[CostModel][X86] Attempt to match v4f32 shuffles that map to MOVSS/INSERTPS instruction
[llvm-project.git] / llvm / lib / Transforms / Utils / CodeExtractor.cpp
blob7ddb9e22c8344116f713587e2b6d88dd2b4af75f
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/MDBuilder.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PatternMatch.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/Verifier.h"
54 #include "llvm/Support/BlockFrequency.h"
55 #include "llvm/Support/BranchProbability.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <utility>
67 #include <vector>
69 using namespace llvm;
70 using namespace llvm::PatternMatch;
71 using ProfileCount = Function::ProfileCount;
73 #define DEBUG_TYPE "code-extractor"
75 // Provide a command-line option to aggregate function arguments into a struct
76 // for functions produced by the code extractor. This is useful when converting
77 // extracted functions to pthread-based code, as only one argument (void*) can
78 // be passed in to pthread_create().
79 static cl::opt<bool>
80 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
81 cl::desc("Aggregate arguments to code-extracted functions"));
83 /// Test whether a block is valid for extraction.
84 static bool isBlockValidForExtraction(const BasicBlock &BB,
85 const SetVector<BasicBlock *> &Result,
86 bool AllowVarArgs, bool AllowAlloca) {
87 // taking the address of a basic block moved to another function is illegal
88 if (BB.hasAddressTaken())
89 return false;
91 // don't hoist code that uses another basicblock address, as it's likely to
92 // lead to unexpected behavior, like cross-function jumps
93 SmallPtrSet<User const *, 16> Visited;
94 SmallVector<User const *, 16> ToVisit;
96 for (Instruction const &Inst : BB)
97 ToVisit.push_back(&Inst);
99 while (!ToVisit.empty()) {
100 User const *Curr = ToVisit.pop_back_val();
101 if (!Visited.insert(Curr).second)
102 continue;
103 if (isa<BlockAddress const>(Curr))
104 return false; // even a reference to self is likely to be not compatible
106 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
107 continue;
109 for (auto const &U : Curr->operands()) {
110 if (auto *UU = dyn_cast<User>(U))
111 ToVisit.push_back(UU);
115 // If explicitly requested, allow vastart and alloca. For invoke instructions
116 // verify that extraction is valid.
117 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
118 if (isa<AllocaInst>(I)) {
119 if (!AllowAlloca)
120 return false;
121 continue;
124 if (const auto *II = dyn_cast<InvokeInst>(I)) {
125 // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
126 // must be a part of the subgraph which is being extracted.
127 if (auto *UBB = II->getUnwindDest())
128 if (!Result.count(UBB))
129 return false;
130 continue;
133 // All catch handlers of a catchswitch instruction as well as the unwind
134 // destination must be in the subgraph.
135 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
136 if (auto *UBB = CSI->getUnwindDest())
137 if (!Result.count(UBB))
138 return false;
139 for (const auto *HBB : CSI->handlers())
140 if (!Result.count(const_cast<BasicBlock*>(HBB)))
141 return false;
142 continue;
145 // Make sure that entire catch handler is within subgraph. It is sufficient
146 // to check that catch return's block is in the list.
147 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
148 for (const auto *U : CPI->users())
149 if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
150 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
151 return false;
152 continue;
155 // And do similar checks for cleanup handler - the entire handler must be
156 // in subgraph which is going to be extracted. For cleanup return should
157 // additionally check that the unwind destination is also in the subgraph.
158 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
159 for (const auto *U : CPI->users())
160 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
161 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
162 return false;
163 continue;
165 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
166 if (auto *UBB = CRI->getUnwindDest())
167 if (!Result.count(UBB))
168 return false;
169 continue;
172 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
173 if (const Function *F = CI->getCalledFunction()) {
174 auto IID = F->getIntrinsicID();
175 if (IID == Intrinsic::vastart) {
176 if (AllowVarArgs)
177 continue;
178 else
179 return false;
182 // Currently, we miscompile outlined copies of eh_typid_for. There are
183 // proposals for fixing this in llvm.org/PR39545.
184 if (IID == Intrinsic::eh_typeid_for)
185 return false;
190 return true;
193 /// Build a set of blocks to extract if the input blocks are viable.
194 static SetVector<BasicBlock *>
195 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
196 bool AllowVarArgs, bool AllowAlloca) {
197 assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
198 SetVector<BasicBlock *> Result;
200 // Loop over the blocks, adding them to our set-vector, and aborting with an
201 // empty set if we encounter invalid blocks.
202 for (BasicBlock *BB : BBs) {
203 // If this block is dead, don't process it.
204 if (DT && !DT->isReachableFromEntry(BB))
205 continue;
207 if (!Result.insert(BB))
208 llvm_unreachable("Repeated basic blocks in extraction input");
211 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
212 << '\n');
214 for (auto *BB : Result) {
215 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
216 return {};
218 // Make sure that the first block is not a landing pad.
219 if (BB == Result.front()) {
220 if (BB->isEHPad()) {
221 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
222 return {};
224 continue;
227 // All blocks other than the first must not have predecessors outside of
228 // the subgraph which is being extracted.
229 for (auto *PBB : predecessors(BB))
230 if (!Result.count(PBB)) {
231 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
232 "outside the region except for the first block!\n"
233 << "Problematic source BB: " << BB->getName() << "\n"
234 << "Problematic destination BB: " << PBB->getName()
235 << "\n");
236 return {};
240 return Result;
243 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
244 bool AggregateArgs, BlockFrequencyInfo *BFI,
245 BranchProbabilityInfo *BPI, AssumptionCache *AC,
246 bool AllowVarArgs, bool AllowAlloca,
247 BasicBlock *AllocationBlock, std::string Suffix,
248 bool ArgsInZeroAddressSpace)
249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
251 AllowVarArgs(AllowVarArgs),
252 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
253 Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
255 /// definedInRegion - Return true if the specified value is defined in the
256 /// extracted region.
257 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
258 if (Instruction *I = dyn_cast<Instruction>(V))
259 if (Blocks.count(I->getParent()))
260 return true;
261 return false;
264 /// definedInCaller - Return true if the specified value is defined in the
265 /// function being code extracted, but not in the region being extracted.
266 /// These values must be passed in as live-ins to the function.
267 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
268 if (isa<Argument>(V)) return true;
269 if (Instruction *I = dyn_cast<Instruction>(V))
270 if (!Blocks.count(I->getParent()))
271 return true;
272 return false;
275 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
276 BasicBlock *CommonExitBlock = nullptr;
277 auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
278 for (auto *Succ : successors(Block)) {
279 // Internal edges, ok.
280 if (Blocks.count(Succ))
281 continue;
282 if (!CommonExitBlock) {
283 CommonExitBlock = Succ;
284 continue;
286 if (CommonExitBlock != Succ)
287 return true;
289 return false;
292 if (any_of(Blocks, hasNonCommonExitSucc))
293 return nullptr;
295 return CommonExitBlock;
298 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
299 for (BasicBlock &BB : F) {
300 for (Instruction &II : BB.instructionsWithoutDebug())
301 if (auto *AI = dyn_cast<AllocaInst>(&II))
302 Allocas.push_back(AI);
304 findSideEffectInfoForBlock(BB);
308 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
309 for (Instruction &II : BB.instructionsWithoutDebug()) {
310 unsigned Opcode = II.getOpcode();
311 Value *MemAddr = nullptr;
312 switch (Opcode) {
313 case Instruction::Store:
314 case Instruction::Load: {
315 if (Opcode == Instruction::Store) {
316 StoreInst *SI = cast<StoreInst>(&II);
317 MemAddr = SI->getPointerOperand();
318 } else {
319 LoadInst *LI = cast<LoadInst>(&II);
320 MemAddr = LI->getPointerOperand();
322 // Global variable can not be aliased with locals.
323 if (isa<Constant>(MemAddr))
324 break;
325 Value *Base = MemAddr->stripInBoundsConstantOffsets();
326 if (!isa<AllocaInst>(Base)) {
327 SideEffectingBlocks.insert(&BB);
328 return;
330 BaseMemAddrs[&BB].insert(Base);
331 break;
333 default: {
334 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
335 if (IntrInst) {
336 if (IntrInst->isLifetimeStartOrEnd())
337 break;
338 SideEffectingBlocks.insert(&BB);
339 return;
341 // Treat all the other cases conservatively if it has side effects.
