1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file promotes memory references to be register references. It promotes
10 // alloca instructions which only have loads and stores as uses. An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DebugProgramInstruction.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
59 #define DEBUG_TYPE "mem2reg"
61 STATISTIC(NumLocalPromoted
, "Number of alloca's promoted within one block");
62 STATISTIC(NumSingleStore
, "Number of alloca's promoted with a single store");
63 STATISTIC(NumDeadAlloca
, "Number of dead alloca's removed");
64 STATISTIC(NumPHIInsert
, "Number of PHI nodes inserted");
66 bool llvm::isAllocaPromotable(const AllocaInst
*AI
) {
67 // Only allow direct and non-volatile loads and stores...
68 for (const User
*U
: AI
->users()) {
69 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
70 // Note that atomic loads can be transformed; atomic semantics do
71 // not have any meaning for a local alloca.
72 if (LI
->isVolatile() || LI
->getType() != AI
->getAllocatedType())
74 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
75 if (SI
->getValueOperand() == AI
||
76 SI
->getValueOperand()->getType() != AI
->getAllocatedType())
77 return false; // Don't allow a store OF the AI, only INTO the AI.
78 // Note that atomic stores can be transformed; atomic semantics do
79 // not have any meaning for a local alloca.
82 } else if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
)) {
83 if (!II
->isLifetimeStartOrEnd() && !II
->isDroppable() &&
84 II
->getIntrinsicID() != Intrinsic::fake_use
)
86 } else if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(U
)) {
87 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI
))
89 } else if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
90 if (!GEPI
->hasAllZeroIndices())
92 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI
))
94 } else if (const AddrSpaceCastInst
*ASCI
= dyn_cast
<AddrSpaceCastInst
>(U
)) {
95 if (!onlyUsedByLifetimeMarkers(ASCI
))
107 static void createDebugValue(DIBuilder
&DIB
, Value
*NewValue
,
108 DILocalVariable
*Variable
,
109 DIExpression
*Expression
, const DILocation
*DI
,
110 DbgVariableRecord
*InsertBefore
) {
111 // FIXME: Merge these two functions now that DIBuilder supports
112 // DbgVariableRecords. We neeed the API to accept DbgVariableRecords as an
113 // insert point for that to work.
115 DbgVariableRecord::createDbgVariableRecord(NewValue
, Variable
, Expression
, DI
,
118 static void createDebugValue(DIBuilder
&DIB
, Value
*NewValue
,
119 DILocalVariable
*Variable
,
120 DIExpression
*Expression
, const DILocation
*DI
,
121 Instruction
*InsertBefore
) {
122 DIB
.insertDbgValueIntrinsic(NewValue
, Variable
, Expression
, DI
, InsertBefore
);
125 /// Helper for updating assignment tracking debug info when promoting allocas.
126 class AssignmentTrackingInfo
{
127 /// DbgAssignIntrinsics linked to the alloca with at most one per variable
128 /// fragment. (i.e. not be a comprehensive set if there are multiple
129 /// dbg.assigns for one variable fragment).
130 SmallVector
<DbgVariableIntrinsic
*> DbgAssigns
;
131 SmallVector
<DbgVariableRecord
*> DVRAssigns
;
134 void init(AllocaInst
*AI
) {
135 SmallSet
<DebugVariable
, 2> Vars
;
136 for (DbgAssignIntrinsic
*DAI
: at::getAssignmentMarkers(AI
)) {
137 if (Vars
.insert(DebugVariable(DAI
)).second
)
138 DbgAssigns
.push_back(DAI
);
140 for (DbgVariableRecord
*DVR
: at::getDVRAssignmentMarkers(AI
)) {
141 if (Vars
.insert(DebugVariable(DVR
)).second
)
142 DVRAssigns
.push_back(DVR
);
146 /// Update assignment tracking debug info given for the to-be-deleted store
147 /// \p ToDelete that stores to this alloca.
148 void updateForDeletedStore(
149 StoreInst
*ToDelete
, DIBuilder
&DIB
,
150 SmallSet
<DbgAssignIntrinsic
*, 8> *DbgAssignsToDelete
,
151 SmallSet
<DbgVariableRecord
*, 8> *DVRAssignsToDelete
) const {
152 // There's nothing to do if the alloca doesn't have any variables using
153 // assignment tracking.
154 if (DbgAssigns
.empty() && DVRAssigns
.empty())
157 // Insert a dbg.value where the linked dbg.assign is and remember to delete
158 // the dbg.assign later. Demoting to dbg.value isn't necessary for
159 // correctness but does reduce compile time and memory usage by reducing
160 // unnecessary function-local metadata. Remember that we've seen a
161 // dbg.assign for each variable fragment for the untracked store handling
162 // (after this loop).
163 SmallSet
<DebugVariableAggregate
, 2> VarHasDbgAssignForStore
;
164 auto InsertValueForAssign
= [&](auto *DbgAssign
, auto *&AssignList
) {
165 VarHasDbgAssignForStore
.insert(DebugVariableAggregate(DbgAssign
));
166 AssignList
->insert(DbgAssign
);
167 createDebugValue(DIB
, DbgAssign
->getValue(), DbgAssign
->getVariable(),
168 DbgAssign
->getExpression(), DbgAssign
->getDebugLoc(),
171 for (auto *Assign
: at::getAssignmentMarkers(ToDelete
))
172 InsertValueForAssign(Assign
, DbgAssignsToDelete
);
173 for (auto *Assign
: at::getDVRAssignmentMarkers(ToDelete
))
174 InsertValueForAssign(Assign
, DVRAssignsToDelete
);
176 // It's possible for variables using assignment tracking to have no
177 // dbg.assign linked to this store. These are variables in DbgAssigns that
178 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign
179 // to mark the assignment - and the store is going to be deleted - insert a
180 // dbg.value to do that now. An untracked store may be either one that
181 // cannot be represented using assignment tracking (non-const offset or
182 // size) or one that is trackable but has had its DIAssignID attachment
183 // dropped accidentally.
