[mlir] Update Ch-2.md (#121379)
[llvm-project.git] / llvm / lib / Transforms / Utils / PromoteMemoryToRegister.cpp
blob656bb1ebd1161e4c41f800a4555969ea27007a8b
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references. It promotes
10 // alloca instructions which only have loads and stores as uses. An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DebugProgramInstruction.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <iterator>
54 #include <utility>
55 #include <vector>
57 using namespace llvm;
59 #define DEBUG_TYPE "mem2reg"
61 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
62 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
63 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
64 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
66 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
67 // Only allow direct and non-volatile loads and stores...
68 for (const User *U : AI->users()) {
69 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
70 // Note that atomic loads can be transformed; atomic semantics do
71 // not have any meaning for a local alloca.
72 if (LI->isVolatile() || LI->getType() != AI->getAllocatedType())
73 return false;
74 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
75 if (SI->getValueOperand() == AI ||
76 SI->getValueOperand()->getType() != AI->getAllocatedType())
77 return false; // Don't allow a store OF the AI, only INTO the AI.
78 // Note that atomic stores can be transformed; atomic semantics do
79 // not have any meaning for a local alloca.
80 if (SI->isVolatile())
81 return false;
82 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
83 if (!II->isLifetimeStartOrEnd() && !II->isDroppable() &&
84 II->getIntrinsicID() != Intrinsic::fake_use)
85 return false;
86 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
87 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
88 return false;
89 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
90 if (!GEPI->hasAllZeroIndices())
91 return false;
92 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
93 return false;
94 } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
95 if (!onlyUsedByLifetimeMarkers(ASCI))
96 return false;
97 } else {
98 return false;
102 return true;
105 namespace {
107 static void createDebugValue(DIBuilder &DIB, Value *NewValue,
108 DILocalVariable *Variable,
109 DIExpression *Expression, const DILocation *DI,
110 DbgVariableRecord *InsertBefore) {
111 // FIXME: Merge these two functions now that DIBuilder supports
112 // DbgVariableRecords. We neeed the API to accept DbgVariableRecords as an
113 // insert point for that to work.
114 (void)DIB;
115 DbgVariableRecord::createDbgVariableRecord(NewValue, Variable, Expression, DI,
116 *InsertBefore);
118 static void createDebugValue(DIBuilder &DIB, Value *NewValue,
119 DILocalVariable *Variable,
120 DIExpression *Expression, const DILocation *DI,
121 Instruction *InsertBefore) {
122 DIB.insertDbgValueIntrinsic(NewValue, Variable, Expression, DI, InsertBefore);
125 /// Helper for updating assignment tracking debug info when promoting allocas.
126 class AssignmentTrackingInfo {
127 /// DbgAssignIntrinsics linked to the alloca with at most one per variable
128 /// fragment. (i.e. not be a comprehensive set if there are multiple
129 /// dbg.assigns for one variable fragment).
130 SmallVector<DbgVariableIntrinsic *> DbgAssigns;
131 SmallVector<DbgVariableRecord *> DVRAssigns;
133 public:
134 void init(AllocaInst *AI) {
135 SmallSet<DebugVariable, 2> Vars;
136 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) {
137 if (Vars.insert(DebugVariable(DAI)).second)
138 DbgAssigns.push_back(DAI);
140 for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(AI)) {
141 if (Vars.insert(DebugVariable(DVR)).second)
142 DVRAssigns.push_back(DVR);
146 /// Update assignment tracking debug info given for the to-be-deleted store
147 /// \p ToDelete that stores to this alloca.
148 void updateForDeletedStore(
149 StoreInst *ToDelete, DIBuilder &DIB,
150 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete,
151 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) const {
152 // There's nothing to do if the alloca doesn't have any variables using
153 // assignment tracking.
154 if (DbgAssigns.empty() && DVRAssigns.empty())
155 return;
157 // Insert a dbg.value where the linked dbg.assign is and remember to delete
158 // the dbg.assign later. Demoting to dbg.value isn't necessary for
159 // correctness but does reduce compile time and memory usage by reducing
160 // unnecessary function-local metadata. Remember that we've seen a
161 // dbg.assign for each variable fragment for the untracked store handling
162 // (after this loop).
163 SmallSet<DebugVariableAggregate, 2> VarHasDbgAssignForStore;
164 auto InsertValueForAssign = [&](auto *DbgAssign, auto *&AssignList) {
165 VarHasDbgAssignForStore.insert(DebugVariableAggregate(DbgAssign));
166 AssignList->insert(DbgAssign);
167 createDebugValue(DIB, DbgAssign->getValue(), DbgAssign->getVariable(),
168 DbgAssign->getExpression(), DbgAssign->getDebugLoc(),
169 DbgAssign);
171 for (auto *Assign : at::getAssignmentMarkers(ToDelete))
172 InsertValueForAssign(Assign, DbgAssignsToDelete);
173 for (auto *Assign : at::getDVRAssignmentMarkers(ToDelete))
174 InsertValueForAssign(Assign, DVRAssignsToDelete);
176 // It's possible for variables using assignment tracking to have no
177 // dbg.assign linked to this store. These are variables in DbgAssigns that
178 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign
179 // to mark the assignment - and the store is going to be deleted - insert a
180 // dbg.value to do that now. An untracked store may be either one that
181 // cannot be represented using assignment tracking (non-const offset or
182 // size) or one that is trackable but has had its DIAssignID attachment
183 // dropped accidentally.
