1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines common loop utility functions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/PriorityWorklist.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/InstSimplifyFolder.h"
25 #include "llvm/Analysis/LoopAccessAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ProfDataUtils.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
50 using namespace llvm::PatternMatch
;
52 #define DEBUG_TYPE "loop-utils"
54 static const char *LLVMLoopDisableNonforced
= "llvm.loop.disable_nonforced";
55 static const char *LLVMLoopDisableLICM
= "llvm.licm.disable";
57 bool llvm::formDedicatedExitBlocks(Loop
*L
, DominatorTree
*DT
, LoopInfo
*LI
,
58 MemorySSAUpdater
*MSSAU
,
62 // We re-use a vector for the in-loop predecesosrs.
63 SmallVector
<BasicBlock
*, 4> InLoopPredecessors
;
65 auto RewriteExit
= [&](BasicBlock
*BB
) {
66 assert(InLoopPredecessors
.empty() &&
67 "Must start with an empty predecessors list!");
68 auto Cleanup
= make_scope_exit([&] { InLoopPredecessors
.clear(); });
70 // See if there are any non-loop predecessors of this exit block and
71 // keep track of the in-loop predecessors.
72 bool IsDedicatedExit
= true;
73 for (auto *PredBB
: predecessors(BB
))
74 if (L
->contains(PredBB
)) {
75 if (isa
<IndirectBrInst
>(PredBB
->getTerminator()))
76 // We cannot rewrite exiting edges from an indirectbr.
79 InLoopPredecessors
.push_back(PredBB
);
81 IsDedicatedExit
= false;
84 assert(!InLoopPredecessors
.empty() && "Must have *some* loop predecessor!");
86 // Nothing to do if this is already a dedicated exit.
90 auto *NewExitBB
= SplitBlockPredecessors(
91 BB
, InLoopPredecessors
, ".loopexit", DT
, LI
, MSSAU
, PreserveLCSSA
);
95 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
98 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
99 << NewExitBB
->getName() << "\n");
103 // Walk the exit blocks directly rather than building up a data structure for
104 // them, but only visit each one once.
105 SmallPtrSet
<BasicBlock
*, 4> Visited
;
106 for (auto *BB
: L
->blocks())
107 for (auto *SuccBB
: successors(BB
)) {
108 // We're looking for exit blocks so skip in-loop successors.
109 if (L
->contains(SuccBB
))
112 // Visit each exit block exactly once.
113 if (!Visited
.insert(SuccBB
).second
)
116 Changed
|= RewriteExit(SuccBB
);
122 /// Returns the instructions that use values defined in the loop.
123 SmallVector
<Instruction
*, 8> llvm::findDefsUsedOutsideOfLoop(Loop
*L
) {
124 SmallVector
<Instruction
*, 8> UsedOutside
;
126 for (auto *Block
: L
->getBlocks())
127 // FIXME: I believe that this could use copy_if if the Inst reference could
128 // be adapted into a pointer.
129 for (auto &Inst
: *Block
) {
130 auto Users
= Inst
.users();
131 if (any_of(Users
, [&](User
*U
) {
132 auto *Use
= cast
<Instruction
>(U
);
133 return !L
->contains(Use
->getParent());
135 UsedOutside
.push_back(&Inst
);
141 void llvm::getLoopAnalysisUsage(AnalysisUsage
&AU
) {
142 // By definition, all loop passes need the LoopInfo analysis and the
143 // Dominator tree it depends on. Because they all participate in the loop
144 // pass manager, they must also preserve these.
145 AU
.addRequired
<DominatorTreeWrapperPass
>();
146 AU
.addPreserved
<DominatorTreeWrapperPass
>();
147 AU
.addRequired
<LoopInfoWrapperPass
>();
148 AU
.addPreserved
<LoopInfoWrapperPass
>();
150 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
151 // here because users shouldn't directly get them from this header.
152 extern char &LoopSimplifyID
;
153 extern char &LCSSAID
;
154 AU
.addRequiredID(LoopSimplifyID
);
155 AU
.addPreservedID(LoopSimplifyID
);
156 AU
.addRequiredID(LCSSAID
);
157 AU
.addPreservedID(LCSSAID
);
158 // This is used in the LPPassManager to perform LCSSA verification on passes
159 // which preserve lcssa form
160 AU
.addRequired
<LCSSAVerificationPass
>();
161 AU
.addPreserved
<LCSSAVerificationPass
>();
163 // Loop passes are designed to run inside of a loop pass manager which means
164 // that any function analyses they require must be required by the first loop
165 // pass in the manager (so that it is computed before the loop pass manager
166 // runs) and preserved by all loop pasess in the manager. To make this
167 // reasonably robust, the set needed for most loop passes is maintained here.
168 // If your loop pass requires an analysis not listed here, you will need to
169 // carefully audit the loop pass manager nesting structure that results.
170 AU
.addRequired
<AAResultsWrapperPass
>();
171 AU
.addPreserved
<AAResultsWrapperPass
>();
172 AU
.addPreserved
<BasicAAWrapperPass
>();
173 AU
.addPreserved
<GlobalsAAWrapperPass
>();
174 AU
.addPreserved
<SCEVAAWrapperPass
>();
175 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
176 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
177 // FIXME: When all loop passes preserve MemorySSA, it can be required and
178 // preserved here instead of the individual handling in each pass.
181 /// Manually defined generic "LoopPass" dependency initialization. This is used
182 /// to initialize the exact set of passes from above in \c
183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
186 /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
188 /// As-if "LoopPass" were a pass.
189 void llvm::initializeLoopPassPass(PassRegistry
&Registry
) {
190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
191 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
192 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
193 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass
)
194 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
195 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass
)
196 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
197 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass
)
198 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
202 /// Create MDNode for input string.
203 static MDNode
*createStringMetadata(Loop
*TheLoop
, StringRef Name
, unsigned V
) {
204 LLVMContext
&Context
= TheLoop
->getHeader()->getContext();
206 MDString::get(Context
, Name
),
207 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context
), V
))};
208 return MDNode::get(Context
, MDs
);
211 /// Set input string into loop metadata by keeping other values intact.
212 /// If the string is already in loop metadata update value if it is
214 void llvm::addStringMetadataToLoop(Loop
*TheLoop
, const char *StringMD
,
216 SmallVector
<Metadata
*, 4> MDs(1);
217 // If the loop already has metadata, retain it.
218 MDNode
*LoopID
= TheLoop
->getLoopID();
220 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
221 MDNode
*Node
= cast
<MDNode
>(LoopID
->getOperand(i
));
222 // If it is of form key = value, try to parse it.
223 if (Node
->getNumOperands() == 2) {
224 MDString
*S
= dyn_cast
<MDString
>(Node
->getOperand(0));
225 if (S
&& S
->getString() == StringMD
) {
227 mdconst::extract_or_null
<ConstantInt
>(Node
->getOperand(1));
228 if (IntMD
&& IntMD
->getSExtValue() == V
)
229 // It is already in place. Do nothing.
231 // We need to update the value, so just skip it here and it will
232 // be added after copying other existed nodes.
240 MDs
.push_back(createStringMetadata(TheLoop
, StringMD
, V
));
241 // Replace current metadata node with new one.
242 LLVMContext
&Context
= TheLoop
->getHeader()->getContext();
243 MDNode
*NewLoopID
= MDNode::get(Context
, MDs
);
244 // Set operand 0 to refer to the loop id itself.
245 NewLoopID
->replaceOperandWith(0, NewLoopID
);
246 TheLoop
->setLoopID(NewLoopID
);
249 std::optional
<ElementCount
>
250 llvm::getOptionalElementCountLoopAttribute(const Loop
*TheLoop
) {
251 std::optional
<int> Width
=
252 getOptionalIntLoopAttribute(TheLoop
, "llvm.loop.vectorize.width");
255 std::optional
<int> IsScalable
= getOptionalIntLoopAttribute(
256 TheLoop
, "llvm.loop.vectorize.scalable.enable");
257 return ElementCount::get(*Width
, IsScalable
.value_or(false));
263 std::optional
<MDNode
*> llvm::makeFollowupLoopID(
264 MDNode
*OrigLoopID
, ArrayRef
<StringRef
> FollowupOptions
,
265 const char *InheritOptionsExceptPrefix
, bool AlwaysNew
) {
272 assert(OrigLoopID
->getOperand(0) == OrigLoopID
);
274 bool InheritAllAttrs
= !InheritOptionsExceptPrefix
;
275 bool InheritSomeAttrs
=
276 InheritOptionsExceptPrefix
&& InheritOptionsExceptPrefix
[0] != '\0';
277 SmallVector
<Metadata
*, 8> MDs
;
278 MDs
.push_back(nullptr);
280 bool Changed
= false;
281 if (InheritAllAttrs
|| InheritSomeAttrs
) {
282 for (const MDOperand
&Existing
: drop_begin(OrigLoopID
->operands())) {
283 MDNode
*Op
= cast
<MDNode
>(Existing
.get());
285 auto InheritThisAttribute
= [InheritSomeAttrs
,
286 InheritOptionsExceptPrefix
](MDNode
*Op
) {
287 if (!InheritSomeAttrs
)
290 // Skip malformatted attribute metadata nodes.
291 if (Op
->getNumOperands() == 0)
293 Metadata
*NameMD
= Op
->getOperand(0).get();
294 if (!isa
<MDString
>(NameMD
))
296 StringRef AttrName
= cast
<MDString
>(NameMD
)->getString();
298 // Do not inherit excluded attributes.
299 return !AttrName
.starts_with(InheritOptionsExceptPrefix
);
302 if (InheritThisAttribute(Op
))
308 // Modified if we dropped at least one attribute.
309 Changed
= OrigLoopID
->getNumOperands() > 1;
312 bool HasAnyFollowup
= false;
313 for (StringRef OptionName
: FollowupOptions
) {
314 MDNode
*FollowupNode
= findOptionMDForLoopID(OrigLoopID
, OptionName
);
318 HasAnyFollowup
= true;
319 for (const MDOperand
&Option
: drop_begin(FollowupNode
->operands())) {
320 MDs
.push_back(Option
.get());
325 // Attributes of the followup loop not specified explicity, so signal to the
326 // transformation pass to add suitable attributes.
327 if (!AlwaysNew
&& !HasAnyFollowup
)
330 // If no attributes were added or remove, the previous loop Id can be reused.
331 if (!AlwaysNew
&& !Changed
)
334 // No attributes is equivalent to having no !llvm.loop metadata at all.
338 // Build the new loop ID.
339 MDTuple
*FollowupLoopID
= MDNode::get(OrigLoopID
->getContext(), MDs
);
340 FollowupLoopID
->replaceOperandWith(0, FollowupLoopID
);
341 return FollowupLoopID
;
344 bool llvm::hasDisableAllTransformsHint(const Loop
*L
) {
345 return getBooleanLoopAttribute(L
, LLVMLoopDisableNonforced
);
348 bool llvm::hasDisableLICMTransformsHint(const Loop
*L
) {
349 return getBooleanLoopAttribute(L
, LLVMLoopDisableLICM
);
352 TransformationMode
llvm::hasUnrollTransformation(const Loop
*L
) {
353 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll.disable"))
354 return TM_SuppressedByUser
;
356 std::optional
<int> Count
=
357 getOptionalIntLoopAttribute(L
, "llvm.loop.unroll.count");
359 return *Count
== 1 ? TM_SuppressedByUser
: TM_ForcedByUser
;
361 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll.enable"))
362 return TM_ForcedByUser
;
364 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll.full"))
365 return TM_ForcedByUser
;
367 if (hasDisableAllTransformsHint(L
))
370 return TM_Unspecified
;
373 TransformationMode
llvm::hasUnrollAndJamTransformation(const Loop
*L
) {
374 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll_and_jam.disable"))
375 return TM_SuppressedByUser
;
377 std::optional
<int> Count
=
378 getOptionalIntLoopAttribute(L
, "llvm.loop.unroll_and_jam.count");
380 return *Count
== 1 ? TM_SuppressedByUser
: TM_ForcedByUser
;
382 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll_and_jam.enable"))
383 return TM_ForcedByUser
;
385 if (hasDisableAllTransformsHint(L
))
388 return TM_Unspecified
;
391 TransformationMode
llvm::hasVectorizeTransformation(const Loop
*L
) {
392 std::optional
<bool> Enable
=
393 getOptionalBoolLoopAttribute(L
, "llvm.loop.vectorize.enable");
396 return TM_SuppressedByUser
;
398 std::optional
<ElementCount
> VectorizeWidth
=
399 getOptionalElementCountLoopAttribute(L
);
400 std::optional
<int> InterleaveCount
=
401 getOptionalIntLoopAttribute(L
, "llvm.loop.interleave.count");
403 // 'Forcing' vector width and interleave count to one effectively disables
404 // this tranformation.
