[clang][Driver] Support simplified triple versions for config files (#111387)
[llvm-project.git] / llvm / lib / Transforms / Scalar / TailRecursionElimination.cpp
blob53e486f3dc6cdafe2e558100e0d830a615041bd6
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop. This pass also implements the following extensions to the basic
12 // algorithm:
14 // 1. Trivial instructions between the call and return do not prevent the
15 // transformation from taking place, though currently the analysis cannot
16 // support moving any really useful instructions (only dead ones).
17 // 2. This pass transforms functions that are prevented from being tail
18 // recursive by an associative and commutative expression to use an
19 // accumulator variable, thus compiling the typical naive factorial or
20 // 'fib' implementation into efficient code.
21 // 3. TRE is performed if the function returns void, if the return
22 // returns the result returned by the call, or if the function returns a
23 // run-time constant on all exits from the function. It is possible, though
24 // unlikely, that the return returns something else (like constant 0), and
25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
26 // the function return the exact same value.
27 // 4. If it can prove that callees do not access their caller stack frame,
28 // they are marked as eligible for tail call elimination (by the code
29 // generator).
31 // There are several improvements that could be made:
33 // 1. If the function has any alloca instructions, these instructions will be
34 // moved out of the entry block of the function, causing them to be
35 // evaluated each time through the tail recursion. Safely keeping allocas
36 // in the entry block requires analysis to proves that the tail-called
37 // function does not read or write the stack object.
38 // 2. Tail recursion is only performed if the call immediately precedes the
39 // return instruction. It's possible that there could be a jump between
40 // the call and the return.
41 // 3. There can be intervening operations between the call and the return that
42 // prevent the TRE from occurring. For example, there could be GEP's and
43 // stores to memory that will not be read or written by the call. This
44 // requires some substantial analysis (such as with DSA) to prove safe to
45 // move ahead of the call, but doing so could allow many more TREs to be
46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 // 4. The algorithm we use to detect if callees access their caller stack
48 // frames is very primitive.
50 //===----------------------------------------------------------------------===//
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/DomTreeUpdater.h"
57 #include "llvm/Analysis/GlobalsModRef.h"
58 #include "llvm/Analysis/InstructionSimplify.h"
59 #include "llvm/Analysis/Loads.h"
60 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
61 #include "llvm/Analysis/PostDominators.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Module.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 using namespace llvm;
84 #define DEBUG_TYPE "tailcallelim"
86 STATISTIC(NumEliminated, "Number of tail calls removed");
87 STATISTIC(NumRetDuped, "Number of return duplicated");
88 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
90 /// Scan the specified function for alloca instructions.
91 /// If it contains any dynamic allocas, returns false.
92 static bool canTRE(Function &F) {
93 // TODO: We don't do TRE if dynamic allocas are used.
94 // Dynamic allocas allocate stack space which should be
95 // deallocated before new iteration started. That is
96 // currently not implemented.
97 return llvm::all_of(instructions(F), [](Instruction &I) {
98 auto *AI = dyn_cast<AllocaInst>(&I);
99 return !AI || AI->isStaticAlloca();
103 namespace {
104 struct AllocaDerivedValueTracker {
105 // Start at a root value and walk its use-def chain to mark calls that use the
106 // value or a derived value in AllocaUsers, and places where it may escape in
107 // EscapePoints.
108 void walk(Value *Root) {
109 SmallVector<Use *, 32> Worklist;
110 SmallPtrSet<Use *, 32> Visited;
112 auto AddUsesToWorklist = [&](Value *V) {
113 for (auto &U : V->uses()) {
114 if (!Visited.insert(&U).second)
115 continue;
116 Worklist.push_back(&U);
120 AddUsesToWorklist(Root);
122 while (!Worklist.empty()) {
123 Use *U = Worklist.pop_back_val();
124 Instruction *I = cast<Instruction>(U->getUser());
126 switch (I->getOpcode()) {
127 case Instruction::Call:
128 case Instruction::Invoke: {
129 auto &CB = cast<CallBase>(*I);
130 // If the alloca-derived argument is passed byval it is not an escape
131 // point, or a use of an alloca. Calling with byval copies the contents
132 // of the alloca into argument registers or stack slots, which exist
133 // beyond the lifetime of the current frame.
134 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
135 continue;
136 bool IsNocapture =
137 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
138 callUsesLocalStack(CB, IsNocapture);
139 if (IsNocapture) {
140 // If the alloca-derived argument is passed in as nocapture, then it
141 // can't propagate to the call's return. That would be capturing.
