[win/asan] GetInstructionSize: Fix `83 E4 XX` to return 3. (#119644)
[llvm-project.git] / llvm / lib / Transforms / Utils / PredicateInfo.cpp
blob9ae10b07147fcfd4ea6084e41f49b32ec89e0849
1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the PredicateInfo class.
11 //===----------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/IR/AssemblyAnnotationWriter.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/DebugCounter.h"
29 #include "llvm/Support/FormattedStream.h"
30 #define DEBUG_TYPE "predicateinfo"
31 using namespace llvm;
32 using namespace PatternMatch;
34 static cl::opt<bool> VerifyPredicateInfo(
35 "verify-predicateinfo", cl::init(false), cl::Hidden,
36 cl::desc("Verify PredicateInfo in legacy printer pass."));
37 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
38 "Controls which variables are renamed with predicateinfo");
40 // Maximum number of conditions considered for renaming for each branch/assume.
41 // This limits renaming of deep and/or chains.
42 static const unsigned MaxCondsPerBranch = 8;
44 namespace {
45 // Given a predicate info that is a type of branching terminator, get the
46 // branching block.
47 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
48 assert(isa<PredicateWithEdge>(PB) &&
49 "Only branches and switches should have PHIOnly defs that "
50 "require branch blocks.");
51 return cast<PredicateWithEdge>(PB)->From;
54 // Given a predicate info that is a type of branching terminator, get the
55 // branching terminator.
56 static Instruction *getBranchTerminator(const PredicateBase *PB) {
57 assert(isa<PredicateWithEdge>(PB) &&
58 "Not a predicate info type we know how to get a terminator from.");
59 return cast<PredicateWithEdge>(PB)->From->getTerminator();
62 // Given a predicate info that is a type of branching terminator, get the
63 // edge this predicate info represents
64 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) {
65 assert(isa<PredicateWithEdge>(PB) &&
66 "Not a predicate info type we know how to get an edge from.");
67 const auto *PEdge = cast<PredicateWithEdge>(PB);
68 return std::make_pair(PEdge->From, PEdge->To);
72 namespace llvm {
73 enum LocalNum {
74 // Operations that must appear first in the block.
75 LN_First,
76 // Operations that are somewhere in the middle of the block, and are sorted on
77 // demand.
78 LN_Middle,
79 // Operations that must appear last in a block, like successor phi node uses.
80 LN_Last
83 // Associate global and local DFS info with defs and uses, so we can sort them
84 // into a global domination ordering.
85 struct ValueDFS {
86 int DFSIn = 0;
87 int DFSOut = 0;
88 unsigned int LocalNum = LN_Middle;
89 // Only one of Def or Use will be set.
90 Value *Def = nullptr;
91 Use *U = nullptr;
92 // Neither PInfo nor EdgeOnly participate in the ordering
93 PredicateBase *PInfo = nullptr;
94 bool EdgeOnly = false;
97 // Perform a strict weak ordering on instructions and arguments.
98 static bool valueComesBefore(const Value *A, const Value *B) {
99 auto *ArgA = dyn_cast_or_null<Argument>(A);
100 auto *ArgB = dyn_cast_or_null<Argument>(B);
101 if (ArgA && !ArgB)
102 return true;
103 if (ArgB && !ArgA)
104 return false;
105 if (ArgA && ArgB)
106 return ArgA->getArgNo() < ArgB->getArgNo();
107 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
110 // This compares ValueDFS structures. Doing so allows us to walk the minimum
111 // number of instructions necessary to compute our def/use ordering.
112 struct ValueDFS_Compare {
113 DominatorTree &DT;
114 ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
116 bool operator()(const ValueDFS &A, const ValueDFS &B) const {
117 if (&A == &B)
118 return false;
119 // The only case we can't directly compare them is when they in the same
120 // block, and both have localnum == middle. In that case, we have to use
121 // comesbefore to see what the real ordering is, because they are in the
122 // same basic block.
124 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
125 "Equal DFS-in numbers imply equal out numbers");
126 bool SameBlock = A.DFSIn == B.DFSIn;
128 // We want to put the def that will get used for a given set of phi uses,
129 // before those phi uses.
