1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header. This simplifies a
15 // number of analyses and transformations, such as LICM.
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header). This simplifies transformations such as store-sinking
21 // that are built into LICM.
23 // This pass also guarantees that loops will have exactly one backedge.
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BranchProbabilityInfo.h"
50 #include "llvm/Analysis/GlobalsModRef.h"
51 #include "llvm/Analysis/InstructionSimplify.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/MemorySSA.h"
54 #include "llvm/Analysis/MemorySSAUpdater.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
57 #include "llvm/IR/CFG.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
73 #define DEBUG_TYPE "loop-simplify"
75 STATISTIC(NumNested
, "Number of nested loops split out");
77 // If the block isn't already, move the new block to right after some 'outside
78 // block' block. This prevents the preheader from being placed inside the loop
79 // body, e.g. when the loop hasn't been rotated.
80 static void placeSplitBlockCarefully(BasicBlock
*NewBB
,
81 SmallVectorImpl
<BasicBlock
*> &SplitPreds
,
83 // Check to see if NewBB is already well placed.
84 Function::iterator BBI
= --NewBB
->getIterator();
85 if (llvm::is_contained(SplitPreds
, &*BBI
))
88 // If it isn't already after an outside block, move it after one. This is
89 // always good as it makes the uncond branch from the outside block into a
92 // Figure out *which* outside block to put this after. Prefer an outside
93 // block that neighbors a BB actually in the loop.
94 BasicBlock
*FoundBB
= nullptr;
95 for (BasicBlock
*Pred
: SplitPreds
) {
96 Function::iterator BBI
= Pred
->getIterator();
97 if (++BBI
!= NewBB
->getParent()->end() && L
->contains(&*BBI
)) {
103 // If our heuristic for a *good* bb to place this after doesn't find
104 // anything, just pick something. It's likely better than leaving it within
107 FoundBB
= SplitPreds
[0];
108 NewBB
->moveAfter(FoundBB
);
111 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
112 /// preheader, this method is called to insert one. This method has two phases:
113 /// preheader insertion and analysis updating.
115 BasicBlock
*llvm::InsertPreheaderForLoop(Loop
*L
, DominatorTree
*DT
,
116 LoopInfo
*LI
, MemorySSAUpdater
*MSSAU
,
117 bool PreserveLCSSA
) {
118 BasicBlock
*Header
= L
->getHeader();
120 // Compute the set of predecessors of the loop that are not in the loop.
121 SmallVector
<BasicBlock
*, 8> OutsideBlocks
;
122 for (BasicBlock
*P
: predecessors(Header
)) {
123 if (!L
->contains(P
)) { // Coming in from outside the loop?
124 // If the loop is branched to from an indirect terminator, we won't
125 // be able to fully transform the loop, because it prohibits
127 if (isa
<IndirectBrInst
>(P
->getTerminator()))
131 OutsideBlocks
.push_back(P
);
135 // Split out the loop pre-header.
136 BasicBlock
*PreheaderBB
;
137 PreheaderBB
= SplitBlockPredecessors(Header
, OutsideBlocks
, ".preheader", DT
,
138 LI
, MSSAU
, PreserveLCSSA
);
142 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
143 << PreheaderBB
->getName() << "\n");
145 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
146 // code layout too horribly.
147 placeSplitBlockCarefully(PreheaderBB
, OutsideBlocks
, L
);
152 /// Add the specified block, and all of its predecessors, to the specified set,
153 /// if it's not already in there. Stop predecessor traversal when we reach
155 static void addBlockAndPredsToSet(BasicBlock
*InputBB
, BasicBlock
*StopBlock
,
156 SmallPtrSetImpl
<BasicBlock
*> &Blocks
) {
157 SmallVector
<BasicBlock
*, 8> Worklist
;
158 Worklist
.push_back(InputBB
);
160 BasicBlock
*BB
= Worklist
.pop_back_val();
161 if (Blocks
.insert(BB
).second
&& BB
!= StopBlock
)
162 // If BB is not already processed and it is not a stop block then
163 // insert its predecessor in the work list
164 append_range(Worklist
, predecessors(BB
));
165 } while (!Worklist
.empty());
168 /// The first part of loop-nestification is to find a PHI node that tells
169 /// us how to partition the loops.
