1859 return V;
1862 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1863 SmallVectorImpl<ValueEntry> &Ops) {
1864 // We can only optimize the multiplies when there is a chain of more than
1865 // three, such that a balanced tree might require fewer total multiplies.
1866 if (Ops.size() < 4)
1867 return nullptr;
1869 // Try to turn linear trees of multiplies without other uses of the
1870 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1871 // re-use.
1872 SmallVector<Factor, 4> Factors;
1873 if (!collectMultiplyFactors(Ops, Factors))
1874 return nullptr; // All distinct factors, so nothing left for us to do.
1876 IRBuilder<> Builder(I);
1877 // The reassociate transformation for FP operations is performed only
1878 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1879 // to the newly generated operations.
1880 if (auto FPI = dyn_cast<FPMathOperator>(I))
1881 Builder.setFastMathFlags(FPI->getFastMathFlags());
1883 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1884 if (Ops.empty())
1885 return V;
1887 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1888 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1889 return nullptr;
1892 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1893 SmallVectorImpl<ValueEntry> &Ops) {
1894 // Now that we have the linearized expression tree, try to optimize it.
1895 // Start by folding any constants that we found.
1896 const DataLayout &DL = I->getDataLayout();
1897 Constant *Cst = nullptr;
1898 unsigned Opcode = I->getOpcode();
1899 while (!Ops.empty()) {
1900 if (auto *C = dyn_cast<Constant>(Ops.back().Op)) {
1901 if (!Cst) {
1902 Ops.pop_back();
1903 Cst = C;
1904 continue;
1906 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) {
1907 Ops.pop_back();
1908 Cst = Res;
1909 continue;
1912 break;
1914 // If there was nothing but constants then we are done.
1915 if (Ops.empty())
1916 return Cst;
1918 // Put the combined constant back at the end of the operand list, except if
1919 // there is no point. For example, an add of 0 gets dropped here, while a
1920 // multiplication by zero turns the whole expression into zero.
1921 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1922 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1923 return Cst;
1924 Ops.push_back(ValueEntry(0, Cst));
1927 if (Ops.size() == 1) return Ops[0].Op;
1929 // Handle destructive annihilation due to identities between elements in the
1930 // argument list here.
1931 unsigned NumOps = Ops.size();
1932 switch (Opcode) {
1933 default: break;
1934 case Instruction::And:
1935 case Instruction::Or:
1936 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1937 return Result;
1938 break;
1940 case Instruction::Xor:
1941 if (Value *Result = OptimizeXor(I, Ops))
1942 return Result;
1943 break;
1945 case Instruction::Add:
1946 case Instruction::FAdd:
1947 if (Value *Result = OptimizeAdd(I, Ops))
1948 return Result;
1949 break;
1951 case Instruction::Mul:
1952 case Instruction::FMul:
1953 if (Value *Result = OptimizeMul(I, Ops))
1954 return Result;
1955 break;
1958 if (Ops.size() != NumOps)
1959 return OptimizeExpression(I, Ops);
1960 return nullptr;
1963 // Remove dead instructions and if any operands are trivially dead add them to
1964 // Insts so they will be removed as well.
1965 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1966 OrderedSet &Insts) {
1967 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1968 SmallVector<Value *, 4> Ops(I->operands());
1969 ValueRankMap.erase(I);
1970 Insts.remove(I);
1971 RedoInsts.remove(I);
1972 llvm::salvageDebugInfo(*I);
1973 I->eraseFromParent();
1974 for (auto *Op : Ops)
1975 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1976 if (OpInst->use_empty())
1977 Insts.insert(OpInst);
1980 /// Zap the given instruction, adding interesting operands to the work list.
1981 void ReassociatePass::EraseInst(Instruction *I) {
1982 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1983 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1985 SmallVector<Value *, 8> Ops(I->operands());
1986 // Erase the dead instruction.
1987 ValueRankMap.erase(I);
1988 RedoInsts.remove(I);
1989 llvm::salvageDebugInfo(*I);
1990 I->eraseFromParent();
1991 // Optimize its operands.