130 // So we sort by edge, then by def.
131 // Note that only phi nodes uses and defs can come last.
132 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
133 return comparePHIRelated(A, B);
135 bool isADef = A.Def;
136 bool isBDef = B.Def;
137 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
138 return std::tie(A.DFSIn, A.LocalNum, isADef) <
139 std::tie(B.DFSIn, B.LocalNum, isBDef);
140 return localComesBefore(A, B);
143 // For a phi use, or a non-materialized def, return the edge it represents.
144 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const {
145 if (!VD.Def && VD.U) {
146 auto *PHI = cast<PHINode>(VD.U->getUser());
147 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
149 // This is really a non-materialized def.
150 return ::getBlockEdge(VD.PInfo);
153 // For two phi related values, return the ordering.
154 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
155 BasicBlock *ASrc, *ADest, *BSrc, *BDest;
156 std::tie(ASrc, ADest) = getBlockEdge(A);
157 std::tie(BSrc, BDest) = getBlockEdge(B);
159 #ifndef NDEBUG
160 // This function should only be used for values in the same BB, check that.
161 DomTreeNode *DomASrc = DT.getNode(ASrc);
162 DomTreeNode *DomBSrc = DT.getNode(BSrc);
163 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
164 "DFS numbers for A should match the ones of the source block");
165 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
166 "DFS numbers for B should match the ones of the source block");
167 assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
168 #endif
169 (void)ASrc;
170 (void)BSrc;
172 // Use DFS numbers to compare destination blocks, to guarantee a
173 // deterministic order.
174 DomTreeNode *DomADest = DT.getNode(ADest);
175 DomTreeNode *DomBDest = DT.getNode(BDest);
176 unsigned AIn = DomADest->getDFSNumIn();
177 unsigned BIn = DomBDest->getDFSNumIn();
178 bool isADef = A.Def;
179 bool isBDef = B.Def;
180 assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
181 "Def and U cannot be set at the same time");
182 // Now sort by edge destination and then defs before uses.
183 return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
186 // Get the definition of an instruction that occurs in the middle of a block.
187 Value *getMiddleDef(const ValueDFS &VD) const {
188 if (VD.Def)
189 return VD.Def;
190 // It's possible for the defs and uses to be null. For branches, the local
191 // numbering will say the placed predicaeinfos should go first (IE
192 // LN_beginning), so we won't be in this function. For assumes, we will end
193 // up here, beause we need to order the def we will place relative to the
194 // assume. So for the purpose of ordering, we pretend the def is right
195 // after the assume, because that is where we will insert the info.
196 if (!VD.U) {
197 assert(VD.PInfo &&
198 "No def, no use, and no predicateinfo should not occur");
199 assert(isa<PredicateAssume>(VD.PInfo) &&
200 "Middle of block should only occur for assumes");
201 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
203 return nullptr;
206 // Return either the Def, if it's not null, or the user of the Use, if the def
207 // is null.
208 const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
209 if (Def)
210 return cast<Instruction>(Def);
211 return cast<Instruction>(U->getUser());
214 // This performs the necessary local basic block ordering checks to tell
215 // whether A comes before B, where both are in the same basic block.
216 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
217 auto *ADef = getMiddleDef(A);
218 auto *BDef = getMiddleDef(B);
220 // See if we have real values or uses. If we have real values, we are
221 // guaranteed they are instructions or arguments. No matter what, we are
222 // guaranteed they are in the same block if they are instructions.
223 auto *ArgA = dyn_cast_or_null<Argument>(ADef);
224 auto *ArgB = dyn_cast_or_null<Argument>(BDef);
226 if (ArgA || ArgB)
227 return valueComesBefore(ArgA, ArgB);
229 auto *AInst = getDefOrUser(ADef, A.U);
230 auto *BInst = getDefOrUser(BDef, B.U);
231 return valueComesBefore(AInst, BInst);
235 class PredicateInfoBuilder {
236 // Used to store information about each value we might rename.
