[AMDGPU] Mark AGPR tuple implicit in the first instr of AGPR spills. (#115285)
[llvm-project.git] / llvm / lib / Transforms / Utils / SimplifyLibCalls.cpp
blob7c45822572d4e22e82ef90f7dfaded2a6335fc86
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AttributeMask.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/SizeOpts.h"
40 #include <cmath>
42 using namespace llvm;
43 using namespace PatternMatch;
45 static cl::opt<bool>
46 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47 cl::init(false),
48 cl::desc("Enable unsafe double to float "
49 "shrinking for math lib calls"));
51 // Enable conversion of operator new calls with a MemProf hot or cold hint
52 // to an operator new call that takes a hot/cold hint. Off by default since
53 // not all allocators currently support this extension.
54 static cl::opt<bool>
55 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false),
56 cl::desc("Enable hot/cold operator new library calls"));
57 static cl::opt<bool> OptimizeExistingHotColdNew(
58 "optimize-existing-hot-cold-new", cl::Hidden, cl::init(false),
59 cl::desc(
60 "Enable optimization of existing hot/cold operator new library calls"));
62 namespace {
64 // Specialized parser to ensure the hint is an 8 bit value (we can't specify
65 // uint8_t to opt<> as that is interpreted to mean that we are passing a char
66 // option with a specific set of values.
67 struct HotColdHintParser : public cl::parser<unsigned> {
68 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {}
70 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
71 if (Arg.getAsInteger(0, Value))
72 return O.error("'" + Arg + "' value invalid for uint argument!");
74 if (Value > 255)
75 return O.error("'" + Arg + "' value must be in the range [0, 255]!");
77 return false;
81 } // end anonymous namespace
83 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest
84 // and 255 is the hottest. Default to 1 value away from the coldest and hottest
85 // hints, so that the compiler hinted allocations are slightly less strong than
86 // manually inserted hints at the two extremes.
87 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue(
88 "cold-new-hint-value", cl::Hidden, cl::init(1),
89 cl::desc("Value to pass to hot/cold operator new for cold allocation"));
90 static cl::opt<unsigned, false, HotColdHintParser>
91 NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128),
92 cl::desc("Value to pass to hot/cold operator new for "
93 "notcold (warm) allocation"));
94 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue(
95 "hot-new-hint-value", cl::Hidden, cl::init(254),
96 cl::desc("Value to pass to hot/cold operator new for hot allocation"));
98 //===----------------------------------------------------------------------===//
99 // Helper Functions
100 //===----------------------------------------------------------------------===//
102 static bool ignoreCallingConv(LibFunc Func) {
103 return Func == LibFunc_abs || Func == LibFunc_labs ||
104 Func == LibFunc_llabs || Func == LibFunc_strlen;
107 /// Return true if it is only used in equality comparisons with With.
108 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
109 for (User *U : V->users()) {
110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
111 if (IC->isEquality() && IC->getOperand(1) == With)
112 continue;
113 // Unknown instruction.
114 return false;
116 return true;
119 static bool callHasFloatingPointArgument(const CallInst *CI) {
120 return any_of(CI->operands(), [](const Use &OI) {
121 return OI->getType()->isFloatingPointTy();
125 static bool callHasFP128Argument(const CallInst *CI) {
126 return any_of(CI->operands(), [](const Use &OI) {
127 return OI->getType()->isFP128Ty();
131 // Convert the entire string Str representing an integer in Base, up to
132 // the terminating nul if present, to a constant according to the rules
133 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success
134 // return the result, otherwise null.
135 // The function assumes the string is encoded in ASCII and carefully
136 // avoids converting sequences (including "") that the corresponding
137 // library call might fail and set errno for.
138 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
139 uint64_t Base, bool AsSigned, IRBuilderBase &B) {
140 if (Base < 2 || Base > 36)
141 if (Base != 0)
142 // Fail for an invalid base (required by POSIX).