1992 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1993 for (Value *V : Ops)
1994 if (Instruction *Op = dyn_cast<Instruction>(V)) {
1995 // If this is a node in an expression tree, climb to the expression root
1996 // and add that since that's where optimization actually happens.
1997 unsigned Opcode = Op->getOpcode();
1998 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1999 Visited.insert(Op).second)
2000 Op = Op->user_back();
2002 // The instruction we're going to push may be coming from a
2003 // dead block, and Reassociate skips the processing of unreachable
2004 // blocks because it's a waste of time and also because it can
2005 // lead to infinite loop due to LLVM's non-standard definition
2006 // of dominance.
2007 if (ValueRankMap.contains(Op))
2008 RedoInsts.insert(Op);
2011 MadeChange = true;
2014 /// Recursively analyze an expression to build a list of instructions that have
2015 /// negative floating-point constant operands. The caller can then transform
2016 /// the list to create positive constants for better reassociation and CSE.
2017 static void getNegatibleInsts(Value *V,
2018 SmallVectorImpl<Instruction *> &Candidates) {
2019 // Handle only one-use instructions. Combining negations does not justify
2020 // replicating instructions.
2021 Instruction *I;
2022 if (!match(V, m_OneUse(m_Instruction(I))))
2023 return;
2025 // Handle expressions of multiplications and divisions.
2026 // TODO: This could look through floating-point casts.
2027 const APFloat *C;
2028 switch (I->getOpcode()) {
2029 case Instruction::FMul:
2030 // Not expecting non-canonical code here. Bail out and wait.
2031 if (match(I->getOperand(0), m_Constant()))
2032 break;
2034 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2035 Candidates.push_back(I);
2036 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
2038 getNegatibleInsts(I->getOperand(0), Candidates);
2039 getNegatibleInsts(I->getOperand(1), Candidates);
2040 break;
2041 case Instruction::FDiv:
2042 // Not expecting non-canonical code here. Bail out and wait.
2043 if (match(I->getOperand(0), m_Constant()) &&
2044 match(I->getOperand(1), m_Constant()))
2045 break;
2047 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2048 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2049 Candidates.push_back(I);
2050 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
2052 getNegatibleInsts(I->getOperand(0), Candidates);
2053 getNegatibleInsts(I->getOperand(1), Candidates);
2054 break;
2055 default:
2056 break;
2060 /// Given an fadd/fsub with an operand that is a one-use instruction
2061 /// (the fadd/fsub), try to change negative floating-point constants into
2062 /// positive constants to increase potential for reassociation and CSE.
2063 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2064 Instruction *Op,
2065 Value *OtherOp) {
2066 assert((I->getOpcode() == Instruction::FAdd ||
2067 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
2069 // Collect instructions with negative FP constants from the subtree that ends
2070 // in Op.
2071 SmallVector<Instruction *, 4> Candidates;
2072 getNegatibleInsts(Op, Candidates);
2073 if (Candidates.empty())
2074 return nullptr;
2076 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2077 // resulting subtract will be broken up later. This can get us into an
2078 // infinite loop during reassociation.
2079 bool IsFSub = I->getOpcode() == Instruction::FSub;
2080 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2081 if (NeedsSubtract && ShouldBreakUpSubtract(I))
2082 return nullptr;
2084 for (Instruction *Negatible : Candidates) {
2085 const APFloat *C;
2086 if (match(Negatible->getOperand(0), m_APFloat(C))) {
2087 assert(!match(Negatible->getOperand(1), m_Constant()) &&
2088 "Expecting only 1 constant operand");
2089 assert(C->isNegative() && "Expected negative FP constant");
2090 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2091 MadeChange = true;
2093 if (match(Negatible->getOperand(1), m_APFloat(C))) {
2094 assert(!match(Negatible->getOperand(0), m_Constant()) &&
2095 "Expecting only 1 constant operand");
2096 assert(C->isNegative() && "Expected negative FP constant");
2097 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2098 MadeChange = true;
2101 assert(MadeChange == true && "Negative constant candidate was not changed");
2103 // Negations cancelled out.
