1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------===//
9 // This file implements the PredicateInfo class.
11 //===----------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/IR/AssemblyAnnotationWriter.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/DebugCounter.h"
29 #include "llvm/Support/FormattedStream.h"
30 #define DEBUG_TYPE "predicateinfo"
32 using namespace PatternMatch
;
34 static cl::opt
<bool> VerifyPredicateInfo(
35 "verify-predicateinfo", cl::init(false), cl::Hidden
,
36 cl::desc("Verify PredicateInfo in legacy printer pass."));
37 DEBUG_COUNTER(RenameCounter
, "predicateinfo-rename",
38 "Controls which variables are renamed with predicateinfo");
40 // Maximum number of conditions considered for renaming for each branch/assume.
41 // This limits renaming of deep and/or chains.
42 static const unsigned MaxCondsPerBranch
= 8;
45 // Given a predicate info that is a type of branching terminator, get the
47 const BasicBlock
*getBranchBlock(const PredicateBase
*PB
) {
48 assert(isa
<PredicateWithEdge
>(PB
) &&
49 "Only branches and switches should have PHIOnly defs that "
50 "require branch blocks.");
51 return cast
<PredicateWithEdge
>(PB
)->From
;
54 // Given a predicate info that is a type of branching terminator, get the
55 // branching terminator.
56 static Instruction
*getBranchTerminator(const PredicateBase
*PB
) {
57 assert(isa
<PredicateWithEdge
>(PB
) &&
58 "Not a predicate info type we know how to get a terminator from.");
59 return cast
<PredicateWithEdge
>(PB
)->From
->getTerminator();
62 // Given a predicate info that is a type of branching terminator, get the
63 // edge this predicate info represents
64 std::pair
<BasicBlock
*, BasicBlock
*> getBlockEdge(const PredicateBase
*PB
) {
65 assert(isa
<PredicateWithEdge
>(PB
) &&
66 "Not a predicate info type we know how to get an edge from.");
67 const auto *PEdge
= cast
<PredicateWithEdge
>(PB
);
68 return std::make_pair(PEdge
->From
, PEdge
->To
);
74 // Operations that must appear first in the block.
76 // Operations that are somewhere in the middle of the block, and are sorted on
79 // Operations that must appear last in a block, like successor phi node uses.
83 // Associate global and local DFS info with defs and uses, so we can sort them
84 // into a global domination ordering.
88 unsigned int LocalNum
= LN_Middle
;
89 // Only one of Def or Use will be set.
92 // Neither PInfo nor EdgeOnly participate in the ordering
93 PredicateBase
*PInfo
= nullptr;
94 bool EdgeOnly
= false;
97 // Perform a strict weak ordering on instructions and arguments.
98 static bool valueComesBefore(const Value
*A
, const Value
*B
) {
99 auto *ArgA
= dyn_cast_or_null
<Argument
>(A
);
100 auto *ArgB
= dyn_cast_or_null
<Argument
>(B
);
106 return ArgA
->getArgNo() < ArgB
->getArgNo();
107 return cast
<Instruction
>(A
)->comesBefore(cast
<Instruction
>(B
));
110 // This compares ValueDFS structures. Doing so allows us to walk the minimum
111 // number of instructions necessary to compute our def/use ordering.
112 struct ValueDFS_Compare
{
114 ValueDFS_Compare(DominatorTree
&DT
) : DT(DT
) {}
116 bool operator()(const ValueDFS
&A
, const ValueDFS
&B
) const {
119 // The only case we can't directly compare them is when they in the same
120 // block, and both have localnum == middle. In that case, we have to use
121 // comesbefore to see what the real ordering is, because they are in the
124 assert((A
.DFSIn
!= B
.DFSIn
|| A
.DFSOut
== B
.DFSOut
) &&
125 "Equal DFS-in numbers imply equal out numbers");
126 bool SameBlock
= A
.DFSIn
== B
.DFSIn
;
128 // We want to put the def that will get used for a given set of phi uses,
129 // before those phi uses.
130 // So we sort by edge, then by def.
131 // Note that only phi nodes uses and defs can come last.
132 if (SameBlock
&& A
.LocalNum
== LN_Last
&& B
.LocalNum
== LN_Last
)
133 return comparePHIRelated(A
, B
);
137 if (!SameBlock
|| A
.LocalNum
!= LN_Middle
|| B
.LocalNum
!= LN_Middle
)
138 return std::tie(A
.DFSIn
, A
.LocalNum
, isADef
) <
139 std::tie(B
.DFSIn
, B
.LocalNum
, isBDef
);
140 return localComesBefore(A
, B
);
143 // For a phi use, or a non-materialized def, return the edge it represents.