184 auto ConvertUnlinkedAssignToValue = [&](auto *Assign) {
185 if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(Assign)))
186 return;
187 ConvertDebugDeclareToDebugValue(Assign, ToDelete, DIB);
189 for_each(DbgAssigns, ConvertUnlinkedAssignToValue);
190 for_each(DVRAssigns, ConvertUnlinkedAssignToValue);
193 /// Update assignment tracking debug info given for the newly inserted PHI \p
194 /// NewPhi.
195 void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const {
196 // Regardless of the position of dbg.assigns relative to stores, the
197 // incoming values into a new PHI should be the same for the (imaginary)
198 // debug-phi.
199 for (auto *DAI : DbgAssigns)
200 ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB);
201 for (auto *DVR : DVRAssigns)
202 ConvertDebugDeclareToDebugValue(DVR, NewPhi, DIB);
205 void clear() {
206 DbgAssigns.clear();
207 DVRAssigns.clear();
209 bool empty() { return DbgAssigns.empty() && DVRAssigns.empty(); }
212 struct AllocaInfo {
213 using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>;
214 using DPUserVec = SmallVector<DbgVariableRecord *, 1>;
216 SmallVector<BasicBlock *, 32> DefiningBlocks;
217 SmallVector<BasicBlock *, 32> UsingBlocks;
219 StoreInst *OnlyStore;
220 BasicBlock *OnlyBlock;
221 bool OnlyUsedInOneBlock;
223 /// Debug users of the alloca - does not include dbg.assign intrinsics.
224 DbgUserVec DbgUsers;
225 DPUserVec DPUsers;
226 /// Helper to update assignment tracking debug info.
227 AssignmentTrackingInfo AssignmentTracking;
229 void clear() {
230 DefiningBlocks.clear();
231 UsingBlocks.clear();
232 OnlyStore = nullptr;
233 OnlyBlock = nullptr;
234 OnlyUsedInOneBlock = true;
235 DbgUsers.clear();
236 DPUsers.clear();
237 AssignmentTracking.clear();
240 /// Scan the uses of the specified alloca, filling in the AllocaInfo used
241 /// by the rest of the pass to reason about the uses of this alloca.
242 void AnalyzeAlloca(AllocaInst *AI) {
243 clear();
245 // As we scan the uses of the alloca instruction, keep track of stores,
246 // and decide whether all of the loads and stores to the alloca are within
247 // the same basic block.
248 for (User *U : AI->users()) {
249 Instruction *User = cast<Instruction>(U);
251 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
252 // Remember the basic blocks which define new values for the alloca
253 DefiningBlocks.push_back(SI->getParent());
254 OnlyStore = SI;
255 } else {
256 LoadInst *LI = cast<LoadInst>(User);
257 // Otherwise it must be a load instruction, keep track of variable
258 // reads.
259 UsingBlocks.push_back(LI->getParent());
262 if (OnlyUsedInOneBlock) {
263 if (!OnlyBlock)
264 OnlyBlock = User->getParent();
265 else if (OnlyBlock != User->getParent())
266 OnlyUsedInOneBlock = false;
269 DbgUserVec AllDbgUsers;
270 SmallVector<DbgVariableRecord *> AllDPUsers;
271 findDbgUsers(AllDbgUsers, AI, &AllDPUsers);
272 std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(),
273 std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) {
274 return !isa<DbgAssignIntrinsic>(DII);
276 std::copy_if(AllDPUsers.begin(), AllDPUsers.end(),
277 std::back_inserter(DPUsers),
278 [](DbgVariableRecord *DVR) { return !DVR->isDbgAssign(); });
279 AssignmentTracking.init(AI);
283 /// Data package used by RenamePass().
284 struct RenamePassData {
285 using ValVector = std::vector<Value *>;
286 using LocationVector = std::vector<DebugLoc>;
288 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
289 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
291 BasicBlock *BB;
292 BasicBlock *Pred;
293 ValVector Values;
294 LocationVector Locations;
297 /// This assigns and keeps a per-bb relative ordering of load/store
298 /// instructions in the block that directly load or store an alloca.
300 /// This functionality is important because it avoids scanning large basic
301 /// blocks multiple times when promoting many allocas in the same block.
302 class LargeBlockInfo {
303 /// For each instruction that we track, keep the index of the
304 /// instruction.
306 /// The index starts out as the number of the instruction from the start of
307 /// the block.
308 DenseMap<const Instruction *, unsigned> InstNumbers;
310 public:
312 /// This code only looks at accesses to allocas.
313 static bool isInterestingInstruction(const Instruction *I) {
314 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
315 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
318 /// Get or calculate the index of the specified instruction.
319 unsigned getInstructionIndex(const Instruction *I) {
320 assert(isInterestingInstruction(I) &&
321 "Not a load/store to/from an alloca?");
323 // If we already have this instruction number, return it.
324 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
325 if (It != InstNumbers.end())
326 return It->second;
328 // Scan the whole block to get the instruction. This accumulates
329 // information for every interesting instruction in the block, in order to
330 // avoid gratuitus rescans.
331 const BasicBlock *BB = I->getParent();
332 unsigned InstNo = 0;
333 for (const Instruction &BBI : *BB)
334 if (isInterestingInstruction(&BBI))
335 InstNumbers[&BBI] = InstNo++;
336 It = InstNumbers.find(I);
338 assert(It != InstNumbers.end() && "Didn't insert instruction?");
339 return It->second;
342 void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
344 void clear() { InstNumbers.clear(); }
347 struct PromoteMem2Reg {
348 /// The alloca instructions being promoted.