170 static PHINode
*findPHIToPartitionLoops(Loop
*L
, DominatorTree
*DT
,
171 AssumptionCache
*AC
) {
172 const DataLayout
&DL
= L
->getHeader()->getDataLayout();
173 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ) {
174 PHINode
*PN
= cast
<PHINode
>(I
);
176 if (Value
*V
= simplifyInstruction(PN
, {DL
, nullptr, DT
, AC
})) {
177 // This is a degenerate PHI already, don't modify it!
178 PN
->replaceAllUsesWith(V
);
179 PN
->eraseFromParent();
183 // Scan this PHI node looking for a use of the PHI node by itself.
184 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
185 if (PN
->getIncomingValue(i
) == PN
&&
186 L
->contains(PN
->getIncomingBlock(i
)))
187 // We found something tasty to remove.
193 /// If this loop has multiple backedges, try to pull one of them out into
196 /// This is important for code that looks like
201 /// br cond, Loop, Next
203 /// br cond2, Loop, Out
205 /// To identify this common case, we look at the PHI nodes in the header of the
206 /// loop. PHI nodes with unchanging values on one backedge correspond to values
207 /// that change in the "outer" loop, but not in the "inner" loop.
209 /// If we are able to separate out a loop, return the new outer loop that was
212 static Loop
*separateNestedLoop(Loop
*L
, BasicBlock
*Preheader
,
213 DominatorTree
*DT
, LoopInfo
*LI
,
214 ScalarEvolution
*SE
, bool PreserveLCSSA
,
215 AssumptionCache
*AC
, MemorySSAUpdater
*MSSAU
) {
216 // Don't try to separate loops without a preheader.
220 // Treat the presence of convergent functions conservatively. The
221 // transformation is invalid if calls to certain convergent
222 // functions (like an AMDGPU barrier) get included in the resulting
223 // inner loop. But blocks meant for the inner loop will be
224 // identified later at a point where it's too late to abort the
225 // transformation. Also, the convergent attribute is not really
226 // sufficient to express the semantics of functions that are
227 // affected by this transformation. So we choose to back off if such
228 // a function call is present until a better alternative becomes
229 // available. This is similar to the conservative treatment of
230 // convergent function calls in GVNHoist and JumpThreading.
231 for (auto *BB
: L
->blocks()) {
232 for (auto &II
: *BB
) {
233 if (auto CI
= dyn_cast
<CallBase
>(&II
)) {
234 if (CI
->isConvergent()) {
241 // The header is not a landing pad; preheader insertion should ensure this.
242 BasicBlock
*Header
= L
->getHeader();
243 assert(!Header
->isEHPad() && "Can't insert backedge to EH pad");
245 PHINode
*PN
= findPHIToPartitionLoops(L
, DT
, AC
);
246 if (!PN
) return nullptr; // No known way to partition.
248 // Pull out all predecessors that have varying values in the loop. This
249 // handles the case when a PHI node has multiple instances of itself as
251 SmallVector
<BasicBlock
*, 8> OuterLoopPreds
;
252 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
253 if (PN
->getIncomingValue(i
) != PN
||
254 !L
->contains(PN
->getIncomingBlock(i
))) {
255 // We can't split indirect control flow edges.
256 if (isa
<IndirectBrInst
>(PN
->getIncomingBlock(i
)->getTerminator()))
258 OuterLoopPreds
.push_back(PN
->getIncomingBlock(i
));
261 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
263 // If ScalarEvolution is around and knows anything about values in
264 // this loop, tell it to forget them, because we're about to
265 // substantially change it.
269 BasicBlock
*NewBB
= SplitBlockPredecessors(Header
, OuterLoopPreds
, ".outer",
270 DT
, LI
, MSSAU
, PreserveLCSSA
);
272 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
273 // code layout too horribly.
274 placeSplitBlockCarefully(NewBB
, OuterLoopPreds
, L
);
276 // Create the new outer loop.