144 std::pair
<BasicBlock
*, BasicBlock
*> getBlockEdge(const ValueDFS
&VD
) const {
145 if (!VD
.Def
&& VD
.U
) {
146 auto *PHI
= cast
<PHINode
>(VD
.U
->getUser());
147 return std::make_pair(PHI
->getIncomingBlock(*VD
.U
), PHI
->getParent());
149 // This is really a non-materialized def.
150 return ::getBlockEdge(VD
.PInfo
);
153 // For two phi related values, return the ordering.
154 bool comparePHIRelated(const ValueDFS
&A
, const ValueDFS
&B
) const {
155 BasicBlock
*ASrc
, *ADest
, *BSrc
, *BDest
;
156 std::tie(ASrc
, ADest
) = getBlockEdge(A
);
157 std::tie(BSrc
, BDest
) = getBlockEdge(B
);
160 // This function should only be used for values in the same BB, check that.
161 DomTreeNode
*DomASrc
= DT
.getNode(ASrc
);
162 DomTreeNode
*DomBSrc
= DT
.getNode(BSrc
);
163 assert(DomASrc
->getDFSNumIn() == (unsigned)A
.DFSIn
&&
164 "DFS numbers for A should match the ones of the source block");
165 assert(DomBSrc
->getDFSNumIn() == (unsigned)B
.DFSIn
&&
166 "DFS numbers for B should match the ones of the source block");
167 assert(A
.DFSIn
== B
.DFSIn
&& "Values must be in the same block");
172 // Use DFS numbers to compare destination blocks, to guarantee a
173 // deterministic order.
174 DomTreeNode
*DomADest
= DT
.getNode(ADest
);
175 DomTreeNode
*DomBDest
= DT
.getNode(BDest
);
176 unsigned AIn
= DomADest
->getDFSNumIn();
177 unsigned BIn
= DomBDest
->getDFSNumIn();
180 assert((!A
.Def
|| !A
.U
) && (!B
.Def
|| !B
.U
) &&
181 "Def and U cannot be set at the same time");
182 // Now sort by edge destination and then defs before uses.
183 return std::tie(AIn
, isADef
) < std::tie(BIn
, isBDef
);
186 // Get the definition of an instruction that occurs in the middle of a block.
187 Value
*getMiddleDef(const ValueDFS
&VD
) const {
190 // It's possible for the defs and uses to be null. For branches, the local
191 // numbering will say the placed predicaeinfos should go first (IE
192 // LN_beginning), so we won't be in this function. For assumes, we will end
193 // up here, beause we need to order the def we will place relative to the
194 // assume. So for the purpose of ordering, we pretend the def is right
195 // after the assume, because that is where we will insert the info.
198 "No def, no use, and no predicateinfo should not occur");
199 assert(isa
<PredicateAssume
>(VD
.PInfo
) &&
200 "Middle of block should only occur for assumes");
201 return cast
<PredicateAssume
>(VD
.PInfo
)->AssumeInst
->getNextNode();
206 // Return either the Def, if it's not null, or the user of the Use, if the def
208 const Instruction
*getDefOrUser(const Value
*Def
, const Use
*U
) const {
210 return cast
<Instruction
>(Def
);
211 return cast
<Instruction
>(U
->getUser());
214 // This performs the necessary local basic block ordering checks to tell
215 // whether A comes before B, where both are in the same basic block.
216 bool localComesBefore(const ValueDFS
&A
, const ValueDFS
&B
) const {
217 auto *ADef
= getMiddleDef(A
);
218 auto *BDef
= getMiddleDef(B
);
220 // See if we have real values or uses. If we have real values, we are
221 // guaranteed they are instructions or arguments. No matter what, we are
222 // guaranteed they are in the same block if they are instructions.
223 auto *ArgA
= dyn_cast_or_null
<Argument
>(ADef
);
224 auto *ArgB
= dyn_cast_or_null
<Argument
>(BDef
);
227 return valueComesBefore(ArgA
, ArgB
);
229 auto *AInst
= getDefOrUser(ADef
, A
.U
);
230 auto *BInst
= getDefOrUser(BDef
, B
.U
);
231 return valueComesBefore(AInst
, BInst
);
235 class PredicateInfoBuilder
{
236 // Used to store information about each value we might rename.
238 SmallVector
<PredicateBase
*, 4> Infos
;
246 // This stores info about each operand or comparison result we make copies
247 // of. The real ValueInfos start at index 1, index 0 is unused so that we
248 // can more easily detect invalid indexing.
249 SmallVector
<ValueInfo
, 32> ValueInfos
;
251 // This gives the index into the ValueInfos array for a given Value. Because
252 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
253 // whether it returned a valid result.