2104 if (Candidates.size() % 2 == 0)
2105 return I;
2107 // Negate the final operand in the expression by flipping the opcode of this
2108 // fadd/fsub.
2109 assert(Candidates.size() % 2 == 1 && "Expected odd number");
2110 IRBuilder<> Builder(I);
2111 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2112 : Builder.CreateFSubFMF(OtherOp, Op, I);
2113 I->replaceAllUsesWith(NewInst);
2114 RedoInsts.insert(I);
2115 return dyn_cast<Instruction>(NewInst);
2118 /// Canonicalize expressions that contain a negative floating-point constant
2119 /// of the following form:
2120 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2121 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2122 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2124 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2125 /// input instruction.
2126 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2127 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2128 Value *X;
2129 Instruction *Op;
2130 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2131 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2132 I = R;
2133 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2134 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2135 I = R;
2136 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2137 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2138 I = R;
2139 return I;
2142 /// Inspect and optimize the given instruction. Note that erasing
2143 /// instructions is not allowed.
2144 void ReassociatePass::OptimizeInst(Instruction *I) {
2145 // Only consider operations that we understand.
2146 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2147 return;
2149 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2150 // If an operand of this shift is a reassociable multiply, or if the shift
2151 // is used by a reassociable multiply or add, turn into a multiply.
2152 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2153 (I->hasOneUse() &&
2154 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2155 isReassociableOp(I->user_back(), Instruction::Add)))) {
2156 Instruction *NI = ConvertShiftToMul(I);
2157 RedoInsts.insert(I);
2158 MadeChange = true;
2159 I = NI;
2162 // Commute binary operators, to canonicalize the order of their operands.
2163 // This can potentially expose more CSE opportunities, and makes writing other
2164 // transformations simpler.
2165 if (I->isCommutative())
2166 canonicalizeOperands(I);
2168 // Canonicalize negative constants out of expressions.
2169 if (Instruction *Res = canonicalizeNegFPConstants(I))
2170 I = Res;
2172 // Don't optimize floating-point instructions unless they have the
2173 // appropriate FastMathFlags for reassociation enabled.
2174 if (isa<FPMathOperator>(I) && !hasFPAssociativeFlags(I))
2175 return;
2177 // Do not reassociate boolean (i1) expressions. We want to preserve the
2178 // original order of evaluation for short-circuited comparisons that
2179 // SimplifyCFG has folded to AND/OR expressions. If the expression
2180 // is not further optimized, it is likely to be transformed back to a
2181 // short-circuited form for code gen, and the source order may have been
2182 // optimized for the most likely conditions.
2183 if (I->getType()->isIntegerTy(1))
2184 return;
2186 // If this is a bitwise or instruction of operands
2187 // with no common bits set, convert it to X+Y.
2188 if (I->getOpcode() == Instruction::Or &&
2189 shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2190 (cast<PossiblyDisjointInst>(I)->isDisjoint() ||
2191 haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2192 SimplifyQuery(I->getDataLayout(),
2193 /*DT=*/nullptr, /*AC=*/nullptr, I)))) {
2194 Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2195 RedoInsts.insert(I);
2196 MadeChange = true;
2197 I = NI;
2200 // If this is a subtract instruction which is not already in negate form,
2201 // see if we can convert it to X+-Y.
2202 if (I->getOpcode() == Instruction::Sub) {
2203 if (ShouldBreakUpSubtract(I)) {
2204 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2205 RedoInsts.insert(I);
2206 MadeChange = true;
2207 I = NI;
2208 } else if (match(I, m_Neg(m_Value()))) {
2209 // Otherwise, this is a negation. See if the operand is a multiply tree
2210 // and if this is not an inner node of a multiply tree.
2211 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2212 (!I->hasOneUse() ||
2213 !isReassociableOp(I->user_back(), Instruction::Mul))) {
2214 Instruction *NI = LowerNegateToMultiply(I);
2215 // If the negate was simplified, revisit the users to see if we can
2216 // reassociate further.
