[win/asan] GetInstructionSize: Fix `83 E4 XX` to return 3. (#119644)
[llvm-project.git] / llvm / lib / Transforms / Utils / CodeMoverUtils.cpp
blobac106e4aa2a39deea9c94a36585d25b83b0fd3aa
1 //===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform movements on basic blocks, and instructions
10 // contained within a function.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/DependenceAnalysis.h"
17 #include "llvm/Analysis/PostDominators.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/Dominators.h"
21 using namespace llvm;
23 #define DEBUG_TYPE "codemover-utils"
25 STATISTIC(HasDependences,
26 "Cannot move across instructions that has memory dependences");
27 STATISTIC(MayThrowException, "Cannot move across instructions that may throw");
28 STATISTIC(NotControlFlowEquivalent,
29 "Instructions are not control flow equivalent");
30 STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported");
31 STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported");
33 namespace {
34 /// Represent a control condition. A control condition is a condition of a
35 /// terminator to decide which successors to execute. The pointer field
36 /// represents the address of the condition of the terminator. The integer field
37 /// is a bool, it is true when the basic block is executed when V is true. For
38 /// example, `br %cond, bb0, bb1` %cond is a control condition of bb0 with the
39 /// integer field equals to true, while %cond is a control condition of bb1 with
40 /// the integer field equals to false.
41 using ControlCondition = PointerIntPair<Value *, 1, bool>;
42 #ifndef NDEBUG
43 raw_ostream &operator<<(raw_ostream &OS, const ControlCondition &C) {
44 OS << "[" << *C.getPointer() << ", " << (C.getInt() ? "true" : "false")
45 << "]";
46 return OS;
48 #endif
50 /// Represent a set of control conditions required to execute ToBB from FromBB.
51 class ControlConditions {
52 using ConditionVectorTy = SmallVector<ControlCondition, 6>;
54 /// A SmallVector of control conditions.
55 ConditionVectorTy Conditions;
57 public:
58 /// Return a ControlConditions which stores all conditions required to execute
59 /// \p BB from \p Dominator. If \p MaxLookup is non-zero, it limits the
60 /// number of conditions to collect. Return std::nullopt if not all conditions
61 /// are collected successfully, or we hit the limit.
62 static const std::optional<ControlConditions>
63 collectControlConditions(const BasicBlock &BB, const BasicBlock &Dominator,
64 const DominatorTree &DT,
65 const PostDominatorTree &PDT,
66 unsigned MaxLookup = 6);
68 /// Return true if there exists no control conditions required to execute ToBB
69 /// from FromBB.
70 bool isUnconditional() const { return Conditions.empty(); }
72 /// Return a constant reference of Conditions.
73 const ConditionVectorTy &getControlConditions() const { return Conditions; }
75 /// Add \p V as one of the ControlCondition in Condition with IsTrueCondition
76 /// equals to \p True. Return true if inserted successfully.
77 bool addControlCondition(ControlCondition C);
79 /// Return true if for all control conditions in Conditions, there exists an
80 /// equivalent control condition in \p Other.Conditions.
81 bool isEquivalent(const ControlConditions &Other) const;
83 /// Return true if \p C1 and \p C2 are equivalent.
84 static bool isEquivalent(const ControlCondition &C1,
85 const ControlCondition &C2);
87 private:
88 ControlConditions() = default;
90 static bool isEquivalent(const Value &V1, const Value &V2);
91 static bool isInverse(const Value &V1, const Value &V2);
93 } // namespace
95 static bool domTreeLevelBefore(DominatorTree *DT, const Instruction *InstA,
96 const Instruction *InstB) {
97 // Use ordered basic block in case the 2 instructions are in the same
98 // block.
99 if (InstA->getParent() == InstB->getParent())
100 return InstA->comesBefore(InstB);
102 DomTreeNode *DA = DT->getNode(InstA->getParent());
103 DomTreeNode *DB = DT->getNode(InstB->getParent());
104 return DA->getLevel() < DB->getLevel();
107 const std::optional<ControlConditions>
108 ControlConditions::collectControlConditions(const BasicBlock &BB,
109 const BasicBlock &Dominator,
110 const DominatorTree &DT,
111 const PostDominatorTree &PDT,
112 unsigned MaxLookup) {
113 assert(DT.dominates(&Dominator, &BB) && "Expecting Dominator to dominate BB");
115 ControlConditions Conditions;
116 unsigned NumConditions = 0;
118 // BB is executed unconditional from itself.
119 if (&Dominator == &BB)
120 return Conditions;
122 const BasicBlock *CurBlock = &BB;
123 // Walk up the dominator tree from the associated DT node for BB to the
124 // associated DT node for Dominator.