237 struct ValueInfo {
238 SmallVector<PredicateBase *, 4> Infos;
241 PredicateInfo &PI;
242 Function &F;
243 DominatorTree &DT;
244 AssumptionCache &AC;
246 // This stores info about each operand or comparison result we make copies
247 // of. The real ValueInfos start at index 1, index 0 is unused so that we
248 // can more easily detect invalid indexing.
249 SmallVector<ValueInfo, 32> ValueInfos;
251 // This gives the index into the ValueInfos array for a given Value. Because
252 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
253 // whether it returned a valid result.
254 DenseMap<Value *, unsigned int> ValueInfoNums;
256 // The set of edges along which we can only handle phi uses, due to critical
257 // edges.
258 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
260 ValueInfo &getOrCreateValueInfo(Value *);
261 const ValueInfo &getValueInfo(Value *) const;
263 void processAssume(IntrinsicInst *, BasicBlock *,
264 SmallVectorImpl<Value *> &OpsToRename);
265 void processBranch(BranchInst *, BasicBlock *,
266 SmallVectorImpl<Value *> &OpsToRename);
267 void processSwitch(SwitchInst *, BasicBlock *,
268 SmallVectorImpl<Value *> &OpsToRename);
269 void renameUses(SmallVectorImpl<Value *> &OpsToRename);
270 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
271 PredicateBase *PB);
273 typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
274 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
275 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
276 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
277 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
279 public:
280 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
281 AssumptionCache &AC)
282 : PI(PI), F(F), DT(DT), AC(AC) {
283 // Push an empty operand info so that we can detect 0 as not finding one
284 ValueInfos.resize(1);
287 void buildPredicateInfo();
290 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
291 const ValueDFS &VDUse) const {
292 if (Stack.empty())
293 return false;
294 // If it's a phi only use, make sure it's for this phi node edge, and that the
295 // use is in a phi node. If it's anything else, and the top of the stack is
296 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
297 // the defs they must go with so that we can know it's time to pop the stack
298 // when we hit the end of the phi uses for a given def.
299 if (Stack.back().EdgeOnly) {
300 if (!VDUse.U)
301 return false;
302 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
303 if (!PHI)
304 return false;
305 // Check edge
306 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
307 if (EdgePred != getBranchBlock(Stack.back().PInfo))
308 return false;
310 // Use dominates, which knows how to handle edge dominance.
311 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
314 return (VDUse.DFSIn >= Stack.back().DFSIn &&
315 VDUse.DFSOut <= Stack.back().DFSOut);
318 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
319 const ValueDFS &VD) {
320 while (!Stack.empty() && !stackIsInScope(Stack, VD))
321 Stack.pop_back();
324 // Convert the uses of Op into a vector of uses, associating global and local
325 // DFS info with each one.
326 void PredicateInfoBuilder::convertUsesToDFSOrdered(
327 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
328 for (auto &U : Op->uses()) {
329 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
330 ValueDFS VD;
331 // Put the phi node uses in the incoming block.
332 BasicBlock *IBlock;
333 if (auto *PN = dyn_cast<PHINode>(I)) {
334 IBlock = PN->getIncomingBlock(U);
335 // Make phi node users appear last in the incoming block
336 // they are from.
337 VD.LocalNum = LN_Last;
338 } else {
339 // If it's not a phi node use, it is somewhere in the middle of the
340 // block.
341 IBlock = I->getParent();
342 VD.LocalNum = LN_Middle;
344 DomTreeNode *DomNode = DT.getNode(IBlock);
345 // It's possible our use is in an unreachable block. Skip it if so.
346 if (!DomNode)
347 continue;
348 VD.DFSIn = DomNode->getDFSNumIn();
349 VD.DFSOut = DomNode->getDFSNumOut();
350 VD.U = &U;
351 DFSOrderedSet.push_back(VD);
356 bool shouldRename(Value *V) {
357 // Only want real values, not constants. Additionally, operands with one use
358 // are only being used in the comparison, which means they will not be useful
359 // for us to consider for predicateinfo.
