1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AttributeMask.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/SizeOpts.h"
43 using namespace PatternMatch
;
46 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden
,
48 cl::desc("Enable unsafe double to float "
49 "shrinking for math lib calls"));
51 // Enable conversion of operator new calls with a MemProf hot or cold hint
52 // to an operator new call that takes a hot/cold hint. Off by default since
53 // not all allocators currently support this extension.
55 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden
, cl::init(false),
56 cl::desc("Enable hot/cold operator new library calls"));
57 static cl::opt
<bool> OptimizeExistingHotColdNew(
58 "optimize-existing-hot-cold-new", cl::Hidden
, cl::init(false),
60 "Enable optimization of existing hot/cold operator new library calls"));
64 // Specialized parser to ensure the hint is an 8 bit value (we can't specify
65 // uint8_t to opt<> as that is interpreted to mean that we are passing a char
66 // option with a specific set of values.
67 struct HotColdHintParser
: public cl::parser
<unsigned> {
68 HotColdHintParser(cl::Option
&O
) : cl::parser
<unsigned>(O
) {}
70 bool parse(cl::Option
&O
, StringRef ArgName
, StringRef Arg
, unsigned &Value
) {
71 if (Arg
.getAsInteger(0, Value
))
72 return O
.error("'" + Arg
+ "' value invalid for uint argument!");
75 return O
.error("'" + Arg
+ "' value must be in the range [0, 255]!");
81 } // end anonymous namespace
83 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest
84 // and 255 is the hottest. Default to 1 value away from the coldest and hottest
85 // hints, so that the compiler hinted allocations are slightly less strong than
86 // manually inserted hints at the two extremes.
87 static cl::opt
<unsigned, false, HotColdHintParser
> ColdNewHintValue(
88 "cold-new-hint-value", cl::Hidden
, cl::init(1),
89 cl::desc("Value to pass to hot/cold operator new for cold allocation"));
90 static cl::opt
<unsigned, false, HotColdHintParser
>
91 NotColdNewHintValue("notcold-new-hint-value", cl::Hidden
, cl::init(128),
92 cl::desc("Value to pass to hot/cold operator new for "
93 "notcold (warm) allocation"));
94 static cl::opt
<unsigned, false, HotColdHintParser
> HotNewHintValue(
95 "hot-new-hint-value", cl::Hidden
, cl::init(254),
96 cl::desc("Value to pass to hot/cold operator new for hot allocation"));
98 //===----------------------------------------------------------------------===//
100 //===----------------------------------------------------------------------===//
102 static bool ignoreCallingConv(LibFunc Func
) {
103 return Func
== LibFunc_abs
|| Func
== LibFunc_labs
||
104 Func
== LibFunc_llabs
|| Func
== LibFunc_strlen
;
107 /// Return true if it is only used in equality comparisons with With.
108 static bool isOnlyUsedInEqualityComparison(Value
*V
, Value
*With
) {
109 for (User
*U
: V
->users()) {
110 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(U
))
111 if (IC
->isEquality() && IC
->getOperand(1) == With
)
113 // Unknown instruction.
119 static bool callHasFloatingPointArgument(const CallInst
*CI
) {
120 return any_of(CI
->operands(), [](const Use
&OI
) {
121 return OI
->getType()->isFloatingPointTy();
125 static bool callHasFP128Argument(const CallInst
*CI
) {
126 return any_of(CI
->operands(), [](const Use
&OI
) {
127 return OI
->getType()->isFP128Ty();
131 // Convert the entire string Str representing an integer in Base, up to
132 // the terminating nul if present, to a constant according to the rules
133 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success
134 // return the result, otherwise null.
135 // The function assumes the string is encoded in ASCII and carefully
136 // avoids converting sequences (including "") that the corresponding
137 // library call might fail and set errno for.
138 static Value
*convertStrToInt(CallInst
*CI
, StringRef
&Str
, Value
*EndPtr
,
139 uint64_t Base
, bool AsSigned
, IRBuilderBase
&B
) {
140 if (Base
< 2 || Base
> 36)
142 // Fail for an invalid base (required by POSIX).
145 // Current offset into the original string to reflect in EndPtr.
147 // Strip leading whitespace.
148 for ( ; Offset
!= Str
.size(); ++Offset
)
149 if (!isSpace((unsigned char)Str
[Offset
])) {
150 Str
= Str
.substr(Offset
);
155 // Fail for empty subject sequences (POSIX allows but doesn't require
156 // strtol[l]/strtoul[l] to fail with EINVAL).
159 // Strip but remember the sign.
160 bool Negate
= Str
[0] == '-';
161 if (Str
[0] == '-' || Str
[0] == '+') {
162 Str
= Str
.drop_front();
164 // Fail for a sign with nothing after it.
169 // Set Max to the absolute value of the minimum (for signed), or
170 // to the maximum (for unsigned) value representable in the type.
171 Type
*RetTy
= CI
->getType();
172 unsigned NBits
= RetTy
->getPrimitiveSizeInBits();
173 uint64_t Max
= AsSigned
&& Negate
? 1 : 0;
174 Max
+= AsSigned
? maxIntN(NBits
) : maxUIntN(NBits
);
176 // Autodetect Base if it's zero and consume the "0x" prefix.
177 if (Str
.size() > 1) {
179 if (toUpper((unsigned char)Str
[1]) == 'X') {
180 if (Str
.size() == 2 || (Base
&& Base
!= 16))
181 // Fail if Base doesn't allow the "0x" prefix or for the prefix
182 // alone that implementations like BSD set errno to EINVAL for.
185 Str
= Str
.drop_front(2);
191 } else if (Base
== 0)
197 // Convert the rest of the subject sequence, not including the sign,
198 // to its uint64_t representation (this assumes the source character
201 for (unsigned i
= 0; i
!= Str
.size(); ++i
) {
202 unsigned char DigVal
= Str
[i
];
204 DigVal
= DigVal
- '0';
206 DigVal
= toUpper(DigVal
);
208 DigVal
= DigVal
- 'A' + 10;
214 // Fail if the digit is not valid in the Base.
217 // Add the digit and fail if the result is not representable in
218 // the (unsigned form of the) destination type.
220 Result
= SaturatingMultiplyAdd(Result
, Base
, (uint64_t)DigVal
, &VFlow
);
221 if (VFlow
|| Result
> Max
)
226 // Store the pointer to the end.
227 Value
*Off
= B
.getInt64(Offset
+ Str
.size());
228 Value
*StrBeg
= CI
->getArgOperand(0);
229 Value
*StrEnd
= B
.CreateInBoundsGEP(B
.getInt8Ty(), StrBeg
, Off
, "endptr");
230 B
.CreateStore(StrEnd
, EndPtr
);
234 // Unsigned negation doesn't overflow.
237 return ConstantInt::get(RetTy
, Result
);
240 static bool isOnlyUsedInComparisonWithZero(Value
*V
) {
241 for (User
*U
: V
->users()) {
242 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(U
))
243 if (Constant
*C
= dyn_cast
<Constant
>(IC
->getOperand(1)))
244 if (C
->isNullValue())
246 // Unknown instruction.
252 static bool canTransformToMemCmp(CallInst
*CI
, Value
*Str
, uint64_t Len
,
253 const DataLayout
&DL
) {
254 if (!isOnlyUsedInComparisonWithZero(CI
))
257 if (!isDereferenceableAndAlignedPointer(Str
, Align(1), APInt(64, Len
), DL
))
260 if (CI
->getFunction()->hasFnAttribute(Attribute::SanitizeMemory
))
266 static void annotateDereferenceableBytes(CallInst
*CI
,
267 ArrayRef
<unsigned> ArgNos
,
268 uint64_t DereferenceableBytes
) {
269 const Function
*F
= CI
->getCaller();
272 for (unsigned ArgNo
: ArgNos
) {
273 uint64_t DerefBytes
= DereferenceableBytes
;
274 unsigned AS
= CI
->getArgOperand(ArgNo
)->getType()->getPointerAddressSpace();
275 if (!llvm::NullPointerIsDefined(F
, AS
) ||
276 CI
->paramHasAttr(ArgNo
, Attribute::NonNull
))
277 DerefBytes
= std::max(CI
->getParamDereferenceableOrNullBytes(ArgNo
),
278 DereferenceableBytes
);
280 if (CI
->getParamDereferenceableBytes(ArgNo
) < DerefBytes
) {
281 CI
->removeParamAttr(ArgNo
, Attribute::Dereferenceable
);
282 if (!llvm::NullPointerIsDefined(F
, AS
) ||
283 CI
->paramHasAttr(ArgNo
, Attribute::NonNull
))
284 CI
->removeParamAttr(ArgNo
, Attribute::DereferenceableOrNull
);
285 CI
->addParamAttr(ArgNo
, Attribute::getWithDereferenceableBytes(
286 CI
->getContext(), DerefBytes
));
291 static void annotateNonNullNoUndefBasedOnAccess(CallInst
*CI
,
292 ArrayRef
<unsigned> ArgNos
) {
293 Function
*F
= CI
->getCaller();
297 for (unsigned ArgNo
: ArgNos
) {
298 if (!CI
->paramHasAttr(ArgNo
, Attribute::NoUndef
))
299 CI
->addParamAttr(ArgNo
, Attribute::NoUndef
);
301 if (!CI
->paramHasAttr(ArgNo
, Attribute::NonNull
)) {
303 CI
->getArgOperand(ArgNo
)->getType()->getPointerAddressSpace();
304 if (llvm::NullPointerIsDefined(F
, AS
))
306 CI
->addParamAttr(ArgNo
, Attribute::NonNull
);
309 annotateDereferenceableBytes(CI
, ArgNo
, 1);
313 static void annotateNonNullAndDereferenceable(CallInst
*CI
, ArrayRef
<unsigned> ArgNos
,
314 Value
*Size
, const DataLayout
&DL
) {
315 if (ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
)) {
316 annotateNonNullNoUndefBasedOnAccess(CI
, ArgNos
);
317 annotateDereferenceableBytes(CI
, ArgNos
, LenC
->getZExtValue());
318 } else if (isKnownNonZero(Size
, DL
)) {
319 annotateNonNullNoUndefBasedOnAccess(CI
, ArgNos
);
321 uint64_t DerefMin
= 1;
322 if (match(Size
, m_Select(m_Value(), m_APInt(X
), m_APInt(Y
)))) {
323 DerefMin
= std::min(X
->getZExtValue(), Y
->getZExtValue());
324 annotateDereferenceableBytes(CI
, ArgNos
, DerefMin
);
329 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
330 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
331 // in this function when New is created to replace Old. Callers should take
332 // care to check Old.isMustTailCall() if they aren't replacing Old directly
334 static Value
*copyFlags(const CallInst
&Old
, Value
*New
) {
335 assert(!Old
.isMustTailCall() && "do not copy musttail call flags");
336 assert(!Old
.isNoTailCall() && "do not copy notail call flags");
337 if (auto *NewCI
= dyn_cast_or_null
<CallInst
>(New
))
338 NewCI
->setTailCallKind(Old
.getTailCallKind());
342 static Value
*mergeAttributesAndFlags(CallInst
*NewCI
, const CallInst
&Old
) {
343 NewCI
->setAttributes(AttributeList::get(
344 NewCI
->getContext(), {NewCI
->getAttributes(), Old
.getAttributes()}));
345 NewCI
->removeRetAttrs(AttributeFuncs::typeIncompatible(
346 NewCI
->getType(), NewCI
->getRetAttributes()));
347 for (unsigned I
= 0; I
< NewCI
->arg_size(); ++I
)
348 NewCI
->removeParamAttrs(
349 I
, AttributeFuncs::typeIncompatible(NewCI
->getArgOperand(I
)->getType(),
350 NewCI
->getParamAttributes(I
)));
352 return copyFlags(Old
, NewCI
);
355 // Helper to avoid truncating the length if size_t is 32-bits.
356 static StringRef
substr(StringRef Str
, uint64_t Len
) {
357 return Len
>= Str
.size() ? Str
: Str
.substr(0, Len
);
360 //===----------------------------------------------------------------------===//
361 // String and Memory Library Call Optimizations
362 //===----------------------------------------------------------------------===//
364 Value
*LibCallSimplifier::optimizeStrCat(CallInst
*CI
, IRBuilderBase
&B
) {
365 // Extract some information from the instruction
366 Value
*Dst
= CI
->getArgOperand(0);
367 Value
*Src
= CI
->getArgOperand(1);
368 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
370 // See if we can get the length of the input string.
371 uint64_t Len
= GetStringLength(Src
);
373 annotateDereferenceableBytes(CI
, 1, Len
);
376 --Len
; // Unbias length.
378 // Handle the simple, do-nothing case: strcat(x, "") -> x
382 return copyFlags(*CI
, emitStrLenMemCpy(Src
, Dst
, Len
, B
));
385 Value
*LibCallSimplifier::emitStrLenMemCpy(Value
*Src
, Value
*Dst
, uint64_t Len
,
387 // We need to find the end of the destination string. That's where the
388 // memory is to be moved to. We just generate a call to strlen.
389 Value
*DstLen
= emitStrLen(Dst
, B
, DL
, TLI
);
393 // Now that we have the destination's length, we must index into the
394 // destination's pointer to get the actual memcpy destination (end of
395 // the string .. we're concatenating).
396 Value
*CpyDst
= B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, DstLen
, "endptr");
398 // We have enough information to now generate the memcpy call to do the
399 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
400 B
.CreateMemCpy(CpyDst
, Align(1), Src
, Align(1),
401 TLI
->getAsSizeT(Len
+ 1, *B
.GetInsertBlock()->getModule()));
405 Value
*LibCallSimplifier::optimizeStrNCat(CallInst
*CI
, IRBuilderBase
&B
) {
406 // Extract some information from the instruction.
407 Value
*Dst
= CI
->getArgOperand(0);
408 Value
*Src
= CI
->getArgOperand(1);
409 Value
*Size
= CI
->getArgOperand(2);
411 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
412 if (isKnownNonZero(Size
, DL
))
413 annotateNonNullNoUndefBasedOnAccess(CI
, 1);
415 // We don't do anything if length is not constant.
416 ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(Size
);
418 Len
= LengthArg
->getZExtValue();
419 // strncat(x, c, 0) -> x
426 // See if we can get the length of the input string.
427 uint64_t SrcLen
= GetStringLength(Src
);
429 annotateDereferenceableBytes(CI
, 1, SrcLen
);
430 --SrcLen
; // Unbias length.
435 // strncat(x, "", c) -> x
439 // We don't optimize this case.
443 // strncat(x, s, c) -> strcat(x, s)
444 // s is constant so the strcat can be optimized further.
445 return copyFlags(*CI
, emitStrLenMemCpy(Src
, Dst
, SrcLen
, B
));
448 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when
449 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function
450 // is that either S is dereferenceable or the value of N is nonzero.
451 static Value
* memChrToCharCompare(CallInst
*CI
, Value
*NBytes
,
452 IRBuilderBase
&B
, const DataLayout
&DL
)
454 Value
*Src
= CI
->getArgOperand(0);
455 Value
*CharVal
= CI
->getArgOperand(1);
457 // Fold memchr(A, C, N) == A to N && *A == C.
458 Type
*CharTy
= B
.getInt8Ty();
459 Value
*Char0
= B
.CreateLoad(CharTy
, Src
);
460 CharVal
= B
.CreateTrunc(CharVal
, CharTy
);
461 Value
*Cmp
= B
.CreateICmpEQ(Char0
, CharVal
, "char0cmp");
464 Value
*Zero
= ConstantInt::get(NBytes
->getType(), 0);
465 Value
*And
= B
.CreateICmpNE(NBytes
, Zero
);
466 Cmp
= B
.CreateLogicalAnd(And
, Cmp
);
469 Value
*NullPtr
= Constant::getNullValue(CI
->getType());
470 return B
.CreateSelect(Cmp
, Src
, NullPtr
);
473 Value
*LibCallSimplifier::optimizeStrChr(CallInst
*CI
, IRBuilderBase
&B
) {
474 Value
*SrcStr
= CI
->getArgOperand(0);
475 Value
*CharVal
= CI
->getArgOperand(1);
476 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
478 if (isOnlyUsedInEqualityComparison(CI
, SrcStr
))
479 return memChrToCharCompare(CI
, nullptr, B
, DL
);
481 // If the second operand is non-constant, see if we can compute the length
482 // of the input string and turn this into memchr.
483 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CharVal
);
485 uint64_t Len
= GetStringLength(SrcStr
);
487 annotateDereferenceableBytes(CI
, 0, Len
);
491 Function
*Callee
= CI
->getCalledFunction();
492 FunctionType
*FT
= Callee
->getFunctionType();
493 unsigned IntBits
= TLI
->getIntSize();
494 if (!FT
->getParamType(1)->isIntegerTy(IntBits
)) // memchr needs 'int'.
497 unsigned SizeTBits
= TLI
->getSizeTSize(*CI
->getModule());
498 Type
*SizeTTy
= IntegerType::get(CI
->getContext(), SizeTBits
);
499 return copyFlags(*CI
,
500 emitMemChr(SrcStr
, CharVal
, // include nul.
501 ConstantInt::get(SizeTTy
, Len
), B
,
505 if (CharC
->isZero()) {
506 Value
*NullPtr
= Constant::getNullValue(CI
->getType());
507 if (isOnlyUsedInEqualityComparison(CI
, NullPtr
))
508 // Pre-empt the transformation to strlen below and fold
509 // strchr(A, '\0') == null to false.
510 return B
.CreateIntToPtr(B
.getTrue(), CI
->getType());
513 // Otherwise, the character is a constant, see if the first argument is
514 // a string literal. If so, we can constant fold.
516 if (!getConstantStringInfo(SrcStr
, Str
)) {
517 if (CharC
->isZero()) // strchr(p, 0) -> p + strlen(p)
518 if (Value
*StrLen
= emitStrLen(SrcStr
, B
, DL
, TLI
))
519 return B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
, StrLen
, "strchr");
523 // Compute the offset, make sure to handle the case when we're searching for
524 // zero (a weird way to spell strlen).
525 size_t I
= (0xFF & CharC
->getSExtValue()) == 0
527 : Str
.find(CharC
->getSExtValue());
528 if (I
== StringRef::npos
) // Didn't find the char. strchr returns null.
529 return Constant::getNullValue(CI
->getType());
531 // strchr(s+n,c) -> gep(s+n+i,c)
532 return B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
, B
.getInt64(I
), "strchr");
535 Value
*LibCallSimplifier::optimizeStrRChr(CallInst
*CI
, IRBuilderBase
&B
) {
536 Value
*SrcStr
= CI
->getArgOperand(0);
537 Value
*CharVal
= CI
->getArgOperand(1);
538 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CharVal
);
539 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
542 if (!getConstantStringInfo(SrcStr
, Str
)) {
543 // strrchr(s, 0) -> strchr(s, 0)
544 if (CharC
&& CharC
->isZero())
545 return copyFlags(*CI
, emitStrChr(SrcStr
, '\0', B
, TLI
));
549 unsigned SizeTBits
= TLI
->getSizeTSize(*CI
->getModule());
550 Type
*SizeTTy
= IntegerType::get(CI
->getContext(), SizeTBits
);
552 // Try to expand strrchr to the memrchr nonstandard extension if it's
553 // available, or simply fail otherwise.
554 uint64_t NBytes
= Str
.size() + 1; // Include the terminating nul.
555 Value
*Size
= ConstantInt::get(SizeTTy
, NBytes
);
556 return copyFlags(*CI
, emitMemRChr(SrcStr
, CharVal
, Size
, B
, DL
, TLI
));
559 Value
*LibCallSimplifier::optimizeStrCmp(CallInst
*CI
, IRBuilderBase
&B
) {
560 Value
*Str1P
= CI
->getArgOperand(0), *Str2P
= CI
->getArgOperand(1);
561 if (Str1P
== Str2P
) // strcmp(x,x) -> 0
562 return ConstantInt::get(CI
->getType(), 0);
564 StringRef Str1
, Str2
;
565 bool HasStr1
= getConstantStringInfo(Str1P
, Str1
);
566 bool HasStr2
= getConstantStringInfo(Str2P
, Str2
);
568 // strcmp(x, y) -> cnst (if both x and y are constant strings)
569 if (HasStr1
&& HasStr2
)
570 return ConstantInt::get(CI
->getType(),
571 std::clamp(Str1
.compare(Str2
), -1, 1));
573 if (HasStr1
&& Str1
.empty()) // strcmp("", x) -> -*x
574 return B
.CreateNeg(B
.CreateZExt(
575 B
.CreateLoad(B
.getInt8Ty(), Str2P
, "strcmpload"), CI
->getType()));
577 if (HasStr2
&& Str2
.empty()) // strcmp(x,"") -> *x
578 return B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), Str1P
, "strcmpload"),
581 // strcmp(P, "x") -> memcmp(P, "x", 2)
582 uint64_t Len1
= GetStringLength(Str1P
);
584 annotateDereferenceableBytes(CI
, 0, Len1
);
585 uint64_t Len2
= GetStringLength(Str2P
);
587 annotateDereferenceableBytes(CI
, 1, Len2
);
591 *CI
, emitMemCmp(Str1P
, Str2P
,
592 TLI
->getAsSizeT(std::min(Len1
, Len2
), *CI
->getModule()),
597 if (!HasStr1
&& HasStr2
) {
598 if (canTransformToMemCmp(CI
, Str1P
, Len2
, DL
))
599 return copyFlags(*CI
, emitMemCmp(Str1P
, Str2P
,
600 TLI
->getAsSizeT(Len2
, *CI
->getModule()),
602 } else if (HasStr1
&& !HasStr2
) {
603 if (canTransformToMemCmp(CI
, Str2P
, Len1
, DL
))
604 return copyFlags(*CI
, emitMemCmp(Str1P
, Str2P
,
605 TLI
->getAsSizeT(Len1
, *CI
->getModule()),
609 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
613 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
614 // arrays LHS and RHS and nonconstant Size.
615 static Value
*optimizeMemCmpVarSize(CallInst
*CI
, Value
*LHS
, Value
*RHS
,
616 Value
*Size
, bool StrNCmp
,
617 IRBuilderBase
&B
, const DataLayout
&DL
);
619 Value
*LibCallSimplifier::optimizeStrNCmp(CallInst
*CI
, IRBuilderBase
&B
) {
620 Value
*Str1P
= CI
->getArgOperand(0);
621 Value
*Str2P
= CI
->getArgOperand(1);
622 Value
*Size
= CI
->getArgOperand(2);
623 if (Str1P
== Str2P
) // strncmp(x,x,n) -> 0
624 return ConstantInt::get(CI
->getType(), 0);
626 if (isKnownNonZero(Size
, DL
))
627 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
628 // Get the length argument if it is constant.