277 Loop
*NewOuter
= LI
->AllocateLoop();
279 // Change the parent loop to use the outer loop as its child now.
280 if (Loop
*Parent
= L
->getParentLoop())
281 Parent
->replaceChildLoopWith(L
, NewOuter
);
283 LI
->changeTopLevelLoop(L
, NewOuter
);
285 // L is now a subloop of our outer loop.
286 NewOuter
->addChildLoop(L
);
288 for (BasicBlock
*BB
: L
->blocks())
289 NewOuter
->addBlockEntry(BB
);
291 // Now reset the header in L, which had been moved by
292 // SplitBlockPredecessors for the outer loop.
293 L
->moveToHeader(Header
);
295 // Determine which blocks should stay in L and which should be moved out to
296 // the Outer loop now.
297 SmallPtrSet
<BasicBlock
*, 4> BlocksInL
;
298 for (BasicBlock
*P
: predecessors(Header
)) {
299 if (DT
->dominates(Header
, P
))
300 addBlockAndPredsToSet(P
, Header
, BlocksInL
);
303 // Scan all of the loop children of L, moving them to OuterLoop if they are
304 // not part of the inner loop.
305 const std::vector
<Loop
*> &SubLoops
= L
->getSubLoops();
306 for (size_t I
= 0; I
!= SubLoops
.size(); )
307 if (BlocksInL
.count(SubLoops
[I
]->getHeader()))
308 ++I
; // Loop remains in L
310 NewOuter
->addChildLoop(L
->removeChildLoop(SubLoops
.begin() + I
));
312 SmallVector
<BasicBlock
*, 8> OuterLoopBlocks
;
313 OuterLoopBlocks
.push_back(NewBB
);
314 // Now that we know which blocks are in L and which need to be moved to
315 // OuterLoop, move any blocks that need it.
316 for (unsigned i
= 0; i
!= L
->getBlocks().size(); ++i
) {
317 BasicBlock
*BB
= L
->getBlocks()[i
];
318 if (!BlocksInL
.count(BB
)) {
319 // Move this block to the parent, updating the exit blocks sets
320 L
->removeBlockFromLoop(BB
);
321 if ((*LI
)[BB
] == L
) {
322 LI
->changeLoopFor(BB
, NewOuter
);
323 OuterLoopBlocks
.push_back(BB
);
329 // Split edges to exit blocks from the inner loop, if they emerged in the
330 // process of separating the outer one.
331 formDedicatedExitBlocks(L
, DT
, LI
, MSSAU
, PreserveLCSSA
);
334 // Fix LCSSA form for L. Some values, which previously were only used inside
335 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
336 // in corresponding exit blocks.
337 // We don't need to form LCSSA recursively, because there cannot be uses
338 // inside a newly created loop of defs from inner loops as those would
339 // already be a use of an LCSSA phi node.
340 formLCSSA(*L
, *DT
, LI
, SE
);
342 assert(NewOuter
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
343 "LCSSA is broken after separating nested loops!");
349 /// This method is called when the specified loop has more than one
352 /// If this occurs, revector all of these backedges to target a new basic block
353 /// and have that block branch to the loop header. This ensures that loops
354 /// have exactly one backedge.
355 static BasicBlock
*insertUniqueBackedgeBlock(Loop
*L
, BasicBlock
*Preheader
,
356 DominatorTree
*DT
, LoopInfo
*LI
,
357 MemorySSAUpdater
*MSSAU
) {
358 assert(L
->getNumBackEdges() > 1 && "Must have > 1 backedge!");
360 // Get information about the loop
361 BasicBlock
*Header
= L
->getHeader();
362 Function
*F
= Header
->getParent();
364 // Unique backedge insertion currently depends on having a preheader.
368 // The header is not an EH pad; preheader insertion should ensure this.
369 assert(!Header
->isEHPad() && "Can't insert backedge to EH pad");
371 // Figure out which basic blocks contain back-edges to the loop header.
372 std::vector
<BasicBlock
*> BackedgeBlocks
;
373 for (BasicBlock
*P
: predecessors(Header
)) {
374 // Indirect edges cannot be split, so we must fail if we find one.