125 do {
126 assert(DT.getNode(CurBlock) && "Expecting a valid DT node for CurBlock");
127 BasicBlock *IDom = DT.getNode(CurBlock)->getIDom()->getBlock();
128 assert(DT.dominates(&Dominator, IDom) &&
129 "Expecting Dominator to dominate IDom");
131 // Limitation: can only handle branch instruction currently.
132 const BranchInst *BI = dyn_cast<BranchInst>(IDom->getTerminator());
133 if (!BI)
134 return std::nullopt;
136 bool Inserted = false;
137 if (PDT.dominates(CurBlock, IDom)) {
138 LLVM_DEBUG(dbgs() << CurBlock->getName()
139 << " is executed unconditionally from "
140 << IDom->getName() << "\n");
141 } else if (PDT.dominates(CurBlock, BI->getSuccessor(0))) {
142 LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
143 << *BI->getCondition() << "\" is true from "
144 << IDom->getName() << "\n");
145 Inserted = Conditions.addControlCondition(
146 ControlCondition(BI->getCondition(), true));
147 } else if (PDT.dominates(CurBlock, BI->getSuccessor(1))) {
148 LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
149 << *BI->getCondition() << "\" is false from "
150 << IDom->getName() << "\n");
151 Inserted = Conditions.addControlCondition(
152 ControlCondition(BI->getCondition(), false));
153 } else
154 return std::nullopt;
156 if (Inserted)
157 ++NumConditions;
159 if (MaxLookup != 0 && NumConditions > MaxLookup)
160 return std::nullopt;
162 CurBlock = IDom;
163 } while (CurBlock != &Dominator);
165 return Conditions;
168 bool ControlConditions::addControlCondition(ControlCondition C) {
169 bool Inserted = false;
170 if (none_of(Conditions, [&](ControlCondition &Exists) {
171 return ControlConditions::isEquivalent(C, Exists);
172 })) {
173 Conditions.push_back(C);
174 Inserted = true;
177 LLVM_DEBUG(dbgs() << (Inserted ? "Inserted " : "Not inserted ") << C << "\n");
178 return Inserted;
181 bool ControlConditions::isEquivalent(const ControlConditions &Other) const {
182 if (Conditions.empty() && Other.Conditions.empty())
183 return true;
185 if (Conditions.size() != Other.Conditions.size())
186 return false;
188 return all_of(Conditions, [&](const ControlCondition &C) {
189 return any_of(Other.Conditions, [&](const ControlCondition &OtherC) {
190 return ControlConditions::isEquivalent(C, OtherC);
195 bool ControlConditions::isEquivalent(const ControlCondition &C1,
196 const ControlCondition &C2) {
197 if (C1.getInt() == C2.getInt()) {
198 if (isEquivalent(*C1.getPointer(), *C2.getPointer()))
199 return true;
200 } else if (isInverse(*C1.getPointer(), *C2.getPointer()))
201 return true;
203 return false;
206 // FIXME: Use SCEV and reuse GVN/CSE logic to check for equivalence between
207 // Values.
208 // Currently, isEquivalent rely on other passes to ensure equivalent conditions
209 // have the same value, e.g. GVN.
210 bool ControlConditions::isEquivalent(const Value &V1, const Value &V2) {
211 return &V1 == &V2;
214 bool ControlConditions::isInverse(const Value &V1, const Value &V2) {
215 if (const CmpInst *Cmp1 = dyn_cast<CmpInst>(&V1))
216 if (const CmpInst *Cmp2 = dyn_cast<CmpInst>(&V2)) {
217 if (Cmp1->getPredicate() == Cmp2->getInversePredicate() &&
218 Cmp1->getOperand(0) == Cmp2->getOperand(0) &&
219 Cmp1->getOperand(1) == Cmp2->getOperand(1))
220 return true;
222 if (Cmp1->getPredicate() ==
223 CmpInst::getSwappedPredicate(Cmp2->getInversePredicate()) &&
224 Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
225 Cmp1->getOperand(1) == Cmp2->getOperand(0))
226 return true;
228 return false;
231 bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1,
232 const DominatorTree &DT,
233 const PostDominatorTree &PDT) {
234 return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT);
237 bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1,
238 const DominatorTree &DT,
239 const PostDominatorTree &PDT) {
240 if (&BB0 == &BB1)
241 return true;
243 if ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) ||
244 (PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0)))
245 return true;
247 // If the set of conditions required to execute BB0 and BB1 from their common
248 // dominator are the same, then BB0 and BB1 are control flow equivalent.