630 if (ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(Size
))
631 Length
= LengthArg
->getZExtValue();
633 return optimizeMemCmpVarSize(CI
, Str1P
, Str2P
, Size
, true, B
, DL
);
635 if (Length
== 0) // strncmp(x,y,0) -> 0
636 return ConstantInt::get(CI
->getType(), 0);
638 if (Length
== 1) // strncmp(x,y,1) -> memcmp(x,y,1)
639 return copyFlags(*CI
, emitMemCmp(Str1P
, Str2P
, Size
, B
, DL
, TLI
));
641 StringRef Str1
, Str2
;
642 bool HasStr1
= getConstantStringInfo(Str1P
, Str1
);
643 bool HasStr2
= getConstantStringInfo(Str2P
, Str2
);
645 // strncmp(x, y) -> cnst (if both x and y are constant strings)
646 if (HasStr1
&& HasStr2
) {
647 // Avoid truncating the 64-bit Length to 32 bits in ILP32.
648 StringRef SubStr1
= substr(Str1
, Length
);
649 StringRef SubStr2
= substr(Str2
, Length
);
650 return ConstantInt::get(CI
->getType(),
651 std::clamp(SubStr1
.compare(SubStr2
), -1, 1));
654 if (HasStr1
&& Str1
.empty()) // strncmp("", x, n) -> -*x
655 return B
.CreateNeg(B
.CreateZExt(
656 B
.CreateLoad(B
.getInt8Ty(), Str2P
, "strcmpload"), CI
->getType()));
658 if (HasStr2
&& Str2
.empty()) // strncmp(x, "", n) -> *x
659 return B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), Str1P
, "strcmpload"),
662 uint64_t Len1
= GetStringLength(Str1P
);
664 annotateDereferenceableBytes(CI
, 0, Len1
);
665 uint64_t Len2
= GetStringLength(Str2P
);
667 annotateDereferenceableBytes(CI
, 1, Len2
);
670 if (!HasStr1
&& HasStr2
) {
671 Len2
= std::min(Len2
, Length
);
672 if (canTransformToMemCmp(CI
, Str1P
, Len2
, DL
))
673 return copyFlags(*CI
, emitMemCmp(Str1P
, Str2P
,
674 TLI
->getAsSizeT(Len2
, *CI
->getModule()),
676 } else if (HasStr1
&& !HasStr2
) {
677 Len1
= std::min(Len1
, Length
);
678 if (canTransformToMemCmp(CI
, Str2P
, Len1
, DL
))
679 return copyFlags(*CI
, emitMemCmp(Str1P
, Str2P
,
680 TLI
->getAsSizeT(Len1
, *CI
->getModule()),
687 Value
*LibCallSimplifier::optimizeStrNDup(CallInst
*CI
, IRBuilderBase
&B
) {
688 Value
*Src
= CI
->getArgOperand(0);
689 ConstantInt
*Size
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
690 uint64_t SrcLen
= GetStringLength(Src
);
691 if (SrcLen
&& Size
) {
692 annotateDereferenceableBytes(CI
, 0, SrcLen
);
693 if (SrcLen
<= Size
->getZExtValue() + 1)
694 return copyFlags(*CI
, emitStrDup(Src
, B
, TLI
));
700 Value
*LibCallSimplifier::optimizeStrCpy(CallInst
*CI
, IRBuilderBase
&B
) {
701 Value
*Dst
= CI
->getArgOperand(0), *Src
= CI
->getArgOperand(1);
702 if (Dst
== Src
) // strcpy(x,x) -> x
705 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
706 // See if we can get the length of the input string.
707 uint64_t Len
= GetStringLength(Src
);
709 annotateDereferenceableBytes(CI
, 1, Len
);
713 // We have enough information to now generate the memcpy call to do the
714 // copy for us. Make a memcpy to copy the nul byte with align = 1.
715 CallInst
*NewCI
= B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1),
716 TLI
->getAsSizeT(Len
, *CI
->getModule()));
717 mergeAttributesAndFlags(NewCI
, *CI
);
721 Value
*LibCallSimplifier::optimizeStpCpy(CallInst
*CI
, IRBuilderBase
&B
) {
722 Value
*Dst
= CI
->getArgOperand(0), *Src
= CI
->getArgOperand(1);
724 // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
726 return copyFlags(*CI
, emitStrCpy(Dst
, Src
, B
, TLI
));
728 if (Dst
== Src
) { // stpcpy(x,x) -> x+strlen(x)
729 Value
*StrLen
= emitStrLen(Src
, B
, DL
, TLI
);
730 return StrLen
? B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, StrLen
) : nullptr;
733 // See if we can get the length of the input string.
734 uint64_t Len
= GetStringLength(Src
);
736 annotateDereferenceableBytes(CI
, 1, Len
);
740 Value
*LenV
= TLI
->getAsSizeT(Len
, *CI
->getModule());
741 Value
*DstEnd
= B
.CreateInBoundsGEP(
742 B
.getInt8Ty(), Dst
, TLI
->getAsSizeT(Len
- 1, *CI
->getModule()));
744 // We have enough information to now generate the memcpy call to do the
745 // copy for us. Make a memcpy to copy the nul byte with align = 1.
746 CallInst
*NewCI
= B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1), LenV
);
747 mergeAttributesAndFlags(NewCI
, *CI
);
751 // Optimize a call to size_t strlcpy(char*, const char*, size_t).
753 Value
*LibCallSimplifier::optimizeStrLCpy(CallInst
*CI
, IRBuilderBase
&B
) {
754 Value
*Size
= CI
->getArgOperand(2);
755 if (isKnownNonZero(Size
, DL
))
756 // Like snprintf, the function stores into the destination only when
757 // the size argument is nonzero.
758 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
759 // The function reads the source argument regardless of Size (it returns
761 annotateNonNullNoUndefBasedOnAccess(CI
, 1);
764 if (ConstantInt
*SizeC
= dyn_cast
<ConstantInt
>(Size
))
765 NBytes
= SizeC
->getZExtValue();
769 Value
*Dst
= CI
->getArgOperand(0);
770 Value
*Src
= CI
->getArgOperand(1);
773 // For a call to strlcpy(D, S, 1) first store a nul in *D.
774 B
.CreateStore(B
.getInt8(0), Dst
);
776 // Transform strlcpy(D, S, 0) to a call to strlen(S).
777 return copyFlags(*CI
, emitStrLen(Src
, B
, DL
, TLI
));
780 // Try to determine the length of the source, substituting its size
781 // when it's not nul-terminated (as it's required to be) to avoid
782 // reading past its end.
784 if (!getConstantStringInfo(Src
, Str
, /*TrimAtNul=*/false))
787 uint64_t SrcLen
= Str
.find('\0');
788 // Set if the terminating nul should be copied by the call to memcpy
790 bool NulTerm
= SrcLen
< NBytes
;
793 // Overwrite NBytes with the number of bytes to copy, including
794 // the terminating nul.
797 // Set the length of the source for the function to return to its
798 // size, and cap NBytes at the same.
799 SrcLen
= std::min(SrcLen
, uint64_t(Str
.size()));
800 NBytes
= std::min(NBytes
- 1, SrcLen
);
804 // Transform strlcpy(D, "", N) to (*D = '\0, 0).
805 B
.CreateStore(B
.getInt8(0), Dst
);
806 return ConstantInt::get(CI
->getType(), 0);
809 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
810 // bound on strlen(S) + 1 and N, optionally followed by a nul store to
811 // D[N' - 1] if necessary.
812 CallInst
*NewCI
= B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1),
813 TLI
->getAsSizeT(NBytes
, *CI
->getModule()));
814 mergeAttributesAndFlags(NewCI
, *CI
);
817 Value
*EndOff
= ConstantInt::get(CI
->getType(), NBytes
);
818 Value
*EndPtr
= B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, EndOff
);
819 B
.CreateStore(B
.getInt8(0), EndPtr
);
822 // Like snprintf, strlcpy returns the number of nonzero bytes that would
823 // have been copied if the bound had been sufficiently big (which in this
824 // case is strlen(Src)).
825 return ConstantInt::get(CI
->getType(), SrcLen
);
828 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy
830 Value
*LibCallSimplifier::optimizeStringNCpy(CallInst
*CI
, bool RetEnd
,
832 Value
*Dst
= CI
->getArgOperand(0);
833 Value
*Src
= CI
->getArgOperand(1);
834 Value
*Size
= CI
->getArgOperand(2);
836 if (isKnownNonZero(Size
, DL
)) {
837 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays
838 // only when N is nonzero.
839 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
840 annotateNonNullNoUndefBasedOnAccess(CI
, 1);
843 // If the "bound" argument is known set N to it. Otherwise set it to
844 // UINT64_MAX and handle it later.
845 uint64_t N
= UINT64_MAX
;
846 if (ConstantInt
*SizeC
= dyn_cast
<ConstantInt
>(Size
))
847 N
= SizeC
->getZExtValue();
850 // Fold st{p,r}ncpy(D, S, 0) to D.
854 Type
*CharTy
= B
.getInt8Ty();
855 Value
*CharVal
= B
.CreateLoad(CharTy
, Src
, "stxncpy.char0");
856 B
.CreateStore(CharVal
, Dst
);
858 // Transform strncpy(D, S, 1) to return (*D = *S), D.
861 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D.
862 Value
*ZeroChar
= ConstantInt::get(CharTy
, 0);
863 Value
*Cmp
= B
.CreateICmpEQ(CharVal
, ZeroChar
, "stpncpy.char0cmp");
865 Value
*Off1
= B
.getInt32(1);
866 Value
*EndPtr
= B
.CreateInBoundsGEP(CharTy
, Dst
, Off1
, "stpncpy.end");
867 return B
.CreateSelect(Cmp
, Dst
, EndPtr
, "stpncpy.sel");
870 // If the length of the input string is known set SrcLen to it.
871 uint64_t SrcLen
= GetStringLength(Src
);
873 annotateDereferenceableBytes(CI
, 1, SrcLen
);
877 --SrcLen
; // Unbias length.
880 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N.
882 CI
->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
883 CallInst
*NewCI
= B
.CreateMemSet(Dst
, B
.getInt8('\0'), Size
, MemSetAlign
);
884 AttrBuilder
ArgAttrs(CI
->getContext(), CI
->getAttributes().getParamAttrs(0));
885 NewCI
->setAttributes(NewCI
->getAttributes().addParamAttributes(
886 CI
->getContext(), 0, ArgAttrs
));
887 copyFlags(*CI
, NewCI
);
891 if (N
> SrcLen
+ 1) {
893 // Bail if N is large or unknown.
896 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128.
898 if (!getConstantStringInfo(Src
, Str
))
900 std::string SrcStr
= Str
.str();
901 // Create a bigger, nul-padded array with the same length, SrcLen,
902 // as the original string.
903 SrcStr
.resize(N
, '\0');
904 Src
= B
.CreateGlobalString(
905 SrcStr
, "str", /*AddressSpace=*/DL
.getDefaultGlobalsAddressSpace(),
906 /*M=*/nullptr, /*AddNull=*/false);
909 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both
910 // S and N are constant.
911 CallInst
*NewCI
= B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1),
912 TLI
->getAsSizeT(N
, *CI
->getModule()));
913 mergeAttributesAndFlags(NewCI
, *CI
);
917 // stpncpy(D, S, N) returns the address of the first null in D if it writes
918 // one, otherwise D + N.
919 Value
*Off
= B
.getInt64(std::min(SrcLen
, N
));
920 return B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, Off
, "endptr");
923 Value
*LibCallSimplifier::optimizeStringLength(CallInst
*CI
, IRBuilderBase
&B
,
926 Value
*Src
= CI
->getArgOperand(0);
927 Type
*CharTy
= B
.getIntNTy(CharSize
);
929 if (isOnlyUsedInZeroEqualityComparison(CI
) &&
930 (!Bound
|| isKnownNonZero(Bound
, DL
))) {
932 // strlen(x) != 0 --> *x != 0
933 // strlen(x) == 0 --> *x == 0
934 // and likewise strnlen with constant N > 0:
935 // strnlen(x, N) != 0 --> *x != 0
936 // strnlen(x, N) == 0 --> *x == 0
937 return B
.CreateZExt(B
.CreateLoad(CharTy
, Src
, "char0"),
942 if (ConstantInt
*BoundCst
= dyn_cast
<ConstantInt
>(Bound
)) {
943 if (BoundCst
->isZero())
944 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
945 return ConstantInt::get(CI
->getType(), 0);
947 if (BoundCst
->isOne()) {
948 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
949 Value
*CharVal
= B
.CreateLoad(CharTy
, Src
, "strnlen.char0");
950 Value
*ZeroChar
= ConstantInt::get(CharTy
, 0);
951 Value
*Cmp
= B
.CreateICmpNE(CharVal
, ZeroChar
, "strnlen.char0cmp");
952 return B
.CreateZExt(Cmp
, CI
->getType());
957 if (uint64_t Len
= GetStringLength(Src
, CharSize
)) {
958 Value
*LenC
= ConstantInt::get(CI
->getType(), Len
- 1);
959 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
960 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
962 return B
.CreateBinaryIntrinsic(Intrinsic::umin
, LenC
, Bound
);
967 // Punt for strnlen for now.
970 // If s is a constant pointer pointing to a string literal, we can fold
971 // strlen(s + x) to strlen(s) - x, when x is known to be in the range
972 // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
973 // We only try to simplify strlen when the pointer s points to an array
974 // of CharSize elements. Otherwise, we would need to scale the offset x before
975 // doing the subtraction. This will make the optimization more complex, and
976 // it's not very useful because calling strlen for a pointer of other types is
978 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Src
)) {
979 // TODO: Handle subobjects.
980 if (!isGEPBasedOnPointerToString(GEP
, CharSize
))
983 ConstantDataArraySlice Slice
;
984 if (getConstantDataArrayInfo(GEP
->getOperand(0), Slice
, CharSize
)) {
985 uint64_t NullTermIdx
;
986 if (Slice
.Array
== nullptr) {
989 NullTermIdx
= ~((uint64_t)0);
990 for (uint64_t I
= 0, E
= Slice
.Length
; I
< E
; ++I
) {
991 if (Slice
.Array
->getElementAsInteger(I
+ Slice
.Offset
) == 0) {
996 // If the string does not have '\0', leave it to strlen to compute
998 if (NullTermIdx
== ~((uint64_t)0))
1002 Value
*Offset
= GEP
->getOperand(2);
1003 KnownBits Known
= computeKnownBits(Offset
, DL
, 0, nullptr, CI
, nullptr);
1005 cast
<ArrayType
>(GEP
->getSourceElementType())->getNumElements();
1007 // If Offset is not provably in the range [0, NullTermIdx], we can still
1008 // optimize if we can prove that the program has undefined behavior when
1009 // Offset is outside that range. That is the case when GEP->getOperand(0)
1010 // is a pointer to an object whose memory extent is NullTermIdx+1.
1011 if ((Known
.isNonNegative() && Known
.getMaxValue().ule(NullTermIdx
)) ||
1012 (isa
<GlobalVariable
>(GEP
->getOperand(0)) &&
1013 NullTermIdx
== ArrSize
- 1)) {
1014 Offset
= B
.CreateSExtOrTrunc(Offset
, CI
->getType());
1015 return B
.CreateSub(ConstantInt::get(CI
->getType(), NullTermIdx
),
1021 // strlen(x?"foo":"bars") --> x ? 3 : 4
1022 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Src
)) {
1023 uint64_t LenTrue
= GetStringLength(SI
->getTrueValue(), CharSize
);
1024 uint64_t LenFalse
= GetStringLength(SI
->getFalseValue(), CharSize
);
1025 if (LenTrue
&& LenFalse
) {
1027 return OptimizationRemark("instcombine", "simplify-libcalls", CI
)
1028 << "folded strlen(select) to select of constants";
1030 return B
.CreateSelect(SI
->getCondition(),
1031 ConstantInt::get(CI
->getType(), LenTrue
- 1),
1032 ConstantInt::get(CI
->getType(), LenFalse
- 1));
1039 Value
*LibCallSimplifier::optimizeStrLen(CallInst
*CI
, IRBuilderBase
&B
) {
1040 if (Value
*V
= optimizeStringLength(CI
, B
, 8))
1042 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
1046 Value
*LibCallSimplifier::optimizeStrNLen(CallInst
*CI
, IRBuilderBase
&B
) {
1047 Value
*Bound
= CI
->getArgOperand(1);
1048 if (Value
*V
= optimizeStringLength(CI
, B
, 8, Bound
))
1051 if (isKnownNonZero(Bound
, DL
))
1052 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
1056 Value
*LibCallSimplifier::optimizeWcslen(CallInst
*CI
, IRBuilderBase
&B
) {
1057 Module
&M
= *CI
->getModule();
1058 unsigned WCharSize
= TLI
->getWCharSize(M
) * 8;
1059 // We cannot perform this optimization without wchar_size metadata.
1063 return optimizeStringLength(CI
, B
, WCharSize
);
1066 Value
*LibCallSimplifier::optimizeStrPBrk(CallInst
*CI
, IRBuilderBase
&B
) {
1068 bool HasS1
= getConstantStringInfo(CI
->getArgOperand(0), S1
);
1069 bool HasS2
= getConstantStringInfo(CI
->getArgOperand(1), S2
);
1071 // strpbrk(s, "") -> nullptr
1072 // strpbrk("", s) -> nullptr
1073 if ((HasS1
&& S1
.empty()) || (HasS2
&& S2
.empty()))
1074 return Constant::getNullValue(CI
->getType());
1076 // Constant folding.
1077 if (HasS1
&& HasS2
) {
1078 size_t I
= S1
.find_first_of(S2
);
1079 if (I
== StringRef::npos
) // No match.
1080 return Constant::getNullValue(CI
->getType());
1082 return B
.CreateInBoundsGEP(B
.getInt8Ty(), CI
->getArgOperand(0),
1083 B
.getInt64(I
), "strpbrk");
1086 // strpbrk(s, "a") -> strchr(s, 'a')
1087 if (HasS2
&& S2
.size() == 1)
1088 return copyFlags(*CI
, emitStrChr(CI
->getArgOperand(0), S2
[0], B
, TLI
));
1093 Value
*LibCallSimplifier::optimizeStrTo(CallInst
*CI
, IRBuilderBase
&B
) {
1094 Value
*EndPtr
= CI
->getArgOperand(1);
1095 if (isa
<ConstantPointerNull
>(EndPtr
)) {
1096 // With a null EndPtr, this function won't capture the main argument.
1097 // It would be readonly too, except that it still may write to errno.
1098 CI
->addParamAttr(0, Attribute::NoCapture
);
1104 Value
*LibCallSimplifier::optimizeStrSpn(CallInst
*CI
, IRBuilderBase
&B
) {
1106 bool HasS1
= getConstantStringInfo(CI
->getArgOperand(0), S1
);
1107 bool HasS2
= getConstantStringInfo(CI
->getArgOperand(1), S2
);
1109 // strspn(s, "") -> 0
1110 // strspn("", s) -> 0
1111 if ((HasS1
&& S1
.empty()) || (HasS2
&& S2
.empty()))
1112 return Constant::getNullValue(CI
->getType());
1114 // Constant folding.
1115 if (HasS1
&& HasS2
) {
1116 size_t Pos
= S1
.find_first_not_of(S2
);
1117 if (Pos
== StringRef::npos
)
1119 return ConstantInt::get(CI
->getType(), Pos
);
1125 Value
*LibCallSimplifier::optimizeStrCSpn(CallInst
*CI
, IRBuilderBase
&B
) {
1127 bool HasS1
= getConstantStringInfo(CI
->getArgOperand(0), S1
);
1128 bool HasS2
= getConstantStringInfo(CI
->getArgOperand(1), S2
);
1130 // strcspn("", s) -> 0
1131 if (HasS1
&& S1
.empty())
1132 return Constant::getNullValue(CI
->getType());
1134 // Constant folding.
1135 if (HasS1
&& HasS2
) {
1136 size_t Pos
= S1
.find_first_of(S2
);
1137 if (Pos
== StringRef::npos
)
1139 return ConstantInt::get(CI
->getType(), Pos
);
1142 // strcspn(s, "") -> strlen(s)
1143 if (HasS2
&& S2
.empty())
1144 return copyFlags(*CI
, emitStrLen(CI
->getArgOperand(0), B
, DL
, TLI
));
1149 Value
*LibCallSimplifier::optimizeStrStr(CallInst
*CI
, IRBuilderBase
&B
) {
1150 // fold strstr(x, x) -> x.
1151 if (CI
->getArgOperand(0) == CI
->getArgOperand(1))
1152 return CI
->getArgOperand(0);
1154 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
1155 if (isOnlyUsedInEqualityComparison(CI
, CI
->getArgOperand(0))) {
1156 Value
*StrLen
= emitStrLen(CI
->getArgOperand(1), B
, DL
, TLI
);
1159 Value
*StrNCmp
= emitStrNCmp(CI
->getArgOperand(0), CI
->getArgOperand(1),
1160 StrLen
, B
, DL
, TLI
);
1163 for (User
*U
: llvm::make_early_inc_range(CI
->users())) {
1164 ICmpInst
*Old
= cast
<ICmpInst
>(U
);
1166 B
.CreateICmp(Old
->getPredicate(), StrNCmp
,
1167 ConstantInt::getNullValue(StrNCmp
->getType()), "cmp");
1168 replaceAllUsesWith(Old
, Cmp
);
1173 // See if either input string is a constant string.
1174 StringRef SearchStr
, ToFindStr
;
1175 bool HasStr1
= getConstantStringInfo(CI
->getArgOperand(0), SearchStr
);
1176 bool HasStr2
= getConstantStringInfo(CI
->getArgOperand(1), ToFindStr
);
1178 // fold strstr(x, "") -> x.
1179 if (HasStr2
&& ToFindStr
.empty())
1180 return CI
->getArgOperand(0);
1182 // If both strings are known, constant fold it.
1183 if (HasStr1
&& HasStr2
) {
1184 size_t Offset
= SearchStr
.find(ToFindStr
);
1186 if (Offset
== StringRef::npos
) // strstr("foo", "bar") -> null
1187 return Constant::getNullValue(CI
->getType());
1189 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1190 return B
.CreateConstInBoundsGEP1_64(B
.getInt8Ty(), CI
->getArgOperand(0),
1194 // fold strstr(x, "y") -> strchr(x, 'y').
1195 if (HasStr2
&& ToFindStr
.size() == 1) {
1196 return emitStrChr(CI
->getArgOperand(0), ToFindStr
[0], B
, TLI
);
1199 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
1203 Value
*LibCallSimplifier::optimizeMemRChr(CallInst
*CI
, IRBuilderBase
&B
) {
1204 Value
*SrcStr
= CI
->getArgOperand(0);
1205 Value
*Size
= CI
->getArgOperand(2);
1206 annotateNonNullAndDereferenceable(CI
, 0, Size
, DL
);
1207 Value
*CharVal
= CI
->getArgOperand(1);
1208 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
);
1209 Value
*NullPtr
= Constant::getNullValue(CI
->getType());
1213 // Fold memrchr(x, y, 0) --> null.
1216 if (LenC
->isOne()) {
1217 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1218 // constant or otherwise.
1219 Value
*Val
= B
.CreateLoad(B
.getInt8Ty(), SrcStr
, "memrchr.char0");
1220 // Slice off the character's high end bits.