184 auto ConvertUnlinkedAssignToValue
= [&](auto *Assign
) {
185 if (VarHasDbgAssignForStore
.contains(DebugVariableAggregate(Assign
)))
187 ConvertDebugDeclareToDebugValue(Assign
, ToDelete
, DIB
);
189 for_each(DbgAssigns
, ConvertUnlinkedAssignToValue
);
190 for_each(DVRAssigns
, ConvertUnlinkedAssignToValue
);
193 /// Update assignment tracking debug info given for the newly inserted PHI \p
195 void updateForNewPhi(PHINode
*NewPhi
, DIBuilder
&DIB
) const {
196 // Regardless of the position of dbg.assigns relative to stores, the
197 // incoming values into a new PHI should be the same for the (imaginary)
199 for (auto *DAI
: DbgAssigns
)
200 ConvertDebugDeclareToDebugValue(DAI
, NewPhi
, DIB
);
201 for (auto *DVR
: DVRAssigns
)
202 ConvertDebugDeclareToDebugValue(DVR
, NewPhi
, DIB
);
209 bool empty() { return DbgAssigns
.empty() && DVRAssigns
.empty(); }
213 using DbgUserVec
= SmallVector
<DbgVariableIntrinsic
*, 1>;
214 using DPUserVec
= SmallVector
<DbgVariableRecord
*, 1>;
216 SmallVector
<BasicBlock
*, 32> DefiningBlocks
;
217 SmallVector
<BasicBlock
*, 32> UsingBlocks
;
219 StoreInst
*OnlyStore
;
220 BasicBlock
*OnlyBlock
;
221 bool OnlyUsedInOneBlock
;
223 /// Debug users of the alloca - does not include dbg.assign intrinsics.
226 /// Helper to update assignment tracking debug info.
227 AssignmentTrackingInfo AssignmentTracking
;
230 DefiningBlocks
.clear();
234 OnlyUsedInOneBlock
= true;
237 AssignmentTracking
.clear();
240 /// Scan the uses of the specified alloca, filling in the AllocaInfo used
241 /// by the rest of the pass to reason about the uses of this alloca.
242 void AnalyzeAlloca(AllocaInst
*AI
) {
245 // As we scan the uses of the alloca instruction, keep track of stores,
246 // and decide whether all of the loads and stores to the alloca are within
247 // the same basic block.
248 for (User
*U
: AI
->users()) {
249 Instruction
*User
= cast
<Instruction
>(U
);
251 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
252 // Remember the basic blocks which define new values for the alloca
253 DefiningBlocks
.push_back(SI
->getParent());
256 LoadInst
*LI
= cast
<LoadInst
>(User
);
257 // Otherwise it must be a load instruction, keep track of variable
259 UsingBlocks
.push_back(LI
->getParent());
262 if (OnlyUsedInOneBlock
) {
264 OnlyBlock
= User
->getParent();
265 else if (OnlyBlock
!= User
->getParent())
266 OnlyUsedInOneBlock
= false;
269 DbgUserVec AllDbgUsers
;
270 SmallVector
<DbgVariableRecord
*> AllDPUsers
;
271 findDbgUsers(AllDbgUsers
, AI
, &AllDPUsers
);
272 std::copy_if(AllDbgUsers
.begin(), AllDbgUsers
.end(),
273 std::back_inserter(DbgUsers
), [](DbgVariableIntrinsic
*DII
) {
274 return !isa
<DbgAssignIntrinsic
>(DII
);
276 std::copy_if(AllDPUsers
.begin(), AllDPUsers
.end(),
277 std::back_inserter(DPUsers
),
278 [](DbgVariableRecord
*DVR
) { return !DVR
->isDbgAssign(); });
279 AssignmentTracking
.init(AI
);
283 /// Data package used by RenamePass().
284 struct RenamePassData
{
285 using ValVector
= std::vector
<Value
*>;
286 using LocationVector
= std::vector
<DebugLoc
>;
288 RenamePassData(BasicBlock
*B
, BasicBlock
*P
, ValVector V
, LocationVector L
)
289 : BB(B
), Pred(P
), Values(std::move(V
)), Locations(std::move(L
)) {}
294 LocationVector Locations
;
297 /// This assigns and keeps a per-bb relative ordering of load/store
298 /// instructions in the block that directly load or store an alloca.
300 /// This functionality is important because it avoids scanning large basic
301 /// blocks multiple times when promoting many allocas in the same block.
302 class LargeBlockInfo
{
303 /// For each instruction that we track, keep the index of the
306 /// The index starts out as the number of the instruction from the start of
308 DenseMap
<const Instruction
*, unsigned> InstNumbers
;
312 /// This code only looks at accesses to allocas.
313 static bool isInterestingInstruction(const Instruction
*I
) {
314 return (isa
<LoadInst
>(I
) && isa
<AllocaInst
>(I
->getOperand(0))) ||
315 (isa
<StoreInst
>(I
) && isa
<AllocaInst
>(I
->getOperand(1)));
318 /// Get or calculate the index of the specified instruction.
319 unsigned getInstructionIndex(const Instruction
*I
) {
320 assert(isInterestingInstruction(I
) &&
321 "Not a load/store to/from an alloca?");
323 // If we already have this instruction number, return it.
324 DenseMap
<const Instruction
*, unsigned>::iterator It
= InstNumbers
.find(I
);
325 if (It
!= InstNumbers
.end())
328 // Scan the whole block to get the instruction. This accumulates
329 // information for every interesting instruction in the block, in order to
330 // avoid gratuitus rescans.
331 const BasicBlock
*BB
= I
->getParent();
333 for (const Instruction
&BBI
: *BB
)
334 if (isInterestingInstruction(&BBI
))
335 InstNumbers
[&BBI
] = InstNo
++;
336 It
= InstNumbers
.find(I
);
338 assert(It
!= InstNumbers
.end() && "Didn't insert instruction?");
342 void deleteValue(const Instruction
*I
) { InstNumbers
.erase(I
); }
344 void clear() { InstNumbers
.clear(); }
347 struct PromoteMem2Reg
{
348 /// The alloca instructions being promoted.
349 std::vector
<AllocaInst
*> Allocas
;
354 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
357 const SimplifyQuery SQ
;
359 /// Reverse mapping of Allocas.
360 DenseMap
<AllocaInst
*, unsigned> AllocaLookup
;
362 /// The PhiNodes we're adding.
364 /// That map is used to simplify some Phi nodes as we iterate over it, so
365 /// it should have deterministic iterators. We could use a MapVector, but
366 /// since basic blocks have numbers, using these are more efficient.