405 if (Enable
== true && VectorizeWidth
&& VectorizeWidth
->isScalar() &&
406 InterleaveCount
== 1)
407 return TM_SuppressedByUser
;
409 if (getBooleanLoopAttribute(L
, "llvm.loop.isvectorized"))
413 return TM_ForcedByUser
;
415 if ((VectorizeWidth
&& VectorizeWidth
->isScalar()) && InterleaveCount
== 1)
418 if ((VectorizeWidth
&& VectorizeWidth
->isVector()) || InterleaveCount
> 1)
421 if (hasDisableAllTransformsHint(L
))
424 return TM_Unspecified
;
427 TransformationMode
llvm::hasDistributeTransformation(const Loop
*L
) {
428 if (getBooleanLoopAttribute(L
, "llvm.loop.distribute.enable"))
429 return TM_ForcedByUser
;
431 if (hasDisableAllTransformsHint(L
))
434 return TM_Unspecified
;
437 TransformationMode
llvm::hasLICMVersioningTransformation(const Loop
*L
) {
438 if (getBooleanLoopAttribute(L
, "llvm.loop.licm_versioning.disable"))
439 return TM_SuppressedByUser
;
441 if (hasDisableAllTransformsHint(L
))
444 return TM_Unspecified
;
447 /// Does a BFS from a given node to all of its children inside a given loop.
448 /// The returned vector of basic blocks includes the starting point.
449 SmallVector
<BasicBlock
*, 16> llvm::collectChildrenInLoop(DominatorTree
*DT
,
451 const Loop
*CurLoop
) {
452 SmallVector
<BasicBlock
*, 16> Worklist
;
453 auto AddRegionToWorklist
= [&](DomTreeNode
*DTN
) {
454 // Only include subregions in the top level loop.
455 BasicBlock
*BB
= DTN
->getBlock();
456 if (CurLoop
->contains(BB
))
457 Worklist
.push_back(DTN
->getBlock());
460 AddRegionToWorklist(N
);
462 for (size_t I
= 0; I
< Worklist
.size(); I
++) {
463 for (DomTreeNode
*Child
: DT
->getNode(Worklist
[I
])->children())
464 AddRegionToWorklist(Child
);
470 bool llvm::isAlmostDeadIV(PHINode
*PN
, BasicBlock
*LatchBlock
, Value
*Cond
) {
471 int LatchIdx
= PN
->getBasicBlockIndex(LatchBlock
);
472 assert(LatchIdx
!= -1 && "LatchBlock is not a case in this PHINode");
473 Value
*IncV
= PN
->getIncomingValue(LatchIdx
);
475 for (User
*U
: PN
->users())
476 if (U
!= Cond
&& U
!= IncV
) return false;
478 for (User
*U
: IncV
->users())
479 if (U
!= Cond
&& U
!= PN
) return false;
484 void llvm::deleteDeadLoop(Loop
*L
, DominatorTree
*DT
, ScalarEvolution
*SE
,
485 LoopInfo
*LI
, MemorySSA
*MSSA
) {
486 assert((!DT
|| L
->isLCSSAForm(*DT
)) && "Expected LCSSA!");
487 auto *Preheader
= L
->getLoopPreheader();
488 assert(Preheader
&& "Preheader should exist!");
490 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
492 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
494 // Now that we know the removal is safe, remove the loop by changing the
495 // branch from the preheader to go to the single exit block.
497 // Because we're deleting a large chunk of code at once, the sequence in which
498 // we remove things is very important to avoid invalidation issues.
500 // Tell ScalarEvolution that the loop is deleted. Do this before
501 // deleting the loop so that ScalarEvolution can look at the loop
502 // to determine what it needs to clean up.
505 SE
->forgetBlockAndLoopDispositions();
508 Instruction
*OldTerm
= Preheader
->getTerminator();
509 assert(!OldTerm
->mayHaveSideEffects() &&
510 "Preheader must end with a side-effect-free terminator");
511 assert(OldTerm
->getNumSuccessors() == 1 &&
512 "Preheader must have a single successor");
513 // Connect the preheader to the exit block. Keep the old edge to the header
514 // around to perform the dominator tree update in two separate steps
515 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
516 // preheader -> header.
519 // 0. Preheader 1. Preheader 2. Preheader
522 // Header <--\ | Header <--\ | Header <--\
523 // | | | | | | | | | | |
524 // | V | | | V | | | V |
525 // | Body --/ | | Body --/ | | Body --/
529 // By doing this is two separate steps we can perform the dominator tree
530 // update without using the batch update API.
532 // Even when the loop is never executed, we cannot remove the edge from the
533 // source block to the exit block. Consider the case where the unexecuted loop
534 // branches back to an outer loop. If we deleted the loop and removed the edge
535 // coming to this inner loop, this will break the outer loop structure (by
536 // deleting the backedge of the outer loop). If the outer loop is indeed a
537 // non-loop, it will be deleted in a future iteration of loop deletion pass.
538 IRBuilder
<> Builder(OldTerm
);
540 auto *ExitBlock
= L
->getUniqueExitBlock();
541 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
543 assert(ExitBlock
&& "Should have a unique exit block!");
544 assert(L
->hasDedicatedExits() && "Loop should have dedicated exits!");
546 Builder
.CreateCondBr(Builder
.getFalse(), L
->getHeader(), ExitBlock
);
547 // Remove the old branch. The conditional branch becomes a new terminator.
548 OldTerm
->eraseFromParent();
550 // Rewrite phis in the exit block to get their inputs from the Preheader
551 // instead of the exiting block.
552 for (PHINode
&P
: ExitBlock
->phis()) {
553 // Set the zero'th element of Phi to be from the preheader and remove all
554 // other incoming values. Given the loop has dedicated exits, all other
555 // incoming values must be from the exiting blocks.
557 P
.setIncomingBlock(PredIndex
, Preheader
);
558 // Removes all incoming values from all other exiting blocks (including
559 // duplicate values from an exiting block).
560 // Nuke all entries except the zero'th entry which is the preheader entry.
561 P
.removeIncomingValueIf([](unsigned Idx
) { return Idx
!= 0; },
562 /* DeletePHIIfEmpty */ false);
564 assert((P
.getNumIncomingValues() == 1 &&
565 P
.getIncomingBlock(PredIndex
) == Preheader
) &&
566 "Should have exactly one value and that's from the preheader!");
570 DTU
.applyUpdates({{DominatorTree::Insert
, Preheader
, ExitBlock
}});
572 MSSAU
->applyUpdates({{DominatorTree::Insert
, Preheader
, ExitBlock
}},
575 MSSA
->verifyMemorySSA();
579 // Disconnect the loop body by branching directly to its exit.
580 Builder
.SetInsertPoint(Preheader
->getTerminator());
581 Builder
.CreateBr(ExitBlock
);
582 // Remove the old branch.
583 Preheader
->getTerminator()->eraseFromParent();
585 assert(L
->hasNoExitBlocks() &&
586 "Loop should have either zero or one exit blocks.");
588 Builder
.SetInsertPoint(OldTerm
);
589 Builder
.CreateUnreachable();
590 Preheader
->getTerminator()->eraseFromParent();
594 DTU
.applyUpdates({{DominatorTree::Delete
, Preheader
, L
->getHeader()}});
596 MSSAU
->applyUpdates({{DominatorTree::Delete
, Preheader
, L
->getHeader()}},
598 SmallSetVector
<BasicBlock
*, 8> DeadBlockSet(L
->block_begin(),
600 MSSAU
->removeBlocks(DeadBlockSet
);
602 MSSA
->verifyMemorySSA();
606 // Use a map to unique and a vector to guarantee deterministic ordering.
607 llvm::SmallDenseSet
<DebugVariable
, 4> DeadDebugSet
;
608 llvm::SmallVector
<DbgVariableIntrinsic
*, 4> DeadDebugInst
;
609 llvm::SmallVector
<DbgVariableRecord
*, 4> DeadDbgVariableRecords
;
612 // Given LCSSA form is satisfied, we should not have users of instructions
613 // within the dead loop outside of the loop. However, LCSSA doesn't take
614 // unreachable uses into account. We handle them here.
615 // We could do it after drop all references (in this case all users in the
616 // loop will be already eliminated and we have less work to do but according
617 // to API doc of User::dropAllReferences only valid operation after dropping
618 // references, is deletion. So let's substitute all usages of
619 // instruction from the loop with poison value of corresponding type first.
620 for (auto *Block
: L
->blocks())
621 for (Instruction
&I
: *Block
) {
622 auto *Poison
= PoisonValue::get(I
.getType());
623 for (Use
&U
: llvm::make_early_inc_range(I
.uses())) {
624 if (auto *Usr
= dyn_cast
<Instruction
>(U
.getUser()))
625 if (L
->contains(Usr
->getParent()))
627 // If we have a DT then we can check that uses outside a loop only in
628 // unreachable block.
630 assert(!DT
->isReachableFromEntry(U
) &&
631 "Unexpected user in reachable block");
635 // RemoveDIs: do the same as below for DbgVariableRecords.
636 if (Block
->IsNewDbgInfoFormat
) {
637 for (DbgVariableRecord
&DVR
: llvm::make_early_inc_range(
638 filterDbgVars(I
.getDbgRecordRange()))) {
639 DebugVariable
Key(DVR
.getVariable(), DVR
.getExpression(),
640 DVR
.getDebugLoc().get());
641 if (!DeadDebugSet
.insert(Key
).second
)
643 // Unlinks the DVR from it's container, for later insertion.
644 DVR
.removeFromParent();
645 DeadDbgVariableRecords
.push_back(&DVR
);
649 // For one of each variable encountered, preserve a debug intrinsic (set
650 // to Poison) and transfer it to the loop exit. This terminates any
651 // variable locations that were set during the loop.
652 auto *DVI
= dyn_cast
<DbgVariableIntrinsic
>(&I
);
655 if (!DeadDebugSet
.insert(DebugVariable(DVI
)).second
)
657 DeadDebugInst
.push_back(DVI
);
660 // After the loop has been deleted all the values defined and modified
661 // inside the loop are going to be unavailable. Values computed in the
662 // loop will have been deleted, automatically causing their debug uses
663 // be be replaced with undef. Loop invariant values will still be available.
664 // Move dbg.values out the loop so that earlier location ranges are still
665 // terminated and loop invariant assignments are preserved.