143 return nullptr;
145 // Current offset into the original string to reflect in EndPtr.
146 size_t Offset = 0;
147 // Strip leading whitespace.
148 for ( ; Offset != Str.size(); ++Offset)
149 if (!isSpace((unsigned char)Str[Offset])) {
150 Str = Str.substr(Offset);
151 break;
154 if (Str.empty())
155 // Fail for empty subject sequences (POSIX allows but doesn't require
156 // strtol[l]/strtoul[l] to fail with EINVAL).
157 return nullptr;
159 // Strip but remember the sign.
160 bool Negate = Str[0] == '-';
161 if (Str[0] == '-' || Str[0] == '+') {
162 Str = Str.drop_front();
163 if (Str.empty())
164 // Fail for a sign with nothing after it.
165 return nullptr;
166 ++Offset;
169 // Set Max to the absolute value of the minimum (for signed), or
170 // to the maximum (for unsigned) value representable in the type.
171 Type *RetTy = CI->getType();
172 unsigned NBits = RetTy->getPrimitiveSizeInBits();
173 uint64_t Max = AsSigned && Negate ? 1 : 0;
174 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits);
176 // Autodetect Base if it's zero and consume the "0x" prefix.
177 if (Str.size() > 1) {
178 if (Str[0] == '0') {
179 if (toUpper((unsigned char)Str[1]) == 'X') {
180 if (Str.size() == 2 || (Base && Base != 16))
181 // Fail if Base doesn't allow the "0x" prefix or for the prefix
182 // alone that implementations like BSD set errno to EINVAL for.
183 return nullptr;
185 Str = Str.drop_front(2);
186 Offset += 2;
187 Base = 16;
189 else if (Base == 0)
190 Base = 8;
191 } else if (Base == 0)
192 Base = 10;
194 else if (Base == 0)
195 Base = 10;
197 // Convert the rest of the subject sequence, not including the sign,
198 // to its uint64_t representation (this assumes the source character
199 // set is ASCII).
200 uint64_t Result = 0;
201 for (unsigned i = 0; i != Str.size(); ++i) {
202 unsigned char DigVal = Str[i];
203 if (isDigit(DigVal))
204 DigVal = DigVal - '0';
205 else {
206 DigVal = toUpper(DigVal);
207 if (isAlpha(DigVal))
208 DigVal = DigVal - 'A' + 10;
209 else
210 return nullptr;
213 if (DigVal >= Base)
214 // Fail if the digit is not valid in the Base.
215 return nullptr;
217 // Add the digit and fail if the result is not representable in
218 // the (unsigned form of the) destination type.
219 bool VFlow;
220 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow);
221 if (VFlow || Result > Max)
222 return nullptr;
225 if (EndPtr) {
226 // Store the pointer to the end.
227 Value *Off = B.getInt64(Offset + Str.size());
228 Value *StrBeg = CI->getArgOperand(0);
229 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
230 B.CreateStore(StrEnd, EndPtr);
233 if (Negate)
234 // Unsigned negation doesn't overflow.
235 Result = -Result;
237 return ConstantInt::get(RetTy, Result);
240 static bool isOnlyUsedInComparisonWithZero(Value *V) {
241 for (User *U : V->users()) {
242 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
243 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
244 if (C->isNullValue())
245 continue;
246 // Unknown instruction.