367 DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*> NewPhiNodes
;
369 /// For each PHI node, keep track of which entry in Allocas it corresponds
371 DenseMap
<PHINode
*, unsigned> PhiToAllocaMap
;
373 /// For each alloca, we keep track of the dbg.declare intrinsic that
374 /// describes it, if any, so that we can convert it to a dbg.value
375 /// intrinsic if the alloca gets promoted.
376 SmallVector
<AllocaInfo::DbgUserVec
, 8> AllocaDbgUsers
;
377 SmallVector
<AllocaInfo::DPUserVec
, 8> AllocaDPUsers
;
379 /// For each alloca, keep an instance of a helper class that gives us an easy
380 /// way to update assignment tracking debug info if the alloca is promoted.
381 SmallVector
<AssignmentTrackingInfo
, 8> AllocaATInfo
;
382 /// A set of dbg.assigns to delete because they've been demoted to
383 /// dbg.values. Call cleanUpDbgAssigns to delete them.
384 SmallSet
<DbgAssignIntrinsic
*, 8> DbgAssignsToDelete
;
385 SmallSet
<DbgVariableRecord
*, 8> DVRAssignsToDelete
;
387 /// The set of basic blocks the renamer has already visited.
390 /// Lazily compute the number of predecessors a block has, indexed by block
392 SmallVector
<unsigned> BBNumPreds
;
394 /// Whether the function has the no-signed-zeros-fp-math attribute set.
395 bool NoSignedZeros
= false;
398 PromoteMem2Reg(ArrayRef
<AllocaInst
*> Allocas
, DominatorTree
&DT
,
400 : Allocas(Allocas
.begin(), Allocas
.end()), DT(DT
),
401 DIB(*DT
.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
402 AC(AC
), SQ(DT
.getRoot()->getDataLayout(),
408 void RemoveFromAllocasList(unsigned &AllocaIdx
) {
409 Allocas
[AllocaIdx
] = Allocas
.back();
414 unsigned getNumPreds(const BasicBlock
*BB
) {
415 // BBNumPreds is resized to getMaxBlockNumber() at the beginning.
416 unsigned &NP
= BBNumPreds
[BB
->getNumber()];
418 NP
= pred_size(BB
) + 1;
422 void ComputeLiveInBlocks(AllocaInst
*AI
, AllocaInfo
&Info
,
423 const SmallPtrSetImpl
<BasicBlock
*> &DefBlocks
,
424 SmallPtrSetImpl
<BasicBlock
*> &LiveInBlocks
);
425 void RenamePass(BasicBlock
*BB
, BasicBlock
*Pred
,
426 RenamePassData::ValVector
&IncVals
,
427 RenamePassData::LocationVector
&IncLocs
,
428 std::vector
<RenamePassData
> &Worklist
);
429 bool QueuePhiNode(BasicBlock
*BB
, unsigned AllocaIdx
, unsigned &Version
);
431 /// Delete dbg.assigns that have been demoted to dbg.values.
432 void cleanUpDbgAssigns() {
433 for (auto *DAI
: DbgAssignsToDelete
)
434 DAI
->eraseFromParent();
435 DbgAssignsToDelete
.clear();
436 for (auto *DVR
: DVRAssignsToDelete
)
437 DVR
->eraseFromParent();
438 DVRAssignsToDelete
.clear();
442 } // end anonymous namespace
444 /// Given a LoadInst LI this adds assume(LI != null) after it.
445 static void addAssumeNonNull(AssumptionCache
*AC
, LoadInst
*LI
) {
446 Function
*AssumeIntrinsic
=
447 Intrinsic::getOrInsertDeclaration(LI
->getModule(), Intrinsic::assume
);
448 ICmpInst
*LoadNotNull
= new ICmpInst(ICmpInst::ICMP_NE
, LI
,
449 Constant::getNullValue(LI
->getType()));
450 LoadNotNull
->insertAfter(LI
);
451 CallInst
*CI
= CallInst::Create(AssumeIntrinsic
, {LoadNotNull
});
452 CI
->insertAfter(LoadNotNull
);
453 AC
->registerAssumption(cast
<AssumeInst
>(CI
));
456 static void convertMetadataToAssumes(LoadInst
*LI
, Value
*Val
,
457 const DataLayout
&DL
, AssumptionCache
*AC
,
458 const DominatorTree
*DT
) {
459 if (isa
<UndefValue
>(Val
) && LI
->hasMetadata(LLVMContext::MD_noundef
)) {
460 // Insert non-terminator unreachable.
461 LLVMContext
&Ctx
= LI
->getContext();
462 new StoreInst(ConstantInt::getTrue(Ctx
),
463 PoisonValue::get(PointerType::getUnqual(Ctx
)),
464 /*isVolatile=*/false, Align(1), LI
->getIterator());
468 // If the load was marked as nonnull we don't want to lose that information
469 // when we erase this Load. So we preserve it with an assume. As !nonnull
470 // returns poison while assume violations are immediate undefined behavior,
471 // we can only do this if the value is known non-poison.
472 if (AC
&& LI
->getMetadata(LLVMContext::MD_nonnull
) &&
473 LI
->getMetadata(LLVMContext::MD_noundef
) &&
474 !isKnownNonZero(Val
, SimplifyQuery(DL
, DT
, AC
, LI
)))
475 addAssumeNonNull(AC
, LI
);
478 static void removeIntrinsicUsers(AllocaInst
*AI
) {
479 // Knowing that this alloca is promotable, we know that it's safe to kill all
480 // instructions except for load and store.
482 for (Use
&U
: llvm::make_early_inc_range(AI
->uses())) {
483 Instruction
*I
= cast
<Instruction
>(U
.getUser());
484 if (isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
))
487 // Drop the use of AI in droppable instructions.
488 if (I
->isDroppable()) {
489 I
->dropDroppableUse(U
);
493 if (!I
->getType()->isVoidTy()) {
494 // The only users of this bitcast/GEP instruction are lifetime intrinsics.
495 // Follow the use/def chain to erase them now instead of leaving it for
496 // dead code elimination later.
497 for (Use
&UU
: llvm::make_early_inc_range(I
->uses())) {
498 Instruction
*Inst
= cast
<Instruction
>(UU
.getUser());
500 // Drop the use of I in droppable instructions.