349 std::vector<AllocaInst *> Allocas;
351 DominatorTree &DT;
352 DIBuilder DIB;
354 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
355 AssumptionCache *AC;
357 const SimplifyQuery SQ;
359 /// Reverse mapping of Allocas.
360 DenseMap<AllocaInst *, unsigned> AllocaLookup;
362 /// The PhiNodes we're adding.
364 /// That map is used to simplify some Phi nodes as we iterate over it, so
365 /// it should have deterministic iterators. We could use a MapVector, but
366 /// since basic blocks have numbers, using these are more efficient.
367 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
369 /// For each PHI node, keep track of which entry in Allocas it corresponds
370 /// to.
371 DenseMap<PHINode *, unsigned> PhiToAllocaMap;
373 /// For each alloca, we keep track of the dbg.declare intrinsic that
374 /// describes it, if any, so that we can convert it to a dbg.value
375 /// intrinsic if the alloca gets promoted.
376 SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers;
377 SmallVector<AllocaInfo::DPUserVec, 8> AllocaDPUsers;
379 /// For each alloca, keep an instance of a helper class that gives us an easy
380 /// way to update assignment tracking debug info if the alloca is promoted.
381 SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo;
382 /// A set of dbg.assigns to delete because they've been demoted to
383 /// dbg.values. Call cleanUpDbgAssigns to delete them.
384 SmallSet<DbgAssignIntrinsic *, 8> DbgAssignsToDelete;
385 SmallSet<DbgVariableRecord *, 8> DVRAssignsToDelete;
387 /// The set of basic blocks the renamer has already visited.
388 BitVector Visited;
390 /// Lazily compute the number of predecessors a block has, indexed by block
391 /// number.
392 SmallVector<unsigned> BBNumPreds;
394 /// Whether the function has the no-signed-zeros-fp-math attribute set.
395 bool NoSignedZeros = false;
397 public:
398 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
399 AssumptionCache *AC)
400 : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
401 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
402 AC(AC), SQ(DT.getRoot()->getDataLayout(),
403 nullptr, &DT, AC) {}
405 void run();
407 private:
408 void RemoveFromAllocasList(unsigned &AllocaIdx) {
409 Allocas[AllocaIdx] = Allocas.back();
410 Allocas.pop_back();
411 --AllocaIdx;
414 unsigned getNumPreds(const BasicBlock *BB) {
415 // BBNumPreds is resized to getMaxBlockNumber() at the beginning.
416 unsigned &NP = BBNumPreds[BB->getNumber()];
417 if (NP == 0)
418 NP = pred_size(BB) + 1;
419 return NP - 1;
422 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
423 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
424 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
425 void RenamePass(BasicBlock *BB, BasicBlock *Pred,
426 RenamePassData::ValVector &IncVals,
427 RenamePassData::LocationVector &IncLocs,
428 std::vector<RenamePassData> &Worklist);
429 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
431 /// Delete dbg.assigns that have been demoted to dbg.values.
432 void cleanUpDbgAssigns() {
433 for (auto *DAI : DbgAssignsToDelete)
434 DAI->eraseFromParent();
435 DbgAssignsToDelete.clear();
436 for (auto *DVR : DVRAssignsToDelete)
437 DVR->eraseFromParent();
438 DVRAssignsToDelete.clear();
442 } // end anonymous namespace
444 /// Given a LoadInst LI this adds assume(LI != null) after it.
445 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
446 Function *AssumeIntrinsic =
447 Intrinsic::getOrInsertDeclaration(LI->getModule(), Intrinsic::assume);
448 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
449 Constant::getNullValue(LI->getType()));
450 LoadNotNull->insertAfter(LI);
451 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
452 CI->insertAfter(LoadNotNull);
453 AC->registerAssumption(cast<AssumeInst>(CI));
456 static void convertMetadataToAssumes(LoadInst *LI, Value *Val,
457 const DataLayout &DL, AssumptionCache *AC,
458 const DominatorTree *DT) {
459 if (isa<UndefValue>(Val) && LI->hasMetadata(LLVMContext::MD_noundef)) {
460 // Insert non-terminator unreachable.
461 LLVMContext &Ctx = LI->getContext();
462 new StoreInst(ConstantInt::getTrue(Ctx),
463 PoisonValue::get(PointerType::getUnqual(Ctx)),
464 /*isVolatile=*/false, Align(1), LI->getIterator());
465 return;
468 // If the load was marked as nonnull we don't want to lose that information
469 // when we erase this Load. So we preserve it with an assume. As !nonnull
470 // returns poison while assume violations are immediate undefined behavior,
471 // we can only do this if the value is known non-poison.
472 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
473 LI->getMetadata(LLVMContext::MD_noundef) &&
474 !isKnownNonZero(Val, SimplifyQuery(DL, DT, AC, LI)))
475 addAssumeNonNull(AC, LI);
478 static void removeIntrinsicUsers(AllocaInst *AI) {
479 // Knowing that this alloca is promotable, we know that it's safe to kill all
480 // instructions except for load and store.
482 for (Use &U : llvm::make_early_inc_range(AI->uses())) {
483 Instruction *I = cast<Instruction>(U.getUser());
484 if (isa<LoadInst>(I) || isa<StoreInst>(I))
485 continue;
487 // Drop the use of AI in droppable instructions.