375 if (isa
<IndirectBrInst
>(P
->getTerminator()))
378 if (P
!= Preheader
) BackedgeBlocks
.push_back(P
);
381 // Create and insert the new backedge block...
382 BasicBlock
*BEBlock
= BasicBlock::Create(Header
->getContext(),
383 Header
->getName() + ".backedge", F
);
384 BranchInst
*BETerminator
= BranchInst::Create(Header
, BEBlock
);
385 BETerminator
->setDebugLoc(Header
->getFirstNonPHI()->getDebugLoc());
387 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
388 << BEBlock
->getName() << "\n");
390 // Move the new backedge block to right after the last backedge block.
391 Function::iterator InsertPos
= ++BackedgeBlocks
.back()->getIterator();
392 F
->splice(InsertPos
, F
, BEBlock
->getIterator());
394 // Now that the block has been inserted into the function, create PHI nodes in
395 // the backedge block which correspond to any PHI nodes in the header block.
396 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
397 PHINode
*PN
= cast
<PHINode
>(I
);
398 PHINode
*NewPN
= PHINode::Create(PN
->getType(), BackedgeBlocks
.size(),
399 PN
->getName()+".be", BETerminator
->getIterator());
401 // Loop over the PHI node, moving all entries except the one for the
402 // preheader over to the new PHI node.
403 unsigned PreheaderIdx
= ~0U;
404 bool HasUniqueIncomingValue
= true;
405 Value
*UniqueValue
= nullptr;
406 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
407 BasicBlock
*IBB
= PN
->getIncomingBlock(i
);
408 Value
*IV
= PN
->getIncomingValue(i
);
409 if (IBB
== Preheader
) {
412 NewPN
->addIncoming(IV
, IBB
);
413 if (HasUniqueIncomingValue
) {
416 else if (UniqueValue
!= IV
)
417 HasUniqueIncomingValue
= false;
422 // Delete all of the incoming values from the old PN except the preheader's
423 assert(PreheaderIdx
!= ~0U && "PHI has no preheader entry??");
424 if (PreheaderIdx
!= 0) {
425 PN
->setIncomingValue(0, PN
->getIncomingValue(PreheaderIdx
));
426 PN
->setIncomingBlock(0, PN
->getIncomingBlock(PreheaderIdx
));
428 // Nuke all entries except the zero'th.
429 PN
->removeIncomingValueIf([](unsigned Idx
) { return Idx
!= 0; },
430 /* DeletePHIIfEmpty */ false);
432 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
433 PN
->addIncoming(NewPN
, BEBlock
);
435 // As an optimization, if all incoming values in the new PhiNode (which is a
436 // subset of the incoming values of the old PHI node) have the same value,
437 // eliminate the PHI Node.
438 if (HasUniqueIncomingValue
) {
439 NewPN
->replaceAllUsesWith(UniqueValue
);
440 NewPN
->eraseFromParent();
444 // Now that all of the PHI nodes have been inserted and adjusted, modify the
445 // backedge blocks to jump to the BEBlock instead of the header.
446 // If one of the backedges has llvm.loop metadata attached, we remove
447 // it from the backedge and add it to BEBlock.
448 MDNode
*LoopMD
= nullptr;
449 for (BasicBlock
*BB
: BackedgeBlocks
) {
450 Instruction
*TI
= BB
->getTerminator();
452 LoopMD
= TI
->getMetadata(LLVMContext::MD_loop
);
453 TI
->setMetadata(LLVMContext::MD_loop
, nullptr);
454 TI
->replaceSuccessorWith(Header
, BEBlock
);
456 BEBlock
->getTerminator()->setMetadata(LLVMContext::MD_loop
, LoopMD
);
458 //===--- Update all analyses which we must preserve now -----------------===//
460 // Update Loop Information - we know that this block is now in the current
461 // loop and all parent loops.