1221 CharVal
= B
.CreateTrunc(CharVal
, B
.getInt8Ty());
1222 Value
*Cmp
= B
.CreateICmpEQ(Val
, CharVal
, "memrchr.char0cmp");
1223 return B
.CreateSelect(Cmp
, SrcStr
, NullPtr
, "memrchr.sel");
1228 if (!getConstantStringInfo(SrcStr
, Str
, /*TrimAtNul=*/false))
1231 if (Str
.size() == 0)
1232 // If the array is empty fold memrchr(A, C, N) to null for any value
1233 // of C and N on the basis that the only valid value of N is zero
1234 // (otherwise the call is undefined).
1237 uint64_t EndOff
= UINT64_MAX
;
1239 EndOff
= LenC
->getZExtValue();
1240 if (Str
.size() < EndOff
)
1241 // Punt out-of-bounds accesses to sanitizers and/or libc.
1245 if (ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CharVal
)) {
1246 // Fold memrchr(S, C, N) for a constant C.
1247 size_t Pos
= Str
.rfind(CharC
->getZExtValue(), EndOff
);
1248 if (Pos
== StringRef::npos
)
1249 // When the character is not in the source array fold the result
1250 // to null regardless of Size.
1254 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1255 return B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
, B
.getInt64(Pos
));
1257 if (Str
.find(Str
[Pos
]) == Pos
) {
1258 // When there is just a single occurrence of C in S, i.e., the one
1259 // in Str[Pos], fold
1260 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1261 // for nonconstant N.
1262 Value
*Cmp
= B
.CreateICmpULE(Size
, ConstantInt::get(Size
->getType(), Pos
),
1264 Value
*SrcPlus
= B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
,
1265 B
.getInt64(Pos
), "memrchr.ptr_plus");
1266 return B
.CreateSelect(Cmp
, NullPtr
, SrcPlus
, "memrchr.sel");
1270 // Truncate the string to search at most EndOff characters.
1271 Str
= Str
.substr(0, EndOff
);
1272 if (Str
.find_first_not_of(Str
[0]) != StringRef::npos
)
1275 // If the source array consists of all equal characters, then for any
1276 // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1277 // N != 0 && *S == C ? S + N - 1 : null
1278 Type
*SizeTy
= Size
->getType();
1279 Type
*Int8Ty
= B
.getInt8Ty();
1280 Value
*NNeZ
= B
.CreateICmpNE(Size
, ConstantInt::get(SizeTy
, 0));
1281 // Slice off the sought character's high end bits.
1282 CharVal
= B
.CreateTrunc(CharVal
, Int8Ty
);
1283 Value
*CEqS0
= B
.CreateICmpEQ(ConstantInt::get(Int8Ty
, Str
[0]), CharVal
);
1284 Value
*And
= B
.CreateLogicalAnd(NNeZ
, CEqS0
);
1285 Value
*SizeM1
= B
.CreateSub(Size
, ConstantInt::get(SizeTy
, 1));
1287 B
.CreateInBoundsGEP(Int8Ty
, SrcStr
, SizeM1
, "memrchr.ptr_plus");
1288 return B
.CreateSelect(And
, SrcPlus
, NullPtr
, "memrchr.sel");
1291 Value
*LibCallSimplifier::optimizeMemChr(CallInst
*CI
, IRBuilderBase
&B
) {
1292 Value
*SrcStr
= CI
->getArgOperand(0);
1293 Value
*Size
= CI
->getArgOperand(2);
1295 if (isKnownNonZero(Size
, DL
)) {
1296 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
1297 if (isOnlyUsedInEqualityComparison(CI
, SrcStr
))
1298 return memChrToCharCompare(CI
, Size
, B
, DL
);
1301 Value
*CharVal
= CI
->getArgOperand(1);
1302 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CharVal
);
1303 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
);
1304 Value
*NullPtr
= Constant::getNullValue(CI
->getType());
1306 // memchr(x, y, 0) -> null
1311 if (LenC
->isOne()) {
1312 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1313 // constant or otherwise.
1314 Value
*Val
= B
.CreateLoad(B
.getInt8Ty(), SrcStr
, "memchr.char0");
1315 // Slice off the character's high end bits.
1316 CharVal
= B
.CreateTrunc(CharVal
, B
.getInt8Ty());
1317 Value
*Cmp
= B
.CreateICmpEQ(Val
, CharVal
, "memchr.char0cmp");
1318 return B
.CreateSelect(Cmp
, SrcStr
, NullPtr
, "memchr.sel");
1323 if (!getConstantStringInfo(SrcStr
, Str
, /*TrimAtNul=*/false))
1327 size_t Pos
= Str
.find(CharC
->getZExtValue());
1328 if (Pos
== StringRef::npos
)
1329 // When the character is not in the source array fold the result
1330 // to null regardless of Size.
1333 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1334 // When the constant Size is less than or equal to the character
1335 // position also fold the result to null.
1336 Value
*Cmp
= B
.CreateICmpULE(Size
, ConstantInt::get(Size
->getType(), Pos
),
1338 Value
*SrcPlus
= B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
, B
.getInt64(Pos
),
1340 return B
.CreateSelect(Cmp
, NullPtr
, SrcPlus
);
1343 if (Str
.size() == 0)
1344 // If the array is empty fold memchr(A, C, N) to null for any value
1345 // of C and N on the basis that the only valid value of N is zero
1346 // (otherwise the call is undefined).
1350 Str
= substr(Str
, LenC
->getZExtValue());
1352 size_t Pos
= Str
.find_first_not_of(Str
[0]);
1353 if (Pos
== StringRef::npos
1354 || Str
.find_first_not_of(Str
[Pos
], Pos
) == StringRef::npos
) {
1355 // If the source array consists of at most two consecutive sequences
1356 // of the same characters, then for any C and N (whether in bounds or
1357 // not), fold memchr(S, C, N) to
1358 // N != 0 && *S == C ? S : null
1359 // or for the two sequences to:
1360 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1361 // ^Sel2 ^Sel1 are denoted above.
1362 // The latter makes it also possible to fold strchr() calls with strings
1363 // of the same characters.
1364 Type
*SizeTy
= Size
->getType();
1365 Type
*Int8Ty
= B
.getInt8Ty();
1367 // Slice off the sought character's high end bits.
1368 CharVal
= B
.CreateTrunc(CharVal
, Int8Ty
);
1370 Value
*Sel1
= NullPtr
;
1371 if (Pos
!= StringRef::npos
) {
1372 // Handle two consecutive sequences of the same characters.
1373 Value
*PosVal
= ConstantInt::get(SizeTy
, Pos
);
1374 Value
*StrPos
= ConstantInt::get(Int8Ty
, Str
[Pos
]);
1375 Value
*CEqSPos
= B
.CreateICmpEQ(CharVal
, StrPos
);
1376 Value
*NGtPos
= B
.CreateICmp(ICmpInst::ICMP_UGT
, Size
, PosVal
);
1377 Value
*And
= B
.CreateAnd(CEqSPos
, NGtPos
);
1378 Value
*SrcPlus
= B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
, PosVal
);
1379 Sel1
= B
.CreateSelect(And
, SrcPlus
, NullPtr
, "memchr.sel1");
1382 Value
*Str0
= ConstantInt::get(Int8Ty
, Str
[0]);
1383 Value
*CEqS0
= B
.CreateICmpEQ(Str0
, CharVal
);
1384 Value
*NNeZ
= B
.CreateICmpNE(Size
, ConstantInt::get(SizeTy
, 0));
1385 Value
*And
= B
.CreateAnd(NNeZ
, CEqS0
);
1386 return B
.CreateSelect(And
, SrcStr
, Sel1
, "memchr.sel2");
1390 if (isOnlyUsedInEqualityComparison(CI
, SrcStr
))
1391 // S is dereferenceable so it's safe to load from it and fold
1392 // memchr(S, C, N) == S to N && *S == C for any C and N.
1393 // TODO: This is safe even for nonconstant S.
1394 return memChrToCharCompare(CI
, Size
, B
, DL
);
1396 // From now on we need a constant length and constant array.
1400 bool OptForSize
= llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
,
1401 PGSOQueryType::IRPass
);
1403 // If the char is variable but the input str and length are not we can turn
1404 // this memchr call into a simple bit field test. Of course this only works
1405 // when the return value is only checked against null.
1407 // It would be really nice to reuse switch lowering here but we can't change
1408 // the CFG at this point.
1410 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1412 // after bounds check.
1413 if (OptForSize
|| Str
.empty() || !isOnlyUsedInZeroEqualityComparison(CI
))
1417 *std::max_element(reinterpret_cast<const unsigned char *>(Str
.begin()),
1418 reinterpret_cast<const unsigned char *>(Str
.end()));
1420 // Make sure the bit field we're about to create fits in a register on the
1422 // FIXME: On a 64 bit architecture this prevents us from using the
1423 // interesting range of alpha ascii chars. We could do better by emitting
1424 // two bitfields or shifting the range by 64 if no lower chars are used.
1425 if (!DL
.fitsInLegalInteger(Max
+ 1)) {
1426 // Build chain of ORs
1428 // memchr("abcd", C, 4) != nullptr
1430 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0
1431 std::string SortedStr
= Str
.str();
1432 llvm::sort(SortedStr
);
1433 // Compute the number of of non-contiguous ranges.
1434 unsigned NonContRanges
= 1;
1435 for (size_t i
= 1; i
< SortedStr
.size(); ++i
) {
1436 if (SortedStr
[i
] > SortedStr
[i
- 1] + 1) {
1441 // Restrict this optimization to profitable cases with one or two range
1443 if (NonContRanges
> 2)
1446 // Slice off the character's high end bits.
1447 CharVal
= B
.CreateTrunc(CharVal
, B
.getInt8Ty());
1449 SmallVector
<Value
*> CharCompares
;
1450 for (unsigned char C
: SortedStr
)
1451 CharCompares
.push_back(B
.CreateICmpEQ(CharVal
, B
.getInt8(C
)));
1453 return B
.CreateIntToPtr(B
.CreateOr(CharCompares
), CI
->getType());
1456 // For the bit field use a power-of-2 type with at least 8 bits to avoid
1457 // creating unnecessary illegal types.
1458 unsigned char Width
= NextPowerOf2(std::max((unsigned char)7, Max
));
1460 // Now build the bit field.
1461 APInt
Bitfield(Width
, 0);
1463 Bitfield
.setBit((unsigned char)C
);
1464 Value
*BitfieldC
= B
.getInt(Bitfield
);
1466 // Adjust width of "C" to the bitfield width, then mask off the high bits.
1467 Value
*C
= B
.CreateZExtOrTrunc(CharVal
, BitfieldC
->getType());
1468 C
= B
.CreateAnd(C
, B
.getIntN(Width
, 0xFF));
1470 // First check that the bit field access is within bounds.
1471 Value
*Bounds
= B
.CreateICmp(ICmpInst::ICMP_ULT
, C
, B
.getIntN(Width
, Width
),
1474 // Create code that checks if the given bit is set in the field.
1475 Value
*Shl
= B
.CreateShl(B
.getIntN(Width
, 1ULL), C
);
1476 Value
*Bits
= B
.CreateIsNotNull(B
.CreateAnd(Shl
, BitfieldC
), "memchr.bits");
1478 // Finally merge both checks and cast to pointer type. The inttoptr
1479 // implicitly zexts the i1 to intptr type.
1480 return B
.CreateIntToPtr(B
.CreateLogicalAnd(Bounds
, Bits
, "memchr"),
1484 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1485 // arrays LHS and RHS and nonconstant Size.
1486 static Value
*optimizeMemCmpVarSize(CallInst
*CI
, Value
*LHS
, Value
*RHS
,
1487 Value
*Size
, bool StrNCmp
,
1488 IRBuilderBase
&B
, const DataLayout
&DL
) {
1489 if (LHS
== RHS
) // memcmp(s,s,x) -> 0
1490 return Constant::getNullValue(CI
->getType());
1492 StringRef LStr
, RStr
;
1493 if (!getConstantStringInfo(LHS
, LStr
, /*TrimAtNul=*/false) ||
1494 !getConstantStringInfo(RHS
, RStr
, /*TrimAtNul=*/false))
1497 // If the contents of both constant arrays are known, fold a call to
1498 // memcmp(A, B, N) to
1499 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1500 // where Pos is the first mismatch between A and B, determined below.
1503 Value
*Zero
= ConstantInt::get(CI
->getType(), 0);
1504 for (uint64_t MinSize
= std::min(LStr
.size(), RStr
.size()); ; ++Pos
) {
1505 if (Pos
== MinSize
||
1506 (StrNCmp
&& (LStr
[Pos
] == '\0' && RStr
[Pos
] == '\0'))) {
1507 // One array is a leading part of the other of equal or greater
1508 // size, or for strncmp, the arrays are equal strings.
1509 // Fold the result to zero. Size is assumed to be in bounds, since
1510 // otherwise the call would be undefined.
1514 if (LStr
[Pos
] != RStr
[Pos
])
1518 // Normalize the result.
1519 typedef unsigned char UChar
;
1520 int IRes
= UChar(LStr
[Pos
]) < UChar(RStr
[Pos
]) ? -1 : 1;
1521 Value
*MaxSize
= ConstantInt::get(Size
->getType(), Pos
);
1522 Value
*Cmp
= B
.CreateICmp(ICmpInst::ICMP_ULE
, Size
, MaxSize
);
1523 Value
*Res
= ConstantInt::get(CI
->getType(), IRes
);
1524 return B
.CreateSelect(Cmp
, Zero
, Res
);
1527 // Optimize a memcmp call CI with constant size Len.
1528 static Value
*optimizeMemCmpConstantSize(CallInst
*CI
, Value
*LHS
, Value
*RHS
,
1529 uint64_t Len
, IRBuilderBase
&B
,
1530 const DataLayout
&DL
) {
1531 if (Len
== 0) // memcmp(s1,s2,0) -> 0
1532 return Constant::getNullValue(CI
->getType());
1534 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1536 Value
*LHSV
= B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), LHS
, "lhsc"),
1537 CI
->getType(), "lhsv");
1538 Value
*RHSV
= B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), RHS
, "rhsc"),
1539 CI
->getType(), "rhsv");
1540 return B
.CreateSub(LHSV
, RHSV
, "chardiff");
1543 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1544 // TODO: The case where both inputs are constants does not need to be limited
1545 // to legal integers or equality comparison. See block below this.
1546 if (DL
.isLegalInteger(Len
* 8) && isOnlyUsedInZeroEqualityComparison(CI
)) {
1547 IntegerType
*IntType
= IntegerType::get(CI
->getContext(), Len
* 8);
1548 Align PrefAlignment
= DL
.getPrefTypeAlign(IntType
);
1550 // First, see if we can fold either argument to a constant.
1551 Value
*LHSV
= nullptr;
1552 if (auto *LHSC
= dyn_cast
<Constant
>(LHS
))
1553 LHSV
= ConstantFoldLoadFromConstPtr(LHSC
, IntType
, DL
);
1555 Value
*RHSV
= nullptr;
1556 if (auto *RHSC
= dyn_cast
<Constant
>(RHS
))
1557 RHSV
= ConstantFoldLoadFromConstPtr(RHSC
, IntType
, DL
);
1559 // Don't generate unaligned loads. If either source is constant data,
1560 // alignment doesn't matter for that source because there is no load.
1561 if ((LHSV
|| getKnownAlignment(LHS
, DL
, CI
) >= PrefAlignment
) &&
1562 (RHSV
|| getKnownAlignment(RHS
, DL
, CI
) >= PrefAlignment
)) {
1564 LHSV
= B
.CreateLoad(IntType
, LHS
, "lhsv");
1566 RHSV
= B
.CreateLoad(IntType
, RHS
, "rhsv");
1567 return B
.CreateZExt(B
.CreateICmpNE(LHSV
, RHSV
), CI
->getType(), "memcmp");
1574 // Most simplifications for memcmp also apply to bcmp.
1575 Value
*LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst
*CI
,
1577 Value
*LHS
= CI
->getArgOperand(0), *RHS
= CI
->getArgOperand(1);
1578 Value
*Size
= CI
->getArgOperand(2);
1580 annotateNonNullAndDereferenceable(CI
, {0, 1}, Size
, DL
);
1582 if (Value
*Res
= optimizeMemCmpVarSize(CI
, LHS
, RHS
, Size
, false, B
, DL
))
1585 // Handle constant Size.
1586 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
);
1590 return optimizeMemCmpConstantSize(CI
, LHS
, RHS
, LenC
->getZExtValue(), B
, DL
);
1593 Value
*LibCallSimplifier::optimizeMemCmp(CallInst
*CI
, IRBuilderBase
&B
) {
1594 Module
*M
= CI
->getModule();
1595 if (Value
*V
= optimizeMemCmpBCmpCommon(CI
, B
))
1598 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1599 // bcmp can be more efficient than memcmp because it only has to know that
1600 // there is a difference, not how different one is to the other.
1601 if (isLibFuncEmittable(M
, TLI
, LibFunc_bcmp
) &&
1602 isOnlyUsedInZeroEqualityComparison(CI
)) {
1603 Value
*LHS
= CI
->getArgOperand(0);
1604 Value
*RHS
= CI
->getArgOperand(1);
1605 Value
*Size
= CI
->getArgOperand(2);
1606 return copyFlags(*CI
, emitBCmp(LHS
, RHS
, Size
, B
, DL
, TLI
));
1612 Value
*LibCallSimplifier::optimizeBCmp(CallInst
*CI
, IRBuilderBase
&B
) {
1613 return optimizeMemCmpBCmpCommon(CI
, B
);
1616 Value
*LibCallSimplifier::optimizeMemCpy(CallInst
*CI
, IRBuilderBase
&B
) {
1617 Value
*Size
= CI
->getArgOperand(2);
1618 annotateNonNullAndDereferenceable(CI
, {0, 1}, Size
, DL
);
1619 if (isa
<IntrinsicInst
>(CI
))
1622 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1623 CallInst
*NewCI
= B
.CreateMemCpy(CI
->getArgOperand(0), Align(1),
1624 CI
->getArgOperand(1), Align(1), Size
);
1625 mergeAttributesAndFlags(NewCI
, *CI
);
1626 return CI
->getArgOperand(0);
1629 Value
*LibCallSimplifier::optimizeMemCCpy(CallInst
*CI
, IRBuilderBase
&B
) {
1630 Value
*Dst
= CI
->getArgOperand(0);
1631 Value
*Src
= CI
->getArgOperand(1);
1632 ConstantInt
*StopChar
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2));
1633 ConstantInt
*N
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(3));
1635 if (CI
->use_empty() && Dst
== Src
)
1637 // memccpy(d, s, c, 0) -> nullptr
1639 if (N
->isNullValue())
1640 return Constant::getNullValue(CI
->getType());
1641 if (!getConstantStringInfo(Src
, SrcStr
, /*TrimAtNul=*/false) ||
1642 // TODO: Handle zeroinitializer.
1649 // Wrap arg 'c' of type int to char
1650 size_t Pos
= SrcStr
.find(StopChar
->getSExtValue() & 0xFF);
1651 if (Pos
== StringRef::npos
) {
1652 if (N
->getZExtValue() <= SrcStr
.size()) {
1653 copyFlags(*CI
, B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1),
1654 CI
->getArgOperand(3)));
1655 return Constant::getNullValue(CI
->getType());
1661 ConstantInt::get(N
->getType(), std::min(uint64_t(Pos
+ 1), N
->getZExtValue()));
1662 // memccpy -> llvm.memcpy
1663 copyFlags(*CI
, B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1), NewN
));
1664 return Pos
+ 1 <= N
->getZExtValue()
1665 ? B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, NewN
)
1666 : Constant::getNullValue(CI
->getType());
1669 Value
*LibCallSimplifier::optimizeMemPCpy(CallInst
*CI
, IRBuilderBase
&B
) {
1670 Value
*Dst
= CI
->getArgOperand(0);
1671 Value
*N
= CI
->getArgOperand(2);
1672 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1674 B
.CreateMemCpy(Dst
, Align(1), CI
->getArgOperand(1), Align(1), N
);
1675 // Propagate attributes, but memcpy has no return value, so make sure that
1676 // any return attributes are compliant.
1677 // TODO: Attach return value attributes to the 1st operand to preserve them?
1678 mergeAttributesAndFlags(NewCI
, *CI
);
1679 return B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, N
);
1682 Value
*LibCallSimplifier::optimizeMemMove(CallInst
*CI
, IRBuilderBase
&B
) {
1683 Value
*Size
= CI
->getArgOperand(2);
1684 annotateNonNullAndDereferenceable(CI
, {0, 1}, Size
, DL
);
1685 if (isa
<IntrinsicInst
>(CI
))
1688 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1689 CallInst
*NewCI
= B
.CreateMemMove(CI
->getArgOperand(0), Align(1),
1690 CI
->getArgOperand(1), Align(1), Size
);
1691 mergeAttributesAndFlags(NewCI
, *CI
);
1692 return CI
->getArgOperand(0);
1695 Value
*LibCallSimplifier::optimizeMemSet(CallInst
*CI
, IRBuilderBase
&B
) {
1696 Value
*Size
= CI
->getArgOperand(2);
1697 annotateNonNullAndDereferenceable(CI
, 0, Size
, DL
);
1698 if (isa
<IntrinsicInst
>(CI
))
1701 // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1702 Value
*Val
= B
.CreateIntCast(CI
->getArgOperand(1), B
.getInt8Ty(), false);
1703 CallInst
*NewCI
= B
.CreateMemSet(CI
->getArgOperand(0), Val
, Size
, Align(1));
1704 mergeAttributesAndFlags(NewCI
, *CI
);
1705 return CI
->getArgOperand(0);
1708 Value
*LibCallSimplifier::optimizeRealloc(CallInst
*CI
, IRBuilderBase
&B
) {
1709 if (isa
<ConstantPointerNull
>(CI
->getArgOperand(0)))
1710 return copyFlags(*CI
, emitMalloc(CI
->getArgOperand(0)->getType(),
1711 CI
->getArgOperand(1), B
, DL
, TLI
));
1716 // When enabled, replace operator new() calls marked with a hot or cold memprof
1717 // attribute with an operator new() call that takes a __hot_cold_t parameter.
1718 // Currently this is supported by the open source version of tcmalloc, see:
1719 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h
1720 Value
*LibCallSimplifier::optimizeNew(CallInst
*CI
, IRBuilderBase
&B
,
1722 if (!OptimizeHotColdNew
)
1726 if (CI
->getAttributes().getFnAttr("memprof").getValueAsString() == "cold")
1727 HotCold
= ColdNewHintValue
;
1728 else if (CI
->getAttributes().getFnAttr("memprof").getValueAsString() ==
1730 HotCold
= NotColdNewHintValue
;
1731 else if (CI
->getAttributes().getFnAttr("memprof").getValueAsString() == "hot")
1732 HotCold
= HotNewHintValue
;
1736 // For calls that already pass a hot/cold hint, only update the hint if
1737 // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint
1738 // if cold or hot, and leave as-is for default handling if "notcold" aka warm.
1739 // Note that in cases where we decide it is "notcold", it might be slightly
1740 // better to replace the hinted call with a non hinted call, to avoid the
1741 // extra parameter and the if condition check of the hint value in the
1742 // allocator. This can be considered in the future.