488 if (I->isDroppable()) {
489 I->dropDroppableUse(U);
490 continue;
493 if (!I->getType()->isVoidTy()) {
494 // The only users of this bitcast/GEP instruction are lifetime intrinsics.
495 // Follow the use/def chain to erase them now instead of leaving it for
496 // dead code elimination later.
497 for (Use &UU : llvm::make_early_inc_range(I->uses())) {
498 Instruction *Inst = cast<Instruction>(UU.getUser());
500 // Drop the use of I in droppable instructions.
501 if (Inst->isDroppable()) {
502 Inst->dropDroppableUse(UU);
503 continue;
505 Inst->eraseFromParent();
508 I->eraseFromParent();
512 /// Rewrite as many loads as possible given a single store.
514 /// When there is only a single store, we can use the domtree to trivially
515 /// replace all of the dominated loads with the stored value. Do so, and return
516 /// true if this has successfully promoted the alloca entirely. If this returns
517 /// false there were some loads which were not dominated by the single store
518 /// and thus must be phi-ed with undef. We fall back to the standard alloca
519 /// promotion algorithm in that case.
520 static bool
521 rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI,
522 const DataLayout &DL, DominatorTree &DT,
523 AssumptionCache *AC,
524 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete,
525 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) {
526 StoreInst *OnlyStore = Info.OnlyStore;
527 Value *ReplVal = OnlyStore->getOperand(0);
528 // Loads may either load the stored value or uninitialized memory (undef).
529 // If the stored value may be poison, then replacing an uninitialized memory
530 // load with it would be incorrect. If the store dominates the load, we know
531 // it is always initialized.
532 bool RequireDominatingStore =
533 isa<Instruction>(ReplVal) || !isGuaranteedNotToBePoison(ReplVal);
534 BasicBlock *StoreBB = OnlyStore->getParent();
535 int StoreIndex = -1;
537 // Clear out UsingBlocks. We will reconstruct it here if needed.
538 Info.UsingBlocks.clear();
540 for (User *U : make_early_inc_range(AI->users())) {
541 Instruction *UserInst = cast<Instruction>(U);
542 if (UserInst == OnlyStore)
543 continue;
544 LoadInst *LI = cast<LoadInst>(UserInst);
546 // Okay, if we have a load from the alloca, we want to replace it with the
547 // only value stored to the alloca. We can do this if the value is
548 // dominated by the store. If not, we use the rest of the mem2reg machinery
549 // to insert the phi nodes as needed.
550 if (RequireDominatingStore) {
551 if (LI->getParent() == StoreBB) {
552 // If we have a use that is in the same block as the store, compare the
553 // indices of the two instructions to see which one came first. If the
554 // load came before the store, we can't handle it.
555 if (StoreIndex == -1)
556 StoreIndex = LBI.getInstructionIndex(OnlyStore);
558 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
559 // Can't handle this load, bail out.
560 Info.UsingBlocks.push_back(StoreBB);
561 continue;
563 } else if (!DT.dominates(StoreBB, LI->getParent())) {
564 // If the load and store are in different blocks, use BB dominance to
565 // check their relationships. If the store doesn't dom the use, bail
566 // out.
567 Info.UsingBlocks.push_back(LI->getParent());
568 continue;
572 // Otherwise, we *can* safely rewrite this load.
573 // If the replacement value is the load, this must occur in unreachable
574 // code.
575 if (ReplVal == LI)
576 ReplVal = PoisonValue::get(LI->getType());
578 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
579 LI->replaceAllUsesWith(ReplVal);
580 LI->eraseFromParent();
581 LBI.deleteValue(LI);
584 // Finally, after the scan, check to see if the store is all that is left.
585 if (!Info.UsingBlocks.empty())
586 return false; // If not, we'll have to fall back for the remainder.
588 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
589 // Update assignment tracking info for the store we're going to delete.
590 Info.AssignmentTracking.updateForDeletedStore(
591 Info.OnlyStore, DIB, DbgAssignsToDelete, DVRAssignsToDelete);
593 // Record debuginfo for the store and remove the declaration's
594 // debuginfo.
595 auto ConvertDebugInfoForStore = [&](auto &Container) {
596 for (auto *DbgItem : Container) {
597 if (DbgItem->isAddressOfVariable()) {
598 ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB);
599 DbgItem->eraseFromParent();
600 } else if (DbgItem->isValueOfVariable() &&
601 DbgItem->getExpression()->startsWithDeref()) {
602 InsertDebugValueAtStoreLoc(DbgItem, Info.OnlyStore, DIB);
603 DbgItem->eraseFromParent();
604 } else if (DbgItem->getExpression()->startsWithDeref()) {
605 DbgItem->eraseFromParent();
609 ConvertDebugInfoForStore(Info.DbgUsers);
610 ConvertDebugInfoForStore(Info.DPUsers);
612 // Remove dbg.assigns linked to the alloca as these are now redundant.
613 at::deleteAssignmentMarkers(AI);
615 // Remove the (now dead) store and alloca.
616 Info.OnlyStore->eraseFromParent();
617 LBI.deleteValue(Info.OnlyStore);
619 AI->eraseFromParent();
620 return true;
623 /// Many allocas are only used within a single basic block. If this is the
624 /// case, avoid traversing the CFG and inserting a lot of potentially useless
625 /// PHI nodes by just performing a single linear pass over the basic block
626 /// using the Alloca.