666 DIBuilder
DIB(*ExitBlock
->getModule());
667 BasicBlock::iterator InsertDbgValueBefore
=
668 ExitBlock
->getFirstInsertionPt();
669 assert(InsertDbgValueBefore
!= ExitBlock
->end() &&
670 "There should be a non-PHI instruction in exit block, else these "
671 "instructions will have no parent.");
673 for (auto *DVI
: DeadDebugInst
)
674 DVI
->moveBefore(*ExitBlock
, InsertDbgValueBefore
);
676 // Due to the "head" bit in BasicBlock::iterator, we're going to insert
677 // each DbgVariableRecord right at the start of the block, wheras dbg.values
678 // would be repeatedly inserted before the first instruction. To replicate
679 // this behaviour, do it backwards.
680 for (DbgVariableRecord
*DVR
: llvm::reverse(DeadDbgVariableRecords
))
681 ExitBlock
->insertDbgRecordBefore(DVR
, InsertDbgValueBefore
);
684 // Remove the block from the reference counting scheme, so that we can
685 // delete it freely later.
686 for (auto *Block
: L
->blocks())
687 Block
->dropAllReferences();
689 if (MSSA
&& VerifyMemorySSA
)
690 MSSA
->verifyMemorySSA();
693 // Erase the instructions and the blocks without having to worry
694 // about ordering because we already dropped the references.
695 // NOTE: This iteration is safe because erasing the block does not remove
696 // its entry from the loop's block list. We do that in the next section.
697 for (BasicBlock
*BB
: L
->blocks())
698 BB
->eraseFromParent();
700 // Finally, the blocks from loopinfo. This has to happen late because
701 // otherwise our loop iterators won't work.
703 SmallPtrSet
<BasicBlock
*, 8> blocks
;
704 blocks
.insert(L
->block_begin(), L
->block_end());
705 for (BasicBlock
*BB
: blocks
)
708 // The last step is to update LoopInfo now that we've eliminated this loop.
709 // Note: LoopInfo::erase remove the given loop and relink its subloops with
710 // its parent. While removeLoop/removeChildLoop remove the given loop but
711 // not relink its subloops, which is what we want.
712 if (Loop
*ParentLoop
= L
->getParentLoop()) {
713 Loop::iterator I
= find(*ParentLoop
, L
);
714 assert(I
!= ParentLoop
->end() && "Couldn't find loop");
715 ParentLoop
->removeChildLoop(I
);
717 Loop::iterator I
= find(*LI
, L
);
718 assert(I
!= LI
->end() && "Couldn't find loop");
725 void llvm::breakLoopBackedge(Loop
*L
, DominatorTree
&DT
, ScalarEvolution
&SE
,
726 LoopInfo
&LI
, MemorySSA
*MSSA
) {
727 auto *Latch
= L
->getLoopLatch();
728 assert(Latch
&& "multiple latches not yet supported");
729 auto *Header
= L
->getHeader();
730 Loop
*OutermostLoop
= L
->getOutermostLoop();
733 SE
.forgetBlockAndLoopDispositions();
735 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
737 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
739 // Update the CFG and domtree. We chose to special case a couple of
740 // of common cases for code quality and test readability reasons.
742 if (auto *BI
= dyn_cast
<BranchInst
>(Latch
->getTerminator())) {
743 if (!BI
->isConditional()) {
744 DomTreeUpdater
DTU(&DT
, DomTreeUpdater::UpdateStrategy::Eager
);
745 (void)changeToUnreachable(BI
, /*PreserveLCSSA*/ true, &DTU
,
750 // Conditional latch/exit - note that latch can be shared by inner
751 // and outer loop so the other target doesn't need to an exit
752 if (L
->isLoopExiting(Latch
)) {
753 // TODO: Generalize ConstantFoldTerminator so that it can be used
754 // here without invalidating LCSSA or MemorySSA. (Tricky case for
755 // LCSSA: header is an exit block of a preceeding sibling loop w/o
757 const unsigned ExitIdx
= L
->contains(BI
->getSuccessor(0)) ? 1 : 0;
758 BasicBlock
*ExitBB
= BI
->getSuccessor(ExitIdx
);
760 DomTreeUpdater
DTU(&DT
, DomTreeUpdater::UpdateStrategy::Eager
);
761 Header
->removePredecessor(Latch
, true);
763 IRBuilder
<> Builder(BI
);
764 auto *NewBI
= Builder
.CreateBr(ExitBB
);
765 // Transfer the metadata to the new branch instruction (minus the
766 // loop info since this is no longer a loop)
767 NewBI
->copyMetadata(*BI
, {LLVMContext::MD_dbg
,
768 LLVMContext::MD_annotation
});
770 BI
->eraseFromParent();
771 DTU
.applyUpdates({{DominatorTree::Delete
, Latch
, Header
}});
773 MSSAU
->applyUpdates({{DominatorTree::Delete
, Latch
, Header
}}, DT
);
778 // General case. By splitting the backedge, and then explicitly making it
779 // unreachable we gracefully handle corner cases such as switch and invoke
781 auto *BackedgeBB
= SplitEdge(Latch
, Header
, &DT
, &LI
, MSSAU
.get());
783 DomTreeUpdater
DTU(&DT
, DomTreeUpdater::UpdateStrategy::Eager
);
784 (void)changeToUnreachable(BackedgeBB
->getTerminator(),
785 /*PreserveLCSSA*/ true, &DTU
, MSSAU
.get());
788 // Erase (and destroy) this loop instance. Handles relinking sub-loops
789 // and blocks within the loop as needed.
792 // If the loop we broke had a parent, then changeToUnreachable might have
793 // caused a block to be removed from the parent loop (see loop_nest_lcssa
794 // test case in zero-btc.ll for an example), thus changing the parent's
795 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost
796 // loop which might have a had a block removed.
797 if (OutermostLoop
!= L
)
798 formLCSSARecursively(*OutermostLoop
, DT
, &LI
, &SE
);
802 /// Checks if \p L has an exiting latch branch. There may also be other
803 /// exiting blocks. Returns branch instruction terminating the loop
804 /// latch if above check is successful, nullptr otherwise.
805 static BranchInst
*getExpectedExitLoopLatchBranch(Loop
*L
) {
806 BasicBlock
*Latch
= L
->getLoopLatch();
810 BranchInst
*LatchBR
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
811 if (!LatchBR
|| LatchBR
->getNumSuccessors() != 2 || !L
->isLoopExiting(Latch
))
814 assert((LatchBR
->getSuccessor(0) == L
->getHeader() ||
815 LatchBR
->getSuccessor(1) == L
->getHeader()) &&
816 "At least one edge out of the latch must go to the header");
821 /// Return the estimated trip count for any exiting branch which dominates
823 static std::optional
<uint64_t> getEstimatedTripCount(BranchInst
*ExitingBranch
,
825 uint64_t &OrigExitWeight
) {
826 // To estimate the number of times the loop body was executed, we want to
827 // know the number of times the backedge was taken, vs. the number of times
828 // we exited the loop.
829 uint64_t LoopWeight
, ExitWeight
;
830 if (!extractBranchWeights(*ExitingBranch
, LoopWeight
, ExitWeight
))
833 if (L
->contains(ExitingBranch
->getSuccessor(1)))
834 std::swap(LoopWeight
, ExitWeight
);
837 // Don't have a way to return predicated infinite
840 OrigExitWeight
= ExitWeight
;
842 // Estimated exit count is a ratio of the loop weight by the weight of the
843 // edge exiting the loop, rounded to nearest.
844 uint64_t ExitCount
= llvm::divideNearest(LoopWeight
, ExitWeight
);
845 // Estimated trip count is one plus estimated exit count.
846 return ExitCount
+ 1;
849 std::optional
<unsigned>
850 llvm::getLoopEstimatedTripCount(Loop
*L
,
851 unsigned *EstimatedLoopInvocationWeight
) {
852 // Currently we take the estimate exit count only from the loop latch,
853 // ignoring other exiting blocks. This can overestimate the trip count
854 // if we exit through another exit, but can never underestimate it.
855 // TODO: incorporate information from other exits
856 if (BranchInst
*LatchBranch
= getExpectedExitLoopLatchBranch(L
)) {
858 if (std::optional
<uint64_t> EstTripCount
=
859 getEstimatedTripCount(LatchBranch
, L
, ExitWeight
)) {
860 if (EstimatedLoopInvocationWeight
)
861 *EstimatedLoopInvocationWeight
= ExitWeight
;
862 return *EstTripCount
;
868 bool llvm::setLoopEstimatedTripCount(Loop
*L
, unsigned EstimatedTripCount
,
869 unsigned EstimatedloopInvocationWeight
) {
870 // At the moment, we currently support changing the estimate trip count of
871 // the latch branch only. We could extend this API to manipulate estimated
872 // trip counts for any exit.
873 BranchInst
*LatchBranch
= getExpectedExitLoopLatchBranch(L
);
877 // Calculate taken and exit weights.
878 unsigned LatchExitWeight
= 0;
879 unsigned BackedgeTakenWeight
= 0;
881 if (EstimatedTripCount
> 0) {
882 LatchExitWeight
= EstimatedloopInvocationWeight
;
883 BackedgeTakenWeight
= (EstimatedTripCount
- 1) * LatchExitWeight
;
886 // Make a swap if back edge is taken when condition is "false".
887 if (LatchBranch
->getSuccessor(0) != L
->getHeader())
888 std::swap(BackedgeTakenWeight
, LatchExitWeight
);
890 MDBuilder
MDB(LatchBranch
->getContext());
892 // Set/Update profile metadata.