254 DenseMap
<Value
*, unsigned int> ValueInfoNums
;
256 // The set of edges along which we can only handle phi uses, due to critical
258 DenseSet
<std::pair
<BasicBlock
*, BasicBlock
*>> EdgeUsesOnly
;
260 ValueInfo
&getOrCreateValueInfo(Value
*);
261 const ValueInfo
&getValueInfo(Value
*) const;
263 void processAssume(IntrinsicInst
*, BasicBlock
*,
264 SmallVectorImpl
<Value
*> &OpsToRename
);
265 void processBranch(BranchInst
*, BasicBlock
*,
266 SmallVectorImpl
<Value
*> &OpsToRename
);
267 void processSwitch(SwitchInst
*, BasicBlock
*,
268 SmallVectorImpl
<Value
*> &OpsToRename
);
269 void renameUses(SmallVectorImpl
<Value
*> &OpsToRename
);
270 void addInfoFor(SmallVectorImpl
<Value
*> &OpsToRename
, Value
*Op
,
273 typedef SmallVectorImpl
<ValueDFS
> ValueDFSStack
;
274 void convertUsesToDFSOrdered(Value
*, SmallVectorImpl
<ValueDFS
> &);
275 Value
*materializeStack(unsigned int &, ValueDFSStack
&, Value
*);
276 bool stackIsInScope(const ValueDFSStack
&, const ValueDFS
&) const;
277 void popStackUntilDFSScope(ValueDFSStack
&, const ValueDFS
&);
280 PredicateInfoBuilder(PredicateInfo
&PI
, Function
&F
, DominatorTree
&DT
,
282 : PI(PI
), F(F
), DT(DT
), AC(AC
) {
283 // Push an empty operand info so that we can detect 0 as not finding one
284 ValueInfos
.resize(1);
287 void buildPredicateInfo();
290 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack
&Stack
,
291 const ValueDFS
&VDUse
) const {
294 // If it's a phi only use, make sure it's for this phi node edge, and that the
295 // use is in a phi node. If it's anything else, and the top of the stack is
296 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
297 // the defs they must go with so that we can know it's time to pop the stack
298 // when we hit the end of the phi uses for a given def.
299 if (Stack
.back().EdgeOnly
) {
302 auto *PHI
= dyn_cast
<PHINode
>(VDUse
.U
->getUser());
306 BasicBlock
*EdgePred
= PHI
->getIncomingBlock(*VDUse
.U
);
307 if (EdgePred
!= getBranchBlock(Stack
.back().PInfo
))
310 // Use dominates, which knows how to handle edge dominance.
311 return DT
.dominates(getBlockEdge(Stack
.back().PInfo
), *VDUse
.U
);
314 return (VDUse
.DFSIn
>= Stack
.back().DFSIn
&&
315 VDUse
.DFSOut
<= Stack
.back().DFSOut
);
318 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack
&Stack
,
319 const ValueDFS
&VD
) {
320 while (!Stack
.empty() && !stackIsInScope(Stack
, VD
))
324 // Convert the uses of Op into a vector of uses, associating global and local
325 // DFS info with each one.
326 void PredicateInfoBuilder::convertUsesToDFSOrdered(
327 Value
*Op
, SmallVectorImpl
<ValueDFS
> &DFSOrderedSet
) {
328 for (auto &U
: Op
->uses()) {
329 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser())) {
331 // Put the phi node uses in the incoming block.
333 if (auto *PN
= dyn_cast
<PHINode
>(I
)) {
334 IBlock
= PN
->getIncomingBlock(U
);
335 // Make phi node users appear last in the incoming block
337 VD
.LocalNum
= LN_Last
;
339 // If it's not a phi node use, it is somewhere in the middle of the
341 IBlock
= I
->getParent();
342 VD
.LocalNum
= LN_Middle
;
344 DomTreeNode
*DomNode
= DT
.getNode(IBlock
);
345 // It's possible our use is in an unreachable block. Skip it if so.
348 VD
.DFSIn
= DomNode
->getDFSNumIn();
349 VD
.DFSOut
= DomNode
->getDFSNumOut();
351 DFSOrderedSet
.push_back(VD
);
356 bool shouldRename(Value
*V
) {
357 // Only want real values, not constants. Additionally, operands with one use
358 // are only being used in the comparison, which means they will not be useful
359 // for us to consider for predicateinfo.