1744 case LibFunc_Znwm12__hot_cold_t
:
1745 if (OptimizeExistingHotColdNew
)
1746 return emitHotColdNew(CI
->getType(), CI
->getArgOperand(0), B
, TLI
,
1747 LibFunc_Znwm12__hot_cold_t
, HotCold
);
1750 if (HotCold
!= NotColdNewHintValue
)
1751 return emitHotColdNew(CI
->getType(), CI
->getArgOperand(0), B
, TLI
,
1752 LibFunc_Znwm12__hot_cold_t
, HotCold
);
1754 case LibFunc_Znam12__hot_cold_t
:
1755 if (OptimizeExistingHotColdNew
)
1756 return emitHotColdNew(CI
->getType(), CI
->getArgOperand(0), B
, TLI
,
1757 LibFunc_Znam12__hot_cold_t
, HotCold
);
1760 if (HotCold
!= NotColdNewHintValue
)
1761 return emitHotColdNew(CI
->getType(), CI
->getArgOperand(0), B
, TLI
,
1762 LibFunc_Znam12__hot_cold_t
, HotCold
);
1764 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t
:
1765 if (OptimizeExistingHotColdNew
)
1766 return emitHotColdNewNoThrow(
1767 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
,
1768 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t
, HotCold
);
1770 case LibFunc_ZnwmRKSt9nothrow_t
:
1771 if (HotCold
!= NotColdNewHintValue
)
1772 return emitHotColdNewNoThrow(
1773 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
,
1774 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t
, HotCold
);
1776 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t
:
1777 if (OptimizeExistingHotColdNew
)
1778 return emitHotColdNewNoThrow(
1779 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
,
1780 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t
, HotCold
);
1782 case LibFunc_ZnamRKSt9nothrow_t
:
1783 if (HotCold
!= NotColdNewHintValue
)
1784 return emitHotColdNewNoThrow(
1785 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
,
1786 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t
, HotCold
);
1788 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t
:
1789 if (OptimizeExistingHotColdNew
)
1790 return emitHotColdNewAligned(
1791 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
,
1792 LibFunc_ZnwmSt11align_val_t12__hot_cold_t
, HotCold
);
1794 case LibFunc_ZnwmSt11align_val_t
:
1795 if (HotCold
!= NotColdNewHintValue
)
1796 return emitHotColdNewAligned(
1797 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
,
1798 LibFunc_ZnwmSt11align_val_t12__hot_cold_t
, HotCold
);
1800 case LibFunc_ZnamSt11align_val_t12__hot_cold_t
:
1801 if (OptimizeExistingHotColdNew
)
1802 return emitHotColdNewAligned(
1803 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
,
1804 LibFunc_ZnamSt11align_val_t12__hot_cold_t
, HotCold
);
1806 case LibFunc_ZnamSt11align_val_t
:
1807 if (HotCold
!= NotColdNewHintValue
)
1808 return emitHotColdNewAligned(
1809 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
,
1810 LibFunc_ZnamSt11align_val_t12__hot_cold_t
, HotCold
);
1812 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t
:
1813 if (OptimizeExistingHotColdNew
)
1814 return emitHotColdNewAlignedNoThrow(
1815 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1),
1816 CI
->getArgOperand(2), B
, TLI
,
1817 LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t
, HotCold
);
1819 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t
:
1820 if (HotCold
!= NotColdNewHintValue
)
1821 return emitHotColdNewAlignedNoThrow(
1822 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1),
1823 CI
->getArgOperand(2), B
, TLI
,
1824 LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t
, HotCold
);
1826 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t
:
1827 if (OptimizeExistingHotColdNew
)
1828 return emitHotColdNewAlignedNoThrow(
1829 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1),
1830 CI
->getArgOperand(2), B
, TLI
,
1831 LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t
, HotCold
);
1833 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t
:
1834 if (HotCold
!= NotColdNewHintValue
)
1835 return emitHotColdNewAlignedNoThrow(
1836 CI
->getType(), CI
->getArgOperand(0), CI
->getArgOperand(1),
1837 CI
->getArgOperand(2), B
, TLI
,
1838 LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t
, HotCold
);
1840 case LibFunc_size_returning_new
:
1841 if (HotCold
!= NotColdNewHintValue
)
1842 return emitHotColdSizeReturningNew(
1843 CI
->getType()->getStructElementType(0), CI
->getArgOperand(0), B
, TLI
,
1844 LibFunc_size_returning_new_hot_cold
, HotCold
);
1846 case LibFunc_size_returning_new_hot_cold
:
1847 if (OptimizeExistingHotColdNew
)
1848 return emitHotColdSizeReturningNew(
1849 CI
->getType()->getStructElementType(0), CI
->getArgOperand(0), B
, TLI
,
1850 LibFunc_size_returning_new_hot_cold
, HotCold
);
1852 case LibFunc_size_returning_new_aligned
:
1853 if (HotCold
!= NotColdNewHintValue
)
1854 return emitHotColdSizeReturningNewAligned(
1855 CI
->getType()->getStructElementType(0), CI
->getArgOperand(0),
1856 CI
->getArgOperand(1), B
, TLI
,
1857 LibFunc_size_returning_new_aligned_hot_cold
, HotCold
);
1859 case LibFunc_size_returning_new_aligned_hot_cold
:
1860 if (OptimizeExistingHotColdNew
)
1861 return emitHotColdSizeReturningNewAligned(
1862 CI
->getType()->getStructElementType(0), CI
->getArgOperand(0),
1863 CI
->getArgOperand(1), B
, TLI
,
1864 LibFunc_size_returning_new_aligned_hot_cold
, HotCold
);
1872 //===----------------------------------------------------------------------===//
1873 // Math Library Optimizations
1874 //===----------------------------------------------------------------------===//
1876 // Replace a libcall \p CI with a call to intrinsic \p IID
1877 static Value
*replaceUnaryCall(CallInst
*CI
, IRBuilderBase
&B
,
1878 Intrinsic::ID IID
) {
1879 CallInst
*NewCall
= B
.CreateUnaryIntrinsic(IID
, CI
->getArgOperand(0), CI
);
1880 NewCall
->takeName(CI
);
1881 return copyFlags(*CI
, NewCall
);
1884 /// Return a variant of Val with float type.
1885 /// Currently this works in two cases: If Val is an FPExtension of a float
1886 /// value to something bigger, simply return the operand.
1887 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1888 /// loss of precision do so.
1889 static Value
*valueHasFloatPrecision(Value
*Val
) {
1890 if (FPExtInst
*Cast
= dyn_cast
<FPExtInst
>(Val
)) {
1891 Value
*Op
= Cast
->getOperand(0);
1892 if (Op
->getType()->isFloatTy())
1895 if (ConstantFP
*Const
= dyn_cast
<ConstantFP
>(Val
)) {
1896 APFloat F
= Const
->getValueAPF();
1898 (void)F
.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven
,
1901 return ConstantFP::get(Const
->getContext(), F
);
1906 /// Shrink double -> float functions.
1907 static Value
*optimizeDoubleFP(CallInst
*CI
, IRBuilderBase
&B
,
1908 bool isBinary
, const TargetLibraryInfo
*TLI
,
1909 bool isPrecise
= false) {
1910 Function
*CalleeFn
= CI
->getCalledFunction();
1911 if (!CI
->getType()->isDoubleTy() || !CalleeFn
)
1914 // If not all the uses of the function are converted to float, then bail out.
1915 // This matters if the precision of the result is more important than the
1916 // precision of the arguments.
1918 for (User
*U
: CI
->users()) {
1919 FPTruncInst
*Cast
= dyn_cast
<FPTruncInst
>(U
);
1920 if (!Cast
|| !Cast
->getType()->isFloatTy())
1924 // If this is something like 'g((double) float)', convert to 'gf(float)'.
1926 V
[0] = valueHasFloatPrecision(CI
->getArgOperand(0));
1927 V
[1] = isBinary
? valueHasFloatPrecision(CI
->getArgOperand(1)) : nullptr;
1928 if (!V
[0] || (isBinary
&& !V
[1]))
1931 // If call isn't an intrinsic, check that it isn't within a function with the
1932 // same name as the float version of this call, otherwise the result is an
1933 // infinite loop. For example, from MinGW-w64:
1935 // float expf(float val) { return (float) exp((double) val); }
1936 StringRef CalleeName
= CalleeFn
->getName();
1937 bool IsIntrinsic
= CalleeFn
->isIntrinsic();
1939 StringRef CallerName
= CI
->getFunction()->getName();
1940 if (!CallerName
.empty() && CallerName
.back() == 'f' &&
1941 CallerName
.size() == (CalleeName
.size() + 1) &&
1942 CallerName
.starts_with(CalleeName
))
1946 // Propagate the math semantics from the current function to the new function.
1947 IRBuilderBase::FastMathFlagGuard
Guard(B
);
1948 B
.setFastMathFlags(CI
->getFastMathFlags());
1950 // g((double) float) -> (double) gf(float)
1953 Intrinsic::ID IID
= CalleeFn
->getIntrinsicID();
1954 R
= isBinary
? B
.CreateIntrinsic(IID
, B
.getFloatTy(), V
)
1955 : B
.CreateIntrinsic(IID
, B
.getFloatTy(), V
[0]);
1957 AttributeList CalleeAttrs
= CalleeFn
->getAttributes();
1958 R
= isBinary
? emitBinaryFloatFnCall(V
[0], V
[1], TLI
, CalleeName
, B
,
1960 : emitUnaryFloatFnCall(V
[0], TLI
, CalleeName
, B
, CalleeAttrs
);
1962 return B
.CreateFPExt(R
, B
.getDoubleTy());
1965 /// Shrink double -> float for unary functions.
1966 static Value
*optimizeUnaryDoubleFP(CallInst
*CI
, IRBuilderBase
&B
,
1967 const TargetLibraryInfo
*TLI
,
1968 bool isPrecise
= false) {
1969 return optimizeDoubleFP(CI
, B
, false, TLI
, isPrecise
);
1972 /// Shrink double -> float for binary functions.
1973 static Value
*optimizeBinaryDoubleFP(CallInst
*CI
, IRBuilderBase
&B
,
1974 const TargetLibraryInfo
*TLI
,
1975 bool isPrecise
= false) {
1976 return optimizeDoubleFP(CI
, B
, true, TLI
, isPrecise
);
1979 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1980 Value
*LibCallSimplifier::optimizeCAbs(CallInst
*CI
, IRBuilderBase
&B
) {
1983 if (CI
->arg_size() == 1) {
1988 Value
*Op
= CI
->getArgOperand(0);
1989 assert(Op
->getType()->isArrayTy() && "Unexpected signature for cabs!");
1991 Real
= B
.CreateExtractValue(Op
, 0, "real");
1992 Imag
= B
.CreateExtractValue(Op
, 1, "imag");
1995 assert(CI
->arg_size() == 2 && "Unexpected signature for cabs!");
1997 Real
= CI
->getArgOperand(0);
1998 Imag
= CI
->getArgOperand(1);
2000 // if real or imaginary part is zero, simplify to abs(cimag(z))
2002 Value
*AbsOp
= nullptr;
2003 if (ConstantFP
*ConstReal
= dyn_cast
<ConstantFP
>(Real
)) {
2004 if (ConstReal
->isZero())
2007 } else if (ConstantFP
*ConstImag
= dyn_cast
<ConstantFP
>(Imag
)) {
2008 if (ConstImag
->isZero())
2013 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2014 B
.setFastMathFlags(CI
->getFastMathFlags());
2017 *CI
, B
.CreateUnaryIntrinsic(Intrinsic::fabs
, AbsOp
, nullptr, "cabs"));
2024 // Propagate fast-math flags from the existing call to new instructions.
2025 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2026 B
.setFastMathFlags(CI
->getFastMathFlags());
2028 Value
*RealReal
= B
.CreateFMul(Real
, Real
);
2029 Value
*ImagImag
= B
.CreateFMul(Imag
, Imag
);
2031 return copyFlags(*CI
, B
.CreateUnaryIntrinsic(Intrinsic::sqrt
,
2032 B
.CreateFAdd(RealReal
, ImagImag
),
2036 // Return a properly extended integer (DstWidth bits wide) if the operation is
2038 static Value
*getIntToFPVal(Value
*I2F
, IRBuilderBase
&B
, unsigned DstWidth
) {
2039 if (isa
<SIToFPInst
>(I2F
) || isa
<UIToFPInst
>(I2F
)) {
2040 Value
*Op
= cast
<Instruction
>(I2F
)->getOperand(0);
2041 // Make sure that the exponent fits inside an "int" of size DstWidth,
2042 // thus avoiding any range issues that FP has not.
2043 unsigned BitWidth
= Op
->getType()->getScalarSizeInBits();
2044 if (BitWidth
< DstWidth
|| (BitWidth
== DstWidth
&& isa
<SIToFPInst
>(I2F
))) {
2045 Type
*IntTy
= Op
->getType()->getWithNewBitWidth(DstWidth
);
2046 return isa
<SIToFPInst
>(I2F
) ? B
.CreateSExt(Op
, IntTy
)
2047 : B
.CreateZExt(Op
, IntTy
);
2054 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
2055 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
2056 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
2057 Value
*LibCallSimplifier::replacePowWithExp(CallInst
*Pow
, IRBuilderBase
&B
) {
2058 Module
*M
= Pow
->getModule();
2059 Value
*Base
= Pow
->getArgOperand(0), *Expo
= Pow
->getArgOperand(1);
2060 Type
*Ty
= Pow
->getType();
2063 // Evaluate special cases related to a nested function as the base.
2065 // pow(exp(x), y) -> exp(x * y)
2066 // pow(exp2(x), y) -> exp2(x * y)
2067 // If exp{,2}() is used only once, it is better to fold two transcendental
2068 // math functions into one. If used again, exp{,2}() would still have to be
2069 // called with the original argument, then keep both original transcendental
2070 // functions. However, this transformation is only safe with fully relaxed
2071 // math semantics, since, besides rounding differences, it changes overflow
2072 // and underflow behavior quite dramatically. For example:
2073 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
2075 // exp(1000 * 0.001) = exp(1)
2076 // TODO: Loosen the requirement for fully relaxed math semantics.
2077 // TODO: Handle exp10() when more targets have it available.
2078 CallInst
*BaseFn
= dyn_cast
<CallInst
>(Base
);
2079 if (BaseFn
&& BaseFn
->hasOneUse() && BaseFn
->isFast() && Pow
->isFast()) {
2082 Function
*CalleeFn
= BaseFn
->getCalledFunction();
2083 if (CalleeFn
&& TLI
->getLibFunc(CalleeFn
->getName(), LibFn
) &&
2084 isLibFuncEmittable(M
, TLI
, LibFn
)) {
2088 LibFunc LibFnFloat
, LibFnDouble
, LibFnLongDouble
;
2096 ExpName
= TLI
->getName(LibFunc_exp
);
2097 ID
= Intrinsic::exp
;
2098 LibFnFloat
= LibFunc_expf
;
2099 LibFnDouble
= LibFunc_exp
;
2100 LibFnLongDouble
= LibFunc_expl
;
2105 ExpName
= TLI
->getName(LibFunc_exp2
);
2106 ID
= Intrinsic::exp2
;
2107 LibFnFloat
= LibFunc_exp2f
;
2108 LibFnDouble
= LibFunc_exp2
;
2109 LibFnLongDouble
= LibFunc_exp2l
;
2113 // Create new exp{,2}() with the product as its argument.
2114 Value
*FMul
= B
.CreateFMul(BaseFn
->getArgOperand(0), Expo
, "mul");
2115 ExpFn
= BaseFn
->doesNotAccessMemory()
2116 ? B
.CreateUnaryIntrinsic(ID
, FMul
, nullptr, ExpName
)
2117 : emitUnaryFloatFnCall(FMul
, TLI
, LibFnDouble
, LibFnFloat
,
2119 BaseFn
->getAttributes());
2121 // Since the new exp{,2}() is different from the original one, dead code
2122 // elimination cannot be trusted to remove it, since it may have side
2123 // effects (e.g., errno). When the only consumer for the original
2124 // exp{,2}() is pow(), then it has to be explicitly erased.
2125 substituteInParent(BaseFn
, ExpFn
);
2130 // Evaluate special cases related to a constant base.
2132 const APFloat
*BaseF
;
2133 if (!match(Base
, m_APFloat(BaseF
)))
2136 AttributeList NoAttrs
; // Attributes are only meaningful on the original call
2138 const bool UseIntrinsic
= Pow
->doesNotAccessMemory();
2140 // pow(2.0, itofp(x)) -> ldexp(1.0, x)
2141 if ((UseIntrinsic
|| !Ty
->isVectorTy()) && BaseF
->isExactlyValue(2.0) &&
2142 (isa
<SIToFPInst
>(Expo
) || isa
<UIToFPInst
>(Expo
)) &&
2144 hasFloatFn(M
, TLI
, Ty
, LibFunc_ldexp
, LibFunc_ldexpf
, LibFunc_ldexpl
))) {
2146 // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can
2147 // just directly use the original integer type.
2148 if (Value
*ExpoI
= getIntToFPVal(Expo
, B
, TLI
->getIntSize())) {
2149 Constant
*One
= ConstantFP::get(Ty
, 1.0);
2152 return copyFlags(*Pow
, B
.CreateIntrinsic(Intrinsic::ldexp
,
2153 {Ty
, ExpoI
->getType()},
2154 {One
, ExpoI
}, Pow
, "exp2"));
2157 return copyFlags(*Pow
, emitBinaryFloatFnCall(
2158 One
, ExpoI
, TLI
, LibFunc_ldexp
, LibFunc_ldexpf
,
2159 LibFunc_ldexpl
, B
, NoAttrs
));
2163 // pow(2.0 ** n, x) -> exp2(n * x)
2164 if (hasFloatFn(M
, TLI
, Ty
, LibFunc_exp2
, LibFunc_exp2f
, LibFunc_exp2l
)) {
2165 APFloat BaseR
= APFloat(1.0);
2166 BaseR
.convert(BaseF
->getSemantics(), APFloat::rmTowardZero
, &Ignored
);
2167 BaseR
= BaseR
/ *BaseF
;
2168 bool IsInteger
= BaseF
->isInteger(), IsReciprocal
= BaseR
.isInteger();
2169 const APFloat
*NF
= IsReciprocal
? &BaseR
: BaseF
;
2170 APSInt
NI(64, false);
2171 if ((IsInteger
|| IsReciprocal
) &&
2172 NF
->convertToInteger(NI
, APFloat::rmTowardZero
, &Ignored
) ==
2174 NI
> 1 && NI
.isPowerOf2()) {
2175 double N
= NI
.logBase2() * (IsReciprocal
? -1.0 : 1.0);
2176 Value
*FMul
= B
.CreateFMul(Expo
, ConstantFP::get(Ty
, N
), "mul");
2177 if (Pow
->doesNotAccessMemory())
2178 return copyFlags(*Pow
, B
.CreateUnaryIntrinsic(Intrinsic::exp2
, FMul
,
2181 return copyFlags(*Pow
, emitUnaryFloatFnCall(FMul
, TLI
, LibFunc_exp2
,
2183 LibFunc_exp2l
, B
, NoAttrs
));
2187 // pow(10.0, x) -> exp10(x)
2188 if (BaseF
->isExactlyValue(10.0) &&
2189 hasFloatFn(M
, TLI
, Ty
, LibFunc_exp10
, LibFunc_exp10f
, LibFunc_exp10l
)) {
2191 if (Pow
->doesNotAccessMemory()) {
2192 CallInst
*NewExp10
=
2193 B
.CreateIntrinsic(Intrinsic::exp10
, {Ty
}, {Expo
}, Pow
, "exp10");
2194 return copyFlags(*Pow
, NewExp10
);
2197 return copyFlags(*Pow
, emitUnaryFloatFnCall(Expo
, TLI
, LibFunc_exp10
,
2198 LibFunc_exp10f
, LibFunc_exp10l
,
2202 // pow(x, y) -> exp2(log2(x) * y)
2203 if (Pow
->hasApproxFunc() && Pow
->hasNoNaNs() && BaseF
->isFiniteNonZero() &&
2204 !BaseF
->isNegative()) {
2205 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
2206 // Luckily optimizePow has already handled the x == 1 case.
2207 assert(!match(Base
, m_FPOne()) &&
2208 "pow(1.0, y) should have been simplified earlier!");
2210 Value
*Log
= nullptr;
2211 if (Ty
->isFloatTy())
2212 Log
= ConstantFP::get(Ty
, std::log2(BaseF
->convertToFloat()));
2213 else if (Ty
->isDoubleTy())
2214 Log
= ConstantFP::get(Ty
, std::log2(BaseF
->convertToDouble()));
2217 Value
*FMul
= B
.CreateFMul(Log
, Expo
, "mul");
2218 if (Pow
->doesNotAccessMemory())
2219 return copyFlags(*Pow
, B
.CreateUnaryIntrinsic(Intrinsic::exp2
, FMul
,
2221 else if (hasFloatFn(M
, TLI
, Ty
, LibFunc_exp2
, LibFunc_exp2f
,
2223 return copyFlags(*Pow
, emitUnaryFloatFnCall(FMul
, TLI
, LibFunc_exp2
,
2225 LibFunc_exp2l
, B
, NoAttrs
));
2232 static Value
*getSqrtCall(Value
*V
, AttributeList Attrs
, bool NoErrno
,
2233 Module
*M
, IRBuilderBase
&B
,
2234 const TargetLibraryInfo
*TLI
) {
2235 // If errno is never set, then use the intrinsic for sqrt().
2237 return B
.CreateUnaryIntrinsic(Intrinsic::sqrt
, V
, nullptr, "sqrt");
2239 // Otherwise, use the libcall for sqrt().
2240 if (hasFloatFn(M
, TLI
, V
->getType(), LibFunc_sqrt
, LibFunc_sqrtf
,
2242 // TODO: We also should check that the target can in fact lower the sqrt()
2243 // libcall. We currently have no way to ask this question, so we ask if
2244 // the target has a sqrt() libcall, which is not exactly the same.
2245 return emitUnaryFloatFnCall(V
, TLI
, LibFunc_sqrt
, LibFunc_sqrtf
,
2246 LibFunc_sqrtl
, B
, Attrs
);
2251 /// Use square root in place of pow(x, +/-0.5).
2252 Value
*LibCallSimplifier::replacePowWithSqrt(CallInst
*Pow
, IRBuilderBase
&B
) {
2253 Value
*Sqrt
, *Base
= Pow
->getArgOperand(0), *Expo
= Pow
->getArgOperand(1);
2254 Module
*Mod
= Pow
->getModule();
2255 Type
*Ty
= Pow
->getType();
2257 const APFloat
*ExpoF
;
2258 if (!match(Expo
, m_APFloat(ExpoF
)) ||
2259 (!ExpoF
->isExactlyValue(0.5) && !ExpoF
->isExactlyValue(-0.5)))
2262 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
2263 // so that requires fast-math-flags (afn or reassoc).
2264 if (ExpoF
->isNegative() && (!Pow
->hasApproxFunc() && !Pow
->hasAllowReassoc()))
2267 // If we have a pow() library call (accesses memory) and we can't guarantee
2268 // that the base is not an infinity, give up:
2269 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
2270 // errno), but sqrt(-Inf) is required by various standards to set errno.