247 return false;
249 return true;
252 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
253 const DataLayout &DL) {
254 if (!isOnlyUsedInComparisonWithZero(CI))
255 return false;
257 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
258 return false;
260 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
261 return false;
263 return true;
266 static void annotateDereferenceableBytes(CallInst *CI,
267 ArrayRef<unsigned> ArgNos,
268 uint64_t DereferenceableBytes) {
269 const Function *F = CI->getCaller();
270 if (!F)
271 return;
272 for (unsigned ArgNo : ArgNos) {
273 uint64_t DerefBytes = DereferenceableBytes;
274 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
275 if (!llvm::NullPointerIsDefined(F, AS) ||
276 CI->paramHasAttr(ArgNo, Attribute::NonNull))
277 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
278 DereferenceableBytes);
280 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
281 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
282 if (!llvm::NullPointerIsDefined(F, AS) ||
283 CI->paramHasAttr(ArgNo, Attribute::NonNull))
284 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
285 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
286 CI->getContext(), DerefBytes));
291 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
292 ArrayRef<unsigned> ArgNos) {
293 Function *F = CI->getCaller();
294 if (!F)
295 return;
297 for (unsigned ArgNo : ArgNos) {
298 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
299 CI->addParamAttr(ArgNo, Attribute::NoUndef);
301 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) {
302 unsigned AS =
303 CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
304 if (llvm::NullPointerIsDefined(F, AS))
305 continue;
306 CI->addParamAttr(ArgNo, Attribute::NonNull);
309 annotateDereferenceableBytes(CI, ArgNo, 1);
313 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
314 Value *Size, const DataLayout &DL) {
315 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
316 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
317 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
318 } else if (isKnownNonZero(Size, DL)) {
319 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
320 const APInt *X, *Y;
321 uint64_t DerefMin = 1;
322 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
323 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
324 annotateDereferenceableBytes(CI, ArgNos, DerefMin);
329 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
330 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
331 // in this function when New is created to replace Old. Callers should take
332 // care to check Old.isMustTailCall() if they aren't replacing Old directly
333 // with New.
334 static Value *copyFlags(const CallInst &Old, Value *New) {
335 assert(!Old.isMustTailCall() && "do not copy musttail call flags");
336 assert(!Old.isNoTailCall() && "do not copy notail call flags");
337 if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
338 NewCI->setTailCallKind(Old.getTailCallKind());
339 return New;
342 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) {
343 NewCI->setAttributes(AttributeList::get(
344 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()}));
345 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(
346 NewCI->getType(), NewCI->getRetAttributes()));
347 for (unsigned I = 0; I < NewCI->arg_size(); ++I)
348 NewCI->removeParamAttrs(
349 I, AttributeFuncs::typeIncompatible(NewCI->getArgOperand(I)->getType(),
350 NewCI->getParamAttributes(I)));
352 return copyFlags(Old, NewCI);
355 // Helper to avoid truncating the length if size_t is 32-bits.
356 static StringRef substr(StringRef Str, uint64_t Len) {
357 return Len >= Str.size() ? Str : Str.substr(0, Len);
360 //===----------------------------------------------------------------------===//
361 // String and Memory Library Call Optimizations
362 //===----------------------------------------------------------------------===//
364 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
365 // Extract some information from the instruction
366 Value *Dst = CI->getArgOperand(0);
367 Value *Src = CI->getArgOperand(1);
368 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
370 // See if we can get the length of the input string.
371 uint64_t Len = GetStringLength(Src);
372 if (Len)
373 annotateDereferenceableBytes(CI, 1, Len);
374 else
375 return nullptr;
376 --Len; // Unbias length.
378 // Handle the simple, do-nothing case: strcat(x, "") -> x
379 if (Len == 0)
380 return Dst;
382 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
385 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
386 IRBuilderBase &B) {
387 // We need to find the end of the destination string. That's where the
388 // memory is to be moved to. We just generate a call to strlen.
389 Value *DstLen = emitStrLen(Dst, B, DL, TLI);
390 if (!DstLen)
391 return nullptr;
393 // Now that we have the destination's length, we must index into the
394 // destination's pointer to get the actual memcpy destination (end of
395 // the string .. we're concatenating).
396 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
398 // We have enough information to now generate the memcpy call to do the
399 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
400 B.CreateMemCpy(CpyDst, Align(1), Src, Align(1),
401 TLI->getAsSizeT(Len + 1, *B.GetInsertBlock()->getModule()));
402 return Dst;
405 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
406 // Extract some information from the instruction.