249 const BasicBlock *CommonDominator = DT.findNearestCommonDominator(&BB0, &BB1);
250 LLVM_DEBUG(dbgs() << "The nearest common dominator of " << BB0.getName()
251 << " and " << BB1.getName() << " is "
252 << CommonDominator->getName() << "\n");
254 const std::optional<ControlConditions> BB0Conditions =
255 ControlConditions::collectControlConditions(BB0, *CommonDominator, DT,
256 PDT);
257 if (BB0Conditions == std::nullopt)
258 return false;
260 const std::optional<ControlConditions> BB1Conditions =
261 ControlConditions::collectControlConditions(BB1, *CommonDominator, DT,
262 PDT);
263 if (BB1Conditions == std::nullopt)
264 return false;
266 return BB0Conditions->isEquivalent(*BB1Conditions);
269 static bool reportInvalidCandidate(const Instruction &I,
270 llvm::Statistic &Stat) {
271 ++Stat;
272 LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". "
273 << Stat.getDesc());
274 return false;
277 /// Collect all instructions in between \p StartInst and \p EndInst, and store
278 /// them in \p InBetweenInsts.
279 static void
280 collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst,
281 SmallPtrSetImpl<Instruction *> &InBetweenInsts) {
282 assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty");
284 /// Get the next instructions of \p I, and push them to \p WorkList.
285 auto getNextInsts = [](Instruction &I,
286 SmallPtrSetImpl<Instruction *> &WorkList) {
287 if (Instruction *NextInst = I.getNextNode())
288 WorkList.insert(NextInst);
289 else {
290 assert(I.isTerminator() && "Expecting a terminator instruction");
291 for (BasicBlock *Succ : successors(&I))
292 WorkList.insert(&Succ->front());
296 SmallPtrSet<Instruction *, 10> WorkList;
297 getNextInsts(StartInst, WorkList);
298 while (!WorkList.empty()) {
299 Instruction *CurInst = *WorkList.begin();
300 WorkList.erase(CurInst);
302 if (CurInst == &EndInst)
303 continue;
305 if (!InBetweenInsts.insert(CurInst).second)
306 continue;
308 getNextInsts(*CurInst, WorkList);
312 bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint,
313 DominatorTree &DT, const PostDominatorTree *PDT,
314 DependenceInfo *DI, bool CheckForEntireBlock) {
315 // Skip tests when we don't have PDT or DI
316 if (!PDT || !DI)
317 return false;
319 // Cannot move itself before itself.
320 if (&I == &InsertPoint)
321 return false;
323 // Not moved.
324 if (I.getNextNode() == &InsertPoint)
325 return true;
327 if (isa<PHINode>(I) || isa<PHINode>(InsertPoint))
328 return reportInvalidCandidate(I, NotMovedPHINode);
330 if (I.isTerminator())
331 return reportInvalidCandidate(I, NotMovedTerminator);
333 // TODO remove this limitation.
334 if (!isControlFlowEquivalent(I, InsertPoint, DT, *PDT))
335 return reportInvalidCandidate(I, NotControlFlowEquivalent);
337 if (isReachedBefore(&I, &InsertPoint, &DT, PDT))
338 for (const Use &U : I.uses())
339 if (auto *UserInst = dyn_cast<Instruction>(U.getUser())) {
340 // If InsertPoint is in a BB that comes after I, then we cannot move if
341 // I is used in the terminator of the current BB.
342 if (I.getParent() == InsertPoint.getParent() &&
343 UserInst == I.getParent()->getTerminator())
344 return false;
345 if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U)) {
346 // If UserInst is an instruction that appears later in the same BB as
347 // I, then it is okay to move since I will still be available when
348 // UserInst is executed.
349 if (CheckForEntireBlock && I.getParent() == UserInst->getParent() &&
350 DT.dominates(&I, UserInst))
351 continue;
352 return false;
355 if (isReachedBefore(&InsertPoint, &I, &DT, PDT))
356 for (const Value *Op : I.operands())
357 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
358 if (&InsertPoint == OpInst)
359 return false;
360 // If OpInst is an instruction that appears earlier in the same BB as
361 // I, then it is okay to move since OpInst will still be available.