2271 if (!Pow
->doesNotAccessMemory() && !Pow
->hasNoInfs() &&
2272 !isKnownNeverInfinity(
2273 Base
, 0, SimplifyQuery(DL
, TLI
, DT
, AC
, Pow
, true, true, DC
)))
2276 Sqrt
= getSqrtCall(Base
, AttributeList(), Pow
->doesNotAccessMemory(), Mod
, B
,
2281 // Handle signed zero base by expanding to fabs(sqrt(x)).
2282 if (!Pow
->hasNoSignedZeros())
2283 Sqrt
= B
.CreateUnaryIntrinsic(Intrinsic::fabs
, Sqrt
, nullptr, "abs");
2285 Sqrt
= copyFlags(*Pow
, Sqrt
);
2287 // Handle non finite base by expanding to
2288 // (x == -infinity ? +infinity : sqrt(x)).
2289 if (!Pow
->hasNoInfs()) {
2290 Value
*PosInf
= ConstantFP::getInfinity(Ty
),
2291 *NegInf
= ConstantFP::getInfinity(Ty
, true);
2292 Value
*FCmp
= B
.CreateFCmpOEQ(Base
, NegInf
, "isinf");
2293 Sqrt
= B
.CreateSelect(FCmp
, PosInf
, Sqrt
);
2296 // If the exponent is negative, then get the reciprocal.
2297 if (ExpoF
->isNegative())
2298 Sqrt
= B
.CreateFDiv(ConstantFP::get(Ty
, 1.0), Sqrt
, "reciprocal");
2303 static Value
*createPowWithIntegerExponent(Value
*Base
, Value
*Expo
, Module
*M
,
2305 Value
*Args
[] = {Base
, Expo
};
2306 Type
*Types
[] = {Base
->getType(), Expo
->getType()};
2307 return B
.CreateIntrinsic(Intrinsic::powi
, Types
, Args
);
2310 Value
*LibCallSimplifier::optimizePow(CallInst
*Pow
, IRBuilderBase
&B
) {
2311 Value
*Base
= Pow
->getArgOperand(0);
2312 Value
*Expo
= Pow
->getArgOperand(1);
2313 Function
*Callee
= Pow
->getCalledFunction();
2314 StringRef Name
= Callee
->getName();
2315 Type
*Ty
= Pow
->getType();
2316 Module
*M
= Pow
->getModule();
2317 bool AllowApprox
= Pow
->hasApproxFunc();
2320 // Propagate the math semantics from the call to any created instructions.
2321 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2322 B
.setFastMathFlags(Pow
->getFastMathFlags());
2323 // Evaluate special cases related to the base.
2325 // pow(1.0, x) -> 1.0
2326 if (match(Base
, m_FPOne()))
2329 if (Value
*Exp
= replacePowWithExp(Pow
, B
))
2332 // Evaluate special cases related to the exponent.
2334 // pow(x, -1.0) -> 1.0 / x
2335 if (match(Expo
, m_SpecificFP(-1.0)))
2336 return B
.CreateFDiv(ConstantFP::get(Ty
, 1.0), Base
, "reciprocal");
2338 // pow(x, +/-0.0) -> 1.0
2339 if (match(Expo
, m_AnyZeroFP()))
2340 return ConstantFP::get(Ty
, 1.0);
2343 if (match(Expo
, m_FPOne()))
2346 // pow(x, 2.0) -> x * x
2347 if (match(Expo
, m_SpecificFP(2.0)))
2348 return B
.CreateFMul(Base
, Base
, "square");
2350 if (Value
*Sqrt
= replacePowWithSqrt(Pow
, B
))
2353 // If we can approximate pow:
2354 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2355 // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2356 const APFloat
*ExpoF
;
2357 if (AllowApprox
&& match(Expo
, m_APFloat(ExpoF
)) &&
2358 !ExpoF
->isExactlyValue(0.5) && !ExpoF
->isExactlyValue(-0.5)) {
2359 APFloat
ExpoA(abs(*ExpoF
));
2360 APFloat
ExpoI(*ExpoF
);
2361 Value
*Sqrt
= nullptr;
2362 if (!ExpoA
.isInteger()) {
2363 APFloat Expo2
= ExpoA
;
2364 // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2365 // is no floating point exception and the result is an integer, then
2366 // ExpoA == integer + 0.5
2367 if (Expo2
.add(ExpoA
, APFloat::rmNearestTiesToEven
) != APFloat::opOK
)
2370 if (!Expo2
.isInteger())
2373 if (ExpoI
.roundToIntegral(APFloat::rmTowardNegative
) !=
2376 if (!ExpoI
.isInteger())
2380 Sqrt
= getSqrtCall(Base
, AttributeList(), Pow
->doesNotAccessMemory(), M
,
2386 // 0.5 fraction is now optionally handled.
2387 // Do pow -> powi for remaining integer exponent
2388 APSInt
IntExpo(TLI
->getIntSize(), /*isUnsigned=*/false);
2389 if (ExpoF
->isInteger() &&
2390 ExpoF
->convertToInteger(IntExpo
, APFloat::rmTowardZero
, &Ignored
) ==
2392 Value
*PowI
= copyFlags(
2394 createPowWithIntegerExponent(
2395 Base
, ConstantInt::get(B
.getIntNTy(TLI
->getIntSize()), IntExpo
),
2399 return B
.CreateFMul(PowI
, Sqrt
);
2405 // powf(x, itofp(y)) -> powi(x, y)
2406 if (AllowApprox
&& (isa
<SIToFPInst
>(Expo
) || isa
<UIToFPInst
>(Expo
))) {
2407 if (Value
*ExpoI
= getIntToFPVal(Expo
, B
, TLI
->getIntSize()))
2408 return copyFlags(*Pow
, createPowWithIntegerExponent(Base
, ExpoI
, M
, B
));
2411 // Shrink pow() to powf() if the arguments are single precision,
2412 // unless the result is expected to be double precision.
2413 if (UnsafeFPShrink
&& Name
== TLI
->getName(LibFunc_pow
) &&
2414 hasFloatVersion(M
, Name
)) {
2415 if (Value
*Shrunk
= optimizeBinaryDoubleFP(Pow
, B
, TLI
, true))
2422 Value
*LibCallSimplifier::optimizeExp2(CallInst
*CI
, IRBuilderBase
&B
) {
2423 Module
*M
= CI
->getModule();
2424 Function
*Callee
= CI
->getCalledFunction();
2425 StringRef Name
= Callee
->getName();
2426 Value
*Ret
= nullptr;
2427 if (UnsafeFPShrink
&& Name
== TLI
->getName(LibFunc_exp2
) &&
2428 hasFloatVersion(M
, Name
))
2429 Ret
= optimizeUnaryDoubleFP(CI
, B
, TLI
, true);
2431 // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we
2432 // have the libcall, emit the libcall.
2434 // TODO: In principle we should be able to just always use the intrinsic for
2435 // any doesNotAccessMemory callsite.
2437 const bool UseIntrinsic
= Callee
->isIntrinsic();
2438 // Bail out for vectors because the code below only expects scalars.
2439 Type
*Ty
= CI
->getType();
2440 if (!UseIntrinsic
&& Ty
->isVectorTy())
2443 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize
2444 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize
2445 Value
*Op
= CI
->getArgOperand(0);
2446 if ((isa
<SIToFPInst
>(Op
) || isa
<UIToFPInst
>(Op
)) &&
2448 hasFloatFn(M
, TLI
, Ty
, LibFunc_ldexp
, LibFunc_ldexpf
, LibFunc_ldexpl
))) {
2449 if (Value
*Exp
= getIntToFPVal(Op
, B
, TLI
->getIntSize())) {
2450 Constant
*One
= ConstantFP::get(Ty
, 1.0);
2453 return copyFlags(*CI
, B
.CreateIntrinsic(Intrinsic::ldexp
,
2454 {Ty
, Exp
->getType()},
2458 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2459 B
.setFastMathFlags(CI
->getFastMathFlags());
2460 return copyFlags(*CI
, emitBinaryFloatFnCall(
2461 One
, Exp
, TLI
, LibFunc_ldexp
, LibFunc_ldexpf
,
2462 LibFunc_ldexpl
, B
, AttributeList()));
2469 Value
*LibCallSimplifier::optimizeFMinFMax(CallInst
*CI
, IRBuilderBase
&B
) {
2470 Module
*M
= CI
->getModule();
2472 // If we can shrink the call to a float function rather than a double
2473 // function, do that first.
2474 Function
*Callee
= CI
->getCalledFunction();
2475 StringRef Name
= Callee
->getName();
2476 if ((Name
== "fmin" || Name
== "fmax") && hasFloatVersion(M
, Name
))
2477 if (Value
*Ret
= optimizeBinaryDoubleFP(CI
, B
, TLI
))
2480 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2481 // the intrinsics for improved optimization (for example, vectorization).
2482 // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2483 // From the C standard draft WG14/N1256:
2484 // "Ideally, fmax would be sensitive to the sign of zero, for example
2485 // fmax(-0.0, +0.0) would return +0; however, implementation in software
2486 // might be impractical."
2487 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2488 FastMathFlags FMF
= CI
->getFastMathFlags();
2489 FMF
.setNoSignedZeros();
2490 B
.setFastMathFlags(FMF
);
2492 Intrinsic::ID IID
= Callee
->getName().starts_with("fmin") ? Intrinsic::minnum
2493 : Intrinsic::maxnum
;
2494 return copyFlags(*CI
, B
.CreateBinaryIntrinsic(IID
, CI
->getArgOperand(0),
2495 CI
->getArgOperand(1)));
2498 Value
*LibCallSimplifier::optimizeLog(CallInst
*Log
, IRBuilderBase
&B
) {
2499 Function
*LogFn
= Log
->getCalledFunction();
2500 StringRef LogNm
= LogFn
->getName();
2501 Intrinsic::ID LogID
= LogFn
->getIntrinsicID();
2502 Module
*Mod
= Log
->getModule();
2503 Type
*Ty
= Log
->getType();
2505 if (UnsafeFPShrink
&& hasFloatVersion(Mod
, LogNm
))
2506 if (Value
*Ret
= optimizeUnaryDoubleFP(Log
, B
, TLI
, true))
2509 LibFunc LogLb
, ExpLb
, Exp2Lb
, Exp10Lb
, PowLb
;
2511 // This is only applicable to log(), log2(), log10().
2512 if (TLI
->getLibFunc(LogNm
, LogLb
)) {
2515 LogID
= Intrinsic::log
;
2516 ExpLb
= LibFunc_expf
;
2517 Exp2Lb
= LibFunc_exp2f
;
2518 Exp10Lb
= LibFunc_exp10f
;
2519 PowLb
= LibFunc_powf
;
2522 LogID
= Intrinsic::log
;
2523 ExpLb
= LibFunc_exp
;
2524 Exp2Lb
= LibFunc_exp2
;
2525 Exp10Lb
= LibFunc_exp10
;
2526 PowLb
= LibFunc_pow
;
2529 LogID
= Intrinsic::log
;
2530 ExpLb
= LibFunc_expl
;
2531 Exp2Lb
= LibFunc_exp2l
;
2532 Exp10Lb
= LibFunc_exp10l
;
2533 PowLb
= LibFunc_powl
;
2536 LogID
= Intrinsic::log2
;
2537 ExpLb
= LibFunc_expf
;
2538 Exp2Lb
= LibFunc_exp2f
;
2539 Exp10Lb
= LibFunc_exp10f
;
2540 PowLb
= LibFunc_powf
;
2543 LogID
= Intrinsic::log2
;
2544 ExpLb
= LibFunc_exp
;
2545 Exp2Lb
= LibFunc_exp2
;
2546 Exp10Lb
= LibFunc_exp10
;
2547 PowLb
= LibFunc_pow
;
2550 LogID
= Intrinsic::log2
;
2551 ExpLb
= LibFunc_expl
;
2552 Exp2Lb
= LibFunc_exp2l
;
2553 Exp10Lb
= LibFunc_exp10l
;
2554 PowLb
= LibFunc_powl
;
2556 case LibFunc_log10f
:
2557 LogID
= Intrinsic::log10
;
2558 ExpLb
= LibFunc_expf
;
2559 Exp2Lb
= LibFunc_exp2f
;
2560 Exp10Lb
= LibFunc_exp10f
;
2561 PowLb
= LibFunc_powf
;
2564 LogID
= Intrinsic::log10
;
2565 ExpLb
= LibFunc_exp
;
2566 Exp2Lb
= LibFunc_exp2
;
2567 Exp10Lb
= LibFunc_exp10
;
2568 PowLb
= LibFunc_pow
;
2570 case LibFunc_log10l
:
2571 LogID
= Intrinsic::log10
;
2572 ExpLb
= LibFunc_expl
;
2573 Exp2Lb
= LibFunc_exp2l
;
2574 Exp10Lb
= LibFunc_exp10l
;
2575 PowLb
= LibFunc_powl
;
2581 // Convert libcall to intrinsic if the value is known > 0.
2582 bool IsKnownNoErrno
= Log
->hasNoNaNs() && Log
->hasNoInfs();
2583 if (!IsKnownNoErrno
) {
2584 SimplifyQuery
SQ(DL
, TLI
, DT
, AC
, Log
, true, true, DC
);
2585 KnownFPClass Known
= computeKnownFPClass(
2587 KnownFPClass::OrderedLessThanZeroMask
| fcSubnormal
,
2589 Function
*F
= Log
->getParent()->getParent();
2590 IsKnownNoErrno
= Known
.cannotBeOrderedLessThanZero() &&
2591 Known
.isKnownNeverLogicalZero(*F
, Ty
);
2593 if (IsKnownNoErrno
) {
2594 auto *NewLog
= B
.CreateUnaryIntrinsic(LogID
, Log
->getArgOperand(0), Log
);
2595 NewLog
->copyMetadata(*Log
);
2596 return copyFlags(*Log
, NewLog
);
2598 } else if (LogID
== Intrinsic::log
|| LogID
== Intrinsic::log2
||
2599 LogID
== Intrinsic::log10
) {
2600 if (Ty
->getScalarType()->isFloatTy()) {
2601 ExpLb
= LibFunc_expf
;
2602 Exp2Lb
= LibFunc_exp2f
;
2603 Exp10Lb
= LibFunc_exp10f
;
2604 PowLb
= LibFunc_powf
;
2605 } else if (Ty
->getScalarType()->isDoubleTy()) {
2606 ExpLb
= LibFunc_exp
;
2607 Exp2Lb
= LibFunc_exp2
;
2608 Exp10Lb
= LibFunc_exp10
;
2609 PowLb
= LibFunc_pow
;
2615 // The earlier call must also be 'fast' in order to do these transforms.
2616 CallInst
*Arg
= dyn_cast
<CallInst
>(Log
->getArgOperand(0));
2617 if (!Log
->isFast() || !Arg
|| !Arg
->isFast() || !Arg
->hasOneUse())
2620 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2621 B
.setFastMathFlags(FastMathFlags::getFast());
2623 Intrinsic::ID ArgID
= Arg
->getIntrinsicID();
2624 LibFunc ArgLb
= NotLibFunc
;
2625 TLI
->getLibFunc(*Arg
, ArgLb
);
2627 // log(pow(x,y)) -> y*log(x)
2628 AttributeList NoAttrs
;
2629 if (ArgLb
== PowLb
|| ArgID
== Intrinsic::pow
|| ArgID
== Intrinsic::powi
) {
2631 Log
->doesNotAccessMemory()
2632 ? B
.CreateUnaryIntrinsic(LogID
, Arg
->getOperand(0), nullptr, "log")
2633 : emitUnaryFloatFnCall(Arg
->getOperand(0), TLI
, LogNm
, B
, NoAttrs
);
2634 Value
*Y
= Arg
->getArgOperand(1);
2635 // Cast exponent to FP if integer.
2636 if (ArgID
== Intrinsic::powi
)
2637 Y
= B
.CreateSIToFP(Y
, Ty
, "cast");
2638 Value
*MulY
= B
.CreateFMul(Y
, LogX
, "mul");
2639 // Since pow() may have side effects, e.g. errno,
2640 // dead code elimination may not be trusted to remove it.
2641 substituteInParent(Arg
, MulY
);
2645 // log(exp{,2,10}(y)) -> y*log({e,2,10})
2646 // TODO: There is no exp10() intrinsic yet.
2647 if (ArgLb
== ExpLb
|| ArgLb
== Exp2Lb
|| ArgLb
== Exp10Lb
||
2648 ArgID
== Intrinsic::exp
|| ArgID
== Intrinsic::exp2
) {
2650 if (ArgLb
== ExpLb
|| ArgID
== Intrinsic::exp
)
2651 // FIXME: Add more precise value of e for long double.
2652 Eul
= ConstantFP::get(Log
->getType(), numbers::e
);
2653 else if (ArgLb
== Exp2Lb
|| ArgID
== Intrinsic::exp2
)
2654 Eul
= ConstantFP::get(Log
->getType(), 2.0);
2656 Eul
= ConstantFP::get(Log
->getType(), 10.0);
2657 Value
*LogE
= Log
->doesNotAccessMemory()
2658 ? B
.CreateUnaryIntrinsic(LogID
, Eul
, nullptr, "log")
2659 : emitUnaryFloatFnCall(Eul
, TLI
, LogNm
, B
, NoAttrs
);
2660 Value
*MulY
= B
.CreateFMul(Arg
->getArgOperand(0), LogE
, "mul");
2661 // Since exp() may have side effects, e.g. errno,
2662 // dead code elimination may not be trusted to remove it.
2663 substituteInParent(Arg
, MulY
);
2670 // sqrt(exp(X)) -> exp(X * 0.5)
2671 Value
*LibCallSimplifier::mergeSqrtToExp(CallInst
*CI
, IRBuilderBase
&B
) {
2672 if (!CI
->hasAllowReassoc())
2675 Function
*SqrtFn
= CI
->getCalledFunction();
2676 CallInst
*Arg
= dyn_cast
<CallInst
>(CI
->getArgOperand(0));
2677 if (!Arg
|| !Arg
->hasAllowReassoc() || !Arg
->hasOneUse())
2679 Intrinsic::ID ArgID
= Arg
->getIntrinsicID();
2680 LibFunc ArgLb
= NotLibFunc
;
2681 TLI
->getLibFunc(*Arg
, ArgLb
);
2683 LibFunc SqrtLb
, ExpLb
, Exp2Lb
, Exp10Lb
;
2685 if (TLI
->getLibFunc(SqrtFn
->getName(), SqrtLb
))
2688 ExpLb
= LibFunc_expf
;
2689 Exp2Lb
= LibFunc_exp2f
;
2690 Exp10Lb
= LibFunc_exp10f
;
2693 ExpLb
= LibFunc_exp
;
2694 Exp2Lb
= LibFunc_exp2
;
2695 Exp10Lb
= LibFunc_exp10
;
2698 ExpLb
= LibFunc_expl
;
2699 Exp2Lb
= LibFunc_exp2l
;
2700 Exp10Lb
= LibFunc_exp10l
;
2705 else if (SqrtFn
->getIntrinsicID() == Intrinsic::sqrt
) {
2706 if (CI
->getType()->getScalarType()->isFloatTy()) {
2707 ExpLb
= LibFunc_expf
;
2708 Exp2Lb
= LibFunc_exp2f
;
2709 Exp10Lb
= LibFunc_exp10f
;
2710 } else if (CI
->getType()->getScalarType()->isDoubleTy()) {
2711 ExpLb
= LibFunc_exp
;
2712 Exp2Lb
= LibFunc_exp2
;
2713 Exp10Lb
= LibFunc_exp10
;
2719 if (ArgLb
!= ExpLb
&& ArgLb
!= Exp2Lb
&& ArgLb
!= Exp10Lb
&&
2720 ArgID
!= Intrinsic::exp
&& ArgID
!= Intrinsic::exp2
)
2723 IRBuilderBase::InsertPointGuard
Guard(B
);
2724 B
.SetInsertPoint(Arg
);
2725 auto *ExpOperand
= Arg
->getOperand(0);
2727 B
.CreateFMulFMF(ExpOperand
, ConstantFP::get(ExpOperand
->getType(), 0.5),
2730 Arg
->setOperand(0, FMul
);
2734 Value
*LibCallSimplifier::optimizeSqrt(CallInst
*CI
, IRBuilderBase
&B
) {
2735 Module
*M
= CI
->getModule();
2736 Function
*Callee
= CI
->getCalledFunction();
2737 Value
*Ret
= nullptr;
2738 // TODO: Once we have a way (other than checking for the existince of the
2739 // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2741 if (isLibFuncEmittable(M
, TLI
, LibFunc_sqrtf
) &&
2742 (Callee
->getName() == "sqrt" ||
2743 Callee
->getIntrinsicID() == Intrinsic::sqrt
))
2744 Ret
= optimizeUnaryDoubleFP(CI
, B
, TLI
, true);
2746 if (Value
*Opt
= mergeSqrtToExp(CI
, B
))
2752 Instruction
*I
= dyn_cast
<Instruction
>(CI
->getArgOperand(0));
2753 if (!I
|| I
->getOpcode() != Instruction::FMul
|| !I
->isFast())
2756 // We're looking for a repeated factor in a multiplication tree,
2757 // so we can do this fold: sqrt(x * x) -> fabs(x);
2758 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2759 Value
*Op0
= I
->getOperand(0);
2760 Value
*Op1
= I
->getOperand(1);
2761 Value
*RepeatOp
= nullptr;
2762 Value
*OtherOp
= nullptr;
2764 // Simple match: the operands of the multiply are identical.
2767 // Look for a more complicated pattern: one of the operands is itself
2768 // a multiply, so search for a common factor in that multiply.
2769 // Note: We don't bother looking any deeper than this first level or for
2770 // variations of this pattern because instcombine's visitFMUL and/or the
2771 // reassociation pass should give us this form.
2773 if (match(Op0
, m_FMul(m_Value(MulOp
), m_Deferred(MulOp
))) &&
2774 cast
<Instruction
>(Op0
)->isFast()) {
2775 // Pattern: sqrt((x * x) * z)
2778 } else if (match(Op1
, m_FMul(m_Value(MulOp
), m_Deferred(MulOp
))) &&
2779 cast
<Instruction
>(Op1
)->isFast()) {
2780 // Pattern: sqrt(z * (x * x))
2788 // Fast math flags for any created instructions should match the sqrt
2790 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2791 B
.setFastMathFlags(I
->getFastMathFlags());
2793 // If we found a repeated factor, hoist it out of the square root and
2794 // replace it with the fabs of that factor.
2796 B
.CreateUnaryIntrinsic(Intrinsic::fabs
, RepeatOp
, nullptr, "fabs");
2798 // If we found a non-repeated factor, we still need to get its square
2799 // root. We then multiply that by the value that was simplified out
2800 // of the square root calculation.