501 if (Inst
->isDroppable()) {
502 Inst
->dropDroppableUse(UU
);
505 Inst
->eraseFromParent();
508 I
->eraseFromParent();
512 /// Rewrite as many loads as possible given a single store.
514 /// When there is only a single store, we can use the domtree to trivially
515 /// replace all of the dominated loads with the stored value. Do so, and return
516 /// true if this has successfully promoted the alloca entirely. If this returns
517 /// false there were some loads which were not dominated by the single store
518 /// and thus must be phi-ed with undef. We fall back to the standard alloca
519 /// promotion algorithm in that case.
521 rewriteSingleStoreAlloca(AllocaInst
*AI
, AllocaInfo
&Info
, LargeBlockInfo
&LBI
,
522 const DataLayout
&DL
, DominatorTree
&DT
,
524 SmallSet
<DbgAssignIntrinsic
*, 8> *DbgAssignsToDelete
,
525 SmallSet
<DbgVariableRecord
*, 8> *DVRAssignsToDelete
) {
526 StoreInst
*OnlyStore
= Info
.OnlyStore
;
527 Value
*ReplVal
= OnlyStore
->getOperand(0);
528 // Loads may either load the stored value or uninitialized memory (undef).
529 // If the stored value may be poison, then replacing an uninitialized memory
530 // load with it would be incorrect. If the store dominates the load, we know
531 // it is always initialized.
532 bool RequireDominatingStore
=
533 isa
<Instruction
>(ReplVal
) || !isGuaranteedNotToBePoison(ReplVal
);
534 BasicBlock
*StoreBB
= OnlyStore
->getParent();
537 // Clear out UsingBlocks. We will reconstruct it here if needed.
538 Info
.UsingBlocks
.clear();
540 for (User
*U
: make_early_inc_range(AI
->users())) {
541 Instruction
*UserInst
= cast
<Instruction
>(U
);
542 if (UserInst
== OnlyStore
)
544 LoadInst
*LI
= cast
<LoadInst
>(UserInst
);
546 // Okay, if we have a load from the alloca, we want to replace it with the
547 // only value stored to the alloca. We can do this if the value is
548 // dominated by the store. If not, we use the rest of the mem2reg machinery
549 // to insert the phi nodes as needed.
550 if (RequireDominatingStore
) {
551 if (LI
->getParent() == StoreBB
) {
552 // If we have a use that is in the same block as the store, compare the
553 // indices of the two instructions to see which one came first. If the
554 // load came before the store, we can't handle it.
555 if (StoreIndex
== -1)
556 StoreIndex
= LBI
.getInstructionIndex(OnlyStore
);
558 if (unsigned(StoreIndex
) > LBI
.getInstructionIndex(LI
)) {
559 // Can't handle this load, bail out.
560 Info
.UsingBlocks
.push_back(StoreBB
);
563 } else if (!DT
.dominates(StoreBB
, LI
->getParent())) {
564 // If the load and store are in different blocks, use BB dominance to
565 // check their relationships. If the store doesn't dom the use, bail
567 Info
.UsingBlocks
.push_back(LI
->getParent());
572 // Otherwise, we *can* safely rewrite this load.
573 // If the replacement value is the load, this must occur in unreachable
576 ReplVal
= PoisonValue::get(LI
->getType());
578 convertMetadataToAssumes(LI
, ReplVal
, DL
, AC
, &DT
);
579 LI
->replaceAllUsesWith(ReplVal
);
580 LI
->eraseFromParent();
584 // Finally, after the scan, check to see if the store is all that is left.
585 if (!Info
.UsingBlocks
.empty())
586 return false; // If not, we'll have to fall back for the remainder.
588 DIBuilder
DIB(*AI
->getModule(), /*AllowUnresolved*/ false);
589 // Update assignment tracking info for the store we're going to delete.
590 Info
.AssignmentTracking
.updateForDeletedStore(
591 Info
.OnlyStore
, DIB
, DbgAssignsToDelete
, DVRAssignsToDelete
);
593 // Record debuginfo for the store and remove the declaration's
595 auto ConvertDebugInfoForStore
= [&](auto &Container
) {
596 for (auto *DbgItem
: Container
) {
597 if (DbgItem
->isAddressOfVariable()) {
598 ConvertDebugDeclareToDebugValue(DbgItem
, Info
.OnlyStore
, DIB
);
599 DbgItem
->eraseFromParent();
600 } else if (DbgItem
->isValueOfVariable() &&
601 DbgItem
->getExpression()->startsWithDeref()) {
602 InsertDebugValueAtStoreLoc(DbgItem
, Info
.OnlyStore
, DIB
);
603 DbgItem
->eraseFromParent();
604 } else if (DbgItem
->getExpression()->startsWithDeref()) {
605 DbgItem
->eraseFromParent();
609 ConvertDebugInfoForStore(Info
.DbgUsers
);
610 ConvertDebugInfoForStore(Info
.DPUsers
);
612 // Remove dbg.assigns linked to the alloca as these are now redundant.
613 at::deleteAssignmentMarkers(AI
);
615 // Remove the (now dead) store and alloca.
616 Info
.OnlyStore
->eraseFromParent();
617 LBI
.deleteValue(Info
.OnlyStore
);
619 AI
->eraseFromParent();
623 /// Many allocas are only used within a single basic block. If this is the
624 /// case, avoid traversing the CFG and inserting a lot of potentially useless
625 /// PHI nodes by just performing a single linear pass over the basic block
626 /// using the Alloca.
628 /// If we cannot promote this alloca (because it is read before it is written),
629 /// return false. This is necessary in cases where, due to control flow, the
630 /// alloca is undefined only on some control flow paths. e.g. code like
631 /// this is correct in LLVM IR:
632 /// // A is an alloca with no stores so far
635 /// if (!first_iteration)
640 promoteSingleBlockAlloca(AllocaInst
*AI
, const AllocaInfo
&Info
,
641 LargeBlockInfo
&LBI
, const DataLayout
&DL
,
642 DominatorTree
&DT
, AssumptionCache
*AC
,
643 SmallSet
<DbgAssignIntrinsic
*, 8> *DbgAssignsToDelete
,
644 SmallSet
<DbgVariableRecord
*, 8> *DVRAssignsToDelete
) {
645 // The trickiest case to handle is when we have large blocks. Because of this,
646 // this code is optimized assuming that large blocks happen. This does not
647 // significantly pessimize the small block case. This uses LargeBlockInfo to
648 // make it efficient to get the index of various operations in the block.