360 return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
363 // Collect relevant operations from Comparison that we may want to insert copies
364 // for.
365 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
366 auto *Op0 = Comparison->getOperand(0);
367 auto *Op1 = Comparison->getOperand(1);
368 if (Op0 == Op1)
369 return;
371 CmpOperands.push_back(Op0);
372 CmpOperands.push_back(Op1);
375 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
376 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
377 Value *Op, PredicateBase *PB) {
378 auto &OperandInfo = getOrCreateValueInfo(Op);
379 if (OperandInfo.Infos.empty())
380 OpsToRename.push_back(Op);
381 PI.AllInfos.push_back(PB);
382 OperandInfo.Infos.push_back(PB);
385 // Process an assume instruction and place relevant operations we want to rename
386 // into OpsToRename.
387 void PredicateInfoBuilder::processAssume(
388 IntrinsicInst *II, BasicBlock *AssumeBB,
389 SmallVectorImpl<Value *> &OpsToRename) {
390 SmallVector<Value *, 4> Worklist;
391 SmallPtrSet<Value *, 4> Visited;
392 Worklist.push_back(II->getOperand(0));
393 while (!Worklist.empty()) {
394 Value *Cond = Worklist.pop_back_val();
395 if (!Visited.insert(Cond).second)
396 continue;
397 if (Visited.size() > MaxCondsPerBranch)
398 break;
400 Value *Op0, *Op1;
401 if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
402 Worklist.push_back(Op1);
403 Worklist.push_back(Op0);
406 SmallVector<Value *, 4> Values;
407 Values.push_back(Cond);
408 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
409 collectCmpOps(Cmp, Values);
411 for (Value *V : Values) {
412 if (shouldRename(V)) {
413 auto *PA = new PredicateAssume(V, II, Cond);
414 addInfoFor(OpsToRename, V, PA);
420 // Process a block terminating branch, and place relevant operations to be
421 // renamed into OpsToRename.
422 void PredicateInfoBuilder::processBranch(
423 BranchInst *BI, BasicBlock *BranchBB,
424 SmallVectorImpl<Value *> &OpsToRename) {
425 BasicBlock *FirstBB = BI->getSuccessor(0);
426 BasicBlock *SecondBB = BI->getSuccessor(1);
428 for (BasicBlock *Succ : {FirstBB, SecondBB}) {
429 bool TakenEdge = Succ == FirstBB;
430 // Don't try to insert on a self-edge. This is mainly because we will
431 // eliminate during renaming anyway.
432 if (Succ == BranchBB)
433 continue;
435 SmallVector<Value *, 4> Worklist;
436 SmallPtrSet<Value *, 4> Visited;
437 Worklist.push_back(BI->getCondition());
438 while (!Worklist.empty()) {
439 Value *Cond = Worklist.pop_back_val();
440 if (!Visited.insert(Cond).second)
441 continue;
442 if (Visited.size() > MaxCondsPerBranch)
443 break;
445 Value *Op0, *Op1;
446 if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
447 : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
448 Worklist.push_back(Op1);
449 Worklist.push_back(Op0);
452 SmallVector<Value *, 4> Values;
453 Values.push_back(Cond);
454 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
455 collectCmpOps(Cmp, Values);
457 for (Value *V : Values) {
458 if (shouldRename(V)) {
459 PredicateBase *PB =
460 new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
461 addInfoFor(OpsToRename, V, PB);
462 if (!Succ->getSinglePredecessor())
463 EdgeUsesOnly.insert({BranchBB, Succ});
469 // Process a block terminating switch, and place relevant operations to be
470 // renamed into OpsToRename.
471 void PredicateInfoBuilder::processSwitch(
472 SwitchInst *SI, BasicBlock *BranchBB,
473 SmallVectorImpl<Value *> &OpsToRename) {
474 Value *Op = SI->getCondition();
475 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
476 return;
478 // Remember how many outgoing edges there are to every successor.