342 if (II.mayHaveSideEffects()) {
343 SideEffectingBlocks.insert(&BB);
344 return;
351 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
352 BasicBlock &BB, AllocaInst *Addr) const {
353 if (SideEffectingBlocks.count(&BB))
354 return true;
355 auto It = BaseMemAddrs.find(&BB);
356 if (It != BaseMemAddrs.end())
357 return It->second.count(Addr);
358 return false;
361 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
362 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
363 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
364 Function *Func = (*Blocks.begin())->getParent();
365 for (BasicBlock &BB : *Func) {
366 if (Blocks.count(&BB))
367 continue;
368 if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
369 return false;
371 return true;
374 BasicBlock *
375 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
376 BasicBlock *SinglePredFromOutlineRegion = nullptr;
377 assert(!Blocks.count(CommonExitBlock) &&
378 "Expect a block outside the region!");
379 for (auto *Pred : predecessors(CommonExitBlock)) {
380 if (!Blocks.count(Pred))
381 continue;
382 if (!SinglePredFromOutlineRegion) {
383 SinglePredFromOutlineRegion = Pred;
384 } else if (SinglePredFromOutlineRegion != Pred) {
385 SinglePredFromOutlineRegion = nullptr;
386 break;
390 if (SinglePredFromOutlineRegion)
391 return SinglePredFromOutlineRegion;
393 #ifndef NDEBUG
394 auto getFirstPHI = [](BasicBlock *BB) {
395 BasicBlock::iterator I = BB->begin();
396 PHINode *FirstPhi = nullptr;
397 while (I != BB->end()) {
398 PHINode *Phi = dyn_cast<PHINode>(I);
399 if (!Phi)
400 break;
401 if (!FirstPhi) {
402 FirstPhi = Phi;
403 break;
406 return FirstPhi;
408 // If there are any phi nodes, the single pred either exists or has already
409 // be created before code extraction.
410 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
411 #endif
413 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
414 CommonExitBlock->getFirstNonPHI()->getIterator());
416 for (BasicBlock *Pred :
417 llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
418 if (Blocks.count(Pred))
419 continue;
420 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
422 // Now add the old exit block to the outline region.
423 Blocks.insert(CommonExitBlock);
424 return CommonExitBlock;
427 // Find the pair of life time markers for address 'Addr' that are either
428 // defined inside the outline region or can legally be shrinkwrapped into the
429 // outline region. If there are not other untracked uses of the address, return
430 // the pair of markers if found; otherwise return a pair of nullptr.
431 CodeExtractor::LifetimeMarkerInfo
432 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
433 Instruction *Addr,
434 BasicBlock *ExitBlock) const {
435 LifetimeMarkerInfo Info;
437 for (User *U : Addr->users()) {
438 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
439 if (IntrInst) {
440 // We don't model addresses with multiple start/end markers, but the
441 // markers do not need to be in the region.
442 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
443 if (Info.LifeStart)
444 return {};
445 Info.LifeStart = IntrInst;
446 continue;
448 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
449 if (Info.LifeEnd)
450 return {};
451 Info.LifeEnd = IntrInst;
452 continue;
454 // At this point, permit debug uses outside of the region.
455 // This is fixed in a later call to fixupDebugInfoPostExtraction().
456 if (isa<DbgInfoIntrinsic>(IntrInst))
457 continue;
459 // Find untracked uses of the address, bail.
460 if (!definedInRegion(Blocks, U))
461 return {};
464 if (!Info.LifeStart || !Info.LifeEnd)
465 return {};
467 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
468 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
469 // Do legality check.
470 if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
471 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
472 return {};
474 // Check to see if we have a place to do hoisting, if not, bail.
475 if (Info.HoistLifeEnd && !ExitBlock)
476 return {};
478 return Info;
481 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
482 ValueSet &SinkCands, ValueSet &HoistCands,
483 BasicBlock *&ExitBlock) const {
484 Function *Func = (*Blocks.begin())->getParent();
485 ExitBlock = getCommonExitBlock(Blocks);
487 auto moveOrIgnoreLifetimeMarkers =
488 [&](const LifetimeMarkerInfo &LMI) -> bool {
489 if (!LMI.LifeStart)
490 return false;
491 if (LMI.SinkLifeStart) {
492 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
493 << "\n");
494 SinkCands.insert(LMI.LifeStart);
496 if (LMI.HoistLifeEnd) {
497 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
498 HoistCands.insert(LMI.LifeEnd);
500 return true;
503 // Look up allocas in the original function in CodeExtractorAnalysisCache, as
504 // this is much faster than walking all the instructions.
505 for (AllocaInst *AI : CEAC.getAllocas()) {
506 BasicBlock *BB = AI->getParent();
507 if (Blocks.count(BB))
508 continue;
510 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
511 // check whether it is actually still in the original function.
512 Function *AIFunc = BB->getParent();
513 if (AIFunc != Func)
514 continue;
516 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
517 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
518 if (Moved) {
519 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
520 SinkCands.insert(AI);
521 continue;
524 // Find bitcasts in the outlined region that have lifetime marker users
525 // outside that region. Replace the lifetime marker use with an
526 // outside region bitcast to avoid unnecessary alloca/reload instructions
527 // and extra lifetime markers.
528 SmallVector<Instruction *, 2> LifetimeBitcastUsers;
529 for (User *U : AI->users()) {
530 if (!definedInRegion(Blocks, U))
531 continue;
533 if (U->stripInBoundsConstantOffsets() != AI)
534 continue;
536 Instruction *Bitcast = cast<Instruction>(U);
537 for (User *BU : Bitcast->users()) {
538 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
539 if (!IntrInst)
540 continue;
542 if (!IntrInst->isLifetimeStartOrEnd())
543 continue;
545 if (definedInRegion(Blocks, IntrInst))
546 continue;
548 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
549 << *Bitcast << " in out-of-region lifetime marker "
550 << *IntrInst << "\n");
551 LifetimeBitcastUsers.push_back(IntrInst);
555 for (Instruction *I : LifetimeBitcastUsers) {
556 Module *M = AIFunc->getParent();
557 LLVMContext &Ctx = M->getContext();
558 auto *Int8PtrTy = PointerType::getUnqual(Ctx);
559 CastInst *CastI =
560 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator());
561 I->replaceUsesOfWith(I->getOperand(1), CastI);
564 // Follow any bitcasts.
565 SmallVector<Instruction *, 2> Bitcasts;
566 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
567 for (User *U : AI->users()) {
568 if (U->stripInBoundsConstantOffsets() == AI) {
569 Instruction *Bitcast = cast<Instruction>(U);
570 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
571 if (LMI.LifeStart) {
572 Bitcasts.push_back(Bitcast);
573 BitcastLifetimeInfo.push_back(LMI);
574 continue;
578 // Found unknown use of AI.
579 if (!definedInRegion(Blocks, U)) {
580 Bitcasts.clear();
581 break;
585 // Either no bitcasts reference the alloca or there are unknown uses.
586 if (Bitcasts.empty())
587 continue;
589 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
590 SinkCands.insert(AI);
591 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
592 Instruction *BitcastAddr = Bitcasts[I];
593 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
594 assert(LMI.LifeStart &&
595 "Unsafe to sink bitcast without lifetime markers");
596 moveOrIgnoreLifetimeMarkers(LMI);
597 if (!definedInRegion(Blocks, BitcastAddr)) {
598 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
599 << "\n");
600 SinkCands.insert(BitcastAddr);
606 bool CodeExtractor::isEligible() const {
607 if (Blocks.empty())
608 return false;
609 BasicBlock *Header = *Blocks.begin();
610 Function *F = Header->getParent();
612 // For functions with varargs, check that varargs handling is only done in the
613 // outlined function, i.e vastart and vaend are only used in outlined blocks.
614 if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
615 auto containsVarArgIntrinsic = [](const Instruction &I) {
616 if (const CallInst *CI = dyn_cast<CallInst>(&I))
617 if (const Function *Callee = CI->getCalledFunction())
618 return Callee->getIntrinsicID() == Intrinsic::vastart ||
619 Callee->getIntrinsicID() == Intrinsic::vaend;
620 return false;
623 for (auto &BB : *F) {
624 if (Blocks.count(&BB))
625 continue;
626 if (llvm::any_of(BB, containsVarArgIntrinsic))
627 return false;
630 // stacksave as input implies stackrestore in the outlined function.