650 // Walk the use-def list of the alloca, getting the locations of all stores.
651 using StoresByIndexTy
= SmallVector
<std::pair
<unsigned, StoreInst
*>, 64>;
652 StoresByIndexTy StoresByIndex
;
654 for (User
*U
: AI
->users())
655 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
))
656 StoresByIndex
.push_back(std::make_pair(LBI
.getInstructionIndex(SI
), SI
));
658 // Sort the stores by their index, making it efficient to do a lookup with a
660 llvm::sort(StoresByIndex
, less_first());
662 // Walk all of the loads from this alloca, replacing them with the nearest
663 // store above them, if any.
664 for (User
*U
: make_early_inc_range(AI
->users())) {
665 LoadInst
*LI
= dyn_cast
<LoadInst
>(U
);
669 unsigned LoadIdx
= LBI
.getInstructionIndex(LI
);
671 // Find the nearest store that has a lower index than this load.
672 StoresByIndexTy::iterator I
= llvm::lower_bound(
674 std::make_pair(LoadIdx
, static_cast<StoreInst
*>(nullptr)),
677 if (I
== StoresByIndex
.begin()) {
678 if (StoresByIndex
.empty())
679 // If there are no stores, the load takes the undef value.
680 ReplVal
= UndefValue::get(LI
->getType());
682 // There is no store before this load, bail out (load may be affected
683 // by the following stores - see main comment).
686 // Otherwise, there was a store before this load, the load takes its
688 ReplVal
= std::prev(I
)->second
->getOperand(0);
691 convertMetadataToAssumes(LI
, ReplVal
, DL
, AC
, &DT
);
693 // If the replacement value is the load, this must occur in unreachable
696 ReplVal
= PoisonValue::get(LI
->getType());
698 LI
->replaceAllUsesWith(ReplVal
);
699 LI
->eraseFromParent();
703 // Remove the (now dead) stores and alloca.
704 DIBuilder
DIB(*AI
->getModule(), /*AllowUnresolved*/ false);
705 while (!AI
->use_empty()) {
706 StoreInst
*SI
= cast
<StoreInst
>(AI
->user_back());
707 // Update assignment tracking info for the store we're going to delete.
708 Info
.AssignmentTracking
.updateForDeletedStore(SI
, DIB
, DbgAssignsToDelete
,
710 // Record debuginfo for the store before removing it.
711 auto DbgUpdateForStore
= [&](auto &Container
) {
712 for (auto *DbgItem
: Container
) {
713 if (DbgItem
->isAddressOfVariable()) {
714 ConvertDebugDeclareToDebugValue(DbgItem
, SI
, DIB
);
718 DbgUpdateForStore(Info
.DbgUsers
);
719 DbgUpdateForStore(Info
.DPUsers
);
721 SI
->eraseFromParent();
725 // Remove dbg.assigns linked to the alloca as these are now redundant.
726 at::deleteAssignmentMarkers(AI
);
727 AI
->eraseFromParent();
729 // The alloca's debuginfo can be removed as well.
730 auto DbgUpdateForAlloca
= [&](auto &Container
) {
731 for (auto *DbgItem
: Container
)
732 if (DbgItem
->isAddressOfVariable() ||
733 DbgItem
->getExpression()->startsWithDeref())
734 DbgItem
->eraseFromParent();
736 DbgUpdateForAlloca(Info
.DbgUsers
);
737 DbgUpdateForAlloca(Info
.DPUsers
);
743 void PromoteMem2Reg::run() {
744 Function
&F
= *DT
.getRoot()->getParent();
746 AllocaDbgUsers
.resize(Allocas
.size());
747 AllocaATInfo
.resize(Allocas
.size());
748 AllocaDPUsers
.resize(Allocas
.size());
752 ForwardIDFCalculator
IDF(DT
);
754 NoSignedZeros
= F
.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool();
756 for (unsigned AllocaNum
= 0; AllocaNum
!= Allocas
.size(); ++AllocaNum
) {
757 AllocaInst
*AI
= Allocas
[AllocaNum
];
759 assert(isAllocaPromotable(AI
) && "Cannot promote non-promotable alloca!");
760 assert(AI
->getParent()->getParent() == &F
&&
761 "All allocas should be in the same function, which is same as DF!");
763 removeIntrinsicUsers(AI
);
765 if (AI
->use_empty()) {
766 // If there are no uses of the alloca, just delete it now.
767 AI
->eraseFromParent();
769 // Remove the alloca from the Allocas list, since it has been processed
770 RemoveFromAllocasList(AllocaNum
);
775 // Calculate the set of read and write-locations for each alloca. This is
776 // analogous to finding the 'uses' and 'definitions' of each variable.
777 Info
.AnalyzeAlloca(AI
);
779 // If there is only a single store to this value, replace any loads of
780 // it that are directly dominated by the definition with the value stored.
781 if (Info
.DefiningBlocks
.size() == 1) {
782 if (rewriteSingleStoreAlloca(AI
, Info
, LBI
, SQ
.DL
, DT
, AC
,
783 &DbgAssignsToDelete
, &DVRAssignsToDelete
)) {
784 // The alloca has been processed, move on.
785 RemoveFromAllocasList(AllocaNum
);
791 // If the alloca is only read and written in one basic block, just perform a
792 // linear sweep over the block to eliminate it.
793 if (Info
.OnlyUsedInOneBlock
&&
794 promoteSingleBlockAlloca(AI
, Info
, LBI
, SQ
.DL
, DT
, AC
,
795 &DbgAssignsToDelete
, &DVRAssignsToDelete
)) {
796 // The alloca has been processed, move on.
797 RemoveFromAllocasList(AllocaNum
);
801 // Initialize BBNumPreds lazily
802 if (BBNumPreds
.empty())
803 BBNumPreds
.resize(F
.getMaxBlockNumber());
805 // Remember the dbg.declare intrinsic describing this alloca, if any.