2217 for (User *U : NI->users()) {
2218 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2219 RedoInsts.insert(Tmp);
2221 RedoInsts.insert(I);
2222 MadeChange = true;
2223 I = NI;
2226 } else if (I->getOpcode() == Instruction::FNeg ||
2227 I->getOpcode() == Instruction::FSub) {
2228 if (ShouldBreakUpSubtract(I)) {
2229 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2230 RedoInsts.insert(I);
2231 MadeChange = true;
2232 I = NI;
2233 } else if (match(I, m_FNeg(m_Value()))) {
2234 // Otherwise, this is a negation. See if the operand is a multiply tree
2235 // and if this is not an inner node of a multiply tree.
2236 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2237 I->getOperand(0);
2238 if (isReassociableOp(Op, Instruction::FMul) &&
2239 (!I->hasOneUse() ||
2240 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2241 // If the negate was simplified, revisit the users to see if we can
2242 // reassociate further.
2243 Instruction *NI = LowerNegateToMultiply(I);
2244 for (User *U : NI->users()) {
2245 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2246 RedoInsts.insert(Tmp);
2248 RedoInsts.insert(I);
2249 MadeChange = true;
2250 I = NI;
2255 // If this instruction is an associative binary operator, process it.
2256 if (!I->isAssociative()) return;
2257 BinaryOperator *BO = cast<BinaryOperator>(I);
2259 // If this is an interior node of a reassociable tree, ignore it until we
2260 // get to the root of the tree, to avoid N^2 analysis.
2261 unsigned Opcode = BO->getOpcode();
2262 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2263 // During the initial run we will get to the root of the tree.
2264 // But if we get here while we are redoing instructions, there is no
2265 // guarantee that the root will be visited. So Redo later
2266 if (BO->user_back() != BO &&
2267 BO->getParent() == BO->user_back()->getParent())
2268 RedoInsts.insert(BO->user_back());
2269 return;
2272 // If this is an add tree that is used by a sub instruction, ignore it
2273 // until we process the subtract.
2274 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2275 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2276 return;
2277 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2278 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2279 return;
2281 ReassociateExpression(BO);
2284 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2285 // First, walk the expression tree, linearizing the tree, collecting the
2286 // operand information.
2287 SmallVector<RepeatedValue, 8> Tree;
2288 OverflowTracking Flags;
2289 MadeChange |= LinearizeExprTree(I, Tree, RedoInsts, Flags);
2290 SmallVector<ValueEntry, 8> Ops;
2291 Ops.reserve(Tree.size());
2292 for (const RepeatedValue &E : Tree)
2293 Ops.append(E.second, ValueEntry(getRank(E.first), E.first));
2295 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2297 // Now that we have linearized the tree to a list and have gathered all of
2298 // the operands and their ranks, sort the operands by their rank. Use a
2299 // stable_sort so that values with equal ranks will have their relative
2300 // positions maintained (and so the compiler is deterministic). Note that
2301 // this sorts so that the highest ranking values end up at the beginning of
2302 // the vector.
2303 llvm::stable_sort(Ops);
2305 // Now that we have the expression tree in a convenient
2306 // sorted form, optimize it globally if possible.
2307 if (Value *V = OptimizeExpression(I, Ops)) {
2308 if (V == I)
2309 // Self-referential expression in unreachable code.
2310 return;
2311 // This expression tree simplified to something that isn't a tree,
2312 // eliminate it.
2313 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2314 I->replaceAllUsesWith(V);
2315 if (Instruction *VI = dyn_cast<Instruction>(V))
2316 if (I->getDebugLoc())
2317 VI->setDebugLoc(I->getDebugLoc());
2318 RedoInsts.insert(I);
2319 ++NumAnnihil;
2320 return;
2323 // We want to sink immediates as deeply as possible except in the case where
2324 // this is a multiply tree used only by an add, and the immediate is a -1.