479 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
480 for (BasicBlock *TargetBlock : successors(BranchBB))
481 ++SwitchEdges[TargetBlock];
483 // Now propagate info for each case value
484 for (auto C : SI->cases()) {
485 BasicBlock *TargetBlock = C.getCaseSuccessor();
486 if (SwitchEdges.lookup(TargetBlock) == 1) {
487 PredicateSwitch *PS = new PredicateSwitch(
488 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
489 addInfoFor(OpsToRename, Op, PS);
490 if (!TargetBlock->getSinglePredecessor())
491 EdgeUsesOnly.insert({BranchBB, TargetBlock});
496 // Build predicate info for our function
497 void PredicateInfoBuilder::buildPredicateInfo() {
498 DT.updateDFSNumbers();
499 // Collect operands to rename from all conditional branch terminators, as well
500 // as assume statements.
501 SmallVector<Value *, 8> OpsToRename;
502 for (auto *DTN : depth_first(DT.getRootNode())) {
503 BasicBlock *BranchBB = DTN->getBlock();
504 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
505 if (!BI->isConditional())
506 continue;
507 // Can't insert conditional information if they all go to the same place.
508 if (BI->getSuccessor(0) == BI->getSuccessor(1))
509 continue;
510 processBranch(BI, BranchBB, OpsToRename);
511 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
512 processSwitch(SI, BranchBB, OpsToRename);
515 for (auto &Assume : AC.assumptions()) {
516 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
517 if (DT.isReachableFromEntry(II->getParent()))
518 processAssume(II, II->getParent(), OpsToRename);
520 // Now rename all our operations.
521 renameUses(OpsToRename);
524 // Given the renaming stack, make all the operands currently on the stack real
525 // by inserting them into the IR. Return the last operation's value.
526 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
527 ValueDFSStack &RenameStack,
528 Value *OrigOp) {
529 // Find the first thing we have to materialize
530 auto RevIter = RenameStack.rbegin();
531 for (; RevIter != RenameStack.rend(); ++RevIter)
532 if (RevIter->Def)
533 break;
535 size_t Start = RevIter - RenameStack.rbegin();
536 // The maximum number of things we should be trying to materialize at once
537 // right now is 4, depending on if we had an assume, a branch, and both used
538 // and of conditions.
539 for (auto RenameIter = RenameStack.end() - Start;
540 RenameIter != RenameStack.end(); ++RenameIter) {
541 auto *Op =
542 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
543 ValueDFS &Result = *RenameIter;
544 auto *ValInfo = Result.PInfo;
545 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
546 ? OrigOp
547 : (RenameStack.end() - Start - 1)->Def;
548 // For edge predicates, we can just place the operand in the block before
549 // the terminator. For assume, we have to place it right before the assume
550 // to ensure we dominate all of our uses. Always insert right before the
551 // relevant instruction (terminator, assume), so that we insert in proper
552 // order in the case of multiple predicateinfo in the same block.
553 // The number of named values is used to detect if a new declaration was
554 // added. If so, that declaration is tracked so that it can be removed when
555 // the analysis is done. The corner case were a new declaration results in
556 // a name clash and the old name being renamed is not considered as that
557 // represents an invalid module.
558 if (isa<PredicateWithEdge>(ValInfo)) {
559 IRBuilder<> B(getBranchTerminator(ValInfo));
560 auto NumDecls = F.getParent()->getNumNamedValues();
561 Function *IF = Intrinsic::getOrInsertDeclaration(
562 F.getParent(), Intrinsic::ssa_copy, Op->getType());
563 if (NumDecls != F.getParent()->getNumNamedValues())
564 PI.CreatedDeclarations.insert(IF);
565 CallInst *PIC =
566 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
567 PI.PredicateMap.insert({PIC, ValInfo});
568 Result.Def = PIC;
569 } else {
570 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
571 assert(PAssume &&
572 "Should not have gotten here without it being an assume");
573 // Insert the predicate directly after the assume. While it also holds
574 // directly before it, assume(i1 true) is not a useful fact.