806 if (!Info
.DbgUsers
.empty())
807 AllocaDbgUsers
[AllocaNum
] = Info
.DbgUsers
;
808 if (!Info
.AssignmentTracking
.empty())
809 AllocaATInfo
[AllocaNum
] = Info
.AssignmentTracking
;
810 if (!Info
.DPUsers
.empty())
811 AllocaDPUsers
[AllocaNum
] = Info
.DPUsers
;
813 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
814 AllocaLookup
[Allocas
[AllocaNum
]] = AllocaNum
;
816 // Unique the set of defining blocks for efficient lookup.
817 SmallPtrSet
<BasicBlock
*, 32> DefBlocks(Info
.DefiningBlocks
.begin(),
818 Info
.DefiningBlocks
.end());
820 // Determine which blocks the value is live in. These are blocks which lead
822 SmallPtrSet
<BasicBlock
*, 32> LiveInBlocks
;
823 ComputeLiveInBlocks(AI
, Info
, DefBlocks
, LiveInBlocks
);
825 // At this point, we're committed to promoting the alloca using IDF's, and
826 // the standard SSA construction algorithm. Determine which blocks need phi
827 // nodes and see if we can optimize out some work by avoiding insertion of
829 IDF
.setLiveInBlocks(LiveInBlocks
);
830 IDF
.setDefiningBlocks(DefBlocks
);
831 SmallVector
<BasicBlock
*, 32> PHIBlocks
;
832 IDF
.calculate(PHIBlocks
);
833 llvm::sort(PHIBlocks
, [](BasicBlock
*A
, BasicBlock
*B
) {
834 return A
->getNumber() < B
->getNumber();
837 unsigned CurrentVersion
= 0;
838 for (BasicBlock
*BB
: PHIBlocks
)
839 QueuePhiNode(BB
, AllocaNum
, CurrentVersion
);
842 if (Allocas
.empty()) {
844 return; // All of the allocas must have been trivial!
848 // Set the incoming values for the basic block to be null values for all of
849 // the alloca's. We do this in case there is a load of a value that has not
850 // been stored yet. In this case, it will get this null value.
851 RenamePassData::ValVector
Values(Allocas
.size());
852 for (unsigned i
= 0, e
= Allocas
.size(); i
!= e
; ++i
)
853 Values
[i
] = UndefValue::get(Allocas
[i
]->getAllocatedType());
855 // When handling debug info, treat all incoming values as if they have unknown
856 // locations until proven otherwise.
857 RenamePassData::LocationVector
Locations(Allocas
.size());
859 // The renamer uses the Visited set to avoid infinite loops.
860 Visited
.resize(F
.getMaxBlockNumber());
862 // Walks all basic blocks in the function performing the SSA rename algorithm
863 // and inserting the phi nodes we marked as necessary
864 std::vector
<RenamePassData
> RenamePassWorkList
;
865 RenamePassWorkList
.emplace_back(&F
.front(), nullptr, std::move(Values
),
866 std::move(Locations
));
868 RenamePassData RPD
= std::move(RenamePassWorkList
.back());
869 RenamePassWorkList
.pop_back();
870 // RenamePass may add new worklist entries.
871 RenamePass(RPD
.BB
, RPD
.Pred
, RPD
.Values
, RPD
.Locations
, RenamePassWorkList
);
872 } while (!RenamePassWorkList
.empty());
874 // Remove the allocas themselves from the function.
875 for (Instruction
*A
: Allocas
) {
876 // Remove dbg.assigns linked to the alloca as these are now redundant.
877 at::deleteAssignmentMarkers(A
);
878 // If there are any uses of the alloca instructions left, they must be in
879 // unreachable basic blocks that were not processed by walking the dominator
880 // tree. Just delete the users now.
882 A
->replaceAllUsesWith(PoisonValue::get(A
->getType()));
883 A
->eraseFromParent();
886 // Remove alloca's dbg.declare intrinsics from the function.
887 auto RemoveDbgDeclares
= [&](auto &Container
) {
888 for (auto &DbgUsers
: Container
) {
889 for (auto *DbgItem
: DbgUsers
)
890 if (DbgItem
->isAddressOfVariable() ||
891 DbgItem
->getExpression()->startsWithDeref())
892 DbgItem
->eraseFromParent();
895 RemoveDbgDeclares(AllocaDbgUsers
);
896 RemoveDbgDeclares(AllocaDPUsers
);
898 // Loop over all of the PHI nodes and see if there are any that we can get
899 // rid of because they merge all of the same incoming values. This can
900 // happen due to undef values coming into the PHI nodes. This process is
901 // iterative, because eliminating one PHI node can cause others to be removed.
902 bool EliminatedAPHI
= true;
903 while (EliminatedAPHI
) {
904 EliminatedAPHI
= false;
906 // Iterating over NewPhiNodes is deterministic, so it is safe to try to
907 // simplify and RAUW them as we go. If it was not, we could add uses to
908 // the values we replace with in a non-deterministic order, thus creating
909 // non-deterministic def->use chains.
910 for (DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*>::iterator
911 I
= NewPhiNodes
.begin(),
912 E
= NewPhiNodes
.end();
914 PHINode
*PN
= I
->second
;
916 // If this PHI node merges one value and/or undefs, get the value.
917 if (Value
*V
= simplifyInstruction(PN
, SQ
)) {
918 PN
->replaceAllUsesWith(V
);
919 PN
->eraseFromParent();
920 NewPhiNodes
.erase(I
++);
921 EliminatedAPHI
= true;
928 // At this point, the renamer has added entries to PHI nodes for all reachable
929 // code. Unfortunately, there may be unreachable blocks which the renamer
930 // hasn't traversed. If this is the case, the PHI nodes may not
931 // have incoming values for all predecessors. Loop over all PHI nodes we have
932 // created, inserting poison values if they are missing any incoming values.
933 for (DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*>::iterator
934 I
= NewPhiNodes
.begin(),
935 E
= NewPhiNodes
.end();
937 // We want to do this once per basic block. As such, only process a block
938 // when we find the PHI that is the first entry in the block.
939 PHINode
*SomePHI
= I
->second
;
940 BasicBlock
*BB
= SomePHI
->getParent();
941 if (&BB
->front() != SomePHI
)
944 // Only do work here if there the PHI nodes are missing incoming values. We
945 // know that all PHI nodes that were inserted in a block will have the same
946 // number of incoming values, so we can just check any of them.
947 if (SomePHI
->getNumIncomingValues() == getNumPreds(BB
))
950 // Get the preds for BB.