2325 // In this case we reassociate to put the negation on the outside so that we
2326 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2327 if (I->hasOneUse()) {
2328 if (I->getOpcode() == Instruction::Mul &&
2329 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2330 isa<ConstantInt>(Ops.back().Op) &&
2331 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2332 ValueEntry Tmp = Ops.pop_back_val();
2333 Ops.insert(Ops.begin(), Tmp);
2334 } else if (I->getOpcode() == Instruction::FMul &&
2335 cast<Instruction>(I->user_back())->getOpcode() ==
2336 Instruction::FAdd &&
2337 isa<ConstantFP>(Ops.back().Op) &&
2338 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2339 ValueEntry Tmp = Ops.pop_back_val();
2340 Ops.insert(Ops.begin(), Tmp);
2344 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2346 if (Ops.size() == 1) {
2347 if (Ops[0].Op == I)
2348 // Self-referential expression in unreachable code.
2349 return;
2351 // This expression tree simplified to something that isn't a tree,
2352 // eliminate it.
2353 I->replaceAllUsesWith(Ops[0].Op);
2354 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2355 OI->setDebugLoc(I->getDebugLoc());
2356 RedoInsts.insert(I);
2357 return;
2360 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2361 // Find the pair with the highest count in the pairmap and move it to the
2362 // back of the list so that it can later be CSE'd.
2363 // example:
2364 // a*b*c*d*e
2365 // if c*e is the most "popular" pair, we can express this as
2366 // (((c*e)*d)*b)*a
2367 unsigned Max = 1;
2368 unsigned BestRank = 0;
2369 std::pair<unsigned, unsigned> BestPair;
2370 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2371 unsigned LimitIdx = 0;
2372 // With the CSE-driven heuristic, we are about to slap two values at the
2373 // beginning of the expression whereas they could live very late in the CFG.
2374 // When using the CSE-local heuristic we avoid creating dependences from
2375 // completely unrelated part of the CFG by limiting the expression
2376 // reordering on the values that live in the first seen basic block.
2377 // The main idea is that we want to avoid forming expressions that would
2378 // become loop dependent.
2379 if (UseCSELocalOpt) {
2380 const BasicBlock *FirstSeenBB = nullptr;
2381 int StartIdx = Ops.size() - 1;
2382 // Skip the first value of the expression since we need at least two
2383 // values to materialize an expression. I.e., even if this value is
2384 // anchored in a different basic block, the actual first sub expression
2385 // will be anchored on the second value.
2386 for (int i = StartIdx - 1; i != -1; --i) {
2387 const Value *Val = Ops[i].Op;
2388 const auto *CurrLeafInstr = dyn_cast<Instruction>(Val);
2389 const BasicBlock *SeenBB = nullptr;
2390 if (!CurrLeafInstr) {
2391 // The value is free of any CFG dependencies.
2392 // Do as if it lives in the entry block.
2394 // We do this to make sure all the values falling on this path are
2395 // seen through the same anchor point. The rationale is these values
2396 // can be combined together to from a sub expression free of any CFG
2397 // dependencies so we want them to stay together.
2398 // We could be cleverer and postpone the anchor down to the first
2399 // anchored value, but that's likely complicated to get right.
2400 // E.g., we wouldn't want to do that if that means being stuck in a
2401 // loop.
2403 // For instance, we wouldn't want to change:
2404 // res = arg1 op arg2 op arg3 op ... op loop_val1 op loop_val2 ...
2405 // into
2406 // res = loop_val1 op arg1 op arg2 op arg3 op ... op loop_val2 ...
2407 // Because all the sub expressions with arg2..N would be stuck between
2408 // two loop dependent values.
2409 SeenBB = &I->getParent()->getParent()->getEntryBlock();
2410 } else {
2411 SeenBB = CurrLeafInstr->getParent();
2414 if (!FirstSeenBB) {
2415 FirstSeenBB = SeenBB;
2416 continue;
2418 if (FirstSeenBB != SeenBB) {
2419 // ith value is in a different basic block.
2420 // Rewind the index once to point to the last value on the same basic
2421 // block.
2422 LimitIdx = i + 1;
2423 LLVM_DEBUG(dbgs() << "CSE reordering: Consider values between ["
2424 << LimitIdx << ", " << StartIdx << "]\n");
2425 break;
2429 for (unsigned i = Ops.size() - 1; i > LimitIdx; --i) {
2430 // We must use int type to go below zero when LimitIdx is 0.