142 continue;
144 break;
146 case Instruction::Load: {
147 // The result of a load is not alloca-derived (unless an alloca has
148 // otherwise escaped, but this is a local analysis).
149 continue;
151 case Instruction::Store: {
152 if (U->getOperandNo() == 0)
153 EscapePoints.insert(I);
154 continue; // Stores have no users to analyze.
156 case Instruction::BitCast:
157 case Instruction::GetElementPtr:
158 case Instruction::PHI:
159 case Instruction::Select:
160 case Instruction::AddrSpaceCast:
161 break;
162 default:
163 EscapePoints.insert(I);
164 break;
167 AddUsesToWorklist(I);
171 void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
172 // Add it to the list of alloca users.
173 AllocaUsers.insert(&CB);
175 // If it's nocapture then it can't capture this alloca.
176 if (IsNocapture)
177 return;
179 // If it can write to memory, it can leak the alloca value.
180 if (!CB.onlyReadsMemory())
181 EscapePoints.insert(&CB);
184 SmallPtrSet<Instruction *, 32> AllocaUsers;
185 SmallPtrSet<Instruction *, 32> EscapePoints;
189 static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) {
190 if (F.callsFunctionThatReturnsTwice())
191 return false;
193 // The local stack holds all alloca instructions and all byval arguments.
194 AllocaDerivedValueTracker Tracker;
195 for (Argument &Arg : F.args()) {
196 if (Arg.hasByValAttr())
197 Tracker.walk(&Arg);
199 for (auto &BB : F) {
200 for (auto &I : BB)
201 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
202 Tracker.walk(AI);
205 bool Modified = false;
207 // Track whether a block is reachable after an alloca has escaped. Blocks that
208 // contain the escaping instruction will be marked as being visited without an
209 // escaped alloca, since that is how the block began.
210 enum VisitType {
211 UNVISITED,
212 UNESCAPED,
213 ESCAPED
215 DenseMap<BasicBlock *, VisitType> Visited;
217 // We propagate the fact that an alloca has escaped from block to successor.
218 // Visit the blocks that are propagating the escapedness first. To do this, we
219 // maintain two worklists.
220 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
222 // We may enter a block and visit it thinking that no alloca has escaped yet,
223 // then see an escape point and go back around a loop edge and come back to
224 // the same block twice. Because of this, we defer setting tail on calls when
225 // we first encounter them in a block. Every entry in this list does not
226 // statically use an alloca via use-def chain analysis, but may find an alloca
227 // through other means if the block turns out to be reachable after an escape
228 // point.
229 SmallVector<CallInst *, 32> DeferredTails;
231 BasicBlock *BB = &F.getEntryBlock();
232 VisitType Escaped = UNESCAPED;
233 do {
234 for (auto &I : *BB) {
235 if (Tracker.EscapePoints.count(&I))
236 Escaped = ESCAPED;
238 CallInst *CI = dyn_cast<CallInst>(&I);
239 // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
240 // considered accessing memory and will be marked as a tail call if we
241 // don't bail out here.
242 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
243 isa<PseudoProbeInst>(&I))
244 continue;
246 // Bail out for intrinsic stackrestore call because it can modify
247 // unescaped allocas.
248 if (auto *II = dyn_cast<IntrinsicInst>(CI))
249 if (II->getIntrinsicID() == Intrinsic::stackrestore)
250 continue;
252 // Special-case operand bundles "clang.arc.attachedcall", "ptrauth", and
253 // "kcfi".
254 bool IsNoTail = CI->isNoTailCall() ||
255 CI->hasOperandBundlesOtherThan(
256 {LLVMContext::OB_clang_arc_attachedcall,
257 LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi});
259 if (!IsNoTail && CI->doesNotAccessMemory()) {
260 // A call to a readnone function whose arguments are all things computed
261 // outside this function can be marked tail. Even if you stored the
262 // alloca address into a global, a readnone function can't load the
263 // global anyhow.
265 // Note that this runs whether we know an alloca has escaped or not. If
266 // it has, then we can't trust Tracker.AllocaUsers to be accurate.