951 SmallVector
<BasicBlock
*, 16> Preds(predecessors(BB
));
953 // Ok, now we know that all of the PHI nodes are missing entries for some
954 // basic blocks. Start by sorting the incoming predecessors for efficient
956 auto CompareBBNumbers
= [](BasicBlock
*A
, BasicBlock
*B
) {
957 return A
->getNumber() < B
->getNumber();
959 llvm::sort(Preds
, CompareBBNumbers
);
961 // Now we loop through all BB's which have entries in SomePHI and remove
962 // them from the Preds list.
963 for (unsigned i
= 0, e
= SomePHI
->getNumIncomingValues(); i
!= e
; ++i
) {
964 // Do a log(n) search of the Preds list for the entry we want.
965 SmallVectorImpl
<BasicBlock
*>::iterator EntIt
= llvm::lower_bound(
966 Preds
, SomePHI
->getIncomingBlock(i
), CompareBBNumbers
);
967 assert(EntIt
!= Preds
.end() && *EntIt
== SomePHI
->getIncomingBlock(i
) &&
968 "PHI node has entry for a block which is not a predecessor!");
974 // At this point, the blocks left in the preds list must have dummy
975 // entries inserted into every PHI nodes for the block. Update all the phi
976 // nodes in this block that we are inserting (there could be phis before
978 unsigned NumBadPreds
= SomePHI
->getNumIncomingValues();
979 BasicBlock::iterator BBI
= BB
->begin();
980 while ((SomePHI
= dyn_cast
<PHINode
>(BBI
++)) &&
981 SomePHI
->getNumIncomingValues() == NumBadPreds
) {
982 Value
*PoisonVal
= PoisonValue::get(SomePHI
->getType());
983 for (BasicBlock
*Pred
: Preds
)
984 SomePHI
->addIncoming(PoisonVal
, Pred
);
992 /// Determine which blocks the value is live in.
994 /// These are blocks which lead to uses. Knowing this allows us to avoid
995 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
996 /// inserted phi nodes would be dead).
997 void PromoteMem2Reg::ComputeLiveInBlocks(
998 AllocaInst
*AI
, AllocaInfo
&Info
,
999 const SmallPtrSetImpl
<BasicBlock
*> &DefBlocks
,
1000 SmallPtrSetImpl
<BasicBlock
*> &LiveInBlocks
) {
1001 // To determine liveness, we must iterate through the predecessors of blocks
1002 // where the def is live. Blocks are added to the worklist if we need to
1003 // check their predecessors. Start with all the using blocks.
1004 SmallVector
<BasicBlock
*, 64> LiveInBlockWorklist(Info
.UsingBlocks
.begin(),
1005 Info
.UsingBlocks
.end());
1007 // If any of the using blocks is also a definition block, check to see if the
1008 // definition occurs before or after the use. If it happens before the use,
1009 // the value isn't really live-in.
1010 for (unsigned i
= 0, e
= LiveInBlockWorklist
.size(); i
!= e
; ++i
) {
1011 BasicBlock
*BB
= LiveInBlockWorklist
[i
];
1012 if (!DefBlocks
.count(BB
))
1015 // Okay, this is a block that both uses and defines the value. If the first
1016 // reference to the alloca is a def (store), then we know it isn't live-in.
1017 for (BasicBlock::iterator I
= BB
->begin();; ++I
) {
1018 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
1019 if (SI
->getOperand(1) != AI
)
1022 // We found a store to the alloca before a load. The alloca is not
1023 // actually live-in here.
1024 LiveInBlockWorklist
[i
] = LiveInBlockWorklist
.back();
1025 LiveInBlockWorklist
.pop_back();
1031 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
1032 // Okay, we found a load before a store to the alloca. It is actually
1033 // live into this block.
1034 if (LI
->getOperand(0) == AI
)
1039 // Now that we have a set of blocks where the phi is live-in, recursively add
1040 // their predecessors until we find the full region the value is live.
1041 while (!LiveInBlockWorklist
.empty()) {
1042 BasicBlock
*BB
= LiveInBlockWorklist
.pop_back_val();
1044 // The block really is live in here, insert it into the set. If already in
1045 // the set, then it has already been processed.
1046 if (!LiveInBlocks
.insert(BB
).second
)
1049 // Since the value is live into BB, it is either defined in a predecessor or
1050 // live into it to. Add the preds to the worklist unless they are a
1052 for (BasicBlock
*P
: predecessors(BB
)) {
1053 // The value is not live into a predecessor if it defines the value.
1054 if (DefBlocks
.count(P
))
1057 // Otherwise it is, add to the worklist.
1058 LiveInBlockWorklist
.push_back(P
);
1063 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
1065 /// Returns true if there wasn't already a phi-node for that variable
1066 bool PromoteMem2Reg::QueuePhiNode(BasicBlock
*BB
, unsigned AllocaNo
,
1067 unsigned &Version
) {
1068 // Look up the basic-block in question.
1069 PHINode
*&PN
= NewPhiNodes
[std::make_pair(BB
->getNumber(), AllocaNo
)];
1071 // If the BB already has a phi node added for the i'th alloca then we're done!
1075 // Create a PhiNode using the dereferenced type... and add the phi-node to the
1077 PN
= PHINode::Create(Allocas
[AllocaNo
]->getAllocatedType(), getNumPreds(BB
),
1078 Allocas
[AllocaNo
]->getName() + "." + Twine(Version
++));
1079 PN
->insertBefore(BB
->begin());
1081 PhiToAllocaMap
[PN
] = AllocaNo
;
1085 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
1086 /// create a merged location incorporating \p DL, or to set \p DL directly.
1087 static void updateForIncomingValueLocation(PHINode
*PN
, DebugLoc DL
,
1088 bool ApplyMergedLoc
) {
1090 PN
->applyMergedLocation(PN
->getDebugLoc(), DL
);
1092 PN
->setDebugLoc(DL
);
1095 /// Recursively traverse the CFG of the function, renaming loads and
1096 /// stores to the allocas which we are promoting.
1098 /// IncomingVals indicates what value each Alloca contains on exit from the
1099 /// predecessor block Pred.