362 if (CheckForEntireBlock && I.getParent() == OpInst->getParent() &&
363 DT.dominates(OpInst, &I))
364 continue;
365 if (!DT.dominates(OpInst, &InsertPoint))
366 return false;
369 DT.updateDFSNumbers();
370 const bool MoveForward = domTreeLevelBefore(&DT, &I, &InsertPoint);
371 Instruction &StartInst = (MoveForward ? I : InsertPoint);
372 Instruction &EndInst = (MoveForward ? InsertPoint : I);
373 SmallPtrSet<Instruction *, 10> InstsToCheck;
374 collectInstructionsInBetween(StartInst, EndInst, InstsToCheck);
375 if (!MoveForward)
376 InstsToCheck.insert(&InsertPoint);
378 // Check if there exists instructions which may throw, may synchonize, or may
379 // never return, from I to InsertPoint.
380 if (!isSafeToSpeculativelyExecute(&I))
381 if (llvm::any_of(InstsToCheck, [](Instruction *I) {
382 if (I->mayThrow())
383 return true;
385 const CallBase *CB = dyn_cast<CallBase>(I);
386 if (!CB)
387 return false;
388 if (!CB->hasFnAttr(Attribute::WillReturn))
389 return true;
390 if (!CB->hasFnAttr(Attribute::NoSync))
391 return true;
393 return false;
394 })) {
395 return reportInvalidCandidate(I, MayThrowException);
398 // Check if I has any output/flow/anti dependences with instructions from \p
399 // StartInst to \p EndInst.
400 if (llvm::any_of(InstsToCheck, [&DI, &I](Instruction *CurInst) {
401 auto DepResult = DI->depends(&I, CurInst, true);
402 if (DepResult && (DepResult->isOutput() || DepResult->isFlow() ||
403 DepResult->isAnti()))
404 return true;
405 return false;
407 return reportInvalidCandidate(I, HasDependences);
409 return true;
412 bool llvm::isSafeToMoveBefore(BasicBlock &BB, Instruction &InsertPoint,
413 DominatorTree &DT, const PostDominatorTree *PDT,
414 DependenceInfo *DI) {
415 return llvm::all_of(BB, [&](Instruction &I) {
416 if (BB.getTerminator() == &I)
417 return true;
419 return isSafeToMoveBefore(I, InsertPoint, DT, PDT, DI,
420 /*CheckForEntireBlock=*/true);
424 void llvm::moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB,
425 DominatorTree &DT,
426 const PostDominatorTree &PDT,
427 DependenceInfo &DI) {
428 for (Instruction &I :
429 llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(FromBB)))) {
430 Instruction *MovePos = ToBB.getFirstNonPHIOrDbg();
432 if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
433 I.moveBeforePreserving(MovePos);
437 void llvm::moveInstructionsToTheEnd(BasicBlock &FromBB, BasicBlock &ToBB,
438 DominatorTree &DT,
439 const PostDominatorTree &PDT,
440 DependenceInfo &DI) {
441 Instruction *MovePos = ToBB.getTerminator();
442 while (FromBB.size() > 1) {
443 Instruction &I = FromBB.front();
444 if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
445 I.moveBeforePreserving(MovePos);
449 bool llvm::nonStrictlyPostDominate(const BasicBlock *ThisBlock,
450 const BasicBlock *OtherBlock,
451 const DominatorTree *DT,
452 const PostDominatorTree *PDT) {
453 assert(isControlFlowEquivalent(*ThisBlock, *OtherBlock, *DT, *PDT) &&
454 "ThisBlock and OtherBlock must be CFG equivalent!");
455 const BasicBlock *CommonDominator =
456 DT->findNearestCommonDominator(ThisBlock, OtherBlock);
457 if (CommonDominator == nullptr)
458 return false;
460 /// Recursively check the predecessors of \p ThisBlock up to
461 /// their common dominator, and see if any of them post-dominates
462 /// \p OtherBlock.
463 SmallVector<const BasicBlock *, 8> WorkList;
464 SmallPtrSet<const BasicBlock *, 8> Visited;
465 WorkList.push_back(ThisBlock);
466 while (!WorkList.empty()) {
467 const BasicBlock *CurBlock = WorkList.back();
468 WorkList.pop_back();
469 Visited.insert(CurBlock);
470 if (PDT->dominates(CurBlock, OtherBlock))
471 return true;
473 for (const auto *Pred : predecessors(CurBlock)) {
474 if (Pred == CommonDominator || Visited.count(Pred))
475 continue;
476 WorkList.push_back(Pred);
479 return false;
482 bool llvm::isReachedBefore(const Instruction *I0, const Instruction *I1,
483 const DominatorTree *DT,
484 const PostDominatorTree *PDT) {
485 const BasicBlock *BB0 = I0->getParent();
486 const BasicBlock *BB1 = I1->getParent();
487 if (BB0 == BB1)
488 return DT->dominates(I0, I1);
490 return nonStrictlyPostDominate(BB1, BB0, DT, PDT);