628 /// If we cannot promote this alloca (because it is read before it is written),
629 /// return false. This is necessary in cases where, due to control flow, the
630 /// alloca is undefined only on some control flow paths. e.g. code like
631 /// this is correct in LLVM IR:
632 /// // A is an alloca with no stores so far
633 /// for (...) {
634 /// int t = *A;
635 /// if (!first_iteration)
636 /// use(t);
637 /// *A = 42;
638 /// }
639 static bool
640 promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
641 LargeBlockInfo &LBI, const DataLayout &DL,
642 DominatorTree &DT, AssumptionCache *AC,
643 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete,
644 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) {
645 // The trickiest case to handle is when we have large blocks. Because of this,
646 // this code is optimized assuming that large blocks happen. This does not
647 // significantly pessimize the small block case. This uses LargeBlockInfo to
648 // make it efficient to get the index of various operations in the block.
650 // Walk the use-def list of the alloca, getting the locations of all stores.
651 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
652 StoresByIndexTy StoresByIndex;
654 for (User *U : AI->users())
655 if (StoreInst *SI = dyn_cast<StoreInst>(U))
656 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
658 // Sort the stores by their index, making it efficient to do a lookup with a
659 // binary search.
660 llvm::sort(StoresByIndex, less_first());
662 // Walk all of the loads from this alloca, replacing them with the nearest
663 // store above them, if any.
664 for (User *U : make_early_inc_range(AI->users())) {
665 LoadInst *LI = dyn_cast<LoadInst>(U);
666 if (!LI)
667 continue;
669 unsigned LoadIdx = LBI.getInstructionIndex(LI);
671 // Find the nearest store that has a lower index than this load.
672 StoresByIndexTy::iterator I = llvm::lower_bound(
673 StoresByIndex,
674 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
675 less_first());
676 Value *ReplVal;
677 if (I == StoresByIndex.begin()) {
678 if (StoresByIndex.empty())
679 // If there are no stores, the load takes the undef value.
680 ReplVal = UndefValue::get(LI->getType());
681 else
682 // There is no store before this load, bail out (load may be affected
683 // by the following stores - see main comment).
684 return false;
685 } else {
686 // Otherwise, there was a store before this load, the load takes its
687 // value.
688 ReplVal = std::prev(I)->second->getOperand(0);
691 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
693 // If the replacement value is the load, this must occur in unreachable
694 // code.
695 if (ReplVal == LI)
696 ReplVal = PoisonValue::get(LI->getType());
698 LI->replaceAllUsesWith(ReplVal);
699 LI->eraseFromParent();
700 LBI.deleteValue(LI);
703 // Remove the (now dead) stores and alloca.
704 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
705 while (!AI->use_empty()) {
706 StoreInst *SI = cast<StoreInst>(AI->user_back());
707 // Update assignment tracking info for the store we're going to delete.
708 Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete,
709 DVRAssignsToDelete);
710 // Record debuginfo for the store before removing it.
711 auto DbgUpdateForStore = [&](auto &Container) {
712 for (auto *DbgItem : Container) {
713 if (DbgItem->isAddressOfVariable()) {
714 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB);
718 DbgUpdateForStore(Info.DbgUsers);
719 DbgUpdateForStore(Info.DPUsers);
721 SI->eraseFromParent();
722 LBI.deleteValue(SI);
725 // Remove dbg.assigns linked to the alloca as these are now redundant.
726 at::deleteAssignmentMarkers(AI);
727 AI->eraseFromParent();
729 // The alloca's debuginfo can be removed as well.
730 auto DbgUpdateForAlloca = [&](auto &Container) {
731 for (auto *DbgItem : Container)
732 if (DbgItem->isAddressOfVariable() ||
733 DbgItem->getExpression()->startsWithDeref())
734 DbgItem->eraseFromParent();
736 DbgUpdateForAlloca(Info.DbgUsers);
737 DbgUpdateForAlloca(Info.DPUsers);
739 ++NumLocalPromoted;
740 return true;
743 void PromoteMem2Reg::run() {
744 Function &F = *DT.getRoot()->getParent();
746 AllocaDbgUsers.resize(Allocas.size());
747 AllocaATInfo.resize(Allocas.size());
748 AllocaDPUsers.resize(Allocas.size());
750 AllocaInfo Info;
751 LargeBlockInfo LBI;
752 ForwardIDFCalculator IDF(DT);
754 NoSignedZeros = F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool();
756 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
757 AllocaInst *AI = Allocas[AllocaNum];
759 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
760 assert(AI->getParent()->getParent() == &F &&
761 "All allocas should be in the same function, which is same as DF!");
763 removeIntrinsicUsers(AI);
765 if (AI->use_empty()) {
766 // If there are no uses of the alloca, just delete it now.
767 AI->eraseFromParent();
769 // Remove the alloca from the Allocas list, since it has been processed
770 RemoveFromAllocasList(AllocaNum);
771 ++NumDeadAlloca;
772 continue;
775 // Calculate the set of read and write-locations for each alloca. This is
776 // analogous to finding the 'uses' and 'definitions' of each variable.
777 Info.AnalyzeAlloca(AI);
779 // If there is only a single store to this value, replace any loads of
780 // it that are directly dominated by the definition with the value stored.
781 if (Info.DefiningBlocks.size() == 1) {
782 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC,
783 &DbgAssignsToDelete, &DVRAssignsToDelete)) {
784 // The alloca has been processed, move on.
785 RemoveFromAllocasList(AllocaNum);
786 ++NumSingleStore;
787 continue;
791 // If the alloca is only read and written in one basic block, just perform a
792 // linear sweep over the block to eliminate it.