575 IRBuilder<> B(PAssume->AssumeInst->getNextNode());
576 auto NumDecls = F.getParent()->getNumNamedValues();
577 Function *IF = Intrinsic::getOrInsertDeclaration(
578 F.getParent(), Intrinsic::ssa_copy, Op->getType());
579 if (NumDecls != F.getParent()->getNumNamedValues())
580 PI.CreatedDeclarations.insert(IF);
581 CallInst *PIC = B.CreateCall(IF, Op);
582 PI.PredicateMap.insert({PIC, ValInfo});
583 Result.Def = PIC;
586 return RenameStack.back().Def;
589 // Instead of the standard SSA renaming algorithm, which is O(Number of
590 // instructions), and walks the entire dominator tree, we walk only the defs +
591 // uses. The standard SSA renaming algorithm does not really rely on the
592 // dominator tree except to order the stack push/pops of the renaming stacks, so
593 // that defs end up getting pushed before hitting the correct uses. This does
594 // not require the dominator tree, only the *order* of the dominator tree. The
595 // complete and correct ordering of the defs and uses, in dominator tree is
596 // contained in the DFS numbering of the dominator tree. So we sort the defs and
597 // uses into the DFS ordering, and then just use the renaming stack as per
598 // normal, pushing when we hit a def (which is a predicateinfo instruction),
599 // popping when we are out of the dfs scope for that def, and replacing any uses
600 // with top of stack if it exists. In order to handle liveness without
601 // propagating liveness info, we don't actually insert the predicateinfo
602 // instruction def until we see a use that it would dominate. Once we see such
603 // a use, we materialize the predicateinfo instruction in the right place and
604 // use it.
606 // TODO: Use this algorithm to perform fast single-variable renaming in
607 // promotememtoreg and memoryssa.
608 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
609 ValueDFS_Compare Compare(DT);
610 // Compute liveness, and rename in O(uses) per Op.
611 for (auto *Op : OpsToRename) {
612 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
613 unsigned Counter = 0;
614 SmallVector<ValueDFS, 16> OrderedUses;
615 const auto &ValueInfo = getValueInfo(Op);
616 // Insert the possible copies into the def/use list.
617 // They will become real copies if we find a real use for them, and never
618 // created otherwise.
619 for (const auto &PossibleCopy : ValueInfo.Infos) {
620 ValueDFS VD;
621 // Determine where we are going to place the copy by the copy type.
622 // The predicate info for branches always come first, they will get
623 // materialized in the split block at the top of the block.
624 // The predicate info for assumes will be somewhere in the middle,
625 // it will get materialized in front of the assume.
626 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
627 VD.LocalNum = LN_Middle;
628 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
629 if (!DomNode)
630 continue;
631 VD.DFSIn = DomNode->getDFSNumIn();
632 VD.DFSOut = DomNode->getDFSNumOut();
633 VD.PInfo = PossibleCopy;
634 OrderedUses.push_back(VD);
635 } else if (isa<PredicateWithEdge>(PossibleCopy)) {
636 // If we can only do phi uses, we treat it like it's in the branch
637 // block, and handle it specially. We know that it goes last, and only
638 // dominate phi uses.
639 auto BlockEdge = getBlockEdge(PossibleCopy);
640 if (EdgeUsesOnly.count(BlockEdge)) {
641 VD.LocalNum = LN_Last;
642 auto *DomNode = DT.getNode(BlockEdge.first);
643 if (DomNode) {
644 VD.DFSIn = DomNode->getDFSNumIn();
645 VD.DFSOut = DomNode->getDFSNumOut();
646 VD.PInfo = PossibleCopy;
647 VD.EdgeOnly = true;
648 OrderedUses.push_back(VD);
650 } else {
651 // Otherwise, we are in the split block (even though we perform
652 // insertion in the branch block).
653 // Insert a possible copy at the split block and before the branch.
654 VD.LocalNum = LN_First;
655 auto *DomNode = DT.getNode(BlockEdge.second);
656 if (DomNode) {
657 VD.DFSIn = DomNode->getDFSNumIn();
658 VD.DFSOut = DomNode->getDFSNumOut();
659 VD.PInfo = PossibleCopy;
660 OrderedUses.push_back(VD);
666 convertUsesToDFSOrdered(Op, OrderedUses);
667 // Here we require a stable sort because we do not bother to try to
668 // assign an order to the operands the uses represent. Thus, two
669 // uses in the same instruction do not have a strict sort order
670 // currently and will be considered equal. We could get rid of the
671 // stable sort by creating one if we wanted.