360 return (isa
<Instruction
>(V
) || isa
<Argument
>(V
)) && !V
->hasOneUse();
363 // Collect relevant operations from Comparison that we may want to insert copies
365 void collectCmpOps(CmpInst
*Comparison
, SmallVectorImpl
<Value
*> &CmpOperands
) {
366 auto *Op0
= Comparison
->getOperand(0);
367 auto *Op1
= Comparison
->getOperand(1);
371 CmpOperands
.push_back(Op0
);
372 CmpOperands
.push_back(Op1
);
375 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
376 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl
<Value
*> &OpsToRename
,
377 Value
*Op
, PredicateBase
*PB
) {
378 auto &OperandInfo
= getOrCreateValueInfo(Op
);
379 if (OperandInfo
.Infos
.empty())
380 OpsToRename
.push_back(Op
);
381 PI
.AllInfos
.push_back(PB
);
382 OperandInfo
.Infos
.push_back(PB
);
385 // Process an assume instruction and place relevant operations we want to rename
387 void PredicateInfoBuilder::processAssume(
388 IntrinsicInst
*II
, BasicBlock
*AssumeBB
,
389 SmallVectorImpl
<Value
*> &OpsToRename
) {
390 SmallVector
<Value
*, 4> Worklist
;
391 SmallPtrSet
<Value
*, 4> Visited
;
392 Worklist
.push_back(II
->getOperand(0));
393 while (!Worklist
.empty()) {
394 Value
*Cond
= Worklist
.pop_back_val();
395 if (!Visited
.insert(Cond
).second
)
397 if (Visited
.size() > MaxCondsPerBranch
)
401 if (match(Cond
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
)))) {
402 Worklist
.push_back(Op1
);
403 Worklist
.push_back(Op0
);
406 SmallVector
<Value
*, 4> Values
;
407 Values
.push_back(Cond
);
408 if (auto *Cmp
= dyn_cast
<CmpInst
>(Cond
))
409 collectCmpOps(Cmp
, Values
);
411 for (Value
*V
: Values
) {
412 if (shouldRename(V
)) {
413 auto *PA
= new PredicateAssume(V
, II
, Cond
);
414 addInfoFor(OpsToRename
, V
, PA
);
420 // Process a block terminating branch, and place relevant operations to be
421 // renamed into OpsToRename.
422 void PredicateInfoBuilder::processBranch(
423 BranchInst
*BI
, BasicBlock
*BranchBB
,
424 SmallVectorImpl
<Value
*> &OpsToRename
) {
425 BasicBlock
*FirstBB
= BI
->getSuccessor(0);
426 BasicBlock
*SecondBB
= BI
->getSuccessor(1);
428 for (BasicBlock
*Succ
: {FirstBB
, SecondBB
}) {
429 bool TakenEdge
= Succ
== FirstBB
;
430 // Don't try to insert on a self-edge. This is mainly because we will
431 // eliminate during renaming anyway.
432 if (Succ
== BranchBB
)
435 SmallVector
<Value
*, 4> Worklist
;
436 SmallPtrSet
<Value
*, 4> Visited
;
437 Worklist
.push_back(BI
->getCondition());
438 while (!Worklist
.empty()) {
439 Value
*Cond
= Worklist
.pop_back_val();
440 if (!Visited
.insert(Cond
).second
)
442 if (Visited
.size() > MaxCondsPerBranch
)
446 if (TakenEdge
? match(Cond
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
)))
447 : match(Cond
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
)))) {
448 Worklist
.push_back(Op1
);
449 Worklist
.push_back(Op0
);
452 SmallVector
<Value
*, 4> Values
;
453 Values
.push_back(Cond
);
454 if (auto *Cmp
= dyn_cast
<CmpInst
>(Cond
))
455 collectCmpOps(Cmp
, Values
);
457 for (Value
*V
: Values
) {
458 if (shouldRename(V
)) {
460 new PredicateBranch(V
, BranchBB
, Succ
, Cond
, TakenEdge
);
461 addInfoFor(OpsToRename
, V
, PB
);
462 if (!Succ
->getSinglePredecessor())
463 EdgeUsesOnly
.insert({BranchBB
, Succ
});
469 // Process a block terminating switch, and place relevant operations to be
470 // renamed into OpsToRename.
471 void PredicateInfoBuilder::processSwitch(
472 SwitchInst
*SI
, BasicBlock
*BranchBB
,
473 SmallVectorImpl
<Value
*> &OpsToRename
) {
474 Value
*Op
= SI
->getCondition();
475 if ((!isa
<Instruction
>(Op
) && !isa
<Argument
>(Op
)) || Op
->hasOneUse())
478 // Remember how many outgoing edges there are to every successor.