2802 B
.CreateUnaryIntrinsic(Intrinsic::sqrt
, OtherOp
, nullptr, "sqrt");
2803 return copyFlags(*CI
, B
.CreateFMul(FabsCall
, SqrtCall
));
2805 return copyFlags(*CI
, FabsCall
);
2808 Value
*LibCallSimplifier::optimizeFMod(CallInst
*CI
, IRBuilderBase
&B
) {
2810 // fmod(x,y) can set errno if y == 0 or x == +/-inf, and returns Nan in those
2811 // case. If we know those do not happen, then we can convert the fmod into
2813 bool IsNoNan
= CI
->hasNoNaNs();
2815 SimplifyQuery
SQ(DL
, TLI
, DT
, AC
, CI
, true, true, DC
);
2816 KnownFPClass Known0
= computeKnownFPClass(CI
->getOperand(0), fcInf
,
2818 if (Known0
.isKnownNeverInfinity()) {
2819 KnownFPClass Known1
=
2820 computeKnownFPClass(CI
->getOperand(1), fcZero
| fcSubnormal
,
2822 Function
*F
= CI
->getParent()->getParent();
2823 IsNoNan
= Known1
.isKnownNeverLogicalZero(*F
, CI
->getType());
2828 Value
*FRem
= B
.CreateFRemFMF(CI
->getOperand(0), CI
->getOperand(1), CI
);
2829 if (auto *FRemI
= dyn_cast
<Instruction
>(FRem
))
2830 FRemI
->setHasNoNaNs(true);
2836 Value
*LibCallSimplifier::optimizeTrigInversionPairs(CallInst
*CI
,
2838 Module
*M
= CI
->getModule();
2839 Function
*Callee
= CI
->getCalledFunction();
2840 Value
*Ret
= nullptr;
2841 StringRef Name
= Callee
->getName();
2842 if (UnsafeFPShrink
&&
2843 (Name
== "tan" || Name
== "atanh" || Name
== "sinh" || Name
== "cosh" ||
2845 hasFloatVersion(M
, Name
))
2846 Ret
= optimizeUnaryDoubleFP(CI
, B
, TLI
, true);
2848 Value
*Op1
= CI
->getArgOperand(0);
2849 auto *OpC
= dyn_cast
<CallInst
>(Op1
);
2853 // Both calls must be 'fast' in order to remove them.
2854 if (!CI
->isFast() || !OpC
->isFast())
2857 // tan(atan(x)) -> x
2858 // atanh(tanh(x)) -> x
2859 // sinh(asinh(x)) -> x
2860 // asinh(sinh(x)) -> x
2861 // cosh(acosh(x)) -> x
2863 Function
*F
= OpC
->getCalledFunction();
2864 if (F
&& TLI
->getLibFunc(F
->getName(), Func
) &&
2865 isLibFuncEmittable(M
, TLI
, Func
)) {
2866 LibFunc inverseFunc
= llvm::StringSwitch
<LibFunc
>(Callee
->getName())
2867 .Case("tan", LibFunc_atan
)
2868 .Case("atanh", LibFunc_tanh
)
2869 .Case("sinh", LibFunc_asinh
)
2870 .Case("cosh", LibFunc_acosh
)
2871 .Case("tanf", LibFunc_atanf
)
2872 .Case("atanhf", LibFunc_tanhf
)
2873 .Case("sinhf", LibFunc_asinhf
)
2874 .Case("coshf", LibFunc_acoshf
)
2875 .Case("tanl", LibFunc_atanl
)
2876 .Case("atanhl", LibFunc_tanhl
)
2877 .Case("sinhl", LibFunc_asinhl
)
2878 .Case("coshl", LibFunc_acoshl
)
2879 .Case("asinh", LibFunc_sinh
)
2880 .Case("asinhf", LibFunc_sinhf
)
2881 .Case("asinhl", LibFunc_sinhl
)
2882 .Default(NumLibFuncs
); // Used as error value
2883 if (Func
== inverseFunc
)
2884 Ret
= OpC
->getArgOperand(0);
2889 static bool isTrigLibCall(CallInst
*CI
) {
2890 // We can only hope to do anything useful if we can ignore things like errno
2891 // and floating-point exceptions.
2892 // We already checked the prototype.
2893 return CI
->doesNotThrow() && CI
->doesNotAccessMemory();
2896 static bool insertSinCosCall(IRBuilderBase
&B
, Function
*OrigCallee
, Value
*Arg
,
2897 bool UseFloat
, Value
*&Sin
, Value
*&Cos
,
2898 Value
*&SinCos
, const TargetLibraryInfo
*TLI
) {
2899 Module
*M
= OrigCallee
->getParent();
2900 Type
*ArgTy
= Arg
->getType();
2904 Triple
T(OrigCallee
->getParent()->getTargetTriple());
2906 Name
= "__sincospif_stret";
2908 assert(T
.getArch() != Triple::x86
&& "x86 messy and unsupported for now");
2909 // x86_64 can't use {float, float} since that would be returned in both
2910 // xmm0 and xmm1, which isn't what a real struct would do.
2911 ResTy
= T
.getArch() == Triple::x86_64
2912 ? static_cast<Type
*>(FixedVectorType::get(ArgTy
, 2))
2913 : static_cast<Type
*>(StructType::get(ArgTy
, ArgTy
));
2915 Name
= "__sincospi_stret";
2916 ResTy
= StructType::get(ArgTy
, ArgTy
);
2919 if (!isLibFuncEmittable(M
, TLI
, Name
))
2922 TLI
->getLibFunc(Name
, TheLibFunc
);
2923 FunctionCallee Callee
= getOrInsertLibFunc(
2924 M
, *TLI
, TheLibFunc
, OrigCallee
->getAttributes(), ResTy
, ArgTy
);
2926 if (Instruction
*ArgInst
= dyn_cast
<Instruction
>(Arg
)) {
2927 // If the argument is an instruction, it must dominate all uses so put our
2928 // sincos call there.
2929 B
.SetInsertPoint(ArgInst
->getParent(), ++ArgInst
->getIterator());
2931 // Otherwise (e.g. for a constant) the beginning of the function is as
2932 // good a place as any.
2933 BasicBlock
&EntryBB
= B
.GetInsertBlock()->getParent()->getEntryBlock();
2934 B
.SetInsertPoint(&EntryBB
, EntryBB
.begin());
2937 SinCos
= B
.CreateCall(Callee
, Arg
, "sincospi");
2939 if (SinCos
->getType()->isStructTy()) {
2940 Sin
= B
.CreateExtractValue(SinCos
, 0, "sinpi");
2941 Cos
= B
.CreateExtractValue(SinCos
, 1, "cospi");
2943 Sin
= B
.CreateExtractElement(SinCos
, ConstantInt::get(B
.getInt32Ty(), 0),
2945 Cos
= B
.CreateExtractElement(SinCos
, ConstantInt::get(B
.getInt32Ty(), 1),
2952 static Value
*optimizeSymmetricCall(CallInst
*CI
, bool IsEven
,
2955 Value
*Src
= CI
->getArgOperand(0);
2957 if (match(Src
, m_OneUse(m_FNeg(m_Value(X
))))) {
2958 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2959 B
.setFastMathFlags(CI
->getFastMathFlags());
2961 auto *CallInst
= copyFlags(*CI
, B
.CreateCall(CI
->getCalledFunction(), {X
}));
2963 // Even function: f(-x) = f(x)
2966 // Odd function: f(-x) = -f(x)
2967 return B
.CreateFNeg(CallInst
);
2970 // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x)
2971 if (IsEven
&& (match(Src
, m_FAbs(m_Value(X
))) ||
2972 match(Src
, m_CopySign(m_Value(X
), m_Value())))) {
2973 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2974 B
.setFastMathFlags(CI
->getFastMathFlags());
2976 auto *CallInst
= copyFlags(*CI
, B
.CreateCall(CI
->getCalledFunction(), {X
}));
2983 Value
*LibCallSimplifier::optimizeSymmetric(CallInst
*CI
, LibFunc Func
,
2989 return optimizeSymmetricCall(CI
, /*IsEven*/ true, B
);
3002 return optimizeSymmetricCall(CI
, /*IsEven*/ false, B
);
3009 Value
*LibCallSimplifier::optimizeSinCosPi(CallInst
*CI
, bool IsSin
, IRBuilderBase
&B
) {
3010 // Make sure the prototype is as expected, otherwise the rest of the
3011 // function is probably invalid and likely to abort.
3012 if (!isTrigLibCall(CI
))
3015 Value
*Arg
= CI
->getArgOperand(0);
3016 SmallVector
<CallInst
*, 1> SinCalls
;
3017 SmallVector
<CallInst
*, 1> CosCalls
;
3018 SmallVector
<CallInst
*, 1> SinCosCalls
;
3020 bool IsFloat
= Arg
->getType()->isFloatTy();
3022 // Look for all compatible sinpi, cospi and sincospi calls with the same
3023 // argument. If there are enough (in some sense) we can make the
3025 Function
*F
= CI
->getFunction();
3026 for (User
*U
: Arg
->users())
3027 classifyArgUse(U
, F
, IsFloat
, SinCalls
, CosCalls
, SinCosCalls
);
3029 // It's only worthwhile if both sinpi and cospi are actually used.
3030 if (SinCalls
.empty() || CosCalls
.empty())
3033 Value
*Sin
, *Cos
, *SinCos
;
3034 if (!insertSinCosCall(B
, CI
->getCalledFunction(), Arg
, IsFloat
, Sin
, Cos
,
3038 auto replaceTrigInsts
= [this](SmallVectorImpl
<CallInst
*> &Calls
,
3040 for (CallInst
*C
: Calls
)
3041 replaceAllUsesWith(C
, Res
);
3044 replaceTrigInsts(SinCalls
, Sin
);
3045 replaceTrigInsts(CosCalls
, Cos
);
3046 replaceTrigInsts(SinCosCalls
, SinCos
);
3048 return IsSin
? Sin
: Cos
;
3051 void LibCallSimplifier::classifyArgUse(
3052 Value
*Val
, Function
*F
, bool IsFloat
,
3053 SmallVectorImpl
<CallInst
*> &SinCalls
,
3054 SmallVectorImpl
<CallInst
*> &CosCalls
,
3055 SmallVectorImpl
<CallInst
*> &SinCosCalls
) {
3056 auto *CI
= dyn_cast
<CallInst
>(Val
);
3057 if (!CI
|| CI
->use_empty())
3060 // Don't consider calls in other functions.
3061 if (CI
->getFunction() != F
)
3064 Module
*M
= CI
->getModule();
3065 Function
*Callee
= CI
->getCalledFunction();
3067 if (!Callee
|| !TLI
->getLibFunc(*Callee
, Func
) ||
3068 !isLibFuncEmittable(M
, TLI
, Func
) ||
3073 if (Func
== LibFunc_sinpif
)
3074 SinCalls
.push_back(CI
);
3075 else if (Func
== LibFunc_cospif
)
3076 CosCalls
.push_back(CI
);
3077 else if (Func
== LibFunc_sincospif_stret
)
3078 SinCosCalls
.push_back(CI
);
3080 if (Func
== LibFunc_sinpi
)
3081 SinCalls
.push_back(CI
);
3082 else if (Func
== LibFunc_cospi
)
3083 CosCalls
.push_back(CI
);
3084 else if (Func
== LibFunc_sincospi_stret
)
3085 SinCosCalls
.push_back(CI
);
3089 /// Constant folds remquo
3090 Value
*LibCallSimplifier::optimizeRemquo(CallInst
*CI
, IRBuilderBase
&B
) {
3091 const APFloat
*X
, *Y
;
3092 if (!match(CI
->getArgOperand(0), m_APFloat(X
)) ||
3093 !match(CI
->getArgOperand(1), m_APFloat(Y
)))
3096 APFloat::opStatus Status
;
3098 Status
= Quot
.divide(*Y
, APFloat::rmNearestTiesToEven
);
3099 if (Status
!= APFloat::opOK
&& Status
!= APFloat::opInexact
)
3102 if (Rem
.remainder(*Y
) != APFloat::opOK
)
3105 // TODO: We can only keep at least the three of the last bits of x/y
3106 unsigned IntBW
= TLI
->getIntSize();
3107 APSInt
QuotInt(IntBW
, /*isUnsigned=*/false);
3110 Quot
.convertToInteger(QuotInt
, APFloat::rmNearestTiesToEven
, &IsExact
);
3111 if (Status
!= APFloat::opOK
&& Status
!= APFloat::opInexact
)
3114 B
.CreateAlignedStore(
3115 ConstantInt::get(B
.getIntNTy(IntBW
), QuotInt
.getExtValue()),
3116 CI
->getArgOperand(2), CI
->getParamAlign(2));
3117 return ConstantFP::get(CI
->getType(), Rem
);
3120 /// Constant folds fdim
3121 Value
*LibCallSimplifier::optimizeFdim(CallInst
*CI
, IRBuilderBase
&B
) {
3122 // Cannot perform the fold unless the call has attribute memory(none)
3123 if (!CI
->doesNotAccessMemory())
3126 // TODO : Handle undef values
3127 // Propagate poison if any
3128 if (isa
<PoisonValue
>(CI
->getArgOperand(0)))
3129 return CI
->getArgOperand(0);
3130 if (isa
<PoisonValue
>(CI
->getArgOperand(1)))
3131 return CI
->getArgOperand(1);
3133 const APFloat
*X
, *Y
;
3134 // Check if both values are constants
3135 if (!match(CI
->getArgOperand(0), m_APFloat(X
)) ||
3136 !match(CI
->getArgOperand(1), m_APFloat(Y
)))
3139 APFloat Difference
= *X
;
3140 Difference
.subtract(*Y
, RoundingMode::NearestTiesToEven
);
3143 maximum(Difference
, APFloat::getZero(CI
->getType()->getFltSemantics()));
3144 return ConstantFP::get(CI
->getType(), MaxVal
);
3147 //===----------------------------------------------------------------------===//
3148 // Integer Library Call Optimizations
3149 //===----------------------------------------------------------------------===//
3151 Value
*LibCallSimplifier::optimizeFFS(CallInst
*CI
, IRBuilderBase
&B
) {
3152 // All variants of ffs return int which need not be 32 bits wide.
3153 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
3154 Type
*RetType
= CI
->getType();
3155 Value
*Op
= CI
->getArgOperand(0);
3156 Type
*ArgType
= Op
->getType();
3157 Value
*V
= B
.CreateIntrinsic(Intrinsic::cttz
, {ArgType
}, {Op
, B
.getTrue()},
3159 V
= B
.CreateAdd(V
, ConstantInt::get(V
->getType(), 1));
3160 V
= B
.CreateIntCast(V
, RetType
, false);
3162 Value
*Cond
= B
.CreateICmpNE(Op
, Constant::getNullValue(ArgType
));
3163 return B
.CreateSelect(Cond
, V
, ConstantInt::get(RetType
, 0));
3166 Value
*LibCallSimplifier::optimizeFls(CallInst
*CI
, IRBuilderBase
&B
) {
3167 // All variants of fls return int which need not be 32 bits wide.
3168 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
3169 Value
*Op
= CI
->getArgOperand(0);
3170 Type
*ArgType
= Op
->getType();
3171 Value
*V
= B
.CreateIntrinsic(Intrinsic::ctlz
, {ArgType
}, {Op
, B
.getFalse()},
3173 V
= B
.CreateSub(ConstantInt::get(V
->getType(), ArgType
->getIntegerBitWidth()),
3175 return B
.CreateIntCast(V
, CI
->getType(), false);
3178 Value
*LibCallSimplifier::optimizeAbs(CallInst
*CI
, IRBuilderBase
&B
) {
3179 // abs(x) -> x <s 0 ? -x : x
3180 // The negation has 'nsw' because abs of INT_MIN is undefined.
3181 Value
*X
= CI
->getArgOperand(0);
3182 Value
*IsNeg
= B
.CreateIsNeg(X
);
3183 Value
*NegX
= B
.CreateNSWNeg(X
, "neg");
3184 return B
.CreateSelect(IsNeg
, NegX
, X
);
3187 Value
*LibCallSimplifier::optimizeIsDigit(CallInst
*CI
, IRBuilderBase
&B
) {
3188 // isdigit(c) -> (c-'0') <u 10
3189 Value
*Op
= CI
->getArgOperand(0);
3190 Type
*ArgType
= Op
->getType();
3191 Op
= B
.CreateSub(Op
, ConstantInt::get(ArgType
, '0'), "isdigittmp");
3192 Op
= B
.CreateICmpULT(Op
, ConstantInt::get(ArgType
, 10), "isdigit");
3193 return B
.CreateZExt(Op
, CI
->getType());
3196 Value
*LibCallSimplifier::optimizeIsAscii(CallInst
*CI
, IRBuilderBase
&B
) {
3197 // isascii(c) -> c <u 128
3198 Value
*Op
= CI
->getArgOperand(0);
3199 Type
*ArgType
= Op
->getType();
3200 Op
= B
.CreateICmpULT(Op
, ConstantInt::get(ArgType
, 128), "isascii");
3201 return B
.CreateZExt(Op
, CI
->getType());
3204 Value
*LibCallSimplifier::optimizeToAscii(CallInst
*CI
, IRBuilderBase
&B
) {
3205 // toascii(c) -> c & 0x7f
3206 return B
.CreateAnd(CI
->getArgOperand(0),
3207 ConstantInt::get(CI
->getType(), 0x7F));
3210 // Fold calls to atoi, atol, and atoll.
3211 Value
*LibCallSimplifier::optimizeAtoi(CallInst
*CI
, IRBuilderBase
&B
) {
3212 CI
->addParamAttr(0, Attribute::NoCapture
);
3215 if (!getConstantStringInfo(CI
->getArgOperand(0), Str
))
3218 return convertStrToInt(CI
, Str
, nullptr, 10, /*AsSigned=*/true, B
);
3221 // Fold calls to strtol, strtoll, strtoul, and strtoull.
3222 Value
*LibCallSimplifier::optimizeStrToInt(CallInst
*CI
, IRBuilderBase
&B
,
3224 Value
*EndPtr
= CI
->getArgOperand(1);
3225 if (isa
<ConstantPointerNull
>(EndPtr
)) {
3226 // With a null EndPtr, this function won't capture the main argument.
3227 // It would be readonly too, except that it still may write to errno.
3228 CI
->addParamAttr(0, Attribute::NoCapture
);
3230 } else if (!isKnownNonZero(EndPtr
, DL
))
3234 if (!getConstantStringInfo(CI
->getArgOperand(0), Str
))
3237 if (ConstantInt
*CInt
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2))) {
3238 return convertStrToInt(CI
, Str
, EndPtr
, CInt
->getSExtValue(), AsSigned
, B
);
3244 //===----------------------------------------------------------------------===//
3245 // Formatting and IO Library Call Optimizations
3246 //===----------------------------------------------------------------------===//
3248 static bool isReportingError(Function
*Callee
, CallInst
*CI
, int StreamArg
);
3250 Value
*LibCallSimplifier::optimizeErrorReporting(CallInst
*CI
, IRBuilderBase
&B
,
3252 Function
*Callee
= CI
->getCalledFunction();
3253 // Error reporting calls should be cold, mark them as such.
3254 // This applies even to non-builtin calls: it is only a hint and applies to
3255 // functions that the frontend might not understand as builtins.
3257 // This heuristic was suggested in:
3258 // Improving Static Branch Prediction in a Compiler
3259 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
3260 // Proceedings of PACT'98, Oct. 1998, IEEE
3261 if (!CI
->hasFnAttr(Attribute::Cold
) &&
3262 isReportingError(Callee
, CI
, StreamArg
)) {
3263 CI
->addFnAttr(Attribute::Cold
);
3269 static bool isReportingError(Function
*Callee
, CallInst
*CI
, int StreamArg
) {
3270 if (!Callee
|| !Callee
->isDeclaration())
3276 // These functions might be considered cold, but only if their stream
3277 // argument is stderr.
3279 if (StreamArg
>= (int)CI
->arg_size())
3281 LoadInst
*LI
= dyn_cast
<LoadInst
>(CI
->getArgOperand(StreamArg
));
3284 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getPointerOperand());
3285 if (!GV
|| !GV
->isDeclaration())
3287 return GV
->getName() == "stderr";
3290 Value
*LibCallSimplifier::optimizePrintFString(CallInst
*CI
, IRBuilderBase
&B
) {
3291 // Check for a fixed format string.
3292 StringRef FormatStr
;
3293 if (!getConstantStringInfo(CI
->getArgOperand(0), FormatStr
))
3296 // Empty format string -> noop.
3297 if (FormatStr
.empty()) // Tolerate printf's declared void.
3298 return CI
->use_empty() ? (Value
*)CI
: ConstantInt::get(CI
->getType(), 0);
3300 // Do not do any of the following transformations if the printf return value
3301 // is used, in general the printf return value is not compatible with either
3302 // putchar() or puts().
3303 if (!CI
->use_empty())
3306 Type
*IntTy
= CI
->getType();
3307 // printf("x") -> putchar('x'), even for "%" and "%%".
3308 if (FormatStr
.size() == 1 || FormatStr
== "%%") {
3309 // Convert the character to unsigned char before passing it to putchar
3310 // to avoid host-specific sign extension in the IR. Putchar converts
3311 // it to unsigned char regardless.
3312 Value
*IntChar
= ConstantInt::get(IntTy
, (unsigned char)FormatStr
[0]);
3313 return copyFlags(*CI
, emitPutChar(IntChar
, B
, TLI
));
3316 // Try to remove call or emit putchar/puts.
3317 if (FormatStr
== "%s" && CI
->arg_size() > 1) {
3318 StringRef OperandStr
;
3319 if (!getConstantStringInfo(CI
->getOperand(1), OperandStr
))
3321 // printf("%s", "") --> NOP
3322 if (OperandStr
.empty())
3324 // printf("%s", "a") --> putchar('a')
3325 if (OperandStr
.size() == 1) {
3326 // Convert the character to unsigned char before passing it to putchar
3327 // to avoid host-specific sign extension in the IR. Putchar converts
3328 // it to unsigned char regardless.
3329 Value
*IntChar
= ConstantInt::get(IntTy
, (unsigned char)OperandStr
[0]);
3330 return copyFlags(*CI
, emitPutChar(IntChar
, B
, TLI
));
3332 // printf("%s", str"\n") --> puts(str)
3333 if (OperandStr
.back() == '\n') {
3334 OperandStr
= OperandStr
.drop_back();
3335 Value
*GV
= B
.CreateGlobalString(OperandStr
, "str",
3336 DL
.getDefaultGlobalsAddressSpace());
3337 return copyFlags(*CI
, emitPutS(GV
, B
, TLI
));
3342 // printf("foo\n") --> puts("foo")
3343 if (FormatStr
.back() == '\n' &&
3344 !FormatStr
.contains('%')) { // No format characters.
3345 // Create a string literal with no \n on it. We expect the constant merge
3346 // pass to be run after this pass, to merge duplicate strings.
3347 FormatStr
= FormatStr
.drop_back();
3348 Value
*GV
= B
.CreateGlobalString(FormatStr
, "str",
3349 DL
.getDefaultGlobalsAddressSpace());
3350 return copyFlags(*CI
, emitPutS(GV
, B
, TLI
));
3353 // Optimize specific format strings.