631 // This can confuse prolog epilog insertion phase.
632 // stacksave's uses must not cross outlined function.
633 for (BasicBlock *BB : Blocks) {
634 for (Instruction &I : *BB) {
635 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
636 if (!II)
637 continue;
638 bool IsSave = II->getIntrinsicID() == Intrinsic::stacksave;
639 bool IsRestore = II->getIntrinsicID() == Intrinsic::stackrestore;
640 if (IsSave && any_of(II->users(), [&Blks = this->Blocks](User *U) {
641 return !definedInRegion(Blks, U);
643 return false;
644 if (IsRestore && !definedInRegion(Blocks, II->getArgOperand(0)))
645 return false;
648 return true;
651 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
652 const ValueSet &SinkCands,
653 bool CollectGlobalInputs) const {
654 for (BasicBlock *BB : Blocks) {
655 // If a used value is defined outside the region, it's an input. If an
656 // instruction is used outside the region, it's an output.
657 for (Instruction &II : *BB) {
658 for (auto &OI : II.operands()) {
659 Value *V = OI;
660 if (!SinkCands.count(V) &&
661 (definedInCaller(Blocks, V) ||
662 (CollectGlobalInputs && llvm::isa<llvm::GlobalVariable>(V))))
663 Inputs.insert(V);
666 for (User *U : II.users())
667 if (!definedInRegion(Blocks, U)) {
668 Outputs.insert(&II);
669 break;
675 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
676 /// of the region, we need to split the entry block of the region so that the
677 /// PHI node is easier to deal with.
678 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
679 unsigned NumPredsFromRegion = 0;
680 unsigned NumPredsOutsideRegion = 0;
682 if (Header != &Header->getParent()->getEntryBlock()) {
683 PHINode *PN = dyn_cast<PHINode>(Header->begin());
684 if (!PN) return; // No PHI nodes.
686 // If the header node contains any PHI nodes, check to see if there is more
687 // than one entry from outside the region. If so, we need to sever the
688 // header block into two.
689 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
690 if (Blocks.count(PN->getIncomingBlock(i)))
691 ++NumPredsFromRegion;
692 else
693 ++NumPredsOutsideRegion;
695 // If there is one (or fewer) predecessor from outside the region, we don't
696 // need to do anything special.
697 if (NumPredsOutsideRegion <= 1) return;
700 // Otherwise, we need to split the header block into two pieces: one
701 // containing PHI nodes merging values from outside of the region, and a
702 // second that contains all of the code for the block and merges back any
703 // incoming values from inside of the region.
704 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
706 // We only want to code extract the second block now, and it becomes the new
707 // header of the region.
708 BasicBlock *OldPred = Header;
709 Blocks.remove(OldPred);
710 Blocks.insert(NewBB);
711 Header = NewBB;
713 // Okay, now we need to adjust the PHI nodes and any branches from within the
714 // region to go to the new header block instead of the old header block.
715 if (NumPredsFromRegion) {
716 PHINode *PN = cast<PHINode>(OldPred->begin());
717 // Loop over all of the predecessors of OldPred that are in the region,
718 // changing them to branch to NewBB instead.
719 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
720 if (Blocks.count(PN->getIncomingBlock(i))) {
721 Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
722 TI->replaceUsesOfWith(OldPred, NewBB);
725 // Okay, everything within the region is now branching to the right block, we
726 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
727 BasicBlock::iterator AfterPHIs;
728 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
729 PHINode *PN = cast<PHINode>(AfterPHIs);
730 // Create a new PHI node in the new region, which has an incoming value
731 // from OldPred of PN.
732 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
733 PN->getName() + ".ce");
734 NewPN->insertBefore(NewBB->begin());
735 PN->replaceAllUsesWith(NewPN);
736 NewPN->addIncoming(PN, OldPred);
738 // Loop over all of the incoming value in PN, moving them to NewPN if they
739 // are from the extracted region.
740 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
741 if (Blocks.count(PN->getIncomingBlock(i))) {
742 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
743 PN->removeIncomingValue(i);
744 --i;
751 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
752 /// outlined region, we split these PHIs on two: one with inputs from region
753 /// and other with remaining incoming blocks; then first PHIs are placed in
754 /// outlined region.
755 void CodeExtractor::severSplitPHINodesOfExits() {
756 for (BasicBlock *ExitBB : ExtractedFuncRetVals) {
757 BasicBlock *NewBB = nullptr;
759 for (PHINode &PN : ExitBB->phis()) {
760 // Find all incoming values from the outlining region.
761 SmallVector<unsigned, 2> IncomingVals;
762 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
763 if (Blocks.count(PN.getIncomingBlock(i)))
764 IncomingVals.push_back(i);
766 // Do not process PHI if there is one (or fewer) predecessor from region.
767 // If PHI has exactly one predecessor from region, only this one incoming
768 // will be replaced on codeRepl block, so it should be safe to skip PHI.
769 if (IncomingVals.size() <= 1)
770 continue;
772 // Create block for new PHIs and add it to the list of outlined if it
773 // wasn't done before.
774 if (!NewBB) {
775 NewBB = BasicBlock::Create(ExitBB->getContext(),
776 ExitBB->getName() + ".split",
777 ExitBB->getParent(), ExitBB);
778 NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat;
779 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
780 for (BasicBlock *PredBB : Preds)
781 if (Blocks.count(PredBB))
782 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
783 BranchInst::Create(ExitBB, NewBB);
784 Blocks.insert(NewBB);
787 // Split this PHI.
788 PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
789 PN.getName() + ".ce");
790 NewPN->insertBefore(NewBB->getFirstNonPHIIt());
791 for (unsigned i : IncomingVals)
792 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
793 for (unsigned i : reverse(IncomingVals))
794 PN.removeIncomingValue(i, false);
795 PN.addIncoming(NewPN, NewBB);
800 void CodeExtractor::splitReturnBlocks() {
801 for (BasicBlock *Block : Blocks)
802 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
803 BasicBlock *New =
804 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
805 if (DT) {
806 // Old dominates New. New node dominates all other nodes dominated
807 // by Old.
808 DomTreeNode *OldNode = DT->getNode(Block);
809 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
810 OldNode->end());
812 DomTreeNode *NewNode = DT->addNewBlock(New, Block);
814 for (DomTreeNode *I : Children)
815 DT->changeImmediateDominator(I, NewNode);
820 Function *CodeExtractor::constructFunctionDeclaration(
821 const ValueSet &inputs, const ValueSet &outputs, BlockFrequency EntryFreq,
822 const Twine &Name, ValueSet &StructValues, StructType *&StructTy) {
823 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
824 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
826 Function *oldFunction = Blocks.front()->getParent();
827 Module *M = Blocks.front()->getModule();
829 // Assemble the function's parameter lists.
830 std::vector<Type *> ParamTy;
831 std::vector<Type *> AggParamTy;
832 const DataLayout &DL = M->getDataLayout();
834 // Add the types of the input values to the function's argument list
835 for (Value *value : inputs) {
836 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
837 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
838 AggParamTy.push_back(value->getType());
839 StructValues.insert(value);
840 } else
841 ParamTy.push_back(value->getType());
844 // Add the types of the output values to the function's argument list.
845 for (Value *output : outputs) {
846 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
847 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
848 AggParamTy.push_back(output->getType());
849 StructValues.insert(output);
850 } else
851 ParamTy.push_back(
852 PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
855 assert(
856 (ParamTy.size() + AggParamTy.size()) ==
857 (inputs.size() + outputs.size()) &&
858 "Number of scalar and aggregate params does not match inputs, outputs");
859 assert((StructValues.empty() || AggregateArgs) &&
860 "Expeced StructValues only with AggregateArgs set");
862 // Concatenate scalar and aggregate params in ParamTy.
863 if (!AggParamTy.empty()) {
864 StructTy = StructType::get(M->getContext(), AggParamTy);
865 ParamTy.push_back(PointerType::get(
866 StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
869 Type *RetTy = getSwitchType();
870 LLVM_DEBUG({
871 dbgs() << "Function type: " << *RetTy << " f(";
872 for (Type *i : ParamTy)
873 dbgs() << *i << ", ";
874 dbgs() << ")\n";
877 FunctionType *funcType = FunctionType::get(
878 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
880 // Create the new function
881 Function *newFunction =
882 Function::Create(funcType, GlobalValue::InternalLinkage,
883 oldFunction->getAddressSpace(), Name, M);
885 // Propagate personality info to the new function if there is one.