893 LatchBranch
->setMetadata(
894 LLVMContext::MD_prof
,
895 MDB
.createBranchWeights(BackedgeTakenWeight
, LatchExitWeight
));
900 bool llvm::hasIterationCountInvariantInParent(Loop
*InnerLoop
,
901 ScalarEvolution
&SE
) {
902 Loop
*OuterL
= InnerLoop
->getParentLoop();
906 // Get the backedge taken count for the inner loop
907 BasicBlock
*InnerLoopLatch
= InnerLoop
->getLoopLatch();
908 const SCEV
*InnerLoopBECountSC
= SE
.getExitCount(InnerLoop
, InnerLoopLatch
);
909 if (isa
<SCEVCouldNotCompute
>(InnerLoopBECountSC
) ||
910 !InnerLoopBECountSC
->getType()->isIntegerTy())
913 // Get whether count is invariant to the outer loop
914 ScalarEvolution::LoopDisposition LD
=
915 SE
.getLoopDisposition(InnerLoopBECountSC
, OuterL
);
916 if (LD
!= ScalarEvolution::LoopInvariant
)
922 constexpr Intrinsic::ID
llvm::getReductionIntrinsicID(RecurKind RK
) {
925 llvm_unreachable("Unexpected recurrence kind");
927 return Intrinsic::vector_reduce_add
;
929 return Intrinsic::vector_reduce_mul
;
931 return Intrinsic::vector_reduce_and
;
933 return Intrinsic::vector_reduce_or
;
935 return Intrinsic::vector_reduce_xor
;
936 case RecurKind::FMulAdd
:
937 case RecurKind::FAdd
:
938 return Intrinsic::vector_reduce_fadd
;
939 case RecurKind::FMul
:
940 return Intrinsic::vector_reduce_fmul
;
941 case RecurKind::SMax
:
942 return Intrinsic::vector_reduce_smax
;
943 case RecurKind::SMin
:
944 return Intrinsic::vector_reduce_smin
;
945 case RecurKind::UMax
:
946 return Intrinsic::vector_reduce_umax
;
947 case RecurKind::UMin
:
948 return Intrinsic::vector_reduce_umin
;
949 case RecurKind::FMax
:
950 return Intrinsic::vector_reduce_fmax
;
951 case RecurKind::FMin
:
952 return Intrinsic::vector_reduce_fmin
;
953 case RecurKind::FMaximum
:
954 return Intrinsic::vector_reduce_fmaximum
;
955 case RecurKind::FMinimum
:
956 return Intrinsic::vector_reduce_fminimum
;
960 unsigned llvm::getArithmeticReductionInstruction(Intrinsic::ID RdxID
) {
962 case Intrinsic::vector_reduce_fadd
:
963 return Instruction::FAdd
;
964 case Intrinsic::vector_reduce_fmul
:
965 return Instruction::FMul
;
966 case Intrinsic::vector_reduce_add
:
967 return Instruction::Add
;
968 case Intrinsic::vector_reduce_mul
:
969 return Instruction::Mul
;
970 case Intrinsic::vector_reduce_and
:
971 return Instruction::And
;
972 case Intrinsic::vector_reduce_or
:
973 return Instruction::Or
;
974 case Intrinsic::vector_reduce_xor
:
975 return Instruction::Xor
;
976 case Intrinsic::vector_reduce_smax
:
977 case Intrinsic::vector_reduce_smin
:
978 case Intrinsic::vector_reduce_umax
:
979 case Intrinsic::vector_reduce_umin
:
980 return Instruction::ICmp
;
981 case Intrinsic::vector_reduce_fmax
:
982 case Intrinsic::vector_reduce_fmin
:
983 return Instruction::FCmp
;
985 llvm_unreachable("Unexpected ID");
989 Intrinsic::ID
llvm::getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID
) {
992 llvm_unreachable("Unknown min/max recurrence kind");
993 case Intrinsic::vector_reduce_umin
:
994 return Intrinsic::umin
;
995 case Intrinsic::vector_reduce_umax
:
996 return Intrinsic::umax
;
997 case Intrinsic::vector_reduce_smin
:
998 return Intrinsic::smin
;
999 case Intrinsic::vector_reduce_smax
:
1000 return Intrinsic::smax
;
1001 case Intrinsic::vector_reduce_fmin
:
1002 return Intrinsic::minnum
;
1003 case Intrinsic::vector_reduce_fmax
:
1004 return Intrinsic::maxnum
;
1005 case Intrinsic::vector_reduce_fminimum
:
1006 return Intrinsic::minimum
;
1007 case Intrinsic::vector_reduce_fmaximum
:
1008 return Intrinsic::maximum
;
1012 Intrinsic::ID
llvm::getMinMaxReductionIntrinsicOp(RecurKind RK
) {
1015 llvm_unreachable("Unknown min/max recurrence kind");
1016 case RecurKind::UMin
:
1017 return Intrinsic::umin
;
1018 case RecurKind::UMax
:
1019 return Intrinsic::umax
;
1020 case RecurKind::SMin
:
1021 return Intrinsic::smin
;
1022 case RecurKind::SMax
:
1023 return Intrinsic::smax
;
1024 case RecurKind::FMin
:
1025 return Intrinsic::minnum
;
1026 case RecurKind::FMax
:
1027 return Intrinsic::maxnum
;
1028 case RecurKind::FMinimum
:
1029 return Intrinsic::minimum
;
1030 case RecurKind::FMaximum
:
1031 return Intrinsic::maximum
;
1035 RecurKind
llvm::getMinMaxReductionRecurKind(Intrinsic::ID RdxID
) {
1037 case Intrinsic::vector_reduce_smax
:
1038 return RecurKind::SMax
;
1039 case Intrinsic::vector_reduce_smin
:
1040 return RecurKind::SMin
;
1041 case Intrinsic::vector_reduce_umax
:
1042 return RecurKind::UMax
;
1043 case Intrinsic::vector_reduce_umin
:
1044 return RecurKind::UMin
;
1045 case Intrinsic::vector_reduce_fmax
:
1046 return RecurKind::FMax
;
1047 case Intrinsic::vector_reduce_fmin
:
1048 return RecurKind::FMin
;
1050 return RecurKind::None
;
1054 CmpInst::Predicate
llvm::getMinMaxReductionPredicate(RecurKind RK
) {
1057 llvm_unreachable("Unknown min/max recurrence kind");
1058 case RecurKind::UMin
:
1059 return CmpInst::ICMP_ULT
;
1060 case RecurKind::UMax
:
1061 return CmpInst::ICMP_UGT
;
1062 case RecurKind::SMin
:
1063 return CmpInst::ICMP_SLT
;
1064 case RecurKind::SMax
:
1065 return CmpInst::ICMP_SGT
;
1066 case RecurKind::FMin
:
1067 return CmpInst::FCMP_OLT
;
1068 case RecurKind::FMax
:
1069 return CmpInst::FCMP_OGT
;
1070 // We do not add FMinimum/FMaximum recurrence kind here since there is no
1071 // equivalent predicate which compares signed zeroes according to the
1072 // semantics of the intrinsics (llvm.minimum/maximum).
1076 Value
*llvm::createMinMaxOp(IRBuilderBase
&Builder
, RecurKind RK
, Value
*Left
,
1078 Type
*Ty
= Left
->getType();
1079 if (Ty
->isIntOrIntVectorTy() ||
1080 (RK
== RecurKind::FMinimum
|| RK
== RecurKind::FMaximum
)) {
1081 // TODO: Add float minnum/maxnum support when FMF nnan is set.
1082 Intrinsic::ID Id
= getMinMaxReductionIntrinsicOp(RK
);
1083 return Builder
.CreateIntrinsic(Ty
, Id
, {Left
, Right
}, nullptr,
1086 CmpInst::Predicate Pred
= getMinMaxReductionPredicate(RK
);
1087 Value
*Cmp
= Builder
.CreateCmp(Pred
, Left
, Right
, "rdx.minmax.cmp");
1088 Value
*Select
= Builder
.CreateSelect(Cmp
, Left
, Right
, "rdx.minmax.select");
1092 // Helper to generate an ordered reduction.
1093 Value
*llvm::getOrderedReduction(IRBuilderBase
&Builder
, Value
*Acc
, Value
*Src
,
1094 unsigned Op
, RecurKind RdxKind
) {
1095 unsigned VF
= cast
<FixedVectorType
>(Src
->getType())->getNumElements();
1097 // Extract and apply reduction ops in ascending order:
1098 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1099 Value
*Result
= Acc
;
1100 for (unsigned ExtractIdx
= 0; ExtractIdx
!= VF
; ++ExtractIdx
) {
1102 Builder
.CreateExtractElement(Src
, Builder
.getInt32(ExtractIdx
));
1104 if (Op
!= Instruction::ICmp
&& Op
!= Instruction::FCmp
) {
1105 Result
= Builder
.CreateBinOp((Instruction::BinaryOps
)Op
, Result
, Ext
,
1108 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind
) &&
1110 Result
= createMinMaxOp(Builder
, RdxKind
, Result
, Ext
);
1117 // Helper to generate a log2 shuffle reduction.
1118 Value
*llvm::getShuffleReduction(IRBuilderBase
&Builder
, Value
*Src
,
1120 TargetTransformInfo::ReductionShuffle RS
,
1121 RecurKind RdxKind
) {
1122 unsigned VF
= cast
<FixedVectorType
>(Src
->getType())->getNumElements();
1123 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1124 // and vector ops, reducing the set of values being computed by half each
1126 assert(isPowerOf2_32(VF
) &&
1127 "Reduction emission only supported for pow2 vectors!");
1128 // Note: fast-math-flags flags are controlled by the builder configuration
1129 // and are assumed to apply to all generated arithmetic instructions. Other
1130 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1131 // of the builder configuration, and since they're not passed explicitly,
1132 // will never be relevant here. Note that it would be generally unsound to
1133 // propagate these from an intrinsic call to the expansion anyways as we/
1134 // change the order of operations.
1135 auto BuildShuffledOp
= [&Builder
, &Op
,
1136 &RdxKind
](SmallVectorImpl
<int> &ShuffleMask
,
1137 Value
*&TmpVec
) -> void {
1138 Value
*Shuf
= Builder
.CreateShuffleVector(TmpVec
, ShuffleMask
, "rdx.shuf");
1139 if (Op
!= Instruction::ICmp
&& Op
!= Instruction::FCmp
) {
1140 TmpVec
= Builder
.CreateBinOp((Instruction::BinaryOps
)Op
, TmpVec
, Shuf
,
1143 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind
) &&
1145 TmpVec
= createMinMaxOp(Builder
, RdxKind
, TmpVec
, Shuf
);
1149 Value
*TmpVec
= Src
;
1150 if (TargetTransformInfo::ReductionShuffle::Pairwise
== RS
) {
1151 SmallVector
<int, 32> ShuffleMask(VF
);
1152 for (unsigned stride
= 1; stride
< VF
; stride
<<= 1) {
1153 // Initialise the mask with undef.
1154 std::fill(ShuffleMask
.begin(), ShuffleMask
.end(), -1);
1155 for (unsigned j
= 0; j
< VF
; j
+= stride
<< 1) {
1156 ShuffleMask
[j
] = j
+ stride
;
1158 BuildShuffledOp(ShuffleMask
, TmpVec
);
1161 SmallVector
<int, 32> ShuffleMask(VF
);
1162 for (unsigned i
= VF
; i
!= 1; i
>>= 1) {
1163 // Move the upper half of the vector to the lower half.
1164 for (unsigned j
= 0; j
!= i
/ 2; ++j
)
1165 ShuffleMask
[j
] = i
/ 2 + j
;
1167 // Fill the rest of the mask with undef.
1168 std::fill(&ShuffleMask
[i
/ 2], ShuffleMask
.end(), -1);
1169 BuildShuffledOp(ShuffleMask
, TmpVec
);
1172 // The result is in the first element of the vector.
1173 return Builder
.CreateExtractElement(TmpVec
, Builder
.getInt32(0));
1176 Value
*llvm::createAnyOfReduction(IRBuilderBase
&Builder
, Value
*Src
,
1177 const RecurrenceDescriptor
&Desc
,
1180 RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc
.getRecurrenceKind()) &&
1181 "Unexpected reduction kind");
1182 Value
*InitVal
= Desc
.getRecurrenceStartValue();
1183 Value
*NewVal
= nullptr;
1185 // First use the original phi to determine the new value we're trying to
1186 // select from in the loop.
1187 SelectInst
*SI
= nullptr;
1188 for (auto *U
: OrigPhi
->users()) {
1189 if ((SI
= dyn_cast
<SelectInst
>(U
)))
1192 assert(SI
&& "One user of the original phi should be a select");
1194 if (SI
->getTrueValue() == OrigPhi
)
1195 NewVal
= SI
->getFalseValue();
1197 assert(SI
->getFalseValue() == OrigPhi
&&
1198 "At least one input to the select should be the original Phi");
1199 NewVal
= SI
->getTrueValue();
1202 // If any predicate is true it means that we want to select the new value.
1204 Src
->getType()->isVectorTy() ? Builder
.CreateOrReduce(Src
) : Src
;
1205 // The compares in the loop may yield poison, which propagates through the
1206 // bitwise ORs. Freeze it here before the condition is used.
1207 AnyOf
= Builder
.CreateFreeze(AnyOf
);
1208 return Builder
.CreateSelect(AnyOf
, NewVal
, InitVal
, "rdx.select");
1211 Value
*llvm::createFindLastIVReduction(IRBuilderBase
&Builder
, Value
*Src
,
1212 const RecurrenceDescriptor
&Desc
) {
1213 assert(RecurrenceDescriptor::isFindLastIVRecurrenceKind(
1214 Desc
.getRecurrenceKind()) &&
1215 "Unexpected reduction kind");
1216 Value
*StartVal
= Desc
.getRecurrenceStartValue();
1217 Value
*Sentinel
= Desc
.getSentinelValue();
1218 Value
*MaxRdx
= Src
->getType()->isVectorTy()
1219 ? Builder
.CreateIntMaxReduce(Src
, true)
1221 // Correct the final reduction result back to the start value if the maximum
1222 // reduction is sentinel value.