3354 // printf("%c", chr) --> putchar(chr)
3355 if (FormatStr
== "%c" && CI
->arg_size() > 1 &&
3356 CI
->getArgOperand(1)->getType()->isIntegerTy()) {
3357 // Convert the argument to the type expected by putchar, i.e., int, which
3358 // need not be 32 bits wide but which is the same as printf's return type.
3359 Value
*IntChar
= B
.CreateIntCast(CI
->getArgOperand(1), IntTy
, false);
3360 return copyFlags(*CI
, emitPutChar(IntChar
, B
, TLI
));
3363 // printf("%s\n", str) --> puts(str)
3364 if (FormatStr
== "%s\n" && CI
->arg_size() > 1 &&
3365 CI
->getArgOperand(1)->getType()->isPointerTy())
3366 return copyFlags(*CI
, emitPutS(CI
->getArgOperand(1), B
, TLI
));
3370 Value
*LibCallSimplifier::optimizePrintF(CallInst
*CI
, IRBuilderBase
&B
) {
3372 Module
*M
= CI
->getModule();
3373 Function
*Callee
= CI
->getCalledFunction();
3374 FunctionType
*FT
= Callee
->getFunctionType();
3375 if (Value
*V
= optimizePrintFString(CI
, B
)) {
3379 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
3381 // printf(format, ...) -> iprintf(format, ...) if no floating point
3383 if (isLibFuncEmittable(M
, TLI
, LibFunc_iprintf
) &&
3384 !callHasFloatingPointArgument(CI
)) {
3385 FunctionCallee IPrintFFn
= getOrInsertLibFunc(M
, *TLI
, LibFunc_iprintf
, FT
,
3386 Callee
->getAttributes());
3387 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3388 New
->setCalledFunction(IPrintFFn
);
3393 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
3395 if (isLibFuncEmittable(M
, TLI
, LibFunc_small_printf
) &&
3396 !callHasFP128Argument(CI
)) {
3397 auto SmallPrintFFn
= getOrInsertLibFunc(M
, *TLI
, LibFunc_small_printf
, FT
,
3398 Callee
->getAttributes());
3399 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3400 New
->setCalledFunction(SmallPrintFFn
);
3408 Value
*LibCallSimplifier::optimizeSPrintFString(CallInst
*CI
,
3410 // Check for a fixed format string.
3411 StringRef FormatStr
;
3412 if (!getConstantStringInfo(CI
->getArgOperand(1), FormatStr
))
3415 // If we just have a format string (nothing else crazy) transform it.
3416 Value
*Dest
= CI
->getArgOperand(0);
3417 if (CI
->arg_size() == 2) {
3418 // Make sure there's no % in the constant array. We could try to handle
3419 // %% -> % in the future if we cared.
3420 if (FormatStr
.contains('%'))
3421 return nullptr; // we found a format specifier, bail out.
3423 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
3424 B
.CreateMemCpy(Dest
, Align(1), CI
->getArgOperand(1), Align(1),
3425 // Copy the null byte.
3426 TLI
->getAsSizeT(FormatStr
.size() + 1, *CI
->getModule()));
3427 return ConstantInt::get(CI
->getType(), FormatStr
.size());
3430 // The remaining optimizations require the format string to be "%s" or "%c"
3431 // and have an extra operand.
3432 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' || CI
->arg_size() < 3)
3435 // Decode the second character of the format string.
3436 if (FormatStr
[1] == 'c') {
3437 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3438 if (!CI
->getArgOperand(2)->getType()->isIntegerTy())
3440 Value
*V
= B
.CreateTrunc(CI
->getArgOperand(2), B
.getInt8Ty(), "char");
3442 B
.CreateStore(V
, Ptr
);
3443 Ptr
= B
.CreateInBoundsGEP(B
.getInt8Ty(), Ptr
, B
.getInt32(1), "nul");
3444 B
.CreateStore(B
.getInt8(0), Ptr
);
3446 return ConstantInt::get(CI
->getType(), 1);
3449 if (FormatStr
[1] == 's') {
3450 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
3452 if (!CI
->getArgOperand(2)->getType()->isPointerTy())
3455 if (CI
->use_empty())
3456 // sprintf(dest, "%s", str) -> strcpy(dest, str)
3457 return copyFlags(*CI
, emitStrCpy(Dest
, CI
->getArgOperand(2), B
, TLI
));
3459 uint64_t SrcLen
= GetStringLength(CI
->getArgOperand(2));
3461 B
.CreateMemCpy(Dest
, Align(1), CI
->getArgOperand(2), Align(1),
3462 TLI
->getAsSizeT(SrcLen
, *CI
->getModule()));
3463 // Returns total number of characters written without null-character.
3464 return ConstantInt::get(CI
->getType(), SrcLen
- 1);
3465 } else if (Value
*V
= emitStpCpy(Dest
, CI
->getArgOperand(2), B
, TLI
)) {
3466 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
3467 Value
*PtrDiff
= B
.CreatePtrDiff(B
.getInt8Ty(), V
, Dest
);
3468 return B
.CreateIntCast(PtrDiff
, CI
->getType(), false);
3471 if (llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
,
3472 PGSOQueryType::IRPass
))
3475 Value
*Len
= emitStrLen(CI
->getArgOperand(2), B
, DL
, TLI
);
3479 B
.CreateAdd(Len
, ConstantInt::get(Len
->getType(), 1), "leninc");
3480 B
.CreateMemCpy(Dest
, Align(1), CI
->getArgOperand(2), Align(1), IncLen
);
3482 // The sprintf result is the unincremented number of bytes in the string.
3483 return B
.CreateIntCast(Len
, CI
->getType(), false);
3488 Value
*LibCallSimplifier::optimizeSPrintF(CallInst
*CI
, IRBuilderBase
&B
) {
3489 Module
*M
= CI
->getModule();
3490 Function
*Callee
= CI
->getCalledFunction();
3491 FunctionType
*FT
= Callee
->getFunctionType();
3492 if (Value
*V
= optimizeSPrintFString(CI
, B
)) {
3496 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
3498 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
3500 if (isLibFuncEmittable(M
, TLI
, LibFunc_siprintf
) &&
3501 !callHasFloatingPointArgument(CI
)) {
3502 FunctionCallee SIPrintFFn
= getOrInsertLibFunc(M
, *TLI
, LibFunc_siprintf
,
3503 FT
, Callee
->getAttributes());
3504 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3505 New
->setCalledFunction(SIPrintFFn
);
3510 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
3511 // floating point arguments.
3512 if (isLibFuncEmittable(M
, TLI
, LibFunc_small_sprintf
) &&
3513 !callHasFP128Argument(CI
)) {
3514 auto SmallSPrintFFn
= getOrInsertLibFunc(M
, *TLI
, LibFunc_small_sprintf
, FT
,
3515 Callee
->getAttributes());
3516 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3517 New
->setCalledFunction(SmallSPrintFFn
);
3525 // Transform an snprintf call CI with the bound N to format the string Str
3526 // either to a call to memcpy, or to single character a store, or to nothing,
3527 // and fold the result to a constant. A nonnull StrArg refers to the string
3528 // argument being formatted. Otherwise the call is one with N < 2 and
3529 // the "%c" directive to format a single character.
3530 Value
*LibCallSimplifier::emitSnPrintfMemCpy(CallInst
*CI
, Value
*StrArg
,
3531 StringRef Str
, uint64_t N
,
3533 assert(StrArg
|| (N
< 2 && Str
.size() == 1));
3535 unsigned IntBits
= TLI
->getIntSize();
3536 uint64_t IntMax
= maxIntN(IntBits
);
3537 if (Str
.size() > IntMax
)
3538 // Bail if the string is longer than INT_MAX. POSIX requires
3539 // implementations to set errno to EOVERFLOW in this case, in
3540 // addition to when N is larger than that (checked by the caller).
3543 Value
*StrLen
= ConstantInt::get(CI
->getType(), Str
.size());
3547 // Set to the number of bytes to copy fron StrArg which is also
3548 // the offset of the terinating nul.
3551 // Copy the full string, including the terminating nul (which must
3552 // be present regardless of the bound).
3553 NCopy
= Str
.size() + 1;
3557 Value
*DstArg
= CI
->getArgOperand(0);
3558 if (NCopy
&& StrArg
)
3559 // Transform the call to lvm.memcpy(dst, fmt, N).
3560 copyFlags(*CI
, B
.CreateMemCpy(DstArg
, Align(1), StrArg
, Align(1),
3561 TLI
->getAsSizeT(NCopy
, *CI
->getModule())));
3564 // Return early when the whole format string, including the final nul,
3568 // Otherwise, when truncating the string append a terminating nul.
3569 Type
*Int8Ty
= B
.getInt8Ty();
3570 Value
*NulOff
= B
.getIntN(IntBits
, NCopy
);
3571 Value
*DstEnd
= B
.CreateInBoundsGEP(Int8Ty
, DstArg
, NulOff
, "endptr");
3572 B
.CreateStore(ConstantInt::get(Int8Ty
, 0), DstEnd
);
3576 Value
*LibCallSimplifier::optimizeSnPrintFString(CallInst
*CI
,
3579 ConstantInt
*Size
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
3583 uint64_t N
= Size
->getZExtValue();
3584 uint64_t IntMax
= maxIntN(TLI
->getIntSize());
3586 // Bail if the bound exceeds INT_MAX. POSIX requires implementations
3587 // to set errno to EOVERFLOW in this case.
3590 Value
*DstArg
= CI
->getArgOperand(0);
3591 Value
*FmtArg
= CI
->getArgOperand(2);
3593 // Check for a fixed format string.
3594 StringRef FormatStr
;
3595 if (!getConstantStringInfo(FmtArg
, FormatStr
))
3598 // If we just have a format string (nothing else crazy) transform it.
3599 if (CI
->arg_size() == 3) {
3600 if (FormatStr
.contains('%'))
3601 // Bail if the format string contains a directive and there are
3602 // no arguments. We could handle "%%" in the future.
3605 return emitSnPrintfMemCpy(CI
, FmtArg
, FormatStr
, N
, B
);
3608 // The remaining optimizations require the format string to be "%s" or "%c"
3609 // and have an extra operand.
3610 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' || CI
->arg_size() != 4)
3613 // Decode the second character of the format string.
3614 if (FormatStr
[1] == 'c') {
3616 // Use an arbitary string of length 1 to transform the call into
3617 // either a nul store (N == 1) or a no-op (N == 0) and fold it
3619 StringRef
CharStr("*");
3620 return emitSnPrintfMemCpy(CI
, nullptr, CharStr
, N
, B
);
3623 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3624 if (!CI
->getArgOperand(3)->getType()->isIntegerTy())
3626 Value
*V
= B
.CreateTrunc(CI
->getArgOperand(3), B
.getInt8Ty(), "char");
3627 Value
*Ptr
= DstArg
;
3628 B
.CreateStore(V
, Ptr
);
3629 Ptr
= B
.CreateInBoundsGEP(B
.getInt8Ty(), Ptr
, B
.getInt32(1), "nul");
3630 B
.CreateStore(B
.getInt8(0), Ptr
);
3631 return ConstantInt::get(CI
->getType(), 1);
3634 if (FormatStr
[1] != 's')
3637 Value
*StrArg
= CI
->getArgOperand(3);
3638 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
3640 if (!getConstantStringInfo(StrArg
, Str
))
3643 return emitSnPrintfMemCpy(CI
, StrArg
, Str
, N
, B
);
3646 Value
*LibCallSimplifier::optimizeSnPrintF(CallInst
*CI
, IRBuilderBase
&B
) {
3647 if (Value
*V
= optimizeSnPrintFString(CI
, B
)) {
3651 if (isKnownNonZero(CI
->getOperand(1), DL
))
3652 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
3656 Value
*LibCallSimplifier::optimizeFPrintFString(CallInst
*CI
,
3658 optimizeErrorReporting(CI
, B
, 0);
3660 // All the optimizations depend on the format string.
3661 StringRef FormatStr
;
3662 if (!getConstantStringInfo(CI
->getArgOperand(1), FormatStr
))
3665 // Do not do any of the following transformations if the fprintf return
3666 // value is used, in general the fprintf return value is not compatible
3667 // with fwrite(), fputc() or fputs().
3668 if (!CI
->use_empty())
3671 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3672 if (CI
->arg_size() == 2) {
3673 // Could handle %% -> % if we cared.
3674 if (FormatStr
.contains('%'))
3675 return nullptr; // We found a format specifier.
3678 *CI
, emitFWrite(CI
->getArgOperand(1),
3679 TLI
->getAsSizeT(FormatStr
.size(), *CI
->getModule()),
3680 CI
->getArgOperand(0), B
, DL
, TLI
));
3683 // The remaining optimizations require the format string to be "%s" or "%c"
3684 // and have an extra operand.
3685 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' || CI
->arg_size() < 3)
3688 // Decode the second character of the format string.
3689 if (FormatStr
[1] == 'c') {
3690 // fprintf(F, "%c", chr) --> fputc((int)chr, F)
3691 if (!CI
->getArgOperand(2)->getType()->isIntegerTy())
3693 Type
*IntTy
= B
.getIntNTy(TLI
->getIntSize());
3694 Value
*V
= B
.CreateIntCast(CI
->getArgOperand(2), IntTy
, /*isSigned*/ true,
3696 return copyFlags(*CI
, emitFPutC(V
, CI
->getArgOperand(0), B
, TLI
));
3699 if (FormatStr
[1] == 's') {
3700 // fprintf(F, "%s", str) --> fputs(str, F)
3701 if (!CI
->getArgOperand(2)->getType()->isPointerTy())
3704 *CI
, emitFPutS(CI
->getArgOperand(2), CI
->getArgOperand(0), B
, TLI
));
3709 Value
*LibCallSimplifier::optimizeFPrintF(CallInst
*CI
, IRBuilderBase
&B
) {
3710 Module
*M
= CI
->getModule();
3711 Function
*Callee
= CI
->getCalledFunction();
3712 FunctionType
*FT
= Callee
->getFunctionType();
3713 if (Value
*V
= optimizeFPrintFString(CI
, B
)) {
3717 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3718 // floating point arguments.
3719 if (isLibFuncEmittable(M
, TLI
, LibFunc_fiprintf
) &&
3720 !callHasFloatingPointArgument(CI
)) {
3721 FunctionCallee FIPrintFFn
= getOrInsertLibFunc(M
, *TLI
, LibFunc_fiprintf
,
3722 FT
, Callee
->getAttributes());
3723 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3724 New
->setCalledFunction(FIPrintFFn
);
3729 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3730 // 128-bit floating point arguments.
3731 if (isLibFuncEmittable(M
, TLI
, LibFunc_small_fprintf
) &&
3732 !callHasFP128Argument(CI
)) {
3733 auto SmallFPrintFFn
=
3734 getOrInsertLibFunc(M
, *TLI
, LibFunc_small_fprintf
, FT
,
3735 Callee
->getAttributes());
3736 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3737 New
->setCalledFunction(SmallFPrintFFn
);
3745 Value
*LibCallSimplifier::optimizeFWrite(CallInst
*CI
, IRBuilderBase
&B
) {
3746 optimizeErrorReporting(CI
, B
, 3);
3748 // Get the element size and count.
3749 ConstantInt
*SizeC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
3750 ConstantInt
*CountC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2));
3751 if (SizeC
&& CountC
) {
3752 uint64_t Bytes
= SizeC
->getZExtValue() * CountC
->getZExtValue();
3754 // If this is writing zero records, remove the call (it's a noop).
3756 return ConstantInt::get(CI
->getType(), 0);
3758 // If this is writing one byte, turn it into fputc.
3759 // This optimisation is only valid, if the return value is unused.
3760 if (Bytes
== 1 && CI
->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3761 Value
*Char
= B
.CreateLoad(B
.getInt8Ty(), CI
->getArgOperand(0), "char");
3762 Type
*IntTy
= B
.getIntNTy(TLI
->getIntSize());
3763 Value
*Cast
= B
.CreateIntCast(Char
, IntTy
, /*isSigned*/ true, "chari");
3764 Value
*NewCI
= emitFPutC(Cast
, CI
->getArgOperand(3), B
, TLI
);
3765 return NewCI
? ConstantInt::get(CI
->getType(), 1) : nullptr;
3772 Value
*LibCallSimplifier::optimizeFPuts(CallInst
*CI
, IRBuilderBase
&B
) {
3773 optimizeErrorReporting(CI
, B
, 1);
3775 // Don't rewrite fputs to fwrite when optimising for size because fwrite
3776 // requires more arguments and thus extra MOVs are required.
3777 if (llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
,
3778 PGSOQueryType::IRPass
))
3781 // We can't optimize if return value is used.
3782 if (!CI
->use_empty())
3785 // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3786 uint64_t Len
= GetStringLength(CI
->getArgOperand(0));
3790 // Known to have no uses (see above).
3791 unsigned SizeTBits
= TLI
->getSizeTSize(*CI
->getModule());
3792 Type
*SizeTTy
= IntegerType::get(CI
->getContext(), SizeTBits
);
3795 emitFWrite(CI
->getArgOperand(0),
3796 ConstantInt::get(SizeTTy
, Len
- 1),
3797 CI
->getArgOperand(1), B
, DL
, TLI
));
3800 Value
*LibCallSimplifier::optimizePuts(CallInst
*CI
, IRBuilderBase
&B
) {
3801 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
3802 if (!CI
->use_empty())
3805 // Check for a constant string.
3806 // puts("") -> putchar('\n')
3808 if (getConstantStringInfo(CI
->getArgOperand(0), Str
) && Str
.empty()) {
3809 // putchar takes an argument of the same type as puts returns, i.e.,
3810 // int, which need not be 32 bits wide.
3811 Type
*IntTy
= CI
->getType();
3812 return copyFlags(*CI
, emitPutChar(ConstantInt::get(IntTy
, '\n'), B
, TLI
));
3818 Value
*LibCallSimplifier::optimizeExit(CallInst
*CI
) {
3820 // Mark 'exit' as cold if its not exit(0) (success).
3822 if (!CI
->hasFnAttr(Attribute::Cold
) &&
3823 match(CI
->getArgOperand(0), m_APInt(C
)) && !C
->isZero()) {
3824 CI
->addFnAttr(Attribute::Cold
);
3829 Value
*LibCallSimplifier::optimizeBCopy(CallInst
*CI
, IRBuilderBase
&B
) {
3830 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3831 return copyFlags(*CI
, B
.CreateMemMove(CI
->getArgOperand(1), Align(1),
3832 CI
->getArgOperand(0), Align(1),
3833 CI
->getArgOperand(2)));
3836 bool LibCallSimplifier::hasFloatVersion(const Module
*M
, StringRef FuncName
) {
3837 SmallString
<20> FloatFuncName
= FuncName
;
3838 FloatFuncName
+= 'f';
3839 return isLibFuncEmittable(M
, TLI
, FloatFuncName
);
3842 Value
*LibCallSimplifier::optimizeStringMemoryLibCall(CallInst
*CI
,
3843 IRBuilderBase
&Builder
) {
3844 Module
*M
= CI
->getModule();
3846 Function
*Callee
= CI
->getCalledFunction();
3848 // Check for string/memory library functions.
3849 if (TLI
->getLibFunc(*Callee
, Func
) && isLibFuncEmittable(M
, TLI
, Func
)) {
3850 // Make sure we never change the calling convention.
3852 (ignoreCallingConv(Func
) ||
3853 TargetLibraryInfoImpl::isCallingConvCCompatible(CI
)) &&
3854 "Optimizing string/memory libcall would change the calling convention");
3856 case LibFunc_strcat
:
3857 return optimizeStrCat(CI
, Builder
);
3858 case LibFunc_strncat
:
3859 return optimizeStrNCat(CI
, Builder
);
3860 case LibFunc_strchr
:
3861 return optimizeStrChr(CI
, Builder
);
3862 case LibFunc_strrchr
:
3863 return optimizeStrRChr(CI
, Builder
);
3864 case LibFunc_strcmp
:
3865 return optimizeStrCmp(CI
, Builder
);
3866 case LibFunc_strncmp
:
3867 return optimizeStrNCmp(CI
, Builder
);
3868 case LibFunc_strcpy
:
3869 return optimizeStrCpy(CI
, Builder
);
3870 case LibFunc_stpcpy
:
3871 return optimizeStpCpy(CI
, Builder
);
3872 case LibFunc_strlcpy
:
3873 return optimizeStrLCpy(CI
, Builder
);
3874 case LibFunc_stpncpy
:
3875 return optimizeStringNCpy(CI
, /*RetEnd=*/true, Builder
);
3876 case LibFunc_strncpy
:
3877 return optimizeStringNCpy(CI
, /*RetEnd=*/false, Builder
);
3878 case LibFunc_strlen
:
3879 return optimizeStrLen(CI
, Builder
);
3880 case LibFunc_strnlen
:
3881 return optimizeStrNLen(CI
, Builder
);
3882 case LibFunc_strpbrk
:
3883 return optimizeStrPBrk(CI
, Builder
);
3884 case LibFunc_strndup
:
3885 return optimizeStrNDup(CI
, Builder
);
3886 case LibFunc_strtol
:
3887 case LibFunc_strtod
:
3888 case LibFunc_strtof
:
3889 case LibFunc_strtoul
:
3890 case LibFunc_strtoll
:
3891 case LibFunc_strtold
:
3892 case LibFunc_strtoull
:
3893 return optimizeStrTo(CI
, Builder
);
3894 case LibFunc_strspn
:
3895 return optimizeStrSpn(CI
, Builder
);
3896 case LibFunc_strcspn
:
3897 return optimizeStrCSpn(CI
, Builder
);
3898 case LibFunc_strstr
:
3899 return optimizeStrStr(CI
, Builder
);
3900 case LibFunc_memchr
:
3901 return optimizeMemChr(CI
, Builder
);
3902 case LibFunc_memrchr
:
3903 return optimizeMemRChr(CI
, Builder
);
3905 return optimizeBCmp(CI
, Builder
);
3906 case LibFunc_memcmp
:
3907 return optimizeMemCmp(CI
, Builder
);
3908 case LibFunc_memcpy
:
3909 return optimizeMemCpy(CI
, Builder
);
3910 case LibFunc_memccpy
:
3911 return optimizeMemCCpy(CI
, Builder
);
3912 case LibFunc_mempcpy
:
3913 return optimizeMemPCpy(CI
, Builder
);
3914 case LibFunc_memmove
:
3915 return optimizeMemMove(CI
, Builder
);
3916 case LibFunc_memset
:
3917 return optimizeMemSet(CI
, Builder
);
3918 case LibFunc_realloc
:
3919 return optimizeRealloc(CI
, Builder
);
3920 case LibFunc_wcslen
:
3921 return optimizeWcslen(CI
, Builder
);
3923 return optimizeBCopy(CI
, Builder
);
3925 case LibFunc_ZnwmRKSt9nothrow_t
:
3926 case LibFunc_ZnwmSt11align_val_t
:
3927 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t
:
3929 case LibFunc_ZnamRKSt9nothrow_t
:
3930 case LibFunc_ZnamSt11align_val_t
:
3931 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t
:
3932 case LibFunc_Znwm12__hot_cold_t
:
3933 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t
:
3934 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t
:
3935 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t
:
3936 case LibFunc_Znam12__hot_cold_t
:
3937 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t
:
3938 case LibFunc_ZnamSt11align_val_t12__hot_cold_t
:
3939 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t
:
3940 case LibFunc_size_returning_new
:
3941 case LibFunc_size_returning_new_hot_cold
:
3942 case LibFunc_size_returning_new_aligned
:
3943 case LibFunc_size_returning_new_aligned_hot_cold
:
3944 return optimizeNew(CI
, Builder
, Func
);
3952 /// Constant folding nan/nanf/nanl.