886 if (oldFunction->hasPersonalityFn())
887 newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
889 // Inherit all of the target dependent attributes and white-listed
890 // target independent attributes.
891 // (e.g. If the extracted region contains a call to an x86.sse
892 // instruction we need to make sure that the extracted region has the
893 // "target-features" attribute allowing it to be lowered.
894 // FIXME: This should be changed to check to see if a specific
895 // attribute can not be inherited.
896 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
897 if (Attr.isStringAttribute()) {
898 if (Attr.getKindAsString() == "thunk")
899 continue;
900 } else
901 switch (Attr.getKindAsEnum()) {
902 // Those attributes cannot be propagated safely. Explicitly list them
903 // here so we get a warning if new attributes are added.
904 case Attribute::AllocSize:
905 case Attribute::Builtin:
906 case Attribute::Convergent:
907 case Attribute::JumpTable:
908 case Attribute::Naked:
909 case Attribute::NoBuiltin:
910 case Attribute::NoMerge:
911 case Attribute::NoReturn:
912 case Attribute::NoSync:
913 case Attribute::ReturnsTwice:
914 case Attribute::Speculatable:
915 case Attribute::StackAlignment:
916 case Attribute::WillReturn:
917 case Attribute::AllocKind:
918 case Attribute::PresplitCoroutine:
919 case Attribute::Memory:
920 case Attribute::NoFPClass:
921 case Attribute::CoroDestroyOnlyWhenComplete:
922 case Attribute::CoroElideSafe:
923 case Attribute::NoDivergenceSource:
924 continue;
925 // Those attributes should be safe to propagate to the extracted function.
926 case Attribute::AlwaysInline:
927 case Attribute::Cold:
928 case Attribute::DisableSanitizerInstrumentation:
929 case Attribute::FnRetThunkExtern:
930 case Attribute::Hot:
931 case Attribute::HybridPatchable:
932 case Attribute::NoRecurse:
933 case Attribute::InlineHint:
934 case Attribute::MinSize:
935 case Attribute::NoCallback:
936 case Attribute::NoDuplicate:
937 case Attribute::NoFree:
938 case Attribute::NoImplicitFloat:
939 case Attribute::NoInline:
940 case Attribute::NonLazyBind:
941 case Attribute::NoRedZone:
942 case Attribute::NoUnwind:
943 case Attribute::NoSanitizeBounds:
944 case Attribute::NoSanitizeCoverage:
945 case Attribute::NullPointerIsValid:
946 case Attribute::OptimizeForDebugging:
947 case Attribute::OptForFuzzing:
948 case Attribute::OptimizeNone:
949 case Attribute::OptimizeForSize:
950 case Attribute::SafeStack:
951 case Attribute::ShadowCallStack:
952 case Attribute::SanitizeAddress:
953 case Attribute::SanitizeMemory:
954 case Attribute::SanitizeNumericalStability:
955 case Attribute::SanitizeThread:
956 case Attribute::SanitizeType:
957 case Attribute::SanitizeHWAddress:
958 case Attribute::SanitizeMemTag:
959 case Attribute::SanitizeRealtime:
960 case Attribute::SanitizeRealtimeBlocking:
961 case Attribute::SpeculativeLoadHardening:
962 case Attribute::StackProtect:
963 case Attribute::StackProtectReq:
964 case Attribute::StackProtectStrong:
965 case Attribute::StrictFP:
966 case Attribute::UWTable:
967 case Attribute::VScaleRange:
968 case Attribute::NoCfCheck:
969 case Attribute::MustProgress:
970 case Attribute::NoProfile:
971 case Attribute::SkipProfile:
972 break;
973 // These attributes cannot be applied to functions.
974 case Attribute::Alignment:
975 case Attribute::AllocatedPointer:
976 case Attribute::AllocAlign:
977 case Attribute::ByVal:
978 case Attribute::Dereferenceable:
979 case Attribute::DereferenceableOrNull:
980 case Attribute::ElementType:
981 case Attribute::InAlloca:
982 case Attribute::InReg:
983 case Attribute::Nest:
984 case Attribute::NoAlias:
985 case Attribute::NoCapture:
986 case Attribute::NoUndef:
987 case Attribute::NonNull:
988 case Attribute::Preallocated:
989 case Attribute::ReadNone:
990 case Attribute::ReadOnly:
991 case Attribute::Returned:
992 case Attribute::SExt:
993 case Attribute::StructRet:
994 case Attribute::SwiftError:
995 case Attribute::SwiftSelf:
996 case Attribute::SwiftAsync:
997 case Attribute::ZExt:
998 case Attribute::ImmArg:
999 case Attribute::ByRef:
1000 case Attribute::WriteOnly:
1001 case Attribute::Writable:
1002 case Attribute::DeadOnUnwind:
1003 case Attribute::Range:
1004 case Attribute::Initializes:
1005 case Attribute::NoExt:
1006 // These are not really attributes.
1007 case Attribute::None:
1008 case Attribute::EndAttrKinds:
1009 case Attribute::EmptyKey:
1010 case Attribute::TombstoneKey:
1011 llvm_unreachable("Not a function attribute");
1014 newFunction->addFnAttr(Attr);
1017 // Create scalar and aggregate iterators to name all of the arguments we
1018 // inserted.
1019 Function::arg_iterator ScalarAI = newFunction->arg_begin();
1021 // Set names and attributes for input and output arguments.
1022 ScalarAI = newFunction->arg_begin();
1023 for (Value *input : inputs) {
1024 if (StructValues.contains(input))
1025 continue;
1027 ScalarAI->setName(input->getName());
1028 if (input->isSwiftError())
1029 newFunction->addParamAttr(ScalarAI - newFunction->arg_begin(),
1030 Attribute::SwiftError);
1031 ++ScalarAI;
1033 for (Value *output : outputs) {
1034 if (StructValues.contains(output))
1035 continue;
1037 ScalarAI->setName(output->getName() + ".out");
1038 ++ScalarAI;
1041 // Update the entry count of the function.
1042 if (BFI) {
1043 auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1044 if (Count.has_value())
1045 newFunction->setEntryCount(
1046 ProfileCount(*Count, Function::PCT_Real)); // FIXME
1049 return newFunction;
1052 /// If the original function has debug info, we have to add a debug location
1053 /// to the new branch instruction from the artificial entry block.
1054 /// We use the debug location of the first instruction in the extracted
1055 /// blocks, as there is no other equivalent line in the source code.
1056 static void applyFirstDebugLoc(Function *oldFunction,
1057 ArrayRef<BasicBlock *> Blocks,
1058 Instruction *BranchI) {
1059 if (oldFunction->getSubprogram()) {
1060 any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1061 return any_of(*BB, [&BranchI](const Instruction &I) {
1062 if (!I.getDebugLoc())
1063 return false;
1064 // Don't use source locations attached to debug-intrinsics: they could
1065 // be from completely unrelated scopes.
1066 if (isa<DbgInfoIntrinsic>(I))
1067 return false;
1068 BranchI->setDebugLoc(I.getDebugLoc());
1069 return true;
1075 /// Erase lifetime.start markers which reference inputs to the extraction
1076 /// region, and insert the referenced memory into \p LifetimesStart.
1078 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1079 /// of allocas which will be moved from the caller function into the extracted
1080 /// function (\p SunkAllocas).
1081 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1082 const SetVector<Value *> &SunkAllocas,
1083 SetVector<Value *> &LifetimesStart) {
1084 for (BasicBlock *BB : Blocks) {
1085 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1086 auto *II = dyn_cast<IntrinsicInst>(&I);
1087 if (!II || !II->isLifetimeStartOrEnd())
1088 continue;
1090 // Get the memory operand of the lifetime marker. If the underlying
1091 // object is a sunk alloca, or is otherwise defined in the extraction
1092 // region, the lifetime marker must not be erased.