462 L
->addBasicBlockToLoop(BEBlock
, *LI
);
464 // Update dominator information
465 DT
->splitBlock(BEBlock
);
468 MSSAU
->updatePhisWhenInsertingUniqueBackedgeBlock(Header
, Preheader
,
474 /// Simplify one loop and queue further loops for simplification.
475 static bool simplifyOneLoop(Loop
*L
, SmallVectorImpl
<Loop
*> &Worklist
,
476 DominatorTree
*DT
, LoopInfo
*LI
,
477 ScalarEvolution
*SE
, AssumptionCache
*AC
,
478 MemorySSAUpdater
*MSSAU
, bool PreserveLCSSA
) {
479 bool Changed
= false;
480 if (MSSAU
&& VerifyMemorySSA
)
481 MSSAU
->getMemorySSA()->verifyMemorySSA();
485 // Check to see that no blocks (other than the header) in this loop have
486 // predecessors that are not in the loop. This is not valid for natural
487 // loops, but can occur if the blocks are unreachable. Since they are
488 // unreachable we can just shamelessly delete those CFG edges!
489 for (BasicBlock
*BB
: L
->blocks()) {
490 if (BB
== L
->getHeader())
493 SmallPtrSet
<BasicBlock
*, 4> BadPreds
;
494 for (BasicBlock
*P
: predecessors(BB
))
498 // Delete each unique out-of-loop (and thus dead) predecessor.
499 for (BasicBlock
*P
: BadPreds
) {
501 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
502 << P
->getName() << "\n");
504 // Zap the dead pred's terminator and replace it with unreachable.
505 Instruction
*TI
= P
->getTerminator();
506 changeToUnreachable(TI
, PreserveLCSSA
,
507 /*DTU=*/nullptr, MSSAU
);
512 if (MSSAU
&& VerifyMemorySSA
)
513 MSSAU
->getMemorySSA()->verifyMemorySSA();
515 // If there are exiting blocks with branches on undef, resolve the undef in
516 // the direction which will exit the loop. This will help simplify loop
517 // trip count computations.
518 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
519 L
->getExitingBlocks(ExitingBlocks
);
520 for (BasicBlock
*ExitingBlock
: ExitingBlocks
)
521 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator()))
522 if (BI
->isConditional()) {
523 if (UndefValue
*Cond
= dyn_cast
<UndefValue
>(BI
->getCondition())) {
526 << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
527 << ExitingBlock
->getName() << "\n");
529 BI
->setCondition(ConstantInt::get(Cond
->getType(),
530 !L
->contains(BI
->getSuccessor(0))));
536 // Does the loop already have a preheader? If so, don't insert one.
537 BasicBlock
*Preheader
= L
->getLoopPreheader();
539 Preheader
= InsertPreheaderForLoop(L
, DT
, LI
, MSSAU
, PreserveLCSSA
);
544 // Next, check to make sure that all exit nodes of the loop only have
545 // predecessors that are inside of the loop. This check guarantees that the
546 // loop preheader/header will dominate the exit blocks. If the exit block has
547 // predecessors from outside of the loop, split the edge now.
548 if (formDedicatedExitBlocks(L
, DT
, LI
, MSSAU
, PreserveLCSSA
))
551 if (MSSAU
&& VerifyMemorySSA
)
552 MSSAU
->getMemorySSA()->verifyMemorySSA();
554 // If the header has more than two predecessors at this point (from the
555 // preheader and from multiple backedges), we must adjust the loop.
556 BasicBlock
*LoopLatch
= L
->getLoopLatch();
558 // If this is really a nested loop, rip it out into a child loop. Don't do
559 // this for loops with a giant number of backedges, just factor them into a
560 // common backedge instead.
561 if (L
->getNumBackEdges() < 8) {
562 if (Loop
*OuterL
= separateNestedLoop(L
, Preheader
, DT
, LI
, SE
,
563 PreserveLCSSA
, AC
, MSSAU
)) {
565 // Enqueue the outer loop as it should be processed next in our
566 // depth-first nest walk.
567 Worklist
.push_back(OuterL
);
569 // This is a big restructuring change, reprocess the whole loop.
571 // GCC doesn't tail recursion eliminate this.