267 bool SafeToTail = true;
268 for (auto &Arg : CI->args()) {
269 if (isa<Constant>(Arg.getUser()))
270 continue;
271 if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
272 if (!A->hasByValAttr())
273 continue;
274 SafeToTail = false;
275 break;
277 if (SafeToTail) {
278 using namespace ore;
279 ORE->emit([&]() {
280 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
281 << "marked as tail call candidate (readnone)";
283 CI->setTailCall();
284 Modified = true;
285 continue;
289 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI))
290 DeferredTails.push_back(CI);
293 for (auto *SuccBB : successors(BB)) {
294 auto &State = Visited[SuccBB];
295 if (State < Escaped) {
296 State = Escaped;
297 if (State == ESCAPED)
298 WorklistEscaped.push_back(SuccBB);
299 else
300 WorklistUnescaped.push_back(SuccBB);
304 if (!WorklistEscaped.empty()) {
305 BB = WorklistEscaped.pop_back_val();
306 Escaped = ESCAPED;
307 } else {
308 BB = nullptr;
309 while (!WorklistUnescaped.empty()) {
310 auto *NextBB = WorklistUnescaped.pop_back_val();
311 if (Visited[NextBB] == UNESCAPED) {
312 BB = NextBB;
313 Escaped = UNESCAPED;
314 break;
318 } while (BB);
320 for (CallInst *CI : DeferredTails) {
321 if (Visited[CI->getParent()] != ESCAPED) {
322 // If the escape point was part way through the block, calls after the
323 // escape point wouldn't have been put into DeferredTails.
324 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
325 CI->setTailCall();
326 Modified = true;
330 return Modified;
333 /// Return true if it is safe to move the specified
334 /// instruction from after the call to before the call, assuming that all
335 /// instructions between the call and this instruction are movable.
337 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
338 if (isa<DbgInfoIntrinsic>(I))
339 return true;
341 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
342 if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
343 llvm::findAllocaForValue(II->getArgOperand(1)))
344 return true;
346 // FIXME: We can move load/store/call/free instructions above the call if the
347 // call does not mod/ref the memory location being processed.
348 if (I->mayHaveSideEffects()) // This also handles volatile loads.
349 return false;
351 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
352 // Loads may always be moved above calls without side effects.
353 if (CI->mayHaveSideEffects()) {
354 // Non-volatile loads may be moved above a call with side effects if it
355 // does not write to memory and the load provably won't trap.
356 // Writes to memory only matter if they may alias the pointer
357 // being loaded from.
358 const DataLayout &DL = L->getDataLayout();
359 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
360 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
361 L->getAlign(), DL, L))
362 return false;
366 // Otherwise, if this is a side-effect free instruction, check to make sure
367 // that it does not use the return value of the call. If it doesn't use the
368 // return value of the call, it must only use things that are defined before
369 // the call, or movable instructions between the call and the instruction
370 // itself.
371 return !is_contained(I->operands(), CI);
374 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
375 if (!I->isAssociative() || !I->isCommutative())
376 return false;
378 assert(I->getNumOperands() >= 2 &&
379 "Associative/commutative operations should have at least 2 args!");
381 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
382 // Accumulators must have an identity.
383 if (!ConstantExpr::getIntrinsicIdentity(II->getIntrinsicID(), I->getType()))
384 return false;
387 // Exactly one operand should be the result of the call instruction.
388 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
389 (I->getOperand(0) != CI && I->getOperand(1) != CI))
390 return false;
392 // The only user of this instruction we allow is a single return instruction.
393 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
394 return false;
396 return true;
399 static Instruction *firstNonDbg(BasicBlock::iterator I) {
400 while (isa<DbgInfoIntrinsic>(I))
401 ++I;
402 return &*I;
405 namespace {
406 class TailRecursionEliminator {
407 Function &F;
408 const TargetTransformInfo *TTI;
409 AliasAnalysis *AA;
410 OptimizationRemarkEmitter *ORE;
411 DomTreeUpdater &DTU;
413 // The below are shared state we want to have available when eliminating any
414 // calls in the function. There values should be populated by
415 // createTailRecurseLoopHeader the first time we find a call we can eliminate.
416 BasicBlock *HeaderBB = nullptr;
417 SmallVector<PHINode *, 8> ArgumentPHIs;
419 // PHI node to store our return value.
420 PHINode *RetPN = nullptr;
422 // i1 PHI node to track if we have a valid return value stored in RetPN.
423 PHINode *RetKnownPN = nullptr;
425 // Vector of select instructions we insereted. These selects use RetKnownPN
426 // to either propagate RetPN or select a new return value.