479 SmallDenseMap
<BasicBlock
*, unsigned, 16> SwitchEdges
;
480 for (BasicBlock
*TargetBlock
: successors(BranchBB
))
481 ++SwitchEdges
[TargetBlock
];
483 // Now propagate info for each case value
484 for (auto C
: SI
->cases()) {
485 BasicBlock
*TargetBlock
= C
.getCaseSuccessor();
486 if (SwitchEdges
.lookup(TargetBlock
) == 1) {
487 PredicateSwitch
*PS
= new PredicateSwitch(
488 Op
, SI
->getParent(), TargetBlock
, C
.getCaseValue(), SI
);
489 addInfoFor(OpsToRename
, Op
, PS
);
490 if (!TargetBlock
->getSinglePredecessor())
491 EdgeUsesOnly
.insert({BranchBB
, TargetBlock
});
496 // Build predicate info for our function
497 void PredicateInfoBuilder::buildPredicateInfo() {
498 DT
.updateDFSNumbers();
499 // Collect operands to rename from all conditional branch terminators, as well
500 // as assume statements.
501 SmallVector
<Value
*, 8> OpsToRename
;
502 for (auto *DTN
: depth_first(DT
.getRootNode())) {
503 BasicBlock
*BranchBB
= DTN
->getBlock();
504 if (auto *BI
= dyn_cast
<BranchInst
>(BranchBB
->getTerminator())) {
505 if (!BI
->isConditional())
507 // Can't insert conditional information if they all go to the same place.
508 if (BI
->getSuccessor(0) == BI
->getSuccessor(1))
510 processBranch(BI
, BranchBB
, OpsToRename
);
511 } else if (auto *SI
= dyn_cast
<SwitchInst
>(BranchBB
->getTerminator())) {
512 processSwitch(SI
, BranchBB
, OpsToRename
);
515 for (auto &Assume
: AC
.assumptions()) {
516 if (auto *II
= dyn_cast_or_null
<IntrinsicInst
>(Assume
))
517 if (DT
.isReachableFromEntry(II
->getParent()))
518 processAssume(II
, II
->getParent(), OpsToRename
);
520 // Now rename all our operations.
521 renameUses(OpsToRename
);
524 // Given the renaming stack, make all the operands currently on the stack real
525 // by inserting them into the IR. Return the last operation's value.
526 Value
*PredicateInfoBuilder::materializeStack(unsigned int &Counter
,
527 ValueDFSStack
&RenameStack
,
529 // Find the first thing we have to materialize
530 auto RevIter
= RenameStack
.rbegin();
531 for (; RevIter
!= RenameStack
.rend(); ++RevIter
)
535 size_t Start
= RevIter
- RenameStack
.rbegin();
536 // The maximum number of things we should be trying to materialize at once
537 // right now is 4, depending on if we had an assume, a branch, and both used
538 // and of conditions.
539 for (auto RenameIter
= RenameStack
.end() - Start
;
540 RenameIter
!= RenameStack
.end(); ++RenameIter
) {
542 RenameIter
== RenameStack
.begin() ? OrigOp
: (RenameIter
- 1)->Def
;
543 ValueDFS
&Result
= *RenameIter
;
544 auto *ValInfo
= Result
.PInfo
;
545 ValInfo
->RenamedOp
= (RenameStack
.end() - Start
) == RenameStack
.begin()
547 : (RenameStack
.end() - Start
- 1)->Def
;
548 // For edge predicates, we can just place the operand in the block before
549 // the terminator. For assume, we have to place it right before the assume
550 // to ensure we dominate all of our uses. Always insert right before the
551 // relevant instruction (terminator, assume), so that we insert in proper
552 // order in the case of multiple predicateinfo in the same block.
553 // The number of named values is used to detect if a new declaration was
554 // added. If so, that declaration is tracked so that it can be removed when
555 // the analysis is done. The corner case were a new declaration results in
556 // a name clash and the old name being renamed is not considered as that
557 // represents an invalid module.
558 if (isa
<PredicateWithEdge
>(ValInfo
)) {
559 IRBuilder
<> B(getBranchTerminator(ValInfo
));
560 auto NumDecls
= F
.getParent()->getNumNamedValues();
561 Function
*IF
= Intrinsic::getOrInsertDeclaration(
562 F
.getParent(), Intrinsic::ssa_copy
, Op
->getType());
563 if (NumDecls
!= F
.getParent()->getNumNamedValues())
564 PI
.CreatedDeclarations
.insert(IF
);
566 B
.CreateCall(IF
, Op
, Op
->getName() + "." + Twine(Counter
++));
567 PI
.PredicateMap
.insert({PIC
, ValInfo
});
570 auto *PAssume
= dyn_cast
<PredicateAssume
>(ValInfo
);
572 "Should not have gotten here without it being an assume");
573 // Insert the predicate directly after the assume. While it also holds
574 // directly before it, assume(i1 true) is not a useful fact.