2431 for (int j = i - 1; j >= (int)LimitIdx; --j) {
2432 unsigned Score = 0;
2433 Value *Op0 = Ops[i].Op;
2434 Value *Op1 = Ops[j].Op;
2435 if (std::less<Value *>()(Op1, Op0))
2436 std::swap(Op0, Op1);
2437 auto it = PairMap[Idx].find({Op0, Op1});
2438 if (it != PairMap[Idx].end()) {
2439 // Functions like BreakUpSubtract() can erase the Values we're using
2440 // as keys and create new Values after we built the PairMap. There's a
2441 // small chance that the new nodes can have the same address as
2442 // something already in the table. We shouldn't accumulate the stored
2443 // score in that case as it refers to the wrong Value.
2444 if (it->second.isValid())
2445 Score += it->second.Score;
2448 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2450 // By construction, the operands are sorted in reverse order of their
2451 // topological order.
2452 // So we tend to form (sub) expressions with values that are close to
2453 // each other.
2455 // Now to expose more CSE opportunities we want to expose the pair of
2456 // operands that occur the most (as statically computed in
2457 // BuildPairMap.) as the first sub-expression.
2459 // If two pairs occur as many times, we pick the one with the
2460 // lowest rank, meaning the one with both operands appearing first in
2461 // the topological order.
2462 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2463 BestPair = {j, i};
2464 Max = Score;
2465 BestRank = MaxRank;
2469 if (Max > 1) {
2470 auto Op0 = Ops[BestPair.first];
2471 auto Op1 = Ops[BestPair.second];
2472 Ops.erase(&Ops[BestPair.second]);
2473 Ops.erase(&Ops[BestPair.first]);
2474 Ops.push_back(Op0);
2475 Ops.push_back(Op1);
2478 LLVM_DEBUG(dbgs() << "RAOut after CSE reorder:\t"; PrintOps(I, Ops);
2479 dbgs() << '\n');
2480 // Now that we ordered and optimized the expressions, splat them back into
2481 // the expression tree, removing any unneeded nodes.
2482 RewriteExprTree(I, Ops, Flags);
2485 void
2486 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2487 // Make a "pairmap" of how often each operand pair occurs.
2488 for (BasicBlock *BI : RPOT) {
2489 for (Instruction &I : *BI) {
2490 if (!I.isAssociative() || !I.isBinaryOp())
2491 continue;
2493 // Ignore nodes that aren't at the root of trees.
2494 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2495 continue;
2497 // Collect all operands in a single reassociable expression.
2498 // Since Reassociate has already been run once, we can assume things
2499 // are already canonical according to Reassociation's regime.
2500 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2501 SmallVector<Value *, 8> Ops;
2502 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2503 Value *Op = Worklist.pop_back_val();
2504 Instruction *OpI = dyn_cast<Instruction>(Op);
2505 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2506 Ops.push_back(Op);
2507 continue;
2509 // Be paranoid about self-referencing expressions in unreachable code.
2510 if (OpI->getOperand(0) != OpI)
2511 Worklist.push_back(OpI->getOperand(0));
2512 if (OpI->getOperand(1) != OpI)
2513 Worklist.push_back(OpI->getOperand(1));
2515 // Skip extremely long expressions.
2516 if (Ops.size() > GlobalReassociateLimit)
2517 continue;
2519 // Add all pairwise combinations of operands to the pair map.
2520 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2521 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2522 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2523 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2524 // Canonicalize operand orderings.
2525 Value *Op0 = Ops[i];
2526 Value *Op1 = Ops[j];
2527 if (std::less<Value *>()(Op1, Op0))
2528 std::swap(Op0, Op1);
2529 if (!Visited.insert({Op0, Op1}).second)
2530 continue;
2531 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2532 if (!res.second) {
2533 // If either key value has been erased then we've got the same
2534 // address by coincidence. That can't happen here because nothing is
2535 // erasing values but it can happen by the time we're querying the
2536 // map.