427 SmallVector<SelectInst *, 8> RetSelects;
429 // The below are shared state needed when performing accumulator recursion.
430 // There values should be populated by insertAccumulator the first time we
431 // find an elimination that requires an accumulator.
433 // PHI node to store our current accumulated value.
434 PHINode *AccPN = nullptr;
436 // The instruction doing the accumulating.
437 Instruction *AccumulatorRecursionInstr = nullptr;
439 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
440 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
441 DomTreeUpdater &DTU)
442 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
444 CallInst *findTRECandidate(BasicBlock *BB);
446 void createTailRecurseLoopHeader(CallInst *CI);
448 void insertAccumulator(Instruction *AccRecInstr);
450 bool eliminateCall(CallInst *CI);
452 void cleanupAndFinalize();
454 bool processBlock(BasicBlock &BB);
456 void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx);
458 void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx);
460 public:
461 static bool eliminate(Function &F, const TargetTransformInfo *TTI,
462 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
463 DomTreeUpdater &DTU);
465 } // namespace
467 CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) {
468 Instruction *TI = BB->getTerminator();
470 if (&BB->front() == TI) // Make sure there is something before the terminator.
471 return nullptr;
473 // Scan backwards from the return, checking to see if there is a tail call in
474 // this block. If so, set CI to it.
475 CallInst *CI = nullptr;
476 BasicBlock::iterator BBI(TI);
477 while (true) {
478 CI = dyn_cast<CallInst>(BBI);
479 if (CI && CI->getCalledFunction() == &F)
480 break;
482 if (BBI == BB->begin())
483 return nullptr; // Didn't find a potential tail call.
484 --BBI;
487 assert((!CI->isTailCall() || !CI->isNoTailCall()) &&
488 "Incompatible call site attributes(Tail,NoTail)");
489 if (!CI->isTailCall())
490 return nullptr;
492 // As a special case, detect code like this:
493 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
494 // and disable this xform in this case, because the code generator will
495 // lower the call to fabs into inline code.
496 if (BB == &F.getEntryBlock() &&
497 firstNonDbg(BB->front().getIterator()) == CI &&
498 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
499 !TTI->isLoweredToCall(CI->getCalledFunction())) {
500 // A single-block function with just a call and a return. Check that
501 // the arguments match.
502 auto I = CI->arg_begin(), E = CI->arg_end();
503 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
504 for (; I != E && FI != FE; ++I, ++FI)
505 if (*I != &*FI) break;
506 if (I == E && FI == FE)
507 return nullptr;
510 return CI;
513 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
514 HeaderBB = &F.getEntryBlock();
515 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
516 NewEntry->takeName(HeaderBB);
517 HeaderBB->setName("tailrecurse");
518 BranchInst::Create(HeaderBB, NewEntry);
519 // If the new branch preserves the debug location of CI, it could result in
520 // misleading stepping, if CI is located in a conditional branch.
521 // So, here we don't give any debug location to the new branch.
523 // Move all fixed sized allocas from HeaderBB to NewEntry.
524 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
525 NEBI = NewEntry->begin();
526 OEBI != E;)
527 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
528 if (isa<ConstantInt>(AI->getArraySize()))
529 AI->moveBefore(&*NEBI);
531 // Now that we have created a new block, which jumps to the entry
532 // block, insert a PHI node for each argument of the function.
533 // For now, we initialize each PHI to only have the real arguments
534 // which are passed in.
535 BasicBlock::iterator InsertPos = HeaderBB->begin();
536 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
537 PHINode *PN = PHINode::Create(I->getType(), 2, I->getName() + ".tr");
538 PN->insertBefore(InsertPos);
539 I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
540 PN->addIncoming(&*I, NewEntry);
541 ArgumentPHIs.push_back(PN);
544 // If the function doen't return void, create the RetPN and RetKnownPN PHI
545 // nodes to track our return value. We initialize RetPN with poison and
546 // RetKnownPN with false since we can't know our return value at function
547 // entry.
548 Type *RetType = F.getReturnType();
549 if (!RetType->isVoidTy()) {
550 Type *BoolType = Type::getInt1Ty(F.getContext());
551 RetPN = PHINode::Create(RetType, 2, "ret.tr");
552 RetPN->insertBefore(InsertPos);
553 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr");
554 RetKnownPN->insertBefore(InsertPos);
556 RetPN->addIncoming(PoisonValue::get(RetType), NewEntry);
557 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
560 // The entry block was changed from HeaderBB to NewEntry.