407 Value *Dst = CI->getArgOperand(0);
408 Value *Src = CI->getArgOperand(1);
409 Value *Size = CI->getArgOperand(2);
410 uint64_t Len;
411 annotateNonNullNoUndefBasedOnAccess(CI, 0);
412 if (isKnownNonZero(Size, DL))
413 annotateNonNullNoUndefBasedOnAccess(CI, 1);
415 // We don't do anything if length is not constant.
416 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
417 if (LengthArg) {
418 Len = LengthArg->getZExtValue();
419 // strncat(x, c, 0) -> x
420 if (!Len)
421 return Dst;
422 } else {
423 return nullptr;
426 // See if we can get the length of the input string.
427 uint64_t SrcLen = GetStringLength(Src);
428 if (SrcLen) {
429 annotateDereferenceableBytes(CI, 1, SrcLen);
430 --SrcLen; // Unbias length.
431 } else {
432 return nullptr;
435 // strncat(x, "", c) -> x
436 if (SrcLen == 0)
437 return Dst;
439 // We don't optimize this case.
440 if (Len < SrcLen)
441 return nullptr;
443 // strncat(x, s, c) -> strcat(x, s)
444 // s is constant so the strcat can be optimized further.
445 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
448 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when
449 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function
450 // is that either S is dereferenceable or the value of N is nonzero.
451 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
452 IRBuilderBase &B, const DataLayout &DL)
454 Value *Src = CI->getArgOperand(0);
455 Value *CharVal = CI->getArgOperand(1);
457 // Fold memchr(A, C, N) == A to N && *A == C.
458 Type *CharTy = B.getInt8Ty();
459 Value *Char0 = B.CreateLoad(CharTy, Src);
460 CharVal = B.CreateTrunc(CharVal, CharTy);
461 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
463 if (NBytes) {
464 Value *Zero = ConstantInt::get(NBytes->getType(), 0);
465 Value *And = B.CreateICmpNE(NBytes, Zero);
466 Cmp = B.CreateLogicalAnd(And, Cmp);
469 Value *NullPtr = Constant::getNullValue(CI->getType());
470 return B.CreateSelect(Cmp, Src, NullPtr);
473 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
474 Value *SrcStr = CI->getArgOperand(0);
475 Value *CharVal = CI->getArgOperand(1);
476 annotateNonNullNoUndefBasedOnAccess(CI, 0);
478 if (isOnlyUsedInEqualityComparison(CI, SrcStr))
479 return memChrToCharCompare(CI, nullptr, B, DL);
481 // If the second operand is non-constant, see if we can compute the length
482 // of the input string and turn this into memchr.
483 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
484 if (!CharC) {
485 uint64_t Len = GetStringLength(SrcStr);
486 if (Len)
487 annotateDereferenceableBytes(CI, 0, Len);
488 else
489 return nullptr;
491 Function *Callee = CI->getCalledFunction();
492 FunctionType *FT = Callee->getFunctionType();
493 unsigned IntBits = TLI->getIntSize();
494 if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'.
495 return nullptr;
497 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
498 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
499 return copyFlags(*CI,
500 emitMemChr(SrcStr, CharVal, // include nul.
501 ConstantInt::get(SizeTTy, Len), B,
502 DL, TLI));
505 if (CharC->isZero()) {
506 Value *NullPtr = Constant::getNullValue(CI->getType());
507 if (isOnlyUsedInEqualityComparison(CI, NullPtr))
508 // Pre-empt the transformation to strlen below and fold
509 // strchr(A, '\0') == null to false.
510 return B.CreateIntToPtr(B.getTrue(), CI->getType());
513 // Otherwise, the character is a constant, see if the first argument is
514 // a string literal. If so, we can constant fold.