793 if (Info.OnlyUsedInOneBlock &&
794 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC,
795 &DbgAssignsToDelete, &DVRAssignsToDelete)) {
796 // The alloca has been processed, move on.
797 RemoveFromAllocasList(AllocaNum);
798 continue;
801 // Initialize BBNumPreds lazily
802 if (BBNumPreds.empty())
803 BBNumPreds.resize(F.getMaxBlockNumber());
805 // Remember the dbg.declare intrinsic describing this alloca, if any.
806 if (!Info.DbgUsers.empty())
807 AllocaDbgUsers[AllocaNum] = Info.DbgUsers;
808 if (!Info.AssignmentTracking.empty())
809 AllocaATInfo[AllocaNum] = Info.AssignmentTracking;
810 if (!Info.DPUsers.empty())
811 AllocaDPUsers[AllocaNum] = Info.DPUsers;
813 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
814 AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
816 // Unique the set of defining blocks for efficient lookup.
817 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
818 Info.DefiningBlocks.end());
820 // Determine which blocks the value is live in. These are blocks which lead
821 // to uses.
822 SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
823 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
825 // At this point, we're committed to promoting the alloca using IDF's, and
826 // the standard SSA construction algorithm. Determine which blocks need phi
827 // nodes and see if we can optimize out some work by avoiding insertion of
828 // dead phi nodes.
829 IDF.setLiveInBlocks(LiveInBlocks);
830 IDF.setDefiningBlocks(DefBlocks);
831 SmallVector<BasicBlock *, 32> PHIBlocks;
832 IDF.calculate(PHIBlocks);
833 llvm::sort(PHIBlocks, [](BasicBlock *A, BasicBlock *B) {
834 return A->getNumber() < B->getNumber();
837 unsigned CurrentVersion = 0;
838 for (BasicBlock *BB : PHIBlocks)
839 QueuePhiNode(BB, AllocaNum, CurrentVersion);
842 if (Allocas.empty()) {
843 cleanUpDbgAssigns();
844 return; // All of the allocas must have been trivial!
846 LBI.clear();
848 // Set the incoming values for the basic block to be null values for all of
849 // the alloca's. We do this in case there is a load of a value that has not
850 // been stored yet. In this case, it will get this null value.
851 RenamePassData::ValVector Values(Allocas.size());
852 for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
853 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
855 // When handling debug info, treat all incoming values as if they have unknown
856 // locations until proven otherwise.
857 RenamePassData::LocationVector Locations(Allocas.size());
859 // The renamer uses the Visited set to avoid infinite loops.
860 Visited.resize(F.getMaxBlockNumber());
862 // Walks all basic blocks in the function performing the SSA rename algorithm
863 // and inserting the phi nodes we marked as necessary
864 std::vector<RenamePassData> RenamePassWorkList;
865 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
866 std::move(Locations));
867 do {
868 RenamePassData RPD = std::move(RenamePassWorkList.back());
869 RenamePassWorkList.pop_back();
870 // RenamePass may add new worklist entries.
871 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
872 } while (!RenamePassWorkList.empty());
874 // Remove the allocas themselves from the function.
875 for (Instruction *A : Allocas) {
876 // Remove dbg.assigns linked to the alloca as these are now redundant.
877 at::deleteAssignmentMarkers(A);
878 // If there are any uses of the alloca instructions left, they must be in
879 // unreachable basic blocks that were not processed by walking the dominator
880 // tree. Just delete the users now.
881 if (!A->use_empty())
882 A->replaceAllUsesWith(PoisonValue::get(A->getType()));
883 A->eraseFromParent();
886 // Remove alloca's dbg.declare intrinsics from the function.
887 auto RemoveDbgDeclares = [&](auto &Container) {
888 for (auto &DbgUsers : Container) {
889 for (auto *DbgItem : DbgUsers)
890 if (DbgItem->isAddressOfVariable() ||
891 DbgItem->getExpression()->startsWithDeref())
892 DbgItem->eraseFromParent();
895 RemoveDbgDeclares(AllocaDbgUsers);
896 RemoveDbgDeclares(AllocaDPUsers);
898 // Loop over all of the PHI nodes and see if there are any that we can get
899 // rid of because they merge all of the same incoming values. This can
900 // happen due to undef values coming into the PHI nodes. This process is
901 // iterative, because eliminating one PHI node can cause others to be removed.
902 bool EliminatedAPHI = true;
903 while (EliminatedAPHI) {
904 EliminatedAPHI = false;
906 // Iterating over NewPhiNodes is deterministic, so it is safe to try to
907 // simplify and RAUW them as we go. If it was not, we could add uses to
908 // the values we replace with in a non-deterministic order, thus creating
909 // non-deterministic def->use chains.
910 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
911 I = NewPhiNodes.begin(),
912 E = NewPhiNodes.end();
913 I != E;) {
914 PHINode *PN = I->second;
916 // If this PHI node merges one value and/or undefs, get the value.
917 if (Value *V = simplifyInstruction(PN, SQ)) {
918 PN->replaceAllUsesWith(V);
919 PN->eraseFromParent();
920 NewPhiNodes.erase(I++);
921 EliminatedAPHI = true;
922 continue;
924 ++I;
928 // At this point, the renamer has added entries to PHI nodes for all reachable
929 // code. Unfortunately, there may be unreachable blocks which the renamer
930 // hasn't traversed. If this is the case, the PHI nodes may not
931 // have incoming values for all predecessors. Loop over all PHI nodes we have
932 // created, inserting poison values if they are missing any incoming values.