561 // The forward DominatorTree needs to be recalculated when the EntryBB is
562 // changed. In this corner-case we recalculate the entire tree.
563 DTU.recalculate(*NewEntry->getParent());
566 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
567 assert(!AccPN && "Trying to insert multiple accumulators");
569 AccumulatorRecursionInstr = AccRecInstr;
571 // Start by inserting a new PHI node for the accumulator.
572 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
573 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
574 "accumulator.tr");
575 AccPN->insertBefore(HeaderBB->begin());
577 // Loop over all of the predecessors of the tail recursion block. For the
578 // real entry into the function we seed the PHI with the identity constant for
579 // the accumulation operation. For any other existing branches to this block
580 // (due to other tail recursions eliminated) the accumulator is not modified.
581 // Because we haven't added the branch in the current block to HeaderBB yet,
582 // it will not show up as a predecessor.
583 for (pred_iterator PI = PB; PI != PE; ++PI) {
584 BasicBlock *P = *PI;
585 if (P == &F.getEntryBlock()) {
586 Constant *Identity =
587 ConstantExpr::getIdentity(AccRecInstr, AccRecInstr->getType());
588 AccPN->addIncoming(Identity, P);
589 } else {
590 AccPN->addIncoming(AccPN, P);
594 ++NumAccumAdded;
597 // Creates a copy of contents of ByValue operand of the specified
598 // call instruction into the newly created temporarily variable.
599 void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI,
600 int OpndIdx) {
601 Type *AggTy = CI->getParamByValType(OpndIdx);
602 assert(AggTy);
603 const DataLayout &DL = F.getDataLayout();
605 // Get alignment of byVal operand.
606 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
608 // Create alloca for temporarily byval operands.
609 // Put alloca into the entry block.
610 Value *NewAlloca = new AllocaInst(
611 AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
612 CI->getArgOperand(OpndIdx)->getName(), F.getEntryBlock().begin());
614 IRBuilder<> Builder(CI);
615 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
617 // Copy data from byvalue operand into the temporarily variable.
618 Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment,
619 CI->getArgOperand(OpndIdx),
620 /*SrcAlign*/ Alignment, Size);
621 CI->setArgOperand(OpndIdx, NewAlloca);
624 // Creates a copy from temporarily variable(keeping value of ByVal argument)
625 // into the corresponding function argument location.
626 void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments(
627 CallInst *CI, int OpndIdx) {
628 Type *AggTy = CI->getParamByValType(OpndIdx);
629 assert(AggTy);
630 const DataLayout &DL = F.getDataLayout();
632 // Get alignment of byVal operand.
633 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
635 IRBuilder<> Builder(CI);
636 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
638 // Copy data from the temporarily variable into corresponding
639 // function argument location.
640 Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment,
641 CI->getArgOperand(OpndIdx),
642 /*SrcAlign*/ Alignment, Size);
645 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
646 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
648 // Ok, we found a potential tail call. We can currently only transform the
649 // tail call if all of the instructions between the call and the return are
650 // movable to above the call itself, leaving the call next to the return.
651 // Check that this is the case now.
652 Instruction *AccRecInstr = nullptr;
653 BasicBlock::iterator BBI(CI);
654 for (++BBI; &*BBI != Ret; ++BBI) {
655 if (canMoveAboveCall(&*BBI, CI, AA))
656 continue;
658 // If we can't move the instruction above the call, it might be because it
659 // is an associative and commutative operation that could be transformed
660 // using accumulator recursion elimination. Check to see if this is the
661 // case, and if so, remember which instruction accumulates for later.
662 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
663 return false; // We cannot eliminate the tail recursion!
665 // Yes, this is accumulator recursion. Remember which instruction
666 // accumulates.
667 AccRecInstr = &*BBI;
670 BasicBlock *BB = Ret->getParent();
672 using namespace ore;
673 ORE->emit([&]() {
674 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
675 << "transforming tail recursion into loop";
678 // OK! We can transform this tail call. If this is the first one found,
679 // create the new entry block, allowing us to branch back to the old entry.
680 if (!HeaderBB)
681 createTailRecurseLoopHeader(CI);
683 // Copy values of ByVal operands into local temporarily variables.