515 StringRef Str;
516 if (!getConstantStringInfo(SrcStr, Str)) {
517 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
518 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
519 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
520 return nullptr;
523 // Compute the offset, make sure to handle the case when we're searching for
524 // zero (a weird way to spell strlen).
525 size_t I = (0xFF & CharC->getSExtValue()) == 0
526 ? Str.size()
527 : Str.find(CharC->getSExtValue());
528 if (I == StringRef::npos) // Didn't find the char. strchr returns null.
529 return Constant::getNullValue(CI->getType());
531 // strchr(s+n,c) -> gep(s+n+i,c)
532 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
535 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
536 Value *SrcStr = CI->getArgOperand(0);
537 Value *CharVal = CI->getArgOperand(1);
538 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
539 annotateNonNullNoUndefBasedOnAccess(CI, 0);
541 StringRef Str;
542 if (!getConstantStringInfo(SrcStr, Str)) {
543 // strrchr(s, 0) -> strchr(s, 0)
544 if (CharC && CharC->isZero())
545 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
546 return nullptr;
549 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
550 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
552 // Try to expand strrchr to the memrchr nonstandard extension if it's
553 // available, or simply fail otherwise.
554 uint64_t NBytes = Str.size() + 1; // Include the terminating nul.
555 Value *Size = ConstantInt::get(SizeTTy, NBytes);
556 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
559 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
560 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
561 if (Str1P == Str2P) // strcmp(x,x) -> 0
562 return ConstantInt::get(CI->getType(), 0);
564 StringRef Str1, Str2;
565 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
566 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
568 // strcmp(x, y) -> cnst (if both x and y are constant strings)
569 if (HasStr1 && HasStr2)
570 return ConstantInt::get(CI->getType(),
571 std::clamp(Str1.compare(Str2), -1, 1));
573 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
574 return B.CreateNeg(B.CreateZExt(
575 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
577 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
578 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
579 CI->getType());
581 // strcmp(P, "x") -> memcmp(P, "x", 2)
582 uint64_t Len1 = GetStringLength(Str1P);
583 if (Len1)
584 annotateDereferenceableBytes(CI, 0, Len1);
585 uint64_t Len2 = GetStringLength(Str2P);
586 if (Len2)
587 annotateDereferenceableBytes(CI, 1, Len2);
589 if (Len1 && Len2) {
590 return copyFlags(
591 *CI, emitMemCmp(Str1P, Str2P,
592 TLI->getAsSizeT(std::min(Len1, Len2), *CI->getModule()),
593 B, DL, TLI));
596 // strcmp to memcmp
597 if (!HasStr1 && HasStr2) {
598 if (canTransformToMemCmp(CI, Str1P, Len2, DL))
599 return copyFlags(*CI, emitMemCmp(Str1P, Str2P,
600 TLI->getAsSizeT(Len2, *CI->getModule()),
601 B, DL, TLI));
602 } else if (HasStr1 && !HasStr2) {
603 if (canTransformToMemCmp(CI, Str2P, Len1, DL))
604 return copyFlags(*CI, emitMemCmp(Str1P, Str2P,
605 TLI->getAsSizeT(Len1, *CI->getModule()),
606 B, DL, TLI));
609 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
610 return nullptr;
613 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
614 // arrays LHS and RHS and nonconstant Size.
615 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
616 Value *Size, bool StrNCmp,
617 IRBuilderBase &B, const DataLayout &DL);
619 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
620 Value *Str1P = CI->getArgOperand(0);
621 Value *Str2P = CI->getArgOperand(1);
622 Value *Size = CI->getArgOperand(2);
623 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
624 return ConstantInt::get(CI->getType(), 0);
626 if (isKnownNonZero(Size, DL))
627 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
628 // Get the length argument if it is constant.