575 IRBuilder
<> B(PAssume
->AssumeInst
->getNextNode());
576 auto NumDecls
= F
.getParent()->getNumNamedValues();
577 Function
*IF
= Intrinsic::getOrInsertDeclaration(
578 F
.getParent(), Intrinsic::ssa_copy
, Op
->getType());
579 if (NumDecls
!= F
.getParent()->getNumNamedValues())
580 PI
.CreatedDeclarations
.insert(IF
);
581 CallInst
*PIC
= B
.CreateCall(IF
, Op
);
582 PI
.PredicateMap
.insert({PIC
, ValInfo
});
586 return RenameStack
.back().Def
;
589 // Instead of the standard SSA renaming algorithm, which is O(Number of
590 // instructions), and walks the entire dominator tree, we walk only the defs +
591 // uses. The standard SSA renaming algorithm does not really rely on the
592 // dominator tree except to order the stack push/pops of the renaming stacks, so
593 // that defs end up getting pushed before hitting the correct uses. This does
594 // not require the dominator tree, only the *order* of the dominator tree. The
595 // complete and correct ordering of the defs and uses, in dominator tree is
596 // contained in the DFS numbering of the dominator tree. So we sort the defs and
597 // uses into the DFS ordering, and then just use the renaming stack as per
598 // normal, pushing when we hit a def (which is a predicateinfo instruction),
599 // popping when we are out of the dfs scope for that def, and replacing any uses
600 // with top of stack if it exists. In order to handle liveness without
601 // propagating liveness info, we don't actually insert the predicateinfo
602 // instruction def until we see a use that it would dominate. Once we see such
603 // a use, we materialize the predicateinfo instruction in the right place and
606 // TODO: Use this algorithm to perform fast single-variable renaming in
607 // promotememtoreg and memoryssa.
608 void PredicateInfoBuilder::renameUses(SmallVectorImpl
<Value
*> &OpsToRename
) {
609 ValueDFS_Compare
Compare(DT
);
610 // Compute liveness, and rename in O(uses) per Op.
611 for (auto *Op
: OpsToRename
) {
612 LLVM_DEBUG(dbgs() << "Visiting " << *Op
<< "\n");
613 unsigned Counter
= 0;
614 SmallVector
<ValueDFS
, 16> OrderedUses
;
615 const auto &ValueInfo
= getValueInfo(Op
);
616 // Insert the possible copies into the def/use list.
617 // They will become real copies if we find a real use for them, and never
618 // created otherwise.
619 for (const auto &PossibleCopy
: ValueInfo
.Infos
) {
621 // Determine where we are going to place the copy by the copy type.
622 // The predicate info for branches always come first, they will get
623 // materialized in the split block at the top of the block.
624 // The predicate info for assumes will be somewhere in the middle,
625 // it will get materialized in front of the assume.
626 if (const auto *PAssume
= dyn_cast
<PredicateAssume
>(PossibleCopy
)) {
627 VD
.LocalNum
= LN_Middle
;
628 DomTreeNode
*DomNode
= DT
.getNode(PAssume
->AssumeInst
->getParent());
631 VD
.DFSIn
= DomNode
->getDFSNumIn();
632 VD
.DFSOut
= DomNode
->getDFSNumOut();
633 VD
.PInfo
= PossibleCopy
;
634 OrderedUses
.push_back(VD
);
635 } else if (isa
<PredicateWithEdge
>(PossibleCopy
)) {
636 // If we can only do phi uses, we treat it like it's in the branch
637 // block, and handle it specially. We know that it goes last, and only
638 // dominate phi uses.
639 auto BlockEdge
= getBlockEdge(PossibleCopy
);
640 if (EdgeUsesOnly
.count(BlockEdge
)) {
641 VD
.LocalNum
= LN_Last
;
642 auto *DomNode
= DT
.getNode(BlockEdge
.first
);
644 VD
.DFSIn
= DomNode
->getDFSNumIn();
645 VD
.DFSOut
= DomNode
->getDFSNumOut();
646 VD
.PInfo
= PossibleCopy
;
648 OrderedUses
.push_back(VD
);
651 // Otherwise, we are in the split block (even though we perform
652 // insertion in the branch block).
653 // Insert a possible copy at the split block and before the branch.
654 VD
.LocalNum
= LN_First
;
655 auto *DomNode
= DT
.getNode(BlockEdge
.second
);
657 VD
.DFSIn
= DomNode
->getDFSNumIn();
658 VD
.DFSOut
= DomNode
->getDFSNumOut();
659 VD
.PInfo
= PossibleCopy
;
660 OrderedUses
.push_back(VD
);
666 convertUsesToDFSOrdered(Op
, OrderedUses
);
667 // Here we require a stable sort because we do not bother to try to
668 // assign an order to the operands the uses represent. Thus, two
669 // uses in the same instruction do not have a strict sort order
670 // currently and will be considered equal. We could get rid of the
671 // stable sort by creating one if we wanted.