684 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
685 if (CI->isByValArgument(I))
686 copyByValueOperandIntoLocalTemp(CI, I);
689 // Ok, now that we know we have a pseudo-entry block WITH all of the
690 // required PHI nodes, add entries into the PHI node for the actual
691 // parameters passed into the tail-recursive call.
692 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
693 if (CI->isByValArgument(I)) {
694 copyLocalTempOfByValueOperandIntoArguments(CI, I);
695 // When eliminating a tail call, we modify the values of the arguments.
696 // Therefore, if the byval parameter has a readonly attribute, we have to
697 // remove it. It is safe because, from the perspective of a caller, the
698 // byval parameter is always treated as "readonly," even if the readonly
699 // attribute is removed.
700 F.removeParamAttr(I, Attribute::ReadOnly);
701 ArgumentPHIs[I]->addIncoming(F.getArg(I), BB);
702 } else
703 ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB);
706 if (AccRecInstr) {
707 insertAccumulator(AccRecInstr);
709 // Rewrite the accumulator recursion instruction so that it does not use
710 // the result of the call anymore, instead, use the PHI node we just
711 // inserted.
712 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
715 // Update our return value tracking
716 if (RetPN) {
717 if (Ret->getReturnValue() == CI || AccRecInstr) {
718 // Defer selecting a return value
719 RetPN->addIncoming(RetPN, BB);
720 RetKnownPN->addIncoming(RetKnownPN, BB);
721 } else {
722 // We found a return value we want to use, insert a select instruction to
723 // select it if we don't already know what our return value will be and
724 // store the result in our return value PHI node.
725 SelectInst *SI =
726 SelectInst::Create(RetKnownPN, RetPN, Ret->getReturnValue(),
727 "current.ret.tr", Ret->getIterator());
728 RetSelects.push_back(SI);
730 RetPN->addIncoming(SI, BB);
731 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
734 if (AccPN)
735 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
738 // Now that all of the PHI nodes are in place, remove the call and
739 // ret instructions, replacing them with an unconditional branch.
740 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret->getIterator());
741 NewBI->setDebugLoc(CI->getDebugLoc());
743 Ret->eraseFromParent(); // Remove return.
744 CI->eraseFromParent(); // Remove call.
745 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
746 ++NumEliminated;
747 return true;
750 void TailRecursionEliminator::cleanupAndFinalize() {
751 // If we eliminated any tail recursions, it's possible that we inserted some
752 // silly PHI nodes which just merge an initial value (the incoming operand)
753 // with themselves. Check to see if we did and clean up our mess if so. This
754 // occurs when a function passes an argument straight through to its tail
755 // call.
756 for (PHINode *PN : ArgumentPHIs) {
757 // If the PHI Node is a dynamic constant, replace it with the value it is.
758 if (Value *PNV = simplifyInstruction(PN, F.getDataLayout())) {
759 PN->replaceAllUsesWith(PNV);
760 PN->eraseFromParent();
764 if (RetPN) {
765 if (RetSelects.empty()) {
766 // If we didn't insert any select instructions, then we know we didn't
767 // store a return value and we can remove the PHI nodes we inserted.
768 RetPN->dropAllReferences();
769 RetPN->eraseFromParent();
771 RetKnownPN->dropAllReferences();
772 RetKnownPN->eraseFromParent();
774 if (AccPN) {
775 // We need to insert a copy of our accumulator instruction before any
776 // return in the function, and return its result instead.
777 Instruction *AccRecInstr = AccumulatorRecursionInstr;
778 for (BasicBlock &BB : F) {
779 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
780 if (!RI)
781 continue;
783 Instruction *AccRecInstrNew = AccRecInstr->clone();
784 AccRecInstrNew->setName("accumulator.ret.tr");
785 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
786 RI->getOperand(0));
787 AccRecInstrNew->insertBefore(RI);
788 AccRecInstrNew->dropLocation();
789 RI->setOperand(0, AccRecInstrNew);
792 } else {
793 // We need to insert a select instruction before any return left in the
794 // function to select our stored return value if we have one.
795 for (BasicBlock &BB : F) {
796 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
797 if (!RI)
798 continue;
800 SelectInst *SI =
801 SelectInst::Create(RetKnownPN, RetPN, RI->getOperand(0),
802 "current.ret.tr", RI->getIterator());
803 RetSelects.push_back(SI);
804 RI->setOperand(0, SI);
807 if (AccPN) {
808 // We need to insert a copy of our accumulator instruction before any
809 // of the selects we inserted, and select its result instead.