1224 Builder
.CreateCmp(CmpInst::ICMP_NE
, MaxRdx
, Sentinel
, "rdx.select.cmp");
1225 return Builder
.CreateSelect(Cmp
, MaxRdx
, StartVal
, "rdx.select");
1228 Value
*llvm::getReductionIdentity(Intrinsic::ID RdxID
, Type
*Ty
,
1229 FastMathFlags Flags
) {
1230 bool Negative
= false;
1233 llvm_unreachable("Expecting a reduction intrinsic");
1234 case Intrinsic::vector_reduce_add
:
1235 case Intrinsic::vector_reduce_mul
:
1236 case Intrinsic::vector_reduce_or
:
1237 case Intrinsic::vector_reduce_xor
:
1238 case Intrinsic::vector_reduce_and
:
1239 case Intrinsic::vector_reduce_fadd
:
1240 case Intrinsic::vector_reduce_fmul
: {
1241 unsigned Opc
= getArithmeticReductionInstruction(RdxID
);
1242 return ConstantExpr::getBinOpIdentity(Opc
, Ty
, false,
1243 Flags
.noSignedZeros());
1245 case Intrinsic::vector_reduce_umax
:
1246 case Intrinsic::vector_reduce_umin
:
1247 case Intrinsic::vector_reduce_smin
:
1248 case Intrinsic::vector_reduce_smax
: {
1249 Intrinsic::ID ScalarID
= getMinMaxReductionIntrinsicOp(RdxID
);
1250 return ConstantExpr::getIntrinsicIdentity(ScalarID
, Ty
);
1252 case Intrinsic::vector_reduce_fmax
:
1253 case Intrinsic::vector_reduce_fmaximum
:
1256 case Intrinsic::vector_reduce_fmin
:
1257 case Intrinsic::vector_reduce_fminimum
: {
1258 bool PropagatesNaN
= RdxID
== Intrinsic::vector_reduce_fminimum
||
1259 RdxID
== Intrinsic::vector_reduce_fmaximum
;
1260 const fltSemantics
&Semantics
= Ty
->getFltSemantics();
1261 return (!Flags
.noNaNs() && !PropagatesNaN
)
1262 ? ConstantFP::getQNaN(Ty
, Negative
)
1264 ? ConstantFP::getInfinity(Ty
, Negative
)
1265 : ConstantFP::get(Ty
, APFloat::getLargest(Semantics
, Negative
));
1270 Value
*llvm::getRecurrenceIdentity(RecurKind K
, Type
*Tp
, FastMathFlags FMF
) {
1271 assert((!(K
== RecurKind::FMin
|| K
== RecurKind::FMax
) ||
1272 (FMF
.noNaNs() && FMF
.noSignedZeros())) &&
1273 "nnan, nsz is expected to be set for FP min/max reduction.");
1274 Intrinsic::ID RdxID
= getReductionIntrinsicID(K
);
1275 return getReductionIdentity(RdxID
, Tp
, FMF
);
1278 Value
*llvm::createSimpleReduction(IRBuilderBase
&Builder
, Value
*Src
,
1279 RecurKind RdxKind
) {
1280 auto *SrcVecEltTy
= cast
<VectorType
>(Src
->getType())->getElementType();
1281 auto getIdentity
= [&]() {
1282 return getRecurrenceIdentity(RdxKind
, SrcVecEltTy
,
1283 Builder
.getFastMathFlags());
1286 case RecurKind::Add
:
1287 case RecurKind::Mul
:
1288 case RecurKind::And
:
1290 case RecurKind::Xor
:
1291 case RecurKind::SMax
:
1292 case RecurKind::SMin
:
1293 case RecurKind::UMax
:
1294 case RecurKind::UMin
:
1295 case RecurKind::FMax
:
1296 case RecurKind::FMin
:
1297 case RecurKind::FMinimum
:
1298 case RecurKind::FMaximum
:
1299 return Builder
.CreateUnaryIntrinsic(getReductionIntrinsicID(RdxKind
), Src
);
1300 case RecurKind::FMulAdd
:
1301 case RecurKind::FAdd
:
1302 return Builder
.CreateFAddReduce(getIdentity(), Src
);
1303 case RecurKind::FMul
:
1304 return Builder
.CreateFMulReduce(getIdentity(), Src
);
1306 llvm_unreachable("Unhandled opcode");
1310 Value
*llvm::createSimpleReduction(VectorBuilder
&VBuilder
, Value
*Src
,
1311 const RecurrenceDescriptor
&Desc
) {
1312 RecurKind Kind
= Desc
.getRecurrenceKind();
1313 assert(!RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind
) &&
1314 "AnyOf reduction is not supported.");
1315 Intrinsic::ID Id
= getReductionIntrinsicID(Kind
);
1316 auto *SrcTy
= cast
<VectorType
>(Src
->getType());
1317 Type
*SrcEltTy
= SrcTy
->getElementType();
1318 Value
*Iden
= getRecurrenceIdentity(Kind
, SrcEltTy
, Desc
.getFastMathFlags());
1319 Value
*Ops
[] = {Iden
, Src
};
1320 return VBuilder
.createSimpleReduction(Id
, SrcTy
, Ops
);
1323 Value
*llvm::createReduction(IRBuilderBase
&B
,
1324 const RecurrenceDescriptor
&Desc
, Value
*Src
,
1326 // TODO: Support in-order reductions based on the recurrence descriptor.
1327 // All ops in the reduction inherit fast-math-flags from the recurrence
1329 IRBuilderBase::FastMathFlagGuard
FMFGuard(B
);
1330 B
.setFastMathFlags(Desc
.getFastMathFlags());
1332 RecurKind RK
= Desc
.getRecurrenceKind();
1333 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK
))
1334 return createAnyOfReduction(B
, Src
, Desc
, OrigPhi
);
1335 if (RecurrenceDescriptor::isFindLastIVRecurrenceKind(RK
))
1336 return createFindLastIVReduction(B
, Src
, Desc
);
1338 return createSimpleReduction(B
, Src
, RK
);
1341 Value
*llvm::createOrderedReduction(IRBuilderBase
&B
,
1342 const RecurrenceDescriptor
&Desc
,
1343 Value
*Src
, Value
*Start
) {
1344 assert((Desc
.getRecurrenceKind() == RecurKind::FAdd
||
1345 Desc
.getRecurrenceKind() == RecurKind::FMulAdd
) &&
1346 "Unexpected reduction kind");
1347 assert(Src
->getType()->isVectorTy() && "Expected a vector type");
1348 assert(!Start
->getType()->isVectorTy() && "Expected a scalar type");
1350 return B
.CreateFAddReduce(Start
, Src
);
1353 Value
*llvm::createOrderedReduction(VectorBuilder
&VBuilder
,
1354 const RecurrenceDescriptor
&Desc
,
1355 Value
*Src
, Value
*Start
) {
1356 assert((Desc
.getRecurrenceKind() == RecurKind::FAdd
||
1357 Desc
.getRecurrenceKind() == RecurKind::FMulAdd
) &&
1358 "Unexpected reduction kind");
1359 assert(Src
->getType()->isVectorTy() && "Expected a vector type");
1360 assert(!Start
->getType()->isVectorTy() && "Expected a scalar type");
1362 Intrinsic::ID Id
= getReductionIntrinsicID(RecurKind::FAdd
);
1363 auto *SrcTy
= cast
<VectorType
>(Src
->getType());
1364 Value
*Ops
[] = {Start
, Src
};
1365 return VBuilder
.createSimpleReduction(Id
, SrcTy
, Ops
);
1368 void llvm::propagateIRFlags(Value
*I
, ArrayRef
<Value
*> VL
, Value
*OpValue
,
1369 bool IncludeWrapFlags
) {
1370 auto *VecOp
= dyn_cast
<Instruction
>(I
);
1373 auto *Intersection
= (OpValue
== nullptr) ? dyn_cast
<Instruction
>(VL
[0])
1374 : dyn_cast
<Instruction
>(OpValue
);
1377 const unsigned Opcode
= Intersection
->getOpcode();
1378 VecOp
->copyIRFlags(Intersection
, IncludeWrapFlags
);
1379 for (auto *V
: VL
) {
1380 auto *Instr
= dyn_cast
<Instruction
>(V
);
1383 if (OpValue
== nullptr || Opcode
== Instr
->getOpcode())
1384 VecOp
->andIRFlags(V
);
1388 bool llvm::isKnownNegativeInLoop(const SCEV
*S
, const Loop
*L
,
1389 ScalarEvolution
&SE
) {
1390 const SCEV
*Zero
= SE
.getZero(S
->getType());
1391 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1392 SE
.isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_SLT
, S
, Zero
);
1395 bool llvm::isKnownNonNegativeInLoop(const SCEV
*S
, const Loop
*L
,
1396 ScalarEvolution
&SE
) {
1397 const SCEV
*Zero
= SE
.getZero(S
->getType());
1398 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1399 SE
.isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_SGE
, S
, Zero
);
1402 bool llvm::isKnownPositiveInLoop(const SCEV
*S
, const Loop
*L
,
1403 ScalarEvolution
&SE
) {
1404 const SCEV
*Zero
= SE
.getZero(S
->getType());
1405 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1406 SE
.isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_SGT
, S
, Zero
);
1409 bool llvm::isKnownNonPositiveInLoop(const SCEV
*S
, const Loop
*L
,
1410 ScalarEvolution
&SE
) {
1411 const SCEV
*Zero
= SE
.getZero(S
->getType());
1412 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1413 SE
.isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_SLE
, S
, Zero
);
1416 bool llvm::cannotBeMinInLoop(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
1418 unsigned BitWidth
= cast
<IntegerType
>(S
->getType())->getBitWidth();
1419 APInt Min
= Signed
? APInt::getSignedMinValue(BitWidth
) :
1420 APInt::getMinValue(BitWidth
);
1421 auto Predicate
= Signed
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1422 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1423 SE
.isLoopEntryGuardedByCond(L
, Predicate
, S
,
1424 SE
.getConstant(Min
));
1427 bool llvm::cannotBeMaxInLoop(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
1429 unsigned BitWidth
= cast
<IntegerType
>(S
->getType())->getBitWidth();
1430 APInt Max
= Signed
? APInt::getSignedMaxValue(BitWidth
) :
1431 APInt::getMaxValue(BitWidth
);
1432 auto Predicate
= Signed
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1433 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1434 SE
.isLoopEntryGuardedByCond(L
, Predicate
, S
,
1435 SE
.getConstant(Max
));
1438 //===----------------------------------------------------------------------===//
1439 // rewriteLoopExitValues - Optimize IV users outside the loop.
1440 // As a side effect, reduces the amount of IV processing within the loop.
1441 //===----------------------------------------------------------------------===//
1443 static bool hasHardUserWithinLoop(const Loop
*L
, const Instruction
*I
) {
1444 SmallPtrSet
<const Instruction
*, 8> Visited
;
1445 SmallVector
<const Instruction
*, 8> WorkList
;
1447 WorkList
.push_back(I
);
1448 while (!WorkList
.empty()) {
1449 const Instruction
*Curr
= WorkList
.pop_back_val();
1450 // This use is outside the loop, nothing to do.
1451 if (!L
->contains(Curr
))
1453 // Do we assume it is a "hard" use which will not be eliminated easily?
1454 if (Curr
->mayHaveSideEffects())
1456 // Otherwise, add all its users to worklist.