933 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
934 I = NewPhiNodes.begin(),
935 E = NewPhiNodes.end();
936 I != E; ++I) {
937 // We want to do this once per basic block. As such, only process a block
938 // when we find the PHI that is the first entry in the block.
939 PHINode *SomePHI = I->second;
940 BasicBlock *BB = SomePHI->getParent();
941 if (&BB->front() != SomePHI)
942 continue;
944 // Only do work here if there the PHI nodes are missing incoming values. We
945 // know that all PHI nodes that were inserted in a block will have the same
946 // number of incoming values, so we can just check any of them.
947 if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
948 continue;
950 // Get the preds for BB.
951 SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
953 // Ok, now we know that all of the PHI nodes are missing entries for some
954 // basic blocks. Start by sorting the incoming predecessors for efficient
955 // access.
956 auto CompareBBNumbers = [](BasicBlock *A, BasicBlock *B) {
957 return A->getNumber() < B->getNumber();
959 llvm::sort(Preds, CompareBBNumbers);
961 // Now we loop through all BB's which have entries in SomePHI and remove
962 // them from the Preds list.
963 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
964 // Do a log(n) search of the Preds list for the entry we want.
965 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
966 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
967 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
968 "PHI node has entry for a block which is not a predecessor!");
970 // Remove the entry
971 Preds.erase(EntIt);
974 // At this point, the blocks left in the preds list must have dummy
975 // entries inserted into every PHI nodes for the block. Update all the phi
976 // nodes in this block that we are inserting (there could be phis before
977 // mem2reg runs).
978 unsigned NumBadPreds = SomePHI->getNumIncomingValues();
979 BasicBlock::iterator BBI = BB->begin();
980 while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
981 SomePHI->getNumIncomingValues() == NumBadPreds) {
982 Value *PoisonVal = PoisonValue::get(SomePHI->getType());
983 for (BasicBlock *Pred : Preds)
984 SomePHI->addIncoming(PoisonVal, Pred);
988 NewPhiNodes.clear();
989 cleanUpDbgAssigns();
992 /// Determine which blocks the value is live in.
994 /// These are blocks which lead to uses. Knowing this allows us to avoid
995 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
996 /// inserted phi nodes would be dead).
997 void PromoteMem2Reg::ComputeLiveInBlocks(
998 AllocaInst *AI, AllocaInfo &Info,
999 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
1000 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
1001 // To determine liveness, we must iterate through the predecessors of blocks
1002 // where the def is live. Blocks are added to the worklist if we need to
1003 // check their predecessors. Start with all the using blocks.
1004 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
1005 Info.UsingBlocks.end());
1007 // If any of the using blocks is also a definition block, check to see if the
1008 // definition occurs before or after the use. If it happens before the use,
1009 // the value isn't really live-in.
1010 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
1011 BasicBlock *BB = LiveInBlockWorklist[i];
1012 if (!DefBlocks.count(BB))
1013 continue;
1015 // Okay, this is a block that both uses and defines the value. If the first
1016 // reference to the alloca is a def (store), then we know it isn't live-in.
1017 for (BasicBlock::iterator I = BB->begin();; ++I) {
1018 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1019 if (SI->getOperand(1) != AI)
1020 continue;
1022 // We found a store to the alloca before a load. The alloca is not
1023 // actually live-in here.
1024 LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
1025 LiveInBlockWorklist.pop_back();
1026 --i;
1027 --e;
1028 break;
1031 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1032 // Okay, we found a load before a store to the alloca. It is actually
1033 // live into this block.
1034 if (LI->getOperand(0) == AI)
1035 break;
1039 // Now that we have a set of blocks where the phi is live-in, recursively add
1040 // their predecessors until we find the full region the value is live.
1041 while (!LiveInBlockWorklist.empty()) {
1042 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
1044 // The block really is live in here, insert it into the set. If already in
1045 // the set, then it has already been processed.
1046 if (!LiveInBlocks.insert(BB).second)
1047 continue;
1049 // Since the value is live into BB, it is either defined in a predecessor or
1050 // live into it to. Add the preds to the worklist unless they are a
1051 // defining block.
1052 for (BasicBlock *P : predecessors(BB)) {
1053 // The value is not live into a predecessor if it defines the value.
1054 if (DefBlocks.count(P))
1055 continue;
1057 // Otherwise it is, add to the worklist.
1058 LiveInBlockWorklist.push_back(P);
1063 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
1065 /// Returns true if there wasn't already a phi-node for that variable
1066 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
1067 unsigned &Version) {
1068 // Look up the basic-block in question.
1069 PHINode *&PN = NewPhiNodes[std::make_pair(BB->getNumber(), AllocaNo)];
1071 // If the BB already has a phi node added for the i'th alloca then we're done!
1072 if (PN)
1073 return false;
1075 // Create a PhiNode using the dereferenced type... and add the phi-node to the
1076 // BasicBlock.
1077 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
1078 Allocas[AllocaNo]->getName() + "." + Twine(Version++));
1079 PN->insertBefore(BB->begin());
1080 ++NumPHIInsert;
1081 PhiToAllocaMap[PN] = AllocaNo;
1082 return true;
1085 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
1086 /// create a merged location incorporating \p DL, or to set \p DL directly.