672 llvm::stable_sort(OrderedUses, Compare);
673 SmallVector<ValueDFS, 8> RenameStack;
674 // For each use, sorted into dfs order, push values and replaces uses with
675 // top of stack, which will represent the reaching def.
676 for (auto &VD : OrderedUses) {
677 // We currently do not materialize copy over copy, but we should decide if
678 // we want to.
679 bool PossibleCopy = VD.PInfo != nullptr;
680 if (RenameStack.empty()) {
681 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
682 } else {
683 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
684 << RenameStack.back().DFSIn << ","
685 << RenameStack.back().DFSOut << ")\n");
688 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
689 << VD.DFSOut << ")\n");
691 bool ShouldPush = (VD.Def || PossibleCopy);
692 bool OutOfScope = !stackIsInScope(RenameStack, VD);
693 if (OutOfScope || ShouldPush) {
694 // Sync to our current scope.
695 popStackUntilDFSScope(RenameStack, VD);
696 if (ShouldPush) {
697 RenameStack.push_back(VD);
700 // If we get to this point, and the stack is empty we must have a use
701 // with no renaming needed, just skip it.
702 if (RenameStack.empty())
703 continue;
704 // Skip values, only want to rename the uses
705 if (VD.Def || PossibleCopy)
706 continue;
707 if (!DebugCounter::shouldExecute(RenameCounter)) {
708 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
709 continue;
711 ValueDFS &Result = RenameStack.back();
713 // If the possible copy dominates something, materialize our stack up to
714 // this point. This ensures every comparison that affects our operation
715 // ends up with predicateinfo.
716 if (!Result.Def)
717 Result.Def = materializeStack(Counter, RenameStack, Op);
719 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
720 << *VD.U->get() << " in " << *(VD.U->getUser())
721 << "\n");
722 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
723 "Predicateinfo def should have dominated this use");
724 VD.U->set(Result.Def);
729 PredicateInfoBuilder::ValueInfo &
730 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
731 auto OIN = ValueInfoNums.find(Operand);
732 if (OIN == ValueInfoNums.end()) {
733 // This will grow it
734 ValueInfos.resize(ValueInfos.size() + 1);
735 // This will use the new size and give us a 0 based number of the info
736 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
737 assert(InsertResult.second && "Value info number already existed?");
738 return ValueInfos[InsertResult.first->second];
740 return ValueInfos[OIN->second];
743 const PredicateInfoBuilder::ValueInfo &
744 PredicateInfoBuilder::getValueInfo(Value *Operand) const {
745 auto OINI = ValueInfoNums.lookup(Operand);
746 assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
747 assert(OINI < ValueInfos.size() &&
748 "Value Info Number greater than size of Value Info Table");
749 return ValueInfos[OINI];
752 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
753 AssumptionCache &AC)
754 : F(F) {
755 PredicateInfoBuilder Builder(*this, F, DT, AC);
756 Builder.buildPredicateInfo();
759 // Remove all declarations we created . The PredicateInfo consumers are
760 // responsible for remove the ssa_copy calls created.
761 PredicateInfo::~PredicateInfo() {
762 // Collect function pointers in set first, as SmallSet uses a SmallVector
763 // internally and we have to remove the asserting value handles first.
764 SmallPtrSet<Function *, 20> FunctionPtrs;
765 for (const auto &F : CreatedDeclarations)
766 FunctionPtrs.insert(&*F);
767 CreatedDeclarations.clear();
769 for (Function *F : FunctionPtrs) {
770 assert(F->user_begin() == F->user_end() &&
771 "PredicateInfo consumer did not remove all SSA copies.");
772 F->eraseFromParent();
776 std::optional<PredicateConstraint> PredicateBase::getConstraint() const {
777 switch (Type) {
778 case PT_Assume:
779 case PT_Branch: {
780 bool TrueEdge = true;
781 if (auto *PBranch = dyn_cast<PredicateBranch>(this))
782 TrueEdge = PBranch->TrueEdge;
784 if (Condition == RenamedOp) {
785 return {{CmpInst::ICMP_EQ,
786 TrueEdge ? ConstantInt::getTrue(Condition->getType())
787 : ConstantInt::getFalse(Condition->getType())}};
790 CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
791 if (!Cmp) {
792 // TODO: Make this an assertion once RenamedOp is fully accurate.