3953 static Value
*optimizeNaN(CallInst
*CI
) {
3955 if (!getConstantStringInfo(CI
->getArgOperand(0), CharSeq
))
3959 // Treat empty strings as if they were zero.
3960 if (CharSeq
.empty())
3961 Fill
= APInt(32, 0);
3962 else if (CharSeq
.getAsInteger(0, Fill
))
3965 return ConstantFP::getQNaN(CI
->getType(), /*Negative=*/false, &Fill
);
3968 Value
*LibCallSimplifier::optimizeFloatingPointLibCall(CallInst
*CI
,
3970 IRBuilderBase
&Builder
) {
3971 const Module
*M
= CI
->getModule();
3973 // Don't optimize calls that require strict floating point semantics.
3974 if (CI
->isStrictFP())
3977 if (Value
*V
= optimizeSymmetric(CI
, Func
, Builder
))
3981 case LibFunc_sinpif
:
3983 return optimizeSinCosPi(CI
, /*IsSin*/true, Builder
);
3984 case LibFunc_cospif
:
3986 return optimizeSinCosPi(CI
, /*IsSin*/false, Builder
);
3990 return optimizePow(CI
, Builder
);
3994 return optimizeExp2(CI
, Builder
);
3998 return replaceUnaryCall(CI
, Builder
, Intrinsic::fabs
);
4002 return optimizeSqrt(CI
, Builder
);
4006 return optimizeFMod(CI
, Builder
);
4010 case LibFunc_log10f
:
4012 case LibFunc_log10l
:
4013 case LibFunc_log1pf
:
4015 case LibFunc_log1pl
:
4022 return optimizeLog(CI
, Builder
);
4030 case LibFunc_asinhf
:
4031 case LibFunc_asinhl
:
4036 case LibFunc_atanhf
:
4037 case LibFunc_atanhl
:
4038 return optimizeTrigInversionPairs(CI
, Builder
);
4040 return replaceUnaryCall(CI
, Builder
, Intrinsic::ceil
);
4042 return replaceUnaryCall(CI
, Builder
, Intrinsic::floor
);
4044 return replaceUnaryCall(CI
, Builder
, Intrinsic::round
);
4045 case LibFunc_roundeven
:
4046 return replaceUnaryCall(CI
, Builder
, Intrinsic::roundeven
);
4047 case LibFunc_nearbyint
:
4048 return replaceUnaryCall(CI
, Builder
, Intrinsic::nearbyint
);
4050 return replaceUnaryCall(CI
, Builder
, Intrinsic::rint
);
4052 return replaceUnaryCall(CI
, Builder
, Intrinsic::trunc
);
4064 if (UnsafeFPShrink
&& hasFloatVersion(M
, CI
->getCalledFunction()->getName()))
4065 return optimizeUnaryDoubleFP(CI
, Builder
, TLI
, true);
4067 case LibFunc_copysign
:
4068 if (hasFloatVersion(M
, CI
->getCalledFunction()->getName()))
4069 return optimizeBinaryDoubleFP(CI
, Builder
, TLI
);
4074 return optimizeFdim(CI
, Builder
);
4081 return optimizeFMinFMax(CI
, Builder
);
4085 return optimizeCAbs(CI
, Builder
);
4086 case LibFunc_remquo
:
4087 case LibFunc_remquof
:
4088 case LibFunc_remquol
:
4089 return optimizeRemquo(CI
, Builder
);
4093 return optimizeNaN(CI
);
4099 Value
*LibCallSimplifier::optimizeCall(CallInst
*CI
, IRBuilderBase
&Builder
) {
4100 Module
*M
= CI
->getModule();
4101 assert(!CI
->isMustTailCall() && "These transforms aren't musttail safe.");
4103 // TODO: Split out the code below that operates on FP calls so that
4104 // we can all non-FP calls with the StrictFP attribute to be
4106 if (CI
->isNoBuiltin())
4110 Function
*Callee
= CI
->getCalledFunction();
4111 bool IsCallingConvC
= TargetLibraryInfoImpl::isCallingConvCCompatible(CI
);
4113 SmallVector
<OperandBundleDef
, 2> OpBundles
;
4114 CI
->getOperandBundlesAsDefs(OpBundles
);
4116 IRBuilderBase::OperandBundlesGuard
Guard(Builder
);
4117 Builder
.setDefaultOperandBundles(OpBundles
);
4119 // Command-line parameter overrides instruction attribute.
4120 // This can't be moved to optimizeFloatingPointLibCall() because it may be
4121 // used by the intrinsic optimizations.
4122 if (EnableUnsafeFPShrink
.getNumOccurrences() > 0)
4123 UnsafeFPShrink
= EnableUnsafeFPShrink
;
4124 else if (isa
<FPMathOperator
>(CI
) && CI
->isFast())
4125 UnsafeFPShrink
= true;
4127 // First, check for intrinsics.
4128 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
)) {
4129 if (!IsCallingConvC
)
4131 // The FP intrinsics have corresponding constrained versions so we don't
4132 // need to check for the StrictFP attribute here.
4133 switch (II
->getIntrinsicID()) {
4134 case Intrinsic::pow
:
4135 return optimizePow(CI
, Builder
);
4136 case Intrinsic::exp2
:
4137 return optimizeExp2(CI
, Builder
);
4138 case Intrinsic::log
:
4139 case Intrinsic::log2
:
4140 case Intrinsic::log10
:
4141 return optimizeLog(CI
, Builder
);
4142 case Intrinsic::sqrt
:
4143 return optimizeSqrt(CI
, Builder
);
4144 case Intrinsic::memset
:
4145 return optimizeMemSet(CI
, Builder
);
4146 case Intrinsic::memcpy
:
4147 return optimizeMemCpy(CI
, Builder
);
4148 case Intrinsic::memmove
:
4149 return optimizeMemMove(CI
, Builder
);
4155 // Also try to simplify calls to fortified library functions.
4156 if (Value
*SimplifiedFortifiedCI
=
4157 FortifiedSimplifier
.optimizeCall(CI
, Builder
))
4158 return SimplifiedFortifiedCI
;
4160 // Then check for known library functions.
4161 if (TLI
->getLibFunc(*Callee
, Func
) && isLibFuncEmittable(M
, TLI
, Func
)) {
4162 // We never change the calling convention.
4163 if (!ignoreCallingConv(Func
) && !IsCallingConvC
)
4165 if (Value
*V
= optimizeStringMemoryLibCall(CI
, Builder
))
4167 if (Value
*V
= optimizeFloatingPointLibCall(CI
, Func
, Builder
))
4173 return optimizeFFS(CI
, Builder
);
4177 return optimizeFls(CI
, Builder
);
4181 return optimizeAbs(CI
, Builder
);
4182 case LibFunc_isdigit
:
4183 return optimizeIsDigit(CI
, Builder
);
4184 case LibFunc_isascii
:
4185 return optimizeIsAscii(CI
, Builder
);
4186 case LibFunc_toascii
:
4187 return optimizeToAscii(CI
, Builder
);
4191 return optimizeAtoi(CI
, Builder
);
4192 case LibFunc_strtol
:
4193 case LibFunc_strtoll
:
4194 return optimizeStrToInt(CI
, Builder
, /*AsSigned=*/true);
4195 case LibFunc_strtoul
:
4196 case LibFunc_strtoull
:
4197 return optimizeStrToInt(CI
, Builder
, /*AsSigned=*/false);
4198 case LibFunc_printf
:
4199 return optimizePrintF(CI
, Builder
);
4200 case LibFunc_sprintf
:
4201 return optimizeSPrintF(CI
, Builder
);
4202 case LibFunc_snprintf
:
4203 return optimizeSnPrintF(CI
, Builder
);
4204 case LibFunc_fprintf
:
4205 return optimizeFPrintF(CI
, Builder
);
4206 case LibFunc_fwrite
:
4207 return optimizeFWrite(CI
, Builder
);
4209 return optimizeFPuts(CI
, Builder
);
4211 return optimizePuts(CI
, Builder
);
4212 case LibFunc_perror
:
4213 return optimizeErrorReporting(CI
, Builder
);
4214 case LibFunc_vfprintf
:
4215 case LibFunc_fiprintf
:
4216 return optimizeErrorReporting(CI
, Builder
, 0);
4219 return optimizeExit(CI
);
4227 LibCallSimplifier::LibCallSimplifier(
4228 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
, DominatorTree
*DT
,
4229 DomConditionCache
*DC
, AssumptionCache
*AC
, OptimizationRemarkEmitter
&ORE
,
4230 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
,
4231 function_ref
<void(Instruction
*, Value
*)> Replacer
,
4232 function_ref
<void(Instruction
*)> Eraser
)
4233 : FortifiedSimplifier(TLI
), DL(DL
), TLI(TLI
), DT(DT
), DC(DC
), AC(AC
),
4234 ORE(ORE
), BFI(BFI
), PSI(PSI
), Replacer(Replacer
), Eraser(Eraser
) {}
4236 void LibCallSimplifier::replaceAllUsesWith(Instruction
*I
, Value
*With
) {
4237 // Indirect through the replacer used in this instance.
4241 void LibCallSimplifier::eraseFromParent(Instruction
*I
) {
4246 // Additional cases that we need to add to this file:
4249 // * cbrt(expN(X)) -> expN(x/3)
4250 // * cbrt(sqrt(x)) -> pow(x,1/6)
4251 // * cbrt(cbrt(x)) -> pow(x,1/9)
4254 // * exp(log(x)) -> x
4257 // * log(exp(x)) -> x
4258 // * log(exp(y)) -> y*log(e)
4259 // * log(exp10(y)) -> y*log(10)
4260 // * log(sqrt(x)) -> 0.5*log(x)
4263 // * pow(sqrt(x),y) -> pow(x,y*0.5)
4264 // * pow(pow(x,y),z)-> pow(x,y*z)
4267 // * signbit(cnst) -> cnst'
4268 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
4270 // sqrt, sqrtf, sqrtl:
4271 // * sqrt(expN(x)) -> expN(x*0.5)
4272 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
4273 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
4276 //===----------------------------------------------------------------------===//
4277 // Fortified Library Call Optimizations
4278 //===----------------------------------------------------------------------===//
4280 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
4281 CallInst
*CI
, unsigned ObjSizeOp
, std::optional
<unsigned> SizeOp
,
4282 std::optional
<unsigned> StrOp
, std::optional
<unsigned> FlagOp
) {
4283 // If this function takes a flag argument, the implementation may use it to
4284 // perform extra checks. Don't fold into the non-checking variant.
4286 ConstantInt
*Flag
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(*FlagOp
));
4287 if (!Flag
|| !Flag
->isZero())
4291 if (SizeOp
&& CI
->getArgOperand(ObjSizeOp
) == CI
->getArgOperand(*SizeOp
))
4294 if (ConstantInt
*ObjSizeCI
=
4295 dyn_cast
<ConstantInt
>(CI
->getArgOperand(ObjSizeOp
))) {
4296 if (ObjSizeCI
->isMinusOne())
4298 // If the object size wasn't -1 (unknown), bail out if we were asked to.
4299 if (OnlyLowerUnknownSize
)
4302 uint64_t Len
= GetStringLength(CI
->getArgOperand(*StrOp
));
4303 // If the length is 0 we don't know how long it is and so we can't
4304 // remove the check.
4306 annotateDereferenceableBytes(CI
, *StrOp
, Len
);
4309 return ObjSizeCI
->getZExtValue() >= Len
;
4313 if (ConstantInt
*SizeCI
=
4314 dyn_cast
<ConstantInt
>(CI
->getArgOperand(*SizeOp
)))
4315 return ObjSizeCI
->getZExtValue() >= SizeCI
->getZExtValue();
4321 Value
*FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst
*CI
,
4323 if (isFortifiedCallFoldable(CI
, 3, 2)) {
4325 B
.CreateMemCpy(CI
->getArgOperand(0), Align(1), CI
->getArgOperand(1),
4326 Align(1), CI
->getArgOperand(2));
4327 mergeAttributesAndFlags(NewCI
, *CI
);
4328 return CI
->getArgOperand(0);
4333 Value
*FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst
*CI
,
4335 if (isFortifiedCallFoldable(CI
, 3, 2)) {
4337 B
.CreateMemMove(CI
->getArgOperand(0), Align(1), CI
->getArgOperand(1),
4338 Align(1), CI
->getArgOperand(2));
4339 mergeAttributesAndFlags(NewCI
, *CI
);
4340 return CI
->getArgOperand(0);
4345 Value
*FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst
*CI
,
4347 if (isFortifiedCallFoldable(CI
, 3, 2)) {
4348 Value
*Val
= B
.CreateIntCast(CI
->getArgOperand(1), B
.getInt8Ty(), false);
4349 CallInst
*NewCI
= B
.CreateMemSet(CI
->getArgOperand(0), Val
,
4350 CI
->getArgOperand(2), Align(1));
4351 mergeAttributesAndFlags(NewCI
, *CI
);
4352 return CI
->getArgOperand(0);
4357 Value
*FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst
*CI
,
4359 const DataLayout
&DL
= CI
->getDataLayout();
4360 if (isFortifiedCallFoldable(CI
, 3, 2))
4361 if (Value
*Call
= emitMemPCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
4362 CI
->getArgOperand(2), B
, DL
, TLI
)) {
4363 return mergeAttributesAndFlags(cast
<CallInst
>(Call
), *CI
);
4368 Value
*FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst
*CI
,
4371 const DataLayout
&DL
= CI
->getDataLayout();
4372 Value
*Dst
= CI
->getArgOperand(0), *Src
= CI
->getArgOperand(1),
4373 *ObjSize
= CI
->getArgOperand(2);
4375 // __stpcpy_chk(x,x,...) -> x+strlen(x)
4376 if (Func
== LibFunc_stpcpy_chk
&& !OnlyLowerUnknownSize
&& Dst
== Src
) {
4377 Value
*StrLen
= emitStrLen(Src
, B
, DL
, TLI
);
4378 return StrLen
? B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, StrLen
) : nullptr;
4381 // If a) we don't have any length information, or b) we know this will
4382 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
4383 // st[rp]cpy_chk call which may fail at runtime if the size is too long.
4384 // TODO: It might be nice to get a maximum length out of the possible
4385 // string lengths for varying.
4386 if (isFortifiedCallFoldable(CI
, 2, std::nullopt
, 1)) {
4387 if (Func
== LibFunc_strcpy_chk
)
4388 return copyFlags(*CI
, emitStrCpy(Dst
, Src
, B
, TLI
));
4390 return copyFlags(*CI
, emitStpCpy(Dst
, Src
, B
, TLI
));
4393 if (OnlyLowerUnknownSize
)
4396 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
4397 uint64_t Len
= GetStringLength(Src
);
4399 annotateDereferenceableBytes(CI
, 1, Len
);
4403 unsigned SizeTBits
= TLI
->getSizeTSize(*CI
->getModule());
4404 Type
*SizeTTy
= IntegerType::get(CI
->getContext(), SizeTBits
);
4405 Value
*LenV
= ConstantInt::get(SizeTTy
, Len
);
4406 Value
*Ret
= emitMemCpyChk(Dst
, Src
, LenV
, ObjSize
, B
, DL
, TLI
);
4407 // If the function was an __stpcpy_chk, and we were able to fold it into
4408 // a __memcpy_chk, we still need to return the correct end pointer.
4409 if (Ret
&& Func
== LibFunc_stpcpy_chk
)
4410 return B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
,
4411 ConstantInt::get(SizeTTy
, Len
- 1));
4412 return copyFlags(*CI
, cast
<CallInst
>(Ret
));
4415 Value
*FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst
*CI
,
4417 if (isFortifiedCallFoldable(CI
, 1, std::nullopt
, 0))
4418 return copyFlags(*CI
, emitStrLen(CI
->getArgOperand(0), B
,
4419 CI
->getDataLayout(), TLI
));
4423 Value
*FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst
*CI
,
4426 if (isFortifiedCallFoldable(CI
, 3, 2)) {
4427 if (Func
== LibFunc_strncpy_chk
)
4428 return copyFlags(*CI
,
4429 emitStrNCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
4430 CI
->getArgOperand(2), B
, TLI
));
4432 return copyFlags(*CI
,
4433 emitStpNCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
4434 CI
->getArgOperand(2), B
, TLI
));
4440 Value
*FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst
*CI
,
4442 if (isFortifiedCallFoldable(CI
, 4, 3))
4444 *CI
, emitMemCCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
4445 CI
->getArgOperand(2), CI
->getArgOperand(3), B
, TLI
));
4450 Value
*FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst
*CI
,
4452 if (isFortifiedCallFoldable(CI
, 3, 1, std::nullopt
, 2)) {
4453 SmallVector
<Value
*, 8> VariadicArgs(drop_begin(CI
->args(), 5));
4454 return copyFlags(*CI
,
4455 emitSNPrintf(CI
->getArgOperand(0), CI
->getArgOperand(1),
4456 CI
->getArgOperand(4), VariadicArgs
, B
, TLI
));
4462 Value
*FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst
*CI
,
4464 if (isFortifiedCallFoldable(CI
, 2, std::nullopt
, std::nullopt
, 1)) {
4465 SmallVector
<Value
*, 8> VariadicArgs(drop_begin(CI
->args(), 4));
4466 return copyFlags(*CI
,
4467 emitSPrintf(CI
->getArgOperand(0), CI
->getArgOperand(3),
4468 VariadicArgs
, B
, TLI
));
4474 Value
*FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst
*CI
,
4476 if (isFortifiedCallFoldable(CI
, 2))
4478 *CI
, emitStrCat(CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
));
4483 Value
*FortifiedLibCallSimplifier::optimizeStrLCat(CallInst
*CI
,
4485 if (isFortifiedCallFoldable(CI
, 3))
4486 return copyFlags(*CI
,
4487 emitStrLCat(CI
->getArgOperand(0), CI
->getArgOperand(1),
4488 CI
->getArgOperand(2), B
, TLI
));
4493 Value
*FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst
*CI
,
4495 if (isFortifiedCallFoldable(CI
, 3))
4496 return copyFlags(*CI
,
4497 emitStrNCat(CI
->getArgOperand(0), CI
->getArgOperand(1),
4498 CI
->getArgOperand(2), B
, TLI
));
4503 Value
*FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst
*CI
,
4505 if (isFortifiedCallFoldable(CI
, 3))
4506 return copyFlags(*CI
,
4507 emitStrLCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
4508 CI
->getArgOperand(2), B
, TLI
));
4513 Value
*FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst
*CI
,
4515 if (isFortifiedCallFoldable(CI
, 3, 1, std::nullopt
, 2))
4517 *CI
, emitVSNPrintf(CI
->getArgOperand(0), CI
->getArgOperand(1),
4518 CI
->getArgOperand(4), CI
->getArgOperand(5), B
, TLI
));
4523 Value
*FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst
*CI
,
4525 if (isFortifiedCallFoldable(CI
, 2, std::nullopt
, std::nullopt
, 1))
4526 return copyFlags(*CI
,
4527 emitVSPrintf(CI
->getArgOperand(0), CI
->getArgOperand(3),
4528 CI
->getArgOperand(4), B
, TLI
));
4533 Value
*FortifiedLibCallSimplifier::optimizeCall(CallInst
*CI
,
4534 IRBuilderBase
&Builder
) {
4535 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
4536 // Some clang users checked for _chk libcall availability using:
4537 // __has_builtin(__builtin___memcpy_chk)
4538 // When compiling with -fno-builtin, this is always true.
4539 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
4540 // end up with fortified libcalls, which isn't acceptable in a freestanding
4541 // environment which only provides their non-fortified counterparts.
4543 // Until we change clang and/or teach external users to check for availability
4544 // differently, disregard the "nobuiltin" attribute and TLI::has.
4549 Function
*Callee
= CI
->getCalledFunction();
4550 bool IsCallingConvC
= TargetLibraryInfoImpl::isCallingConvCCompatible(CI
);
4552 SmallVector
<OperandBundleDef
, 2> OpBundles
;
4553 CI
->getOperandBundlesAsDefs(OpBundles
);
4555 IRBuilderBase::OperandBundlesGuard
Guard(Builder
);
4556 Builder
.setDefaultOperandBundles(OpBundles
);
4558 // First, check that this is a known library functions and that the prototype
4560 if (!TLI
->getLibFunc(*Callee
, Func
))
4563 // We never change the calling convention.
4564 if (!ignoreCallingConv(Func
) && !IsCallingConvC
)
4568 case LibFunc_memcpy_chk
:
4569 return optimizeMemCpyChk(CI
, Builder
);
4570 case LibFunc_mempcpy_chk
:
4571 return optimizeMemPCpyChk(CI
, Builder
);
4572 case LibFunc_memmove_chk
:
4573 return optimizeMemMoveChk(CI
, Builder
);
4574 case LibFunc_memset_chk
:
4575 return optimizeMemSetChk(CI
, Builder
);
4576 case LibFunc_stpcpy_chk
:
4577 case LibFunc_strcpy_chk
:
4578 return optimizeStrpCpyChk(CI
, Builder
, Func
);
4579 case LibFunc_strlen_chk
:
4580 return optimizeStrLenChk(CI
, Builder
);
4581 case LibFunc_stpncpy_chk
:
4582 case LibFunc_strncpy_chk
:
4583 return optimizeStrpNCpyChk(CI
, Builder
, Func
);
4584 case LibFunc_memccpy_chk
:
4585 return optimizeMemCCpyChk(CI
, Builder
);
4586 case LibFunc_snprintf_chk
:
4587 return optimizeSNPrintfChk(CI
, Builder
);
4588 case LibFunc_sprintf_chk
:
4589 return optimizeSPrintfChk(CI
, Builder
);
4590 case LibFunc_strcat_chk
:
4591 return optimizeStrCatChk(CI
, Builder
);
4592 case LibFunc_strlcat_chk
:
4593 return optimizeStrLCat(CI
, Builder
);
4594 case LibFunc_strncat_chk
:
4595 return optimizeStrNCatChk(CI
, Builder
);
4596 case LibFunc_strlcpy_chk
:
4597 return optimizeStrLCpyChk(CI
, Builder
);
4598 case LibFunc_vsnprintf_chk
:
4599 return optimizeVSNPrintfChk(CI
, Builder
);
4600 case LibFunc_vsprintf_chk
:
4601 return optimizeVSPrintfChk(CI
, Builder
);
4608 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
4609 const TargetLibraryInfo
*TLI
, bool OnlyLowerUnknownSize
)
4610 : TLI(TLI
), OnlyLowerUnknownSize(OnlyLowerUnknownSize
) {}