572 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
577 // If we either couldn't, or didn't want to, identify nesting of the loops,
578 // insert a new block that all backedges target, then make it jump to the
580 LoopLatch
= insertUniqueBackedgeBlock(L
, Preheader
, DT
, LI
, MSSAU
);
585 if (MSSAU
&& VerifyMemorySSA
)
586 MSSAU
->getMemorySSA()->verifyMemorySSA();
588 const DataLayout
&DL
= L
->getHeader()->getDataLayout();
590 // Scan over the PHI nodes in the loop header. Since they now have only two
591 // incoming values (the loop is canonicalized), we may have simplified the PHI
592 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
594 for (BasicBlock::iterator I
= L
->getHeader()->begin();
595 (PN
= dyn_cast
<PHINode
>(I
++)); )
596 if (Value
*V
= simplifyInstruction(PN
, {DL
, nullptr, DT
, AC
})) {
597 if (SE
) SE
->forgetValue(PN
);
598 if (!PreserveLCSSA
|| LI
->replacementPreservesLCSSAForm(PN
, V
)) {
599 PN
->replaceAllUsesWith(V
);
600 PN
->eraseFromParent();
605 // If this loop has multiple exits and the exits all go to the same
606 // block, attempt to merge the exits. This helps several passes, such
607 // as LoopRotation, which do not support loops with multiple exits.
608 // SimplifyCFG also does this (and this code uses the same utility
609 // function), however this code is loop-aware, where SimplifyCFG is
610 // not. That gives it the advantage of being able to hoist
611 // loop-invariant instructions out of the way to open up more
612 // opportunities, and the disadvantage of having the responsibility
613 // to preserve dominator information.
614 auto HasUniqueExitBlock
= [&]() {
615 BasicBlock
*UniqueExit
= nullptr;
616 for (auto *ExitingBB
: ExitingBlocks
)
617 for (auto *SuccBB
: successors(ExitingBB
)) {
618 if (L
->contains(SuccBB
))
623 else if (UniqueExit
!= SuccBB
)
629 if (HasUniqueExitBlock()) {
630 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
631 if (!ExitingBlock
->getSinglePredecessor()) continue;
632 BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
633 if (!BI
|| !BI
->isConditional()) continue;
634 CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition());
635 if (!CI
|| CI
->getParent() != ExitingBlock
) continue;
637 // Attempt to hoist out all instructions except for the
638 // comparison and the branch.
639 bool AllInvariant
= true;
640 bool AnyInvariant
= false;
641 for (auto I
= ExitingBlock
->instructionsWithoutDebug().begin(); &*I
!= BI
; ) {
642 Instruction
*Inst
= &*I
++;
645 if (!L
->makeLoopInvariant(
647 Preheader
? Preheader
->getTerminator() : nullptr, MSSAU
, SE
)) {
648 AllInvariant
= false;
654 if (!AllInvariant
) continue;
656 // The block has now been cleared of all instructions except for
657 // a comparison and a conditional branch. SimplifyCFG may be able
659 if (!foldBranchToCommonDest(BI
, /*DTU=*/nullptr, MSSAU
))
662 // Success. The block is now dead, so remove it from the loop,
663 // update the dominator tree and delete it.
664 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
665 << ExitingBlock
->getName() << "\n");
667 assert(pred_empty(ExitingBlock
));
669 LI
->removeBlock(ExitingBlock
);
671 DomTreeNode
*Node
= DT
->getNode(ExitingBlock
);
672 while (!Node
->isLeaf()) {
673 DomTreeNode
*Child
= Node
->back();
674 DT
->changeImmediateDominator(Child
, Node
->getIDom());
676 DT
->eraseNode(ExitingBlock
);
678 SmallSetVector
<BasicBlock
*, 8> ExitBlockSet
;
679 ExitBlockSet
.insert(ExitingBlock
);
680 MSSAU
->removeBlocks(ExitBlockSet
);
683 BI
->getSuccessor(0)->removePredecessor(
684 ExitingBlock
, /* KeepOneInputPHIs */ PreserveLCSSA
);
685 BI
->getSuccessor(1)->removePredecessor(
686 ExitingBlock
, /* KeepOneInputPHIs */ PreserveLCSSA
);
687 ExitingBlock
->eraseFromParent();
691 if (MSSAU
&& VerifyMemorySSA
)
692 MSSAU
->getMemorySSA()->verifyMemorySSA();
697 bool llvm::simplifyLoop(Loop
*L
, DominatorTree
*DT
, LoopInfo
*LI
,
698 ScalarEvolution
*SE
, AssumptionCache
*AC
,
699 MemorySSAUpdater
*MSSAU
, bool PreserveLCSSA
) {
700 bool Changed
= false;
703 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
706 assert(DT
&& "DT not available.");
707 assert(LI
&& "LI not available.");
708 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
709 "Requested to preserve LCSSA, but it's already broken.");
713 // Worklist maintains our depth-first queue of loops in this nest to process.