1087 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
1088 bool ApplyMergedLoc) {
1089 if (ApplyMergedLoc)
1090 PN->applyMergedLocation(PN->getDebugLoc(), DL);
1091 else
1092 PN->setDebugLoc(DL);
1095 /// Recursively traverse the CFG of the function, renaming loads and
1096 /// stores to the allocas which we are promoting.
1098 /// IncomingVals indicates what value each Alloca contains on exit from the
1099 /// predecessor block Pred.
1100 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
1101 RenamePassData::ValVector &IncomingVals,
1102 RenamePassData::LocationVector &IncomingLocs,
1103 std::vector<RenamePassData> &Worklist) {
1104 NextIteration:
1105 // If we are inserting any phi nodes into this BB, they will already be in the
1106 // block.
1107 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1108 // If we have PHI nodes to update, compute the number of edges from Pred to
1109 // BB.
1110 if (PhiToAllocaMap.count(APN)) {
1111 // We want to be able to distinguish between PHI nodes being inserted by
1112 // this invocation of mem2reg from those phi nodes that already existed in
1113 // the IR before mem2reg was run. We determine that APN is being inserted
1114 // because it is missing incoming edges. All other PHI nodes being
1115 // inserted by this pass of mem2reg will have the same number of incoming
1116 // operands so far. Remember this count.
1117 unsigned NewPHINumOperands = APN->getNumOperands();
1119 unsigned NumEdges = llvm::count(successors(Pred), BB);
1120 assert(NumEdges && "Must be at least one edge from Pred to BB!");
1122 // Add entries for all the phis.
1123 BasicBlock::iterator PNI = BB->begin();
1124 do {
1125 unsigned AllocaNo = PhiToAllocaMap[APN];
1127 // Update the location of the phi node.
1128 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
1129 APN->getNumIncomingValues() > 0);
1131 // Add N incoming values to the PHI node.
1132 for (unsigned i = 0; i != NumEdges; ++i)
1133 APN->addIncoming(IncomingVals[AllocaNo], Pred);
1135 // For the sequence `return X > 0.0 ? X : -X`, it is expected that this
1136 // results in fabs intrinsic. However, without no-signed-zeros(nsz) flag
1137 // on the phi node generated at this stage, fabs folding does not
1138 // happen. So, we try to infer nsz flag from the function attributes to
1139 // enable this fabs folding.
1140 if (isa<FPMathOperator>(APN) && NoSignedZeros)
1141 APN->setHasNoSignedZeros(true);
1143 // The currently active variable for this block is now the PHI.
1144 IncomingVals[AllocaNo] = APN;
1145 AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB);
1146 auto ConvertDbgDeclares = [&](auto &Container) {
1147 for (auto *DbgItem : Container)
1148 if (DbgItem->isAddressOfVariable())
1149 ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB);
1151 ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]);
1152 ConvertDbgDeclares(AllocaDPUsers[AllocaNo]);
1154 // Get the next phi node.
1155 ++PNI;
1156 APN = dyn_cast<PHINode>(PNI);
1157 if (!APN)
1158 break;
1160 // Verify that it is missing entries. If not, it is not being inserted
1161 // by this mem2reg invocation so we want to ignore it.
1162 } while (APN->getNumOperands() == NewPHINumOperands);
1166 // Don't revisit blocks.
1167 if (Visited.test(BB->getNumber()))
1168 return;
1169 Visited.set(BB->getNumber());
1171 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
1172 Instruction *I = &*II++; // get the instruction, increment iterator
1174 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1175 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1176 if (!Src)
1177 continue;
1179 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1180 if (AI == AllocaLookup.end())
1181 continue;
1183 Value *V = IncomingVals[AI->second];
1184 convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT);
1186 // Anything using the load now uses the current value.
1187 LI->replaceAllUsesWith(V);
1188 LI->eraseFromParent();
1189 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1190 // Delete this instruction and mark the name as the current holder of the
1191 // value
1192 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1193 if (!Dest)
1194 continue;
1196 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1197 if (ai == AllocaLookup.end())
1198 continue;
1200 // what value were we writing?
1201 unsigned AllocaNo = ai->second;
1202 IncomingVals[AllocaNo] = SI->getOperand(0);
1204 // Record debuginfo for the store before removing it.
1205 IncomingLocs[AllocaNo] = SI->getDebugLoc();
1206 AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB, &DbgAssignsToDelete,
1207 &DVRAssignsToDelete);
1208 auto ConvertDbgDeclares = [&](auto &Container) {
1209 for (auto *DbgItem : Container)
1210 if (DbgItem->isAddressOfVariable())
1211 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB);
1213 ConvertDbgDeclares(AllocaDbgUsers[ai->second]);
1214 ConvertDbgDeclares(AllocaDPUsers[ai->second]);
1215 SI->eraseFromParent();
1219 // 'Recurse' to our successors.
1220 succ_iterator I = succ_begin(BB), E = succ_end(BB);
1221 if (I == E)
1222 return;
1224 // Keep track of the successors so we don't visit the same successor twice
1225 SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1227 // Handle the first successor without using the worklist.
1228 VisitedSuccs.insert(*I);
1229 Pred = BB;
1230 BB = *I;
1231 ++I;
1233 for (; I != E; ++I)
1234 if (VisitedSuccs.insert(*I).second)
1235 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1237 goto NextIteration;
1240 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1241 AssumptionCache *AC) {
1242 // If there is nothing to do, bail out...
1243 if (Allocas.empty())
1244 return;
1246 PromoteMem2Reg(Allocas, DT, AC).run();