1457 for (const auto *U
: Curr
->users()) {
1458 auto *UI
= cast
<Instruction
>(U
);
1459 if (Visited
.insert(UI
).second
)
1460 WorkList
.push_back(UI
);
1466 // Collect information about PHI nodes which can be transformed in
1467 // rewriteLoopExitValues.
1469 PHINode
*PN
; // For which PHI node is this replacement?
1470 unsigned Ith
; // For which incoming value?
1471 const SCEV
*ExpansionSCEV
; // The SCEV of the incoming value we are rewriting.
1472 Instruction
*ExpansionPoint
; // Where we'd like to expand that SCEV?
1473 bool HighCost
; // Is this expansion a high-cost?
1475 RewritePhi(PHINode
*P
, unsigned I
, const SCEV
*Val
, Instruction
*ExpansionPt
,
1477 : PN(P
), Ith(I
), ExpansionSCEV(Val
), ExpansionPoint(ExpansionPt
),
1481 // Check whether it is possible to delete the loop after rewriting exit
1482 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1484 static bool canLoopBeDeleted(Loop
*L
, SmallVector
<RewritePhi
, 8> &RewritePhiSet
) {
1485 BasicBlock
*Preheader
= L
->getLoopPreheader();
1486 // If there is no preheader, the loop will not be deleted.
1490 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1491 // We obviate multiple ExitingBlocks case for simplicity.
1492 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1493 // after exit value rewriting, we can enhance the logic here.
1494 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
1495 L
->getExitingBlocks(ExitingBlocks
);
1496 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
1497 L
->getUniqueExitBlocks(ExitBlocks
);
1498 if (ExitBlocks
.size() != 1 || ExitingBlocks
.size() != 1)
1501 BasicBlock
*ExitBlock
= ExitBlocks
[0];
1502 BasicBlock::iterator BI
= ExitBlock
->begin();
1503 while (PHINode
*P
= dyn_cast
<PHINode
>(BI
)) {
1504 Value
*Incoming
= P
->getIncomingValueForBlock(ExitingBlocks
[0]);
1506 // If the Incoming value of P is found in RewritePhiSet, we know it
1507 // could be rewritten to use a loop invariant value in transformation
1508 // phase later. Skip it in the loop invariant check below.
1510 for (const RewritePhi
&Phi
: RewritePhiSet
) {
1511 unsigned i
= Phi
.Ith
;
1512 if (Phi
.PN
== P
&& (Phi
.PN
)->getIncomingValue(i
) == Incoming
) {
1519 if (!found
&& (I
= dyn_cast
<Instruction
>(Incoming
)))
1520 if (!L
->hasLoopInvariantOperands(I
))
1526 for (auto *BB
: L
->blocks())
1527 if (llvm::any_of(*BB
, [](Instruction
&I
) {
1528 return I
.mayHaveSideEffects();
1535 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1536 /// and returns true if this Phi is an induction phi in the loop. When
1537 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1538 static bool checkIsIndPhi(PHINode
*Phi
, Loop
*L
, ScalarEvolution
*SE
,
1539 InductionDescriptor
&ID
) {
1542 if (!L
->getLoopPreheader())
1544 if (Phi
->getParent() != L
->getHeader())
1546 return InductionDescriptor::isInductionPHI(Phi
, L
, SE
, ID
);
1549 int llvm::rewriteLoopExitValues(Loop
*L
, LoopInfo
*LI
, TargetLibraryInfo
*TLI
,
1550 ScalarEvolution
*SE
,
1551 const TargetTransformInfo
*TTI
,
1552 SCEVExpander
&Rewriter
, DominatorTree
*DT
,
1553 ReplaceExitVal ReplaceExitValue
,
1554 SmallVector
<WeakTrackingVH
, 16> &DeadInsts
) {
1555 // Check a pre-condition.
1556 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
1557 "Indvars did not preserve LCSSA!");
1559 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
1560 L
->getUniqueExitBlocks(ExitBlocks
);
1562 SmallVector
<RewritePhi
, 8> RewritePhiSet
;
1563 // Find all values that are computed inside the loop, but used outside of it.
1564 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
1565 // the exit blocks of the loop to find them.
1566 for (BasicBlock
*ExitBB
: ExitBlocks
) {
1567 // If there are no PHI nodes in this exit block, then no values defined
1568 // inside the loop are used on this path, skip it.
1569 PHINode
*PN
= dyn_cast
<PHINode
>(ExitBB
->begin());
1572 unsigned NumPreds
= PN
->getNumIncomingValues();
1574 // Iterate over all of the PHI nodes.
1575 BasicBlock::iterator BBI
= ExitBB
->begin();
1576 while ((PN
= dyn_cast
<PHINode
>(BBI
++))) {
1577 if (PN
->use_empty())
1578 continue; // dead use, don't replace it
1580 if (!SE
->isSCEVable(PN
->getType()))
1583 // Iterate over all of the values in all the PHI nodes.
1584 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
1585 // If the value being merged in is not integer or is not defined
1586 // in the loop, skip it.
1587 Value
*InVal
= PN
->getIncomingValue(i
);
1588 if (!isa
<Instruction
>(InVal
))
1591 // If this pred is for a subloop, not L itself, skip it.
1592 if (LI
->getLoopFor(PN
->getIncomingBlock(i
)) != L
)
1593 continue; // The Block is in a subloop, skip it.
1595 // Check that InVal is defined in the loop.
1596 Instruction
*Inst
= cast
<Instruction
>(InVal
);
1597 if (!L
->contains(Inst
))
1600 // Find exit values which are induction variables in the loop, and are
1601 // unused in the loop, with the only use being the exit block PhiNode,
1602 // and the induction variable update binary operator.
1603 // The exit value can be replaced with the final value when it is cheap
1605 if (ReplaceExitValue
== UnusedIndVarInLoop
) {
1606 InductionDescriptor ID
;
1607 PHINode
*IndPhi
= dyn_cast
<PHINode
>(Inst
);
1609 if (!checkIsIndPhi(IndPhi
, L
, SE
, ID
))
1611 // This is an induction PHI. Check that the only users are PHI
1612 // nodes, and induction variable update binary operators.
1613 if (llvm::any_of(Inst
->users(), [&](User
*U
) {
1614 if (!isa
<PHINode
>(U
) && !isa
<BinaryOperator
>(U
))
1616 BinaryOperator
*B
= dyn_cast
<BinaryOperator
>(U
);
1617 if (B
&& B
!= ID
.getInductionBinOp())
1623 // If it is not an induction phi, it must be an induction update
1624 // binary operator with an induction phi user.
1625 BinaryOperator
*B
= dyn_cast
<BinaryOperator
>(Inst
);
1628 if (llvm::any_of(Inst
->users(), [&](User
*U
) {
1629 PHINode
*Phi
= dyn_cast
<PHINode
>(U
);
1630 if (Phi
!= PN
&& !checkIsIndPhi(Phi
, L
, SE
, ID
))
1635 if (B
!= ID
.getInductionBinOp())
1640 // Okay, this instruction has a user outside of the current loop
1641 // and varies predictably *inside* the loop. Evaluate the value it
1642 // contains when the loop exits, if possible. We prefer to start with
1643 // expressions which are true for all exits (so as to maximize
1644 // expression reuse by the SCEVExpander), but resort to per-exit
1645 // evaluation if that fails.
1646 const SCEV
*ExitValue
= SE
->getSCEVAtScope(Inst
, L
->getParentLoop());
1647 if (isa
<SCEVCouldNotCompute
>(ExitValue
) ||
1648 !SE
->isLoopInvariant(ExitValue
, L
) ||
1649 !Rewriter
.isSafeToExpand(ExitValue
)) {
1650 // TODO: This should probably be sunk into SCEV in some way; maybe a
1651 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
1652 // most SCEV expressions and other recurrence types (e.g. shift
1653 // recurrences). Is there existing code we can reuse?
1654 const SCEV
*ExitCount
= SE
->getExitCount(L
, PN
->getIncomingBlock(i
));
1655 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
1657 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(Inst
)))
1658 if (AddRec
->getLoop() == L
)
1659 ExitValue
= AddRec
->evaluateAtIteration(ExitCount
, *SE
);
1660 if (isa
<SCEVCouldNotCompute
>(ExitValue
) ||
1661 !SE
->isLoopInvariant(ExitValue
, L
) ||
1662 !Rewriter
.isSafeToExpand(ExitValue
))
1666 // Computing the value outside of the loop brings no benefit if it is
1667 // definitely used inside the loop in a way which can not be optimized
1668 // away. Avoid doing so unless we know we have a value which computes
1669 // the ExitValue already. TODO: This should be merged into SCEV
1670 // expander to leverage its knowledge of existing expressions.
1671 if (ReplaceExitValue
!= AlwaysRepl
&& !isa
<SCEVConstant
>(ExitValue
) &&
1672 !isa
<SCEVUnknown
>(ExitValue
) && hasHardUserWithinLoop(L
, Inst
))
1675 // Check if expansions of this SCEV would count as being high cost.
1676 bool HighCost
= Rewriter
.isHighCostExpansion(
1677 ExitValue
, L
, SCEVCheapExpansionBudget
, TTI
, Inst
);
1679 // Note that we must not perform expansions until after
1680 // we query *all* the costs, because if we perform temporary expansion
1681 // inbetween, one that we might not intend to keep, said expansion
1682 // *may* affect cost calculation of the next SCEV's we'll query,
1683 // and next SCEV may errneously get smaller cost.
1685 // Collect all the candidate PHINodes to be rewritten.
1686 Instruction
*InsertPt
=
1687 (isa
<PHINode
>(Inst
) || isa
<LandingPadInst
>(Inst
)) ?
1688 &*Inst
->getParent()->getFirstInsertionPt() : Inst
;
1689 RewritePhiSet
.emplace_back(PN
, i
, ExitValue
, InsertPt
, HighCost
);
1694 // TODO: evaluate whether it is beneficial to change how we calculate
1695 // high-cost: if we have SCEV 'A' which we know we will expand, should we
1696 // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1697 // potentially giving cost bonus to those other SCEV's?
1699 bool LoopCanBeDel
= canLoopBeDeleted(L
, RewritePhiSet
);
1700 int NumReplaced
= 0;
1703 for (const RewritePhi
&Phi
: RewritePhiSet
) {
1704 PHINode
*PN
= Phi
.PN
;
1706 // Only do the rewrite when the ExitValue can be expanded cheaply.
1707 // If LoopCanBeDel is true, rewrite exit value aggressively.
1708 if ((ReplaceExitValue
== OnlyCheapRepl
||
1709 ReplaceExitValue
== UnusedIndVarInLoop
) &&
1710 !LoopCanBeDel
&& Phi
.HighCost
)
1713 Value
*ExitVal
= Rewriter
.expandCodeFor(
1714 Phi
.ExpansionSCEV
, Phi
.PN
->getType(), Phi
.ExpansionPoint
);
1716 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1718 << " LoopVal = " << *(Phi
.ExpansionPoint
) << "\n");
1721 // If we reuse an instruction from a loop which is neither L nor one of
1722 // its containing loops, we end up breaking LCSSA form for this loop by
1723 // creating a new use of its instruction.
1724 if (auto *ExitInsn
= dyn_cast
<Instruction
>(ExitVal
))
1725 if (auto *EVL
= LI
->getLoopFor(ExitInsn
->getParent()))
1727 assert(EVL
->contains(L
) && "LCSSA breach detected!");
1731 Instruction
*Inst
= cast
<Instruction
>(PN
->getIncomingValue(Phi
.Ith
));
1732 PN
->setIncomingValue(Phi
.Ith
, ExitVal
);
1733 // It's necessary to tell ScalarEvolution about this explicitly so that
1734 // it can walk the def-use list and forget all SCEVs, as it may not be
1735 // watching the PHI itself. Once the new exit value is in place, there
1736 // may not be a def-use connection between the loop and every instruction
1737 // which got a SCEVAddRecExpr for that loop.