672 llvm::stable_sort(OrderedUses
, Compare
);
673 SmallVector
<ValueDFS
, 8> RenameStack
;
674 // For each use, sorted into dfs order, push values and replaces uses with
675 // top of stack, which will represent the reaching def.
676 for (auto &VD
: OrderedUses
) {
677 // We currently do not materialize copy over copy, but we should decide if
679 bool PossibleCopy
= VD
.PInfo
!= nullptr;
680 if (RenameStack
.empty()) {
681 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
683 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
684 << RenameStack
.back().DFSIn
<< ","
685 << RenameStack
.back().DFSOut
<< ")\n");
688 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD
.DFSIn
<< ","
689 << VD
.DFSOut
<< ")\n");
691 bool ShouldPush
= (VD
.Def
|| PossibleCopy
);
692 bool OutOfScope
= !stackIsInScope(RenameStack
, VD
);
693 if (OutOfScope
|| ShouldPush
) {
694 // Sync to our current scope.
695 popStackUntilDFSScope(RenameStack
, VD
);
697 RenameStack
.push_back(VD
);
700 // If we get to this point, and the stack is empty we must have a use
701 // with no renaming needed, just skip it.
702 if (RenameStack
.empty())
704 // Skip values, only want to rename the uses
705 if (VD
.Def
|| PossibleCopy
)
707 if (!DebugCounter::shouldExecute(RenameCounter
)) {
708 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
711 ValueDFS
&Result
= RenameStack
.back();
713 // If the possible copy dominates something, materialize our stack up to
714 // this point. This ensures every comparison that affects our operation
715 // ends up with predicateinfo.
717 Result
.Def
= materializeStack(Counter
, RenameStack
, Op
);
719 LLVM_DEBUG(dbgs() << "Found replacement " << *Result
.Def
<< " for "
720 << *VD
.U
->get() << " in " << *(VD
.U
->getUser())
722 assert(DT
.dominates(cast
<Instruction
>(Result
.Def
), *VD
.U
) &&
723 "Predicateinfo def should have dominated this use");
724 VD
.U
->set(Result
.Def
);
729 PredicateInfoBuilder::ValueInfo
&
730 PredicateInfoBuilder::getOrCreateValueInfo(Value
*Operand
) {
731 auto OIN
= ValueInfoNums
.find(Operand
);
732 if (OIN
== ValueInfoNums
.end()) {
734 ValueInfos
.resize(ValueInfos
.size() + 1);
735 // This will use the new size and give us a 0 based number of the info
736 auto InsertResult
= ValueInfoNums
.insert({Operand
, ValueInfos
.size() - 1});
737 assert(InsertResult
.second
&& "Value info number already existed?");
738 return ValueInfos
[InsertResult
.first
->second
];
740 return ValueInfos
[OIN
->second
];
743 const PredicateInfoBuilder::ValueInfo
&
744 PredicateInfoBuilder::getValueInfo(Value
*Operand
) const {
745 auto OINI
= ValueInfoNums
.lookup(Operand
);
746 assert(OINI
!= 0 && "Operand was not really in the Value Info Numbers");
747 assert(OINI
< ValueInfos
.size() &&
748 "Value Info Number greater than size of Value Info Table");
749 return ValueInfos
[OINI
];
752 PredicateInfo::PredicateInfo(Function
&F
, DominatorTree
&DT
,
755 PredicateInfoBuilder
Builder(*this, F
, DT
, AC
);
756 Builder
.buildPredicateInfo();
759 // Remove all declarations we created . The PredicateInfo consumers are
760 // responsible for remove the ssa_copy calls created.
761 PredicateInfo::~PredicateInfo() {
762 // Collect function pointers in set first, as SmallSet uses a SmallVector
763 // internally and we have to remove the asserting value handles first.
764 SmallPtrSet
<Function
*, 20> FunctionPtrs
;
765 for (const auto &F
: CreatedDeclarations
)
766 FunctionPtrs
.insert(&*F
);
767 CreatedDeclarations
.clear();
769 for (Function
*F
: FunctionPtrs
) {
770 assert(F
->user_begin() == F
->user_end() &&
771 "PredicateInfo consumer did not remove all SSA copies.");
772 F
->eraseFromParent();
776 std::optional
<PredicateConstraint
> PredicateBase::getConstraint() const {
780 bool TrueEdge
= true;
781 if (auto *PBranch
= dyn_cast
<PredicateBranch
>(this))
782 TrueEdge
= PBranch
->TrueEdge
;
784 if (Condition
== RenamedOp
) {
785 return {{CmpInst::ICMP_EQ
,
786 TrueEdge
? ConstantInt::getTrue(Condition
->getType())
787 : ConstantInt::getFalse(Condition
->getType())}};
790 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(Condition
);
792 // TODO: Make this an assertion once RenamedOp is fully accurate.