629 uint64_t Length;
630 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
631 Length = LengthArg->getZExtValue();
632 else
633 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
635 if (Length == 0) // strncmp(x,y,0) -> 0
636 return ConstantInt::get(CI->getType(), 0);
638 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
639 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
641 StringRef Str1, Str2;
642 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
643 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
645 // strncmp(x, y) -> cnst (if both x and y are constant strings)
646 if (HasStr1 && HasStr2) {
647 // Avoid truncating the 64-bit Length to 32 bits in ILP32.
648 StringRef SubStr1 = substr(Str1, Length);
649 StringRef SubStr2 = substr(Str2, Length);
650 return ConstantInt::get(CI->getType(),
651 std::clamp(SubStr1.compare(SubStr2), -1, 1));
654 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
655 return B.CreateNeg(B.CreateZExt(
656 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
658 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
659 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
660 CI->getType());
662 uint64_t Len1 = GetStringLength(Str1P);
663 if (Len1)
664 annotateDereferenceableBytes(CI, 0, Len1);
665 uint64_t Len2 = GetStringLength(Str2P);
666 if (Len2)
667 annotateDereferenceableBytes(CI, 1, Len2);
669 // strncmp to memcmp
670 if (!HasStr1 && HasStr2) {
671 Len2 = std::min(Len2, Length);
672 if (canTransformToMemCmp(CI, Str1P, Len2, DL))
673 return copyFlags(*CI, emitMemCmp(Str1P, Str2P,
674 TLI->getAsSizeT(Len2, *CI->getModule()),
675 B, DL, TLI));
676 } else if (HasStr1 && !HasStr2) {
677 Len1 = std::min(Len1, Length);
678 if (canTransformToMemCmp(CI, Str2P, Len1, DL))
679 return copyFlags(*CI, emitMemCmp(Str1P, Str2P,
680 TLI->getAsSizeT(Len1, *CI->getModule()),
681 B, DL, TLI));
684 return nullptr;
687 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
688 Value *Src = CI->getArgOperand(0);
689 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
690 uint64_t SrcLen = GetStringLength(Src);
691 if (SrcLen && Size) {
692 annotateDereferenceableBytes(CI, 0, SrcLen);
693 if (SrcLen <= Size->getZExtValue() + 1)
694 return copyFlags(*CI, emitStrDup(Src, B, TLI));
697 return nullptr;
700 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
701 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
702 if (Dst == Src) // strcpy(x,x) -> x
703 return Src;
705 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
706 // See if we can get the length of the input string.
707 uint64_t Len = GetStringLength(Src);
708 if (Len)
709 annotateDereferenceableBytes(CI, 1, Len);
710 else
711 return nullptr;
713 // We have enough information to now generate the memcpy call to do the
714 // copy for us. Make a memcpy to copy the nul byte with align = 1.
715 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
716 TLI->getAsSizeT(Len, *CI->getModule()));
717 mergeAttributesAndFlags(NewCI, *CI);
718 return Dst;
721 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
722 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
724 // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
725 if (CI->use_empty())
726 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
728 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
729 Value *StrLen = emitStrLen(Src, B, DL, TLI);
730 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
733 // See if we can get the length of the input string.
734 uint64_t Len = GetStringLength(Src);
735 if (Len)
736 annotateDereferenceableBytes(CI, 1, Len);
737 else
738 return nullptr;
740 Value *LenV = TLI->getAsSizeT(Len, *CI->getModule());
741 Value *DstEnd = B.CreateInBoundsGEP(
742 B.getInt8Ty(), Dst, TLI->getAsSizeT(Len - 1, *CI->getModule()));
744 // We have enough information to now generate the memcpy call to do the
745 // copy for us. Make a memcpy to copy the nul byte with align = 1.
746 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
747 mergeAttributesAndFlags(NewCI, *CI);
748 return DstEnd;
751 // Optimize a call to size_t strlcpy(char*, const char*, size_t).
753 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) {
754 Value *Size = CI->getArgOperand(2);
755 if (isKnownNonZero(Size, DL))
756 // Like snprintf, the function stores into the destination only when
757 // the size argument is nonzero.