1093 Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1094 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1095 continue;
1097 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1098 LifetimesStart.insert(Mem);
1099 II->eraseFromParent();
1104 /// Insert lifetime start/end markers surrounding the call to the new function
1105 /// for objects defined in the caller.
1106 static void insertLifetimeMarkersSurroundingCall(
1107 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1108 CallInst *TheCall) {
1109 LLVMContext &Ctx = M->getContext();
1110 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1111 Instruction *Term = TheCall->getParent()->getTerminator();
1113 // Emit lifetime markers for the pointers given in \p Objects. Insert the
1114 // markers before the call if \p InsertBefore, and after the call otherwise.
1115 auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1116 bool InsertBefore) {
1117 for (Value *Mem : Objects) {
1118 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1119 TheCall->getFunction()) &&
1120 "Input memory not defined in original function");
1122 Function *Func =
1123 Intrinsic::getOrInsertDeclaration(M, MarkerFunc, Mem->getType());
1124 auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1125 if (InsertBefore)
1126 Marker->insertBefore(TheCall);
1127 else
1128 Marker->insertBefore(Term);
1132 if (!LifetimesStart.empty()) {
1133 insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1134 /*InsertBefore=*/true);
1137 if (!LifetimesEnd.empty()) {
1138 insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1139 /*InsertBefore=*/false);
1143 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1144 auto newFuncIt = newFunction->begin();
1145 for (BasicBlock *Block : Blocks) {
1146 // Delete the basic block from the old function, and the list of blocks
1147 Block->removeFromParent();
1149 // Insert this basic block into the new function
1150 // Insert the original blocks after the entry block created
1151 // for the new function. The entry block may be followed
1152 // by a set of exit blocks at this point, but these exit
1153 // blocks better be placed at the end of the new function.
1154 newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1158 void CodeExtractor::calculateNewCallTerminatorWeights(
1159 BasicBlock *CodeReplacer,
1160 const DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1161 BranchProbabilityInfo *BPI) {
1162 using Distribution = BlockFrequencyInfoImplBase::Distribution;
1163 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1165 // Update the branch weights for the exit block.
1166 Instruction *TI = CodeReplacer->getTerminator();
1167 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1169 // Block Frequency distribution with dummy node.
1170 Distribution BranchDist;
1172 SmallVector<BranchProbability, 4> EdgeProbabilities(
1173 TI->getNumSuccessors(), BranchProbability::getUnknown());
1175 // Add each of the frequencies of the successors.
1176 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1177 BlockNode ExitNode(i);
1178 uint64_t ExitFreq = ExitWeights.lookup(TI->getSuccessor(i)).getFrequency();
1179 if (ExitFreq != 0)
1180 BranchDist.addExit(ExitNode, ExitFreq);
1181 else
1182 EdgeProbabilities[i] = BranchProbability::getZero();
1185 // Check for no total weight.
1186 if (BranchDist.Total == 0) {
1187 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1188 return;
1191 // Normalize the distribution so that they can fit in unsigned.
1192 BranchDist.normalize();
1194 // Create normalized branch weights and set the metadata.
1195 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1196 const auto &Weight = BranchDist.Weights[I];
1198 // Get the weight and update the current BFI.
1199 BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1200 BranchProbability BP(Weight.Amount, BranchDist.Total);
1201 EdgeProbabilities[Weight.TargetNode.Index] = BP;
1203 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1204 TI->setMetadata(
1205 LLVMContext::MD_prof,
1206 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1209 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1210 /// \p F.
1211 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1212 for (Instruction &I : instructions(F)) {
1213 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1214 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1215 findDbgUsers(DbgUsers, &I, &DbgVariableRecords);
1216 for (DbgVariableIntrinsic *DVI : DbgUsers)
1217 if (DVI->getFunction() != &F)
1218 DVI->eraseFromParent();
1219 for (DbgVariableRecord *DVR : DbgVariableRecords)
1220 if (DVR->getFunction() != &F)
1221 DVR->eraseFromParent();
1225 /// Fix up the debug info in the old and new functions by pointing line
1226 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1227 /// intrinsics which point to values outside of the new function.
1228 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1229 CallInst &TheCall) {
1230 DISubprogram *OldSP = OldFunc.getSubprogram();
1231 LLVMContext &Ctx = OldFunc.getContext();
1233 if (!OldSP) {
1234 // Erase any debug info the new function contains.
1235 stripDebugInfo(NewFunc);
1236 // Make sure the old function doesn't contain any non-local metadata refs.
1237 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1238 return;
1241 // Create a subprogram for the new function. Leave out a description of the
1242 // function arguments, as the parameters don't correspond to anything at the
1243 // source level.
1244 assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1245 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1246 OldSP->getUnit());
1247 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray({}));
1248 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1249 DISubprogram::SPFlagOptimized |
1250 DISubprogram::SPFlagLocalToUnit;
1251 auto NewSP = DIB.createFunction(
1252 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1253 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1254 NewFunc.setSubprogram(NewSP);
1256 auto IsInvalidLocation = [&NewFunc](Value *Location) {
1257 // Location is invalid if it isn't a constant or an instruction, or is an
1258 // instruction but isn't in the new function.
1259 if (!Location ||
1260 (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1261 return true;
1262 Instruction *LocationInst = dyn_cast<Instruction>(Location);
1263 return LocationInst && LocationInst->getFunction() != &NewFunc;
1266 // Debug intrinsics in the new function need to be updated in one of two
1267 // ways:
1268 // 1) They need to be deleted, because they describe a value in the old
1269 // function.
1270 // 2) They need to point to fresh metadata, e.g. because they currently
1271 // point to a variable in the wrong scope.
1272 SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1273 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1274 SmallVector<DbgVariableRecord *, 4> DVRsToDelete;
1275 DenseMap<const MDNode *, MDNode *> Cache;
1277 auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) {
1278 DINode *&NewVar = RemappedMetadata[OldVar];
1279 if (!NewVar) {
1280 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1281 *OldVar->getScope(), *NewSP, Ctx, Cache);
1282 NewVar = DIB.createAutoVariable(
1283 NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1284 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1285 OldVar->getAlignInBits());
1287 return cast<DILocalVariable>(NewVar);
1290 auto UpdateDbgLabel = [&](auto *LabelRecord) {
1291 // Point the label record to a fresh label within the new function if
1292 // the record was not inlined from some other function.
1293 if (LabelRecord->getDebugLoc().getInlinedAt())
1294 return;
1295 DILabel *OldLabel = LabelRecord->getLabel();
1296 DINode *&NewLabel = RemappedMetadata[OldLabel];
1297 if (!NewLabel) {
1298 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1299 *OldLabel->getScope(), *NewSP, Ctx, Cache);
1300 NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1301 OldLabel->getFile(), OldLabel->getLine());
1303 LabelRecord->setLabel(cast<DILabel>(NewLabel));
1306 auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void {
1307 for (DbgRecord &DR : I.getDbgRecordRange()) {
1308 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1309 UpdateDbgLabel(DLR);
1310 continue;
1313 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1314 // Apply the two updates that dbg.values get: invalid operands, and
1315 // variable metadata fixup.
1316 if (any_of(DVR.location_ops(), IsInvalidLocation)) {
1317 DVRsToDelete.push_back(&DVR);
1318 continue;
1320 if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) {
1321 DVRsToDelete.push_back(&DVR);
1322 continue;
1324 if (!DVR.getDebugLoc().getInlinedAt())
1325 DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable()));
1329 for (Instruction &I : instructions(NewFunc)) {
1330 UpdateDbgRecordsOnInst(I);
1332 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1333 if (!DII)
1334 continue;
1336 // Point the intrinsic to a fresh label within the new function if the
1337 // intrinsic was not inlined from some other function.
1338 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1339 UpdateDbgLabel(DLI);
1340 continue;
1343 auto *DVI = cast<DbgVariableIntrinsic>(DII);
1344 // If any of the used locations are invalid, delete the intrinsic.
1345 if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1346 DebugIntrinsicsToDelete.push_back(DVI);
1347 continue;
1349 // DbgAssign intrinsics have an extra Value argument:
1350 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1351 DAI && IsInvalidLocation(DAI->getAddress())) {
1352 DebugIntrinsicsToDelete.push_back(DVI);
1353 continue;
1355 // If the variable was in the scope of the old function, i.e. it was not
1356 // inlined, point the intrinsic to a fresh variable within the new function.