1738 SE
->forgetValue(PN
);
1740 // If this instruction is dead now, delete it. Don't do it now to avoid
1741 // invalidating iterators.
1742 if (isInstructionTriviallyDead(Inst
, TLI
))
1743 DeadInsts
.push_back(Inst
);
1745 // Replace PN with ExitVal if that is legal and does not break LCSSA.
1746 if (PN
->getNumIncomingValues() == 1 &&
1747 LI
->replacementPreservesLCSSAForm(PN
, ExitVal
)) {
1748 PN
->replaceAllUsesWith(ExitVal
);
1749 PN
->eraseFromParent();
1753 // The insertion point instruction may have been deleted; clear it out
1754 // so that the rewriter doesn't trip over it later.
1755 Rewriter
.clearInsertPoint();
1759 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1761 void llvm::setProfileInfoAfterUnrolling(Loop
*OrigLoop
, Loop
*UnrolledLoop
,
1762 Loop
*RemainderLoop
, uint64_t UF
) {
1763 assert(UF
> 0 && "Zero unrolled factor is not supported");
1764 assert(UnrolledLoop
!= RemainderLoop
&&
1765 "Unrolled and Remainder loops are expected to distinct");
1767 // Get number of iterations in the original scalar loop.
1768 unsigned OrigLoopInvocationWeight
= 0;
1769 std::optional
<unsigned> OrigAverageTripCount
=
1770 getLoopEstimatedTripCount(OrigLoop
, &OrigLoopInvocationWeight
);
1771 if (!OrigAverageTripCount
)
1774 // Calculate number of iterations in unrolled loop.
1775 unsigned UnrolledAverageTripCount
= *OrigAverageTripCount
/ UF
;
1776 // Calculate number of iterations for remainder loop.
1777 unsigned RemainderAverageTripCount
= *OrigAverageTripCount
% UF
;
1779 setLoopEstimatedTripCount(UnrolledLoop
, UnrolledAverageTripCount
,
1780 OrigLoopInvocationWeight
);
1781 setLoopEstimatedTripCount(RemainderLoop
, RemainderAverageTripCount
,
1782 OrigLoopInvocationWeight
);
1785 /// Utility that implements appending of loops onto a worklist.
1786 /// Loops are added in preorder (analogous for reverse postorder for trees),
1787 /// and the worklist is processed LIFO.
1788 template <typename RangeT
>
1789 void llvm::appendReversedLoopsToWorklist(
1790 RangeT
&&Loops
, SmallPriorityWorklist
<Loop
*, 4> &Worklist
) {
1791 // We use an internal worklist to build up the preorder traversal without
1793 SmallVector
<Loop
*, 4> PreOrderLoops
, PreOrderWorklist
;
1795 // We walk the initial sequence of loops in reverse because we generally want
1796 // to visit defs before uses and the worklist is LIFO.
1797 for (Loop
*RootL
: Loops
) {
1798 assert(PreOrderLoops
.empty() && "Must start with an empty preorder walk.");
1799 assert(PreOrderWorklist
.empty() &&
1800 "Must start with an empty preorder walk worklist.");
1801 PreOrderWorklist
.push_back(RootL
);
1803 Loop
*L
= PreOrderWorklist
.pop_back_val();
1804 PreOrderWorklist
.append(L
->begin(), L
->end());
1805 PreOrderLoops
.push_back(L
);
1806 } while (!PreOrderWorklist
.empty());
1808 Worklist
.insert(std::move(PreOrderLoops
));
1809 PreOrderLoops
.clear();
1813 template <typename RangeT
>
1814 void llvm::appendLoopsToWorklist(RangeT
&&Loops
,
1815 SmallPriorityWorklist
<Loop
*, 4> &Worklist
) {
1816 appendReversedLoopsToWorklist(reverse(Loops
), Worklist
);
1819 template void llvm::appendLoopsToWorklist
<ArrayRef
<Loop
*> &>(
1820 ArrayRef
<Loop
*> &Loops
, SmallPriorityWorklist
<Loop
*, 4> &Worklist
);
1823 llvm::appendLoopsToWorklist
<Loop
&>(Loop
&L
,
1824 SmallPriorityWorklist
<Loop
*, 4> &Worklist
);
1826 void llvm::appendLoopsToWorklist(LoopInfo
&LI
,
1827 SmallPriorityWorklist
<Loop
*, 4> &Worklist
) {
1828 appendReversedLoopsToWorklist(LI
, Worklist
);
1831 Loop
*llvm::cloneLoop(Loop
*L
, Loop
*PL
, ValueToValueMapTy
&VM
,
1832 LoopInfo
*LI
, LPPassManager
*LPM
) {
1833 Loop
&New
= *LI
->AllocateLoop();
1835 PL
->addChildLoop(&New
);
1837 LI
->addTopLevelLoop(&New
);
1842 // Add all of the blocks in L to the new loop.
1843 for (BasicBlock
*BB
: L
->blocks())
1844 if (LI
->getLoopFor(BB
) == L
)
1845 New
.addBasicBlockToLoop(cast
<BasicBlock
>(VM
[BB
]), *LI
);
1847 // Add all of the subloops to the new loop.
1849 cloneLoop(I
, &New
, VM
, LI
, LPM
);
1854 /// IR Values for the lower and upper bounds of a pointer evolution. We
1855 /// need to use value-handles because SCEV expansion can invalidate previously
1856 /// expanded values. Thus expansion of a pointer can invalidate the bounds for
1858 struct PointerBounds
{
1859 TrackingVH
<Value
> Start
;
1860 TrackingVH
<Value
> End
;
1861 Value
*StrideToCheck
;
1864 /// Expand code for the lower and upper bound of the pointer group \p CG
1865 /// in \p TheLoop. \return the values for the bounds.
1866 static PointerBounds
expandBounds(const RuntimeCheckingPtrGroup
*CG
,
1867 Loop
*TheLoop
, Instruction
*Loc
,
1868 SCEVExpander
&Exp
, bool HoistRuntimeChecks
) {
1869 LLVMContext
&Ctx
= Loc
->getContext();
1870 Type
*PtrArithTy
= PointerType::get(Ctx
, CG
->AddressSpace
);
1872 Value
*Start
= nullptr, *End
= nullptr;
1873 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1874 const SCEV
*Low
= CG
->Low
, *High
= CG
->High
, *Stride
= nullptr;
1876 // If the Low and High values are themselves loop-variant, then we may want
1877 // to expand the range to include those covered by the outer loop as well.
1878 // There is a trade-off here with the advantage being that creating checks
1879 // using the expanded range permits the runtime memory checks to be hoisted
1880 // out of the outer loop. This reduces the cost of entering the inner loop,
1881 // which can be significant for low trip counts. The disadvantage is that
1882 // there is a chance we may now never enter the vectorized inner loop,
1883 // whereas using a restricted range check could have allowed us to enter at
1884 // least once. This is why the behaviour is not currently the default and is
1885 // controlled by the parameter 'HoistRuntimeChecks'.
1886 if (HoistRuntimeChecks
&& TheLoop
->getParentLoop() &&
1887 isa
<SCEVAddRecExpr
>(High
) && isa
<SCEVAddRecExpr
>(Low
)) {
1888 auto *HighAR
= cast
<SCEVAddRecExpr
>(High
);
1889 auto *LowAR
= cast
<SCEVAddRecExpr
>(Low
);
1890 const Loop
*OuterLoop
= TheLoop
->getParentLoop();
1891 ScalarEvolution
&SE
= *Exp
.getSE();
1892 const SCEV
*Recur
= LowAR
->getStepRecurrence(SE
);
1893 if (Recur
== HighAR
->getStepRecurrence(SE
) &&
1894 HighAR
->getLoop() == OuterLoop
&& LowAR
->getLoop() == OuterLoop
) {
1895 BasicBlock
*OuterLoopLatch
= OuterLoop
->getLoopLatch();
1896 const SCEV
*OuterExitCount
= SE
.getExitCount(OuterLoop
, OuterLoopLatch
);
1897 if (!isa
<SCEVCouldNotCompute
>(OuterExitCount
) &&
1898 OuterExitCount
->getType()->isIntegerTy()) {
1899 const SCEV
*NewHigh
=
1900 cast
<SCEVAddRecExpr
>(High
)->evaluateAtIteration(OuterExitCount
, SE
);
1901 if (!isa
<SCEVCouldNotCompute
>(NewHigh
)) {
1902 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
1903 "outer loop in order to permit hoisting\n");
1905 Low
= cast
<SCEVAddRecExpr
>(Low
)->getStart();
1906 // If there is a possibility that the stride is negative then we have
1907 // to generate extra checks to ensure the stride is positive.
1908 if (!SE
.isKnownNonNegative(
1909 SE
.applyLoopGuards(Recur
, HighAR
->getLoop()))) {
1911 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
1913 << *Stride
<< '\n');
1920 Start
= Exp
.expandCodeFor(Low
, PtrArithTy
, Loc
);
1921 End
= Exp
.expandCodeFor(High
, PtrArithTy
, Loc
);
1922 if (CG
->NeedsFreeze
) {
1923 IRBuilder
<> Builder(Loc
);
1924 Start
= Builder
.CreateFreeze(Start
, Start
->getName() + ".fr");
1925 End
= Builder
.CreateFreeze(End
, End
->getName() + ".fr");
1928 Stride
? Exp
.expandCodeFor(Stride
, Stride
->getType(), Loc
) : nullptr;
1929 LLVM_DEBUG(dbgs() << "Start: " << *Low
<< " End: " << *High
<< "\n");
1930 return {Start
, End
, StrideVal
};
1933 /// Turns a collection of checks into a collection of expanded upper and
1934 /// lower bounds for both pointers in the check.
1935 static SmallVector
<std::pair
<PointerBounds
, PointerBounds
>, 4>
1936 expandBounds(const SmallVectorImpl
<RuntimePointerCheck
> &PointerChecks
, Loop
*L
,
1937 Instruction
*Loc
, SCEVExpander
&Exp
, bool HoistRuntimeChecks
) {
1938 SmallVector
<std::pair
<PointerBounds
, PointerBounds
>, 4> ChecksWithBounds
;
1940 // Here we're relying on the SCEV Expander's cache to only emit code for the
1941 // same bounds once.
1942 transform(PointerChecks
, std::back_inserter(ChecksWithBounds
),
1943 [&](const RuntimePointerCheck
&Check
) {
1944 PointerBounds First
= expandBounds(Check
.first
, L
, Loc
, Exp
,
1945 HoistRuntimeChecks
),
1946 Second
= expandBounds(Check
.second
, L
, Loc
, Exp
,
1947 HoistRuntimeChecks
);
1948 return std::make_pair(First
, Second
);
1951 return ChecksWithBounds
;
1954 Value
*llvm::addRuntimeChecks(
1955 Instruction
*Loc
, Loop
*TheLoop
,
1956 const SmallVectorImpl
<RuntimePointerCheck
> &PointerChecks
,
1957 SCEVExpander
&Exp
, bool HoistRuntimeChecks
) {
1958 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1959 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
1960 auto ExpandedChecks
=
1961 expandBounds(PointerChecks
, TheLoop
, Loc
, Exp
, HoistRuntimeChecks
);
1963 LLVMContext
&Ctx
= Loc
->getContext();
1964 IRBuilder
ChkBuilder(Ctx
, InstSimplifyFolder(Loc
->getDataLayout()));
1965 ChkBuilder
.SetInsertPoint(Loc
);
1966 // Our instructions might fold to a constant.