810 Instruction *AccRecInstr = AccumulatorRecursionInstr;
811 for (SelectInst *SI : RetSelects) {
812 Instruction *AccRecInstrNew = AccRecInstr->clone();
813 AccRecInstrNew->setName("accumulator.ret.tr");
814 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
815 SI->getFalseValue());
816 AccRecInstrNew->insertBefore(SI);
817 AccRecInstrNew->dropLocation();
818 SI->setFalseValue(AccRecInstrNew);
825 bool TailRecursionEliminator::processBlock(BasicBlock &BB) {
826 Instruction *TI = BB.getTerminator();
828 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
829 if (BI->isConditional())
830 return false;
832 BasicBlock *Succ = BI->getSuccessor(0);
833 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
835 if (!Ret)
836 return false;
838 CallInst *CI = findTRECandidate(&BB);
840 if (!CI)
841 return false;
843 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
844 << "INTO UNCOND BRANCH PRED: " << BB);
845 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
846 ++NumRetDuped;
848 // If all predecessors of Succ have been eliminated by
849 // FoldReturnIntoUncondBranch, delete it. It is important to empty it,
850 // because the ret instruction in there is still using a value which
851 // eliminateCall will attempt to remove. This block can only contain
852 // instructions that can't have uses, therefore it is safe to remove.
853 if (pred_empty(Succ))
854 DTU.deleteBB(Succ);
856 eliminateCall(CI);
857 return true;
858 } else if (isa<ReturnInst>(TI)) {
859 CallInst *CI = findTRECandidate(&BB);
861 if (CI)
862 return eliminateCall(CI);
865 return false;
868 bool TailRecursionEliminator::eliminate(Function &F,
869 const TargetTransformInfo *TTI,
870 AliasAnalysis *AA,
871 OptimizationRemarkEmitter *ORE,
872 DomTreeUpdater &DTU) {
873 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
874 return false;
876 bool MadeChange = false;
877 MadeChange |= markTails(F, ORE);
879 // If this function is a varargs function, we won't be able to PHI the args
880 // right, so don't even try to convert it...
881 if (F.getFunctionType()->isVarArg())
882 return MadeChange;
884 if (!canTRE(F))
885 return MadeChange;
887 // Change any tail recursive calls to loops.
888 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
890 for (BasicBlock &BB : F)
891 MadeChange |= TRE.processBlock(BB);
893 TRE.cleanupAndFinalize();
895 return MadeChange;
898 namespace {
899 struct TailCallElim : public FunctionPass {
900 static char ID; // Pass identification, replacement for typeid
901 TailCallElim() : FunctionPass(ID) {
902 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
905 void getAnalysisUsage(AnalysisUsage &AU) const override {
906 AU.addRequired<TargetTransformInfoWrapperPass>();
907 AU.addRequired<AAResultsWrapperPass>();
908 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
909 AU.addPreserved<GlobalsAAWrapperPass>();
910 AU.addPreserved<DominatorTreeWrapperPass>();
911 AU.addPreserved<PostDominatorTreeWrapperPass>();
914 bool runOnFunction(Function &F) override {
915 if (skipFunction(F))
916 return false;
918 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
919 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
920 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
921 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
922 // There is no noticable performance difference here between Lazy and Eager
923 // UpdateStrategy based on some test results. It is feasible to switch the
924 // UpdateStrategy to Lazy if we find it profitable later.
925 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
927 return TailRecursionEliminator::eliminate(
928 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
929 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
930 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
935 char TailCallElim::ID = 0;
936 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
937 false, false)
938 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
939 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
940 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
941 false, false)
943 // Public interface to the TailCallElimination pass
944 FunctionPass *llvm::createTailCallEliminationPass() {
945 return new TailCallElim();
948 PreservedAnalyses TailCallElimPass::run(Function &F,
949 FunctionAnalysisManager &AM) {
951 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
952 AliasAnalysis &AA = AM.getResult<AAManager>(F);
953 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
954 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
955 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
956 // There is no noticable performance difference here between Lazy and Eager
957 // UpdateStrategy based on some test results. It is feasible to switch the
958 // UpdateStrategy to Lazy if we find it profitable later.
959 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
960 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
962 if (!Changed)
963 return PreservedAnalyses::all();
964 PreservedAnalyses PA;
965 PA.preserve<DominatorTreeAnalysis>();
966 PA.preserve<PostDominatorTreeAnalysis>();
967 return PA;