1357 if (!DVI->getDebugLoc().getInlinedAt())
1358 DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable()));
1361 for (auto *DII : DebugIntrinsicsToDelete)
1362 DII->eraseFromParent();
1363 for (auto *DVR : DVRsToDelete)
1364 DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR);
1365 DIB.finalizeSubprogram(NewSP);
1367 // Fix up the scope information attached to the line locations and the
1368 // debug assignment metadata in the new function.
1369 DenseMap<DIAssignID *, DIAssignID *> AssignmentIDMap;
1370 for (Instruction &I : instructions(NewFunc)) {
1371 if (const DebugLoc &DL = I.getDebugLoc())
1372 I.setDebugLoc(
1373 DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1374 for (DbgRecord &DR : I.getDbgRecordRange())
1375 DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(),
1376 *NewSP, Ctx, Cache));
1378 // Loop info metadata may contain line locations. Fix them up.
1379 auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1380 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1381 return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1382 return MD;
1384 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1385 at::remapAssignID(AssignmentIDMap, I);
1387 if (!TheCall.getDebugLoc())
1388 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1390 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1393 Function *
1394 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1395 ValueSet Inputs, Outputs;
1396 return extractCodeRegion(CEAC, Inputs, Outputs);
1399 Function *
1400 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1401 ValueSet &inputs, ValueSet &outputs) {
1402 if (!isEligible())
1403 return nullptr;
1405 // Assumption: this is a single-entry code region, and the header is the first
1406 // block in the region.
1407 BasicBlock *header = *Blocks.begin();
1408 Function *oldFunction = header->getParent();
1410 normalizeCFGForExtraction(header);
1412 // Remove @llvm.assume calls that will be moved to the new function from the
1413 // old function's assumption cache.
1414 for (BasicBlock *Block : Blocks) {
1415 for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1416 if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1417 if (AC)
1418 AC->unregisterAssumption(AI);
1419 AI->eraseFromParent();
1424 ValueSet SinkingCands, HoistingCands;
1425 BasicBlock *CommonExit = nullptr;
1426 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1427 assert(HoistingCands.empty() || CommonExit);
1429 // Find inputs to, outputs from the code region.
1430 findInputsOutputs(inputs, outputs, SinkingCands);
1432 // Collect objects which are inputs to the extraction region and also
1433 // referenced by lifetime start markers within it. The effects of these
1434 // markers must be replicated in the calling function to prevent the stack
1435 // coloring pass from merging slots which store input objects.
1436 ValueSet LifetimesStart;
1437 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1439 if (!HoistingCands.empty()) {
1440 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1441 Instruction *TI = HoistToBlock->getTerminator();
1442 for (auto *II : HoistingCands)
1443 cast<Instruction>(II)->moveBefore(TI);
1444 computeExtractedFuncRetVals();
1447 // CFG/ExitBlocks must not change hereafter
1449 // Calculate the entry frequency of the new function before we change the root
1450 // block.
1451 BlockFrequency EntryFreq;
1452 DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1453 if (BFI) {
1454 assert(BPI && "Both BPI and BFI are required to preserve profile info");
1455 for (BasicBlock *Pred : predecessors(header)) {
1456 if (Blocks.count(Pred))
1457 continue;
1458 EntryFreq +=
1459 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1462 for (BasicBlock *Succ : ExtractedFuncRetVals) {
1463 for (BasicBlock *Block : predecessors(Succ)) {
1464 if (!Blocks.count(Block))
1465 continue;
1467 // Update the branch weight for this successor.
1468 BlockFrequency &BF = ExitWeights[Succ];
1469 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1474 // Determine position for the replacement code. Do so before header is moved
1475 // to the new function.
1476 BasicBlock *ReplIP = header;
1477 while (ReplIP && Blocks.count(ReplIP))
1478 ReplIP = ReplIP->getNextNode();
1480 // Construct new function based on inputs/outputs & add allocas for all defs.
1481 std::string SuffixToUse =
1482 Suffix.empty()
1483 ? (header->getName().empty() ? "extracted" : header->getName().str())
1484 : Suffix;
1486 ValueSet StructValues;
1487 StructType *StructTy = nullptr;
1488 Function *newFunction = constructFunctionDeclaration(
1489 inputs, outputs, EntryFreq, oldFunction->getName() + "." + SuffixToUse,
1490 StructValues, StructTy);
1491 newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1493 emitFunctionBody(inputs, outputs, StructValues, newFunction, StructTy, header,
1494 SinkingCands);
1496 std::vector<Value *> Reloads;
1497 CallInst *TheCall = emitReplacerCall(
1498 inputs, outputs, StructValues, newFunction, StructTy, oldFunction, ReplIP,
1499 EntryFreq, LifetimesStart.getArrayRef(), Reloads);
1501 insertReplacerCall(oldFunction, header, TheCall->getParent(), outputs,
1502 Reloads, ExitWeights);
1504 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1506 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1507 newFunction->dump();
1508 report_fatal_error("verification of newFunction failed!");
1510 LLVM_DEBUG(if (verifyFunction(*oldFunction))
1511 report_fatal_error("verification of oldFunction failed!"));
1512 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1513 report_fatal_error("Stale Asumption cache for old Function!"));
1514 return newFunction;
1517 void CodeExtractor::normalizeCFGForExtraction(BasicBlock *&header) {
1518 // If we have any return instructions in the region, split those blocks so
1519 // that the return is not in the region.
1520 splitReturnBlocks();
1522 // If we have to split PHI nodes of the entry or exit blocks, do so now.
1523 severSplitPHINodesOfEntry(header);
1525 // If a PHI in an exit block has multiple incoming values from the outlined
1526 // region, create a new PHI for those values within the region such that only
1527 // PHI itself becomes an output value, not each of its incoming values
1528 // individually.
1529 computeExtractedFuncRetVals();
1530 severSplitPHINodesOfExits();
1533 void CodeExtractor::computeExtractedFuncRetVals() {
1534 ExtractedFuncRetVals.clear();
1536 SmallPtrSet<BasicBlock *, 2> ExitBlocks;
1537 for (BasicBlock *Block : Blocks) {
1538 for (BasicBlock *Succ : successors(Block)) {
1539 if (Blocks.count(Succ))
1540 continue;
1542 bool IsNew = ExitBlocks.insert(Succ).second;
1543 if (IsNew)
1544 ExtractedFuncRetVals.push_back(Succ);
1549 Type *CodeExtractor::getSwitchType() {
1550 LLVMContext &Context = Blocks.front()->getContext();
1552 assert(ExtractedFuncRetVals.size() < 0xffff &&
1553 "too many exit blocks for switch");
1554 switch (ExtractedFuncRetVals.size()) {
1555 case 0:
1556 case 1:
1557 return Type::getVoidTy(Context);
1558 case 2:
1559 // Conditional branch, return a bool
1560 return Type::getInt1Ty(Context);
1561 default:
1562 return Type::getInt16Ty(Context);
1566 void CodeExtractor::emitFunctionBody(
1567 const ValueSet &inputs, const ValueSet &outputs,
1568 const ValueSet &StructValues, Function *newFunction,
1569 StructType *StructArgTy, BasicBlock *header, const ValueSet &SinkingCands) {
1570 Function *oldFunction = header->getParent();
1571 LLVMContext &Context = oldFunction->getContext();
1573 // The new function needs a root node because other nodes can branch to the
1574 // head of the region, but the entry node of a function cannot have preds.
1575 BasicBlock *newFuncRoot =
1576 BasicBlock::Create(Context, "newFuncRoot", newFunction);
1577 newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1579 // Now sink all instructions which only have non-phi uses inside the region.
1580 // Group the allocas at the start of the block, so that any bitcast uses of
1581 // the allocas are well-defined.
1582 for (auto *II : SinkingCands) {
1583 if (!isa<AllocaInst>(II)) {
1584 cast<Instruction>(II)->moveBefore(*newFuncRoot,
1585 newFuncRoot->getFirstInsertionPt());
1588 for (auto *II : SinkingCands) {
1589 if (auto *AI = dyn_cast<AllocaInst>(II)) {
1590 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1594 Function::arg_iterator ScalarAI = newFunction->arg_begin();
1595 Argument *AggArg = StructValues.empty()
1596 ? nullptr
1597 : newFunction->getArg(newFunction->arg_size() - 1);
1599 // Rewrite all users of the inputs in the extracted region to use the
1600 // arguments (or appropriate addressing into struct) instead.