714 SmallVector
<Loop
*, 4> Worklist
;
715 Worklist
.push_back(L
);
717 // Walk the worklist from front to back, pushing newly found sub loops onto
718 // the back. This will let us process loops from back to front in depth-first
719 // order. We can use this simple process because loops form a tree.
720 for (unsigned Idx
= 0; Idx
!= Worklist
.size(); ++Idx
) {
721 Loop
*L2
= Worklist
[Idx
];
722 Worklist
.append(L2
->begin(), L2
->end());
725 while (!Worklist
.empty())
726 Changed
|= simplifyOneLoop(Worklist
.pop_back_val(), Worklist
, DT
, LI
, SE
,
727 AC
, MSSAU
, PreserveLCSSA
);
729 // Changing exit conditions for blocks may affect exit counts of this loop and
730 // any of its parents, so we must invalidate the entire subtree if we've made
731 // any changes. Do this here rather than in simplifyOneLoop() as the top-most
732 // loop is going to be the same for all child loops.
734 SE
->forgetTopmostLoop(L
);
740 struct LoopSimplify
: public FunctionPass
{
741 static char ID
; // Pass identification, replacement for typeid
742 LoopSimplify() : FunctionPass(ID
) {
743 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
746 bool runOnFunction(Function
&F
) override
;
748 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
749 AU
.addRequired
<AssumptionCacheTracker
>();
751 // We need loop information to identify the loops...
752 AU
.addRequired
<DominatorTreeWrapperPass
>();
753 AU
.addPreserved
<DominatorTreeWrapperPass
>();
755 AU
.addRequired
<LoopInfoWrapperPass
>();
756 AU
.addPreserved
<LoopInfoWrapperPass
>();
758 AU
.addPreserved
<BasicAAWrapperPass
>();
759 AU
.addPreserved
<AAResultsWrapperPass
>();
760 AU
.addPreserved
<GlobalsAAWrapperPass
>();
761 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
762 AU
.addPreserved
<SCEVAAWrapperPass
>();
763 AU
.addPreservedID(LCSSAID
);
764 AU
.addPreservedID(BreakCriticalEdgesID
); // No critical edges added.
765 AU
.addPreserved
<BranchProbabilityInfoWrapperPass
>();
766 AU
.addPreserved
<MemorySSAWrapperPass
>();
769 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
770 void verifyAnalysis() const override
;
774 char LoopSimplify::ID
= 0;
775 INITIALIZE_PASS_BEGIN(LoopSimplify
, "loop-simplify",
776 "Canonicalize natural loops", false, false)
777 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
778 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
779 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
780 INITIALIZE_PASS_END(LoopSimplify
, "loop-simplify", "Canonicalize natural loops",
783 // Publicly exposed interface to pass...
784 char &llvm::LoopSimplifyID
= LoopSimplify::ID
;
785 Pass
*llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
787 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
788 /// it in any convenient order) inserting preheaders...