1967 Value
*MemoryRuntimeCheck
= nullptr;
1969 for (const auto &[A
, B
] : ExpandedChecks
) {
1970 // Check if two pointers (A and B) conflict where conflict is computed as:
1971 // start(A) <= end(B) && start(B) <= end(A)
1973 assert((A
.Start
->getType()->getPointerAddressSpace() ==
1974 B
.End
->getType()->getPointerAddressSpace()) &&
1975 (B
.Start
->getType()->getPointerAddressSpace() ==
1976 A
.End
->getType()->getPointerAddressSpace()) &&
1977 "Trying to bounds check pointers with different address spaces");
1979 // [A|B].Start points to the first accessed byte under base [A|B].
1980 // [A|B].End points to the last accessed byte, plus one.
1981 // There is no conflict when the intervals are disjoint:
1982 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1984 // bound0 = (B.Start < A.End)
1985 // bound1 = (A.Start < B.End)
1986 // IsConflict = bound0 & bound1
1987 Value
*Cmp0
= ChkBuilder
.CreateICmpULT(A
.Start
, B
.End
, "bound0");
1988 Value
*Cmp1
= ChkBuilder
.CreateICmpULT(B
.Start
, A
.End
, "bound1");
1989 Value
*IsConflict
= ChkBuilder
.CreateAnd(Cmp0
, Cmp1
, "found.conflict");
1990 if (A
.StrideToCheck
) {
1991 Value
*IsNegativeStride
= ChkBuilder
.CreateICmpSLT(
1992 A
.StrideToCheck
, ConstantInt::get(A
.StrideToCheck
->getType(), 0),
1994 IsConflict
= ChkBuilder
.CreateOr(IsConflict
, IsNegativeStride
);
1996 if (B
.StrideToCheck
) {
1997 Value
*IsNegativeStride
= ChkBuilder
.CreateICmpSLT(
1998 B
.StrideToCheck
, ConstantInt::get(B
.StrideToCheck
->getType(), 0),
2000 IsConflict
= ChkBuilder
.CreateOr(IsConflict
, IsNegativeStride
);
2002 if (MemoryRuntimeCheck
) {
2004 ChkBuilder
.CreateOr(MemoryRuntimeCheck
, IsConflict
, "conflict.rdx");
2006 MemoryRuntimeCheck
= IsConflict
;
2009 return MemoryRuntimeCheck
;
2012 Value
*llvm::addDiffRuntimeChecks(
2013 Instruction
*Loc
, ArrayRef
<PointerDiffInfo
> Checks
, SCEVExpander
&Expander
,
2014 function_ref
<Value
*(IRBuilderBase
&, unsigned)> GetVF
, unsigned IC
) {
2016 LLVMContext
&Ctx
= Loc
->getContext();
2017 IRBuilder
ChkBuilder(Ctx
, InstSimplifyFolder(Loc
->getDataLayout()));
2018 ChkBuilder
.SetInsertPoint(Loc
);
2019 // Our instructions might fold to a constant.
2020 Value
*MemoryRuntimeCheck
= nullptr;
2022 auto &SE
= *Expander
.getSE();
2023 // Map to keep track of created compares, The key is the pair of operands for
2024 // the compare, to allow detecting and re-using redundant compares.
2025 DenseMap
<std::pair
<Value
*, Value
*>, Value
*> SeenCompares
;
2026 for (const auto &[SrcStart
, SinkStart
, AccessSize
, NeedsFreeze
] : Checks
) {
2027 Type
*Ty
= SinkStart
->getType();
2028 // Compute VF * IC * AccessSize.
2029 auto *VFTimesUFTimesSize
=
2030 ChkBuilder
.CreateMul(GetVF(ChkBuilder
, Ty
->getScalarSizeInBits()),
2031 ConstantInt::get(Ty
, IC
* AccessSize
));
2033 Expander
.expandCodeFor(SE
.getMinusSCEV(SinkStart
, SrcStart
), Ty
, Loc
);
2035 // Check if the same compare has already been created earlier. In that case,
2036 // there is no need to check it again.
2037 Value
*IsConflict
= SeenCompares
.lookup({Diff
, VFTimesUFTimesSize
});
2042 ChkBuilder
.CreateICmpULT(Diff
, VFTimesUFTimesSize
, "diff.check");
2043 SeenCompares
.insert({{Diff
, VFTimesUFTimesSize
}, IsConflict
});
2046 ChkBuilder
.CreateFreeze(IsConflict
, IsConflict
->getName() + ".fr");
2047 if (MemoryRuntimeCheck
) {
2049 ChkBuilder
.CreateOr(MemoryRuntimeCheck
, IsConflict
, "conflict.rdx");
2051 MemoryRuntimeCheck
= IsConflict
;
2054 return MemoryRuntimeCheck
;
2057 std::optional
<IVConditionInfo
>
2058 llvm::hasPartialIVCondition(const Loop
&L
, unsigned MSSAThreshold
,
2059 const MemorySSA
&MSSA
, AAResults
&AA
) {
2060 auto *TI
= dyn_cast
<BranchInst
>(L
.getHeader()->getTerminator());
2061 if (!TI
|| !TI
->isConditional())
2064 auto *CondI
= dyn_cast
<Instruction
>(TI
->getCondition());
2065 // The case with the condition outside the loop should already be handled
2067 // Allow CmpInst and TruncInsts as they may be users of load instructions
2068 // and have potential for partial unswitching
2069 if (!CondI
|| !isa
<CmpInst
, TruncInst
>(CondI
) || !L
.contains(CondI
))
2072 SmallVector
<Instruction
*> InstToDuplicate
;
2073 InstToDuplicate
.push_back(CondI
);
2075 SmallVector
<Value
*, 4> WorkList
;
2076 WorkList
.append(CondI
->op_begin(), CondI
->op_end());
2078 SmallVector
<MemoryAccess
*, 4> AccessesToCheck
;
2079 SmallVector
<MemoryLocation
, 4> AccessedLocs
;
2080 while (!WorkList
.empty()) {
2081 Instruction
*I
= dyn_cast
<Instruction
>(WorkList
.pop_back_val());
2082 if (!I
|| !L
.contains(I
))
2085 // TODO: support additional instructions.
2086 if (!isa
<LoadInst
>(I
) && !isa
<GetElementPtrInst
>(I
))
2089 // Do not duplicate volatile and atomic loads.
2090 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
2091 if (LI
->isVolatile() || LI
->isAtomic())
2094 InstToDuplicate
.push_back(I
);
2095 if (MemoryAccess
*MA
= MSSA
.getMemoryAccess(I
)) {
2096 if (auto *MemUse
= dyn_cast_or_null
<MemoryUse
>(MA
)) {
2097 // Queue the defining access to check for alias checks.
2098 AccessesToCheck
.push_back(MemUse
->getDefiningAccess());
2099 AccessedLocs
.push_back(MemoryLocation::get(I
));
2101 // MemoryDefs may clobber the location or may be atomic memory
2102 // operations. Bail out.
2106 WorkList
.append(I
->op_begin(), I
->op_end());
2109 if (InstToDuplicate
.empty())
2112 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
2113 L
.getExitingBlocks(ExitingBlocks
);
2114 auto HasNoClobbersOnPath
=
2115 [&L
, &AA
, &AccessedLocs
, &ExitingBlocks
, &InstToDuplicate
,
2116 MSSAThreshold
](BasicBlock
*Succ
, BasicBlock
*Header
,
2117 SmallVector
<MemoryAccess
*, 4> AccessesToCheck
)
2118 -> std::optional
<IVConditionInfo
> {
2119 IVConditionInfo Info
;
2120 // First, collect all blocks in the loop that are on a patch from Succ
2122 SmallVector
<BasicBlock
*, 4> WorkList
;
2123 WorkList
.push_back(Succ
);
2124 WorkList
.push_back(Header
);
2125 SmallPtrSet
<BasicBlock
*, 4> Seen
;
2126 Seen
.insert(Header
);
2128 all_of(*Header
, [](Instruction
&I
) { return !I
.mayHaveSideEffects(); });
2130 while (!WorkList
.empty()) {
2131 BasicBlock
*Current
= WorkList
.pop_back_val();
2132 if (!L
.contains(Current
))
2134 const auto &SeenIns
= Seen
.insert(Current
);
2135 if (!SeenIns
.second
)
2138 Info
.PathIsNoop
&= all_of(
2139 *Current
, [](Instruction
&I
) { return !I
.mayHaveSideEffects(); });
2140 WorkList
.append(succ_begin(Current
), succ_end(Current
));
2143 // Require at least 2 blocks on a path through the loop. This skips
2144 // paths that directly exit the loop.
2145 if (Seen
.size() < 2)
2148 // Next, check if there are any MemoryDefs that are on the path through
2149 // the loop (in the Seen set) and they may-alias any of the locations in
2150 // AccessedLocs. If that is the case, they may modify the condition and
2151 // partial unswitching is not possible.
2152 SmallPtrSet
<MemoryAccess
*, 4> SeenAccesses
;
2153 while (!AccessesToCheck
.empty()) {
2154 MemoryAccess
*Current
= AccessesToCheck
.pop_back_val();
2155 auto SeenI
= SeenAccesses
.insert(Current
);
2156 if (!SeenI
.second
|| !Seen
.contains(Current
->getBlock()))
2159 // Bail out if exceeded the threshold.
2160 if (SeenAccesses
.size() >= MSSAThreshold
)
2163 // MemoryUse are read-only accesses.
2164 if (isa
<MemoryUse
>(Current
))
2167 // For a MemoryDef, check if is aliases any of the location feeding
2168 // the original condition.
2169 if (auto *CurrentDef
= dyn_cast
<MemoryDef
>(Current
)) {
2170 if (any_of(AccessedLocs
, [&AA
, CurrentDef
](MemoryLocation
&Loc
) {
2172 AA
.getModRefInfo(CurrentDef
->getMemoryInst(), Loc
));
2177 for (Use
&U
: Current
->uses())
2178 AccessesToCheck
.push_back(cast
<MemoryAccess
>(U
.getUser()));
2181 // We could also allow loops with known trip counts without mustprogress,
2182 // but ScalarEvolution may not be available.
2183 Info
.PathIsNoop
&= isMustProgress(&L
);
2185 // If the path is considered a no-op so far, check if it reaches a
2186 // single exit block without any phis. This ensures no values from the
2187 // loop are used outside of the loop.
2188 if (Info
.PathIsNoop
) {
2189 for (auto *Exiting
: ExitingBlocks
) {
2190 if (!Seen
.contains(Exiting
))
2192 for (auto *Succ
: successors(Exiting
)) {
2193 if (L
.contains(Succ
))
2196 Info
.PathIsNoop
&= Succ
->phis().empty() &&
2197 (!Info
.ExitForPath
|| Info
.ExitForPath
== Succ
);
2198 if (!Info
.PathIsNoop
)
2200 assert((!Info
.ExitForPath
|| Info
.ExitForPath
== Succ
) &&
2201 "cannot have multiple exit blocks");
2202 Info
.ExitForPath
= Succ
;
2206 if (!Info
.ExitForPath
)
2207 Info
.PathIsNoop
= false;
2209 Info
.InstToDuplicate
= InstToDuplicate
;
2213 // If we branch to the same successor, partial unswitching will not be
2215 if (TI
->getSuccessor(0) == TI
->getSuccessor(1))
2218 if (auto Info
= HasNoClobbersOnPath(TI
->getSuccessor(0), L
.getHeader(),
2220 Info
->KnownValue
= ConstantInt::getTrue(TI
->getContext());
2223 if (auto Info
= HasNoClobbersOnPath(TI
->getSuccessor(1), L
.getHeader(),
2225 Info
->KnownValue
= ConstantInt::getFalse(TI
->getContext());