758 annotateNonNullNoUndefBasedOnAccess(CI, 0);
759 // The function reads the source argument regardless of Size (it returns
760 // its length).
761 annotateNonNullNoUndefBasedOnAccess(CI, 1);
763 uint64_t NBytes;
764 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
765 NBytes = SizeC->getZExtValue();
766 else
767 return nullptr;
769 Value *Dst = CI->getArgOperand(0);
770 Value *Src = CI->getArgOperand(1);
771 if (NBytes <= 1) {
772 if (NBytes == 1)
773 // For a call to strlcpy(D, S, 1) first store a nul in *D.
774 B.CreateStore(B.getInt8(0), Dst);
776 // Transform strlcpy(D, S, 0) to a call to strlen(S).
777 return copyFlags(*CI, emitStrLen(Src, B, DL, TLI));
780 // Try to determine the length of the source, substituting its size
781 // when it's not nul-terminated (as it's required to be) to avoid
782 // reading past its end.
783 StringRef Str;
784 if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false))
785 return nullptr;
787 uint64_t SrcLen = Str.find('\0');
788 // Set if the terminating nul should be copied by the call to memcpy
789 // below.
790 bool NulTerm = SrcLen < NBytes;
792 if (NulTerm)
793 // Overwrite NBytes with the number of bytes to copy, including
794 // the terminating nul.
795 NBytes = SrcLen + 1;
796 else {
797 // Set the length of the source for the function to return to its
798 // size, and cap NBytes at the same.
799 SrcLen = std::min(SrcLen, uint64_t(Str.size()));
800 NBytes = std::min(NBytes - 1, SrcLen);
803 if (SrcLen == 0) {
804 // Transform strlcpy(D, "", N) to (*D = '\0, 0).
805 B.CreateStore(B.getInt8(0), Dst);
806 return ConstantInt::get(CI->getType(), 0);
809 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
810 // bound on strlen(S) + 1 and N, optionally followed by a nul store to
811 // D[N' - 1] if necessary.
812 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
813 TLI->getAsSizeT(NBytes, *CI->getModule()));
814 mergeAttributesAndFlags(NewCI, *CI);
816 if (!NulTerm) {
817 Value *EndOff = ConstantInt::get(CI->getType(), NBytes);
818 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff);
819 B.CreateStore(B.getInt8(0), EndPtr);
822 // Like snprintf, strlcpy returns the number of nonzero bytes that would
823 // have been copied if the bound had been sufficiently big (which in this
824 // case is strlen(Src)).
825 return ConstantInt::get(CI->getType(), SrcLen);
828 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy
829 // otherwise.
830 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd,
831 IRBuilderBase &B) {
832 Value *Dst = CI->getArgOperand(0);
833 Value *Src = CI->getArgOperand(1);
834 Value *Size = CI->getArgOperand(2);
836 if (isKnownNonZero(Size, DL)) {
837 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays
838 // only when N is nonzero.
839 annotateNonNullNoUndefBasedOnAccess(CI, 0);
840 annotateNonNullNoUndefBasedOnAccess(CI, 1);
843 // If the "bound" argument is known set N to it. Otherwise set it to
844 // UINT64_MAX and handle it later.
845 uint64_t N = UINT64_MAX;
846 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
847 N = SizeC->getZExtValue();
849 if (N == 0)
850 // Fold st{p,r}ncpy(D, S, 0) to D.
851 return Dst;
853 if (N == 1) {
854 Type *CharTy = B.getInt8Ty();
855 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0");
856 B.CreateStore(CharVal, Dst);
857 if (!RetEnd)
858 // Transform strncpy(D, S, 1) to return (*D = *S), D.
859 return Dst;
861 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D.
862 Value *ZeroChar = ConstantInt::get(CharTy, 0);
863 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp");
865 Value *Off1 = B.getInt32(1);
866 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end");
867 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel");
870 // If the length of the input string is known set SrcLen to it.