1100 void PromoteMem2Reg::RenamePass(BasicBlock
*BB
, BasicBlock
*Pred
,
1101 RenamePassData::ValVector
&IncomingVals
,
1102 RenamePassData::LocationVector
&IncomingLocs
,
1103 std::vector
<RenamePassData
> &Worklist
) {
1105 // If we are inserting any phi nodes into this BB, they will already be in the
1107 if (PHINode
*APN
= dyn_cast
<PHINode
>(BB
->begin())) {
1108 // If we have PHI nodes to update, compute the number of edges from Pred to
1110 if (PhiToAllocaMap
.count(APN
)) {
1111 // We want to be able to distinguish between PHI nodes being inserted by
1112 // this invocation of mem2reg from those phi nodes that already existed in
1113 // the IR before mem2reg was run. We determine that APN is being inserted
1114 // because it is missing incoming edges. All other PHI nodes being
1115 // inserted by this pass of mem2reg will have the same number of incoming
1116 // operands so far. Remember this count.
1117 unsigned NewPHINumOperands
= APN
->getNumOperands();
1119 unsigned NumEdges
= llvm::count(successors(Pred
), BB
);
1120 assert(NumEdges
&& "Must be at least one edge from Pred to BB!");
1122 // Add entries for all the phis.
1123 BasicBlock::iterator PNI
= BB
->begin();
1125 unsigned AllocaNo
= PhiToAllocaMap
[APN
];
1127 // Update the location of the phi node.
1128 updateForIncomingValueLocation(APN
, IncomingLocs
[AllocaNo
],
1129 APN
->getNumIncomingValues() > 0);
1131 // Add N incoming values to the PHI node.
1132 for (unsigned i
= 0; i
!= NumEdges
; ++i
)
1133 APN
->addIncoming(IncomingVals
[AllocaNo
], Pred
);
1135 // For the sequence `return X > 0.0 ? X : -X`, it is expected that this
1136 // results in fabs intrinsic. However, without no-signed-zeros(nsz) flag
1137 // on the phi node generated at this stage, fabs folding does not
1138 // happen. So, we try to infer nsz flag from the function attributes to
1139 // enable this fabs folding.
1140 if (isa
<FPMathOperator
>(APN
) && NoSignedZeros
)
1141 APN
->setHasNoSignedZeros(true);
1143 // The currently active variable for this block is now the PHI.
1144 IncomingVals
[AllocaNo
] = APN
;
1145 AllocaATInfo
[AllocaNo
].updateForNewPhi(APN
, DIB
);
1146 auto ConvertDbgDeclares
= [&](auto &Container
) {
1147 for (auto *DbgItem
: Container
)
1148 if (DbgItem
->isAddressOfVariable())
1149 ConvertDebugDeclareToDebugValue(DbgItem
, APN
, DIB
);
1151 ConvertDbgDeclares(AllocaDbgUsers
[AllocaNo
]);
1152 ConvertDbgDeclares(AllocaDPUsers
[AllocaNo
]);
1154 // Get the next phi node.
1156 APN
= dyn_cast
<PHINode
>(PNI
);
1160 // Verify that it is missing entries. If not, it is not being inserted
1161 // by this mem2reg invocation so we want to ignore it.
1162 } while (APN
->getNumOperands() == NewPHINumOperands
);
1166 // Don't revisit blocks.
1167 if (Visited
.test(BB
->getNumber()))
1169 Visited
.set(BB
->getNumber());
1171 for (BasicBlock::iterator II
= BB
->begin(); !II
->isTerminator();) {
1172 Instruction
*I
= &*II
++; // get the instruction, increment iterator
1174 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
1175 AllocaInst
*Src
= dyn_cast
<AllocaInst
>(LI
->getPointerOperand());
1179 DenseMap
<AllocaInst
*, unsigned>::iterator AI
= AllocaLookup
.find(Src
);
1180 if (AI
== AllocaLookup
.end())
1183 Value
*V
= IncomingVals
[AI
->second
];
1184 convertMetadataToAssumes(LI
, V
, SQ
.DL
, AC
, &DT
);
1186 // Anything using the load now uses the current value.
1187 LI
->replaceAllUsesWith(V
);
1188 LI
->eraseFromParent();
1189 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
1190 // Delete this instruction and mark the name as the current holder of the
1192 AllocaInst
*Dest
= dyn_cast
<AllocaInst
>(SI
->getPointerOperand());
1196 DenseMap
<AllocaInst
*, unsigned>::iterator ai
= AllocaLookup
.find(Dest
);
1197 if (ai
== AllocaLookup
.end())
1200 // what value were we writing?
1201 unsigned AllocaNo
= ai
->second
;
1202 IncomingVals
[AllocaNo
] = SI
->getOperand(0);
1204 // Record debuginfo for the store before removing it.
1205 IncomingLocs
[AllocaNo
] = SI
->getDebugLoc();
1206 AllocaATInfo
[AllocaNo
].updateForDeletedStore(SI
, DIB
, &DbgAssignsToDelete
,
1207 &DVRAssignsToDelete
);
1208 auto ConvertDbgDeclares
= [&](auto &Container
) {
1209 for (auto *DbgItem
: Container
)
1210 if (DbgItem
->isAddressOfVariable())
1211 ConvertDebugDeclareToDebugValue(DbgItem
, SI
, DIB
);
1213 ConvertDbgDeclares(AllocaDbgUsers
[ai
->second
]);
1214 ConvertDbgDeclares(AllocaDPUsers
[ai
->second
]);
1215 SI
->eraseFromParent();
1219 // 'Recurse' to our successors.
1220 succ_iterator I
= succ_begin(BB
), E
= succ_end(BB
);
1224 // Keep track of the successors so we don't visit the same successor twice
1225 SmallPtrSet
<BasicBlock
*, 8> VisitedSuccs
;
1227 // Handle the first successor without using the worklist.
1228 VisitedSuccs
.insert(*I
);
1234 if (VisitedSuccs
.insert(*I
).second
)
1235 Worklist
.emplace_back(*I
, Pred
, IncomingVals
, IncomingLocs
);
1240 void llvm::PromoteMemToReg(ArrayRef
<AllocaInst
*> Allocas
, DominatorTree
&DT
,
1241 AssumptionCache
*AC
) {
1242 // If there is nothing to do, bail out...
1243 if (Allocas
.empty())
1246 PromoteMem2Reg(Allocas
, DT
, AC
).run();