790 bool LoopSimplify::runOnFunction(Function
&F
) {
791 bool Changed
= false;
792 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
793 DominatorTree
*DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
794 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
795 ScalarEvolution
*SE
= SEWP
? &SEWP
->getSE() : nullptr;
796 AssumptionCache
*AC
=
797 &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
798 MemorySSA
*MSSA
= nullptr;
799 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
800 auto *MSSAAnalysis
= getAnalysisIfAvailable
<MemorySSAWrapperPass
>();
802 MSSA
= &MSSAAnalysis
->getMSSA();
803 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
806 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
808 // Simplify each loop nest in the function.
810 Changed
|= simplifyLoop(L
, DT
, LI
, SE
, AC
, MSSAU
.get(), PreserveLCSSA
);
814 bool InLCSSA
= all_of(
815 *LI
, [&](Loop
*L
) { return L
->isRecursivelyLCSSAForm(*DT
, *LI
); });
816 assert(InLCSSA
&& "LCSSA is broken after loop-simplify.");
822 PreservedAnalyses
LoopSimplifyPass::run(Function
&F
,
823 FunctionAnalysisManager
&AM
) {
824 bool Changed
= false;
825 LoopInfo
*LI
= &AM
.getResult
<LoopAnalysis
>(F
);
826 DominatorTree
*DT
= &AM
.getResult
<DominatorTreeAnalysis
>(F
);
827 ScalarEvolution
*SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
828 AssumptionCache
*AC
= &AM
.getResult
<AssumptionAnalysis
>(F
);
829 auto *MSSAAnalysis
= AM
.getCachedResult
<MemorySSAAnalysis
>(F
);
830 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
832 auto *MSSA
= &MSSAAnalysis
->getMSSA();
833 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
837 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
838 // after simplifying the loops. MemorySSA is preserved if it exists.
841 simplifyLoop(L
, DT
, LI
, SE
, AC
, MSSAU
.get(), /*PreserveLCSSA*/ false);
844 return PreservedAnalyses::all();
846 PreservedAnalyses PA
;
847 PA
.preserve
<DominatorTreeAnalysis
>();
848 PA
.preserve
<LoopAnalysis
>();
849 PA
.preserve
<ScalarEvolutionAnalysis
>();
851 PA
.preserve
<MemorySSAAnalysis
>();
852 // BPI maps conditional terminators to probabilities, LoopSimplify can insert
853 // blocks, but it does so only by splitting existing blocks and edges. This
854 // results in the interesting property that all new terminators inserted are
855 // unconditional branches which do not appear in BPI. All deletions are
856 // handled via ValueHandle callbacks w/in BPI.
857 PA
.preserve
<BranchProbabilityAnalysis
>();
861 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
864 static void verifyLoop(Loop
*L
) {
866 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
869 // It used to be possible to just assert L->isLoopSimplifyForm(), however
870 // with the introduction of indirectbr, there are now cases where it's
871 // not possible to transform a loop as necessary. We can at least check
872 // that there is an indirectbr near any time there's trouble.
874 // Indirectbr can interfere with preheader and unique backedge insertion.
875 if (!L
->getLoopPreheader() || !L
->getLoopLatch()) {
876 bool HasIndBrPred
= false;
877 for (BasicBlock
*Pred
: predecessors(L
->getHeader()))
878 if (isa
<IndirectBrInst
>(Pred
->getTerminator())) {
882 assert(HasIndBrPred
&&
883 "LoopSimplify has no excuse for missing loop header info!");
887 // Indirectbr can interfere with exit block canonicalization.
888 if (!L
->hasDedicatedExits()) {
889 bool HasIndBrExiting
= false;
890 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
891 L
->getExitingBlocks(ExitingBlocks
);
892 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
893 if (isa
<IndirectBrInst
>((ExitingBlocks
[i
])->getTerminator())) {
894 HasIndBrExiting
= true;
899 assert(HasIndBrExiting
&&
900 "LoopSimplify has no excuse for missing exit block info!");
901 (void)HasIndBrExiting
;
906 void LoopSimplify::verifyAnalysis() const {
907 // FIXME: This routine is being called mid-way through the loop pass manager
908 // as loop passes destroy this analysis. That's actually fine, but we have no
909 // way of expressing that here. Once all of the passes that destroy this are
910 // hoisted out of the loop pass manager we can add back verification here.
912 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)