796 CmpInst::Predicate Pred
;
798 if (Cmp
->getOperand(0) == RenamedOp
) {
799 Pred
= Cmp
->getPredicate();
800 OtherOp
= Cmp
->getOperand(1);
801 } else if (Cmp
->getOperand(1) == RenamedOp
) {
802 Pred
= Cmp
->getSwappedPredicate();
803 OtherOp
= Cmp
->getOperand(0);
805 // TODO: Make this an assertion once RenamedOp is fully accurate.
809 // Invert predicate along false edge.
811 Pred
= CmpInst::getInversePredicate(Pred
);
813 return {{Pred
, OtherOp
}};
816 if (Condition
!= RenamedOp
) {
817 // TODO: Make this an assertion once RenamedOp is fully accurate.
821 return {{CmpInst::ICMP_EQ
, cast
<PredicateSwitch
>(this)->CaseValue
}};
823 llvm_unreachable("Unknown predicate type");
826 void PredicateInfo::verifyPredicateInfo() const {}
828 // Replace ssa_copy calls created by PredicateInfo with their operand.
829 static void replaceCreatedSSACopys(PredicateInfo
&PredInfo
, Function
&F
) {
830 for (Instruction
&Inst
: llvm::make_early_inc_range(instructions(F
))) {
831 const auto *PI
= PredInfo
.getPredicateInfoFor(&Inst
);
832 auto *II
= dyn_cast
<IntrinsicInst
>(&Inst
);
833 if (!PI
|| !II
|| II
->getIntrinsicID() != Intrinsic::ssa_copy
)
836 Inst
.replaceAllUsesWith(II
->getOperand(0));
837 Inst
.eraseFromParent();
841 PreservedAnalyses
PredicateInfoPrinterPass::run(Function
&F
,
842 FunctionAnalysisManager
&AM
) {
843 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
844 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
845 OS
<< "PredicateInfo for function: " << F
.getName() << "\n";
846 auto PredInfo
= std::make_unique
<PredicateInfo
>(F
, DT
, AC
);
849 replaceCreatedSSACopys(*PredInfo
, F
);
850 return PreservedAnalyses::all();
853 /// An assembly annotator class to print PredicateInfo information in
855 class PredicateInfoAnnotatedWriter
: public AssemblyAnnotationWriter
{
856 friend class PredicateInfo
;
857 const PredicateInfo
*PredInfo
;
860 PredicateInfoAnnotatedWriter(const PredicateInfo
*M
) : PredInfo(M
) {}
862 void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
863 formatted_raw_ostream
&OS
) override
{}
865 void emitInstructionAnnot(const Instruction
*I
,
866 formatted_raw_ostream
&OS
) override
{
867 if (const auto *PI
= PredInfo
->getPredicateInfoFor(I
)) {
868 OS
<< "; Has predicate info\n";
869 if (const auto *PB
= dyn_cast
<PredicateBranch
>(PI
)) {
870 OS
<< "; branch predicate info { TrueEdge: " << PB
->TrueEdge
871 << " Comparison:" << *PB
->Condition
<< " Edge: [";
872 PB
->From
->printAsOperand(OS
);
874 PB
->To
->printAsOperand(OS
);
876 } else if (const auto *PS
= dyn_cast
<PredicateSwitch
>(PI
)) {
877 OS
<< "; switch predicate info { CaseValue: " << *PS
->CaseValue
878 << " Switch:" << *PS
->Switch
<< " Edge: [";
879 PS
->From
->printAsOperand(OS
);
881 PS
->To
->printAsOperand(OS
);
883 } else if (const auto *PA
= dyn_cast
<PredicateAssume
>(PI
)) {
884 OS
<< "; assume predicate info {"
885 << " Comparison:" << *PA
->Condition
;
887 OS
<< ", RenamedOp: ";
888 PI
->RenamedOp
->printAsOperand(OS
, false);
894 void PredicateInfo::print(raw_ostream
&OS
) const {
895 PredicateInfoAnnotatedWriter
Writer(this);
896 F
.print(OS
, &Writer
);
899 void PredicateInfo::dump() const {
900 PredicateInfoAnnotatedWriter
Writer(this);
901 F
.print(dbgs(), &Writer
);
904 PreservedAnalyses
PredicateInfoVerifierPass::run(Function
&F
,
905 FunctionAnalysisManager
&AM
) {
906 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
907 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
908 std::make_unique
<PredicateInfo
>(F
, DT
, AC
)->verifyPredicateInfo();
910 return PreservedAnalyses::all();