2537 assert(res.first->second.isValid() && "WeakVH invalidated");
2538 ++res.first->second.Score;
2546 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2547 // Get the functions basic blocks in Reverse Post Order. This order is used by
2548 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2549 // blocks (it has been seen that the analysis in this pass could hang when
2550 // analysing dead basic blocks).
2551 ReversePostOrderTraversal<Function *> RPOT(&F);
2553 // Calculate the rank map for F.
2554 BuildRankMap(F, RPOT);
2556 // Build the pair map before running reassociate.
2557 // Technically this would be more accurate if we did it after one round
2558 // of reassociation, but in practice it doesn't seem to help much on
2559 // real-world code, so don't waste the compile time running reassociate
2560 // twice.
2561 // If a user wants, they could expicitly run reassociate twice in their
2562 // pass pipeline for further potential gains.
2563 // It might also be possible to update the pair map during runtime, but the
2564 // overhead of that may be large if there's many reassociable chains.
2565 BuildPairMap(RPOT);
2567 MadeChange = false;
2569 // Traverse the same blocks that were analysed by BuildRankMap.
2570 for (BasicBlock *BI : RPOT) {
2571 assert(RankMap.count(&*BI) && "BB should be ranked.");
2572 // Optimize every instruction in the basic block.
2573 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2574 if (isInstructionTriviallyDead(&*II)) {
2575 EraseInst(&*II++);
2576 } else {
2577 OptimizeInst(&*II);
2578 assert(II->getParent() == &*BI && "Moved to a different block!");
2579 ++II;
2582 // Make a copy of all the instructions to be redone so we can remove dead
2583 // instructions.
2584 OrderedSet ToRedo(RedoInsts);
2585 // Iterate over all instructions to be reevaluated and remove trivially dead
2586 // instructions. If any operand of the trivially dead instruction becomes
2587 // dead mark it for deletion as well. Continue this process until all
2588 // trivially dead instructions have been removed.
2589 while (!ToRedo.empty()) {
2590 Instruction *I = ToRedo.pop_back_val();
2591 if (isInstructionTriviallyDead(I)) {
2592 RecursivelyEraseDeadInsts(I, ToRedo);
2593 MadeChange = true;
2597 // Now that we have removed dead instructions, we can reoptimize the
2598 // remaining instructions.
2599 while (!RedoInsts.empty()) {
2600 Instruction *I = RedoInsts.front();
2601 RedoInsts.erase(RedoInsts.begin());
2602 if (isInstructionTriviallyDead(I))
2603 EraseInst(I);
2604 else
2605 OptimizeInst(I);
2609 // We are done with the rank map and pair map.
2610 RankMap.clear();
2611 ValueRankMap.clear();
2612 for (auto &Entry : PairMap)
2613 Entry.clear();
2615 if (MadeChange) {
2616 PreservedAnalyses PA;
2617 PA.preserveSet<CFGAnalyses>();
2618 return PA;
2621 return PreservedAnalyses::all();
2624 namespace {
2626 class ReassociateLegacyPass : public FunctionPass {
2627 ReassociatePass Impl;
2629 public:
2630 static char ID; // Pass identification, replacement for typeid
2632 ReassociateLegacyPass() : FunctionPass(ID) {
2633 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2636 bool runOnFunction(Function &F) override {
2637 if (skipFunction(F))
2638 return false;
2640 FunctionAnalysisManager DummyFAM;
2641 auto PA = Impl.run(F, DummyFAM);
2642 return !PA.areAllPreserved();
2645 void getAnalysisUsage(AnalysisUsage &AU) const override {
2646 AU.setPreservesCFG();
2647 AU.addPreserved<AAResultsWrapperPass>();
2648 AU.addPreserved<BasicAAWrapperPass>();
2649 AU.addPreserved<GlobalsAAWrapperPass>();
2653 } // end anonymous namespace
2655 char ReassociateLegacyPass::ID = 0;
2657 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2658 "Reassociate expressions", false, false)
2660 // Public interface to the Reassociate pass
2661 FunctionPass *llvm::createReassociatePass() {
2662 return new ReassociateLegacyPass();