793 return std::nullopt;
796 CmpInst::Predicate Pred;
797 Value *OtherOp;
798 if (Cmp->getOperand(0) == RenamedOp) {
799 Pred = Cmp->getPredicate();
800 OtherOp = Cmp->getOperand(1);
801 } else if (Cmp->getOperand(1) == RenamedOp) {
802 Pred = Cmp->getSwappedPredicate();
803 OtherOp = Cmp->getOperand(0);
804 } else {
805 // TODO: Make this an assertion once RenamedOp is fully accurate.
806 return std::nullopt;
809 // Invert predicate along false edge.
810 if (!TrueEdge)
811 Pred = CmpInst::getInversePredicate(Pred);
813 return {{Pred, OtherOp}};
815 case PT_Switch:
816 if (Condition != RenamedOp) {
817 // TODO: Make this an assertion once RenamedOp is fully accurate.
818 return std::nullopt;
821 return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
823 llvm_unreachable("Unknown predicate type");
826 void PredicateInfo::verifyPredicateInfo() const {}
828 // Replace ssa_copy calls created by PredicateInfo with their operand.
829 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
830 for (Instruction &Inst : llvm::make_early_inc_range(instructions(F))) {
831 const auto *PI = PredInfo.getPredicateInfoFor(&Inst);
832 auto *II = dyn_cast<IntrinsicInst>(&Inst);
833 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
834 continue;
836 Inst.replaceAllUsesWith(II->getOperand(0));
837 Inst.eraseFromParent();
841 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
842 FunctionAnalysisManager &AM) {
843 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
844 auto &AC = AM.getResult<AssumptionAnalysis>(F);
845 OS << "PredicateInfo for function: " << F.getName() << "\n";
846 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
847 PredInfo->print(OS);
849 replaceCreatedSSACopys(*PredInfo, F);
850 return PreservedAnalyses::all();
853 /// An assembly annotator class to print PredicateInfo information in
854 /// comments.
855 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
856 friend class PredicateInfo;
857 const PredicateInfo *PredInfo;
859 public:
860 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
862 void emitBasicBlockStartAnnot(const BasicBlock *BB,
863 formatted_raw_ostream &OS) override {}
865 void emitInstructionAnnot(const Instruction *I,
866 formatted_raw_ostream &OS) override {
867 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
868 OS << "; Has predicate info\n";
869 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
870 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
871 << " Comparison:" << *PB->Condition << " Edge: [";
872 PB->From->printAsOperand(OS);
873 OS << ",";
874 PB->To->printAsOperand(OS);
875 OS << "]";
876 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
877 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
878 << " Switch:" << *PS->Switch << " Edge: [";
879 PS->From->printAsOperand(OS);
880 OS << ",";
881 PS->To->printAsOperand(OS);
882 OS << "]";
883 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
884 OS << "; assume predicate info {"
885 << " Comparison:" << *PA->Condition;
887 OS << ", RenamedOp: ";
888 PI->RenamedOp->printAsOperand(OS, false);
889 OS << " }\n";
894 void PredicateInfo::print(raw_ostream &OS) const {
895 PredicateInfoAnnotatedWriter Writer(this);
896 F.print(OS, &Writer);
899 void PredicateInfo::dump() const {
900 PredicateInfoAnnotatedWriter Writer(this);
901 F.print(dbgs(), &Writer);
904 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
905 FunctionAnalysisManager &AM) {
906 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
907 auto &AC = AM.getResult<AssumptionAnalysis>(F);
908 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
910 return PreservedAnalyses::all();