1601 SmallVector<Value *> NewValues;
1602 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1603 Value *RewriteVal;
1604 if (StructValues.contains(inputs[i])) {
1605 Value *Idx[2];
1606 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1607 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1608 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1609 StructArgTy, AggArg, Idx, "gep_" + inputs[i]->getName(), newFuncRoot);
1610 RewriteVal = new LoadInst(StructArgTy->getElementType(aggIdx), GEP,
1611 "loadgep_" + inputs[i]->getName(), newFuncRoot);
1612 ++aggIdx;
1613 } else
1614 RewriteVal = &*ScalarAI++;
1616 NewValues.push_back(RewriteVal);
1619 moveCodeToFunction(newFunction);
1621 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1622 Value *RewriteVal = NewValues[i];
1624 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1625 for (User *use : Users)
1626 if (Instruction *inst = dyn_cast<Instruction>(use))
1627 if (Blocks.count(inst->getParent()))
1628 inst->replaceUsesOfWith(inputs[i], RewriteVal);
1631 // Since there may be multiple exits from the original region, make the new
1632 // function return an unsigned, switch on that number. This loop iterates
1633 // over all of the blocks in the extracted region, updating any terminator
1634 // instructions in the to-be-extracted region that branch to blocks that are
1635 // not in the region to be extracted.
1636 std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1638 // Iterate over the previously collected targets, and create new blocks inside
1639 // the function to branch to.
1640 for (auto P : enumerate(ExtractedFuncRetVals)) {
1641 BasicBlock *OldTarget = P.value();
1642 size_t SuccNum = P.index();
1644 BasicBlock *NewTarget = BasicBlock::Create(
1645 Context, OldTarget->getName() + ".exitStub", newFunction);
1646 ExitBlockMap[OldTarget] = NewTarget;
1648 Value *brVal = nullptr;
1649 Type *RetTy = getSwitchType();
1650 assert(ExtractedFuncRetVals.size() < 0xffff &&
1651 "too many exit blocks for switch");
1652 switch (ExtractedFuncRetVals.size()) {
1653 case 0:
1654 case 1:
1655 // No value needed.
1656 break;
1657 case 2: // Conditional branch, return a bool
1658 brVal = ConstantInt::get(RetTy, !SuccNum);
1659 break;
1660 default:
1661 brVal = ConstantInt::get(RetTy, SuccNum);
1662 break;
1665 ReturnInst::Create(Context, brVal, NewTarget);
1668 for (BasicBlock *Block : Blocks) {
1669 Instruction *TI = Block->getTerminator();
1670 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1671 if (Blocks.count(TI->getSuccessor(i)))
1672 continue;
1673 BasicBlock *OldTarget = TI->getSuccessor(i);
1674 // add a new basic block which returns the appropriate value
1675 BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1676 assert(NewTarget && "Unknown target block!");
1678 // rewrite the original branch instruction with this new target
1679 TI->setSuccessor(i, NewTarget);
1683 // Loop over all of the PHI nodes in the header and exit blocks, and change
1684 // any references to the old incoming edge to be the new incoming edge.
1685 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1686 PHINode *PN = cast<PHINode>(I);
1687 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1688 if (!Blocks.count(PN->getIncomingBlock(i)))
1689 PN->setIncomingBlock(i, newFuncRoot);
1692 // Connect newFunction entry block to new header.
1693 BranchInst *BranchI = BranchInst::Create(header, newFuncRoot);
1694 applyFirstDebugLoc(oldFunction, Blocks.getArrayRef(), BranchI);
1696 // Store the arguments right after the definition of output value.
1697 // This should be proceeded after creating exit stubs to be ensure that invoke
1698 // result restore will be placed in the outlined function.
1699 ScalarAI = newFunction->arg_begin();
1700 unsigned AggIdx = 0;
1702 for (Value *Input : inputs) {
1703 if (StructValues.contains(Input))
1704 ++AggIdx;
1705 else
1706 ++ScalarAI;
1709 for (Value *Output : outputs) {
1710 // Find proper insertion point.
1711 // In case Output is an invoke, we insert the store at the beginning in the
1712 // 'normal destination' BB. Otherwise we insert the store right after
1713 // Output.
1714 BasicBlock::iterator InsertPt;
1715 if (auto *InvokeI = dyn_cast<InvokeInst>(Output))
1716 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1717 else if (auto *Phi = dyn_cast<PHINode>(Output))
1718 InsertPt = Phi->getParent()->getFirstInsertionPt();
1719 else if (auto *OutI = dyn_cast<Instruction>(Output))
1720 InsertPt = std::next(OutI->getIterator());
1721 else {
1722 // Globals don't need to be updated, just advance to the next argument.
1723 if (StructValues.contains(Output))
1724 ++AggIdx;
1725 else
1726 ++ScalarAI;
1727 continue;
1730 assert((InsertPt->getFunction() == newFunction ||
1731 Blocks.count(InsertPt->getParent())) &&
1732 "InsertPt should be in new function");
1734 if (StructValues.contains(Output)) {
1735 assert(AggArg && "Number of aggregate output arguments should match "
1736 "the number of defined values");
1737 Value *Idx[2];
1738 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1739 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), AggIdx);
1740 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1741 StructArgTy, AggArg, Idx, "gep_" + Output->getName(), InsertPt);
1742 new StoreInst(Output, GEP, InsertPt);
1743 ++AggIdx;
1744 } else {
1745 assert(ScalarAI != newFunction->arg_end() &&
1746 "Number of scalar output arguments should match "
1747 "the number of defined values");
1748 new StoreInst(Output, &*ScalarAI, InsertPt);
1749 ++ScalarAI;
1753 if (ExtractedFuncRetVals.empty()) {
1754 // Mark the new function `noreturn` if applicable. Terminators which resume
1755 // exception propagation are treated as returning instructions. This is to
1756 // avoid inserting traps after calls to outlined functions which unwind.
1757 if (none_of(Blocks, [](const BasicBlock *BB) {
1758 const Instruction *Term = BB->getTerminator();
1759 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1761 newFunction->setDoesNotReturn();
1765 CallInst *CodeExtractor::emitReplacerCall(
1766 const ValueSet &inputs, const ValueSet &outputs,
1767 const ValueSet &StructValues, Function *newFunction,
1768 StructType *StructArgTy, Function *oldFunction, BasicBlock *ReplIP,
1769 BlockFrequency EntryFreq, ArrayRef<Value *> LifetimesStart,
1770 std::vector<Value *> &Reloads) {
1771 LLVMContext &Context = oldFunction->getContext();
1772 Module *M = oldFunction->getParent();
1773 const DataLayout &DL = M->getDataLayout();
1775 // This takes place of the original loop
1776 BasicBlock *codeReplacer =
1777 BasicBlock::Create(Context, "codeRepl", oldFunction, ReplIP);
1778 codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1779 BasicBlock *AllocaBlock =
1780 AllocationBlock ? AllocationBlock : &oldFunction->getEntryBlock();
1781 AllocaBlock->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1783 // Update the entry count of the function.
1784 if (BFI)
1785 BFI->setBlockFreq(codeReplacer, EntryFreq);
1787 std::vector<Value *> params;
1789 // Add inputs as params, or to be filled into the struct
1790 for (Value *input : inputs) {
1791 if (StructValues.contains(input))
1792 continue;
1794 params.push_back(input);
1797 // Create allocas for the outputs
1798 std::vector<Value *> ReloadOutputs;
1799 for (Value *output : outputs) {
1800 if (StructValues.contains(output))
1801 continue;
1803 AllocaInst *alloca = new AllocaInst(
1804 output->getType(), DL.getAllocaAddrSpace(), nullptr,
1805 output->getName() + ".loc", AllocaBlock->getFirstInsertionPt());
1806 params.push_back(alloca);
1807 ReloadOutputs.push_back(alloca);
1810 AllocaInst *Struct = nullptr;
1811 if (!StructValues.empty()) {
1812 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1813 "structArg", AllocaBlock->getFirstInsertionPt());
1814 if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1815 auto *StructSpaceCast = new AddrSpaceCastInst(
1816 Struct, PointerType ::get(Context, 0), "structArg.ascast");
1817 StructSpaceCast->insertAfter(Struct);
1818 params.push_back(StructSpaceCast);
1819 } else {
1820 params.push_back(Struct);
1823 unsigned AggIdx = 0;
1824 for (Value *input : inputs) {
1825 if (!StructValues.contains(input))
1826 continue;
1828 Value *Idx[2];
1829 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1830 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), AggIdx);
1831 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1832 StructArgTy, Struct, Idx, "gep_" + input->getName());
1833 GEP->insertInto(codeReplacer, codeReplacer->end());
1834 new StoreInst(input, GEP, codeReplacer);
1836 ++AggIdx;
1840 // Emit the call to the function
1841 CallInst *call = CallInst::Create(
1842 newFunction, params, ExtractedFuncRetVals.size() > 1 ? "targetBlock" : "",
1843 codeReplacer);
1845 // Set swifterror parameter attributes.
1846 unsigned ParamIdx = 0;
1847 unsigned AggIdx = 0;
1848 for (auto input : inputs) {
1849 if (StructValues.contains(input)) {
1850 ++AggIdx;
1851 } else {
1852 if (input->isSwiftError())
1853 call->addParamAttr(ParamIdx, Attribute::SwiftError);
1854 ++ParamIdx;
1858 // Add debug location to the new call, if the original function has debug
1859 // info. In that case, the terminator of the entry block of the extracted
1860 // function contains the first debug location of the extracted function,
1861 // set in extractCodeRegion.
1862 if (codeReplacer->getParent()->getSubprogram()) {
1863 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1864 call->setDebugLoc(DL);
1867 // Reload the outputs passed in by reference, use the struct if output is in
1868 // the aggregate or reload from the scalar argument.
1869 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0; i != e; ++i) {
1870 Value *Output = nullptr;
1871 if (StructValues.contains(outputs[i])) {
1872 Value *Idx[2];
1873 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1874 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), AggIdx);
1875 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1876 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1877 GEP->insertInto(codeReplacer, codeReplacer->end());
1878 Output = GEP;
1879 ++AggIdx;
1880 } else {
1881 Output = ReloadOutputs[scalarIdx];
1882 ++scalarIdx;
1884 LoadInst *load =
1885 new LoadInst(outputs[i]->getType(), Output,
1886 outputs[i]->getName() + ".reload", codeReplacer);
1887 Reloads.push_back(load);
1890 // Now we can emit a switch statement using the call as a value.
1891 SwitchInst *TheSwitch =
1892 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1893 codeReplacer, 0, codeReplacer);
1894 for (auto P : enumerate(ExtractedFuncRetVals)) {
1895 BasicBlock *OldTarget = P.value();
1896 size_t SuccNum = P.index();
1898 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), SuccNum),
1899 OldTarget);
1902 // Now that we've done the deed, simplify the switch instruction.
1903 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1904 switch (ExtractedFuncRetVals.size()) {
1905 case 0:
1906 // There are no successors (the block containing the switch itself), which
1907 // means that previously this was the last part of the function, and hence
1908 // this should be rewritten as a `ret` or `unreachable`.
1909 if (newFunction->doesNotReturn()) {
1910 // If fn is no return, end with an unreachable terminator.
1911 (void)new UnreachableInst(Context, TheSwitch->getIterator());
1912 } else if (OldFnRetTy->isVoidTy()) {
1913 // We have no return value.
1914 ReturnInst::Create(Context, nullptr,
1915 TheSwitch->getIterator()); // Return void
1916 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1917 // return what we have
1918 ReturnInst::Create(Context, TheSwitch->getCondition(),
1919 TheSwitch->getIterator());
1920 } else {
1921 // Otherwise we must have code extracted an unwind or something, just
1922 // return whatever we want.
1923 ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy),
1924 TheSwitch->getIterator());
1927 TheSwitch->eraseFromParent();
1928 break;
1929 case 1:
1930 // Only a single destination, change the switch into an unconditional
1931 // branch.
1932 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator());
1933 TheSwitch->eraseFromParent();
1934 break;
1935 case 2:
1936 // Only two destinations, convert to a condition branch.
1937 // Remark: This also swaps the target branches:
1938 // 0 -> false -> getSuccessor(2); 1 -> true -> getSuccessor(1)
1939 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1940 call, TheSwitch->getIterator());
1941 TheSwitch->eraseFromParent();
1942 break;
1943 default:
1944 // Otherwise, make the default destination of the switch instruction be one
1945 // of the other successors.
1946 TheSwitch->setCondition(call);
1947 TheSwitch->setDefaultDest(
1948 TheSwitch->getSuccessor(ExtractedFuncRetVals.size()));
1949 // Remove redundant case
1950 TheSwitch->removeCase(
1951 SwitchInst::CaseIt(TheSwitch, ExtractedFuncRetVals.size() - 1));
1952 break;
1955 // Insert lifetime markers around the reloads of any output values. The
1956 // allocas output values are stored in are only in-use in the codeRepl block.
1957 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1959 // Replicate the effects of any lifetime start/end markers which referenced
1960 // input objects in the extraction region by placing markers around the call.
1961 insertLifetimeMarkersSurroundingCall(oldFunction->getParent(), LifetimesStart,
1962 {}, call);
1964 return call;
1967 void CodeExtractor::insertReplacerCall(
1968 Function *oldFunction, BasicBlock *header, BasicBlock *codeReplacer,
1969 const ValueSet &outputs, ArrayRef<Value *> Reloads,
1970 const DenseMap<BasicBlock *, BlockFrequency> &ExitWeights) {
1972 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1973 // within the new function. This must be done before we lose track of which
1974 // blocks were originally in the code region.
1975 std::vector<User *> Users(header->user_begin(), header->user_end());
1976 for (auto &U : Users)
1977 // The BasicBlock which contains the branch is not in the region
1978 // modify the branch target to a new block
1979 if (Instruction *I = dyn_cast<Instruction>(U))
1980 if (I->isTerminator() && I->getFunction() == oldFunction &&
1981 !Blocks.count(I->getParent()))
1982 I->replaceUsesOfWith(header, codeReplacer);
1984 // When moving the code region it is sufficient to replace all uses to the
1985 // extracted function values. Since the original definition's block
1986 // dominated its use, it will also be dominated by codeReplacer's switch
1987 // which joined multiple exit blocks.
1988 for (BasicBlock *ExitBB : ExtractedFuncRetVals)
1989 for (PHINode &PN : ExitBB->phis()) {
1990 Value *IncomingCodeReplacerVal = nullptr;
1991 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1992 // Ignore incoming values from outside of the extracted region.
1993 if (!Blocks.count(PN.getIncomingBlock(i)))
1994 continue;
1996 // Ensure that there is only one incoming value from codeReplacer.
1997 if (!IncomingCodeReplacerVal) {
1998 PN.setIncomingBlock(i, codeReplacer);
1999 IncomingCodeReplacerVal = PN.getIncomingValue(i);
2000 } else
2001 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
2002 "PHI has two incompatbile incoming values from codeRepl");
2006 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
2007 Value *load = Reloads[i];
2008 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
2009 for (User *U : Users) {
2010 Instruction *inst = cast<Instruction>(U);
2011 if (inst->getParent()->getParent() == oldFunction)
2012 inst->replaceUsesOfWith(outputs[i], load);
2016 // Update the branch weights for the exit block.
2017 if (BFI && ExtractedFuncRetVals.size() > 1)
2018 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
2021 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
2022 const Function &NewFunc,
2023 AssumptionCache *AC) {
2024 for (auto AssumeVH : AC->assumptions()) {
2025 auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
2026 if (!I)
2027 continue;
2029 // There shouldn't be any llvm.assume intrinsics in the new function.
2030 if (I->getFunction() != &OldFunc)
2031 return true;
2033 // There shouldn't be any stale affected values in the assumption cache
2034 // that were previously in the old function, but that have now been moved
2035 // to the new function.
2036 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
2037 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
2038 if (!AffectedCI)
2039 continue;
2040 if (AffectedCI->getFunction() != &OldFunc)
2041 return true;
2042 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
2043 if (AssumedInst->getFunction() != &OldFunc)
2044 return true;
2047 return false;
2050 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
2051 ExcludeArgsFromAggregate.insert(Arg);