871 uint64_t SrcLen = GetStringLength(Src);
872 if (SrcLen)
873 annotateDereferenceableBytes(CI, 1, SrcLen);
874 else
875 return nullptr;
877 --SrcLen; // Unbias length.
879 if (SrcLen == 0) {
880 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N.
881 Align MemSetAlign =
882 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
883 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
884 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
885 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
886 CI->getContext(), 0, ArgAttrs));
887 copyFlags(*CI, NewCI);
888 return Dst;
891 if (N > SrcLen + 1) {
892 if (N > 128)
893 // Bail if N is large or unknown.
894 return nullptr;
896 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128.
897 StringRef Str;
898 if (!getConstantStringInfo(Src, Str))
899 return nullptr;
900 std::string SrcStr = Str.str();
901 // Create a bigger, nul-padded array with the same length, SrcLen,
902 // as the original string.
903 SrcStr.resize(N, '\0');
904 Src = B.CreateGlobalString(
905 SrcStr, "str", /*AddressSpace=*/DL.getDefaultGlobalsAddressSpace(),
906 /*M=*/nullptr, /*AddNull=*/false);
909 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both
910 // S and N are constant.
911 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
912 TLI->getAsSizeT(N, *CI->getModule()));
913 mergeAttributesAndFlags(NewCI, *CI);
914 if (!RetEnd)
915 return Dst;
917 // stpncpy(D, S, N) returns the address of the first null in D if it writes
918 // one, otherwise D + N.
919 Value *Off = B.getInt64(std::min(SrcLen, N));
920 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr");
923 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
924 unsigned CharSize,
925 Value *Bound) {
926 Value *Src = CI->getArgOperand(0);
927 Type *CharTy = B.getIntNTy(CharSize);
929 if (isOnlyUsedInZeroEqualityComparison(CI) &&
930 (!Bound || isKnownNonZero(Bound, DL))) {
931 // Fold strlen:
932 // strlen(x) != 0 --> *x != 0
933 // strlen(x) == 0 --> *x == 0
934 // and likewise strnlen with constant N > 0:
935 // strnlen(x, N) != 0 --> *x != 0
936 // strnlen(x, N) == 0 --> *x == 0
937 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
938 CI->getType());
941 if (Bound) {
942 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
943 if (BoundCst->isZero())
944 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
945 return ConstantInt::get(CI->getType(), 0);
947 if (BoundCst->isOne()) {
948 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
949 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
950 Value *ZeroChar = ConstantInt::get(CharTy, 0);
951 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
952 return B.CreateZExt(Cmp, CI->getType());
957 if (uint64_t Len = GetStringLength(Src, CharSize)) {
958 Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
959 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
960 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
961 if (Bound)
962 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
963 return LenC;
966 if (Bound)
967 // Punt for strnlen for now.
968 return nullptr;
970 // If s is a constant pointer pointing to a string literal, we can fold
971 // strlen(s + x) to strlen(s) - x, when x is known to be in the range
972 // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
973 // We only try to simplify strlen when the pointer s points to an array
974 // of CharSize elements. Otherwise, we would need to scale the offset x before
975 // doing the subtraction. This will make the optimization more complex, and
976 // it's not very useful because calling strlen for a pointer of other types is
977 // very uncommon.
978 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
979 // TODO: Handle subobjects.
980 if (!isGEPBasedOnPointerToString(GEP, CharSize))
981 return nullptr;
983 ConstantDataArraySlice Slice;
984 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
985 uint64_t NullTermIdx;
986 if (Slice.Array == nullptr) {
987 NullTermIdx = 0;
988 } else {
989 NullTermIdx = ~((uint64_t)0);
990 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
991 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
992 NullTermIdx = I;
993 break;
996 // If the string does not have '\0', leave it to strlen to compute
997 // its length.
998 if (NullTermIdx == ~((uint64_t)0))
999 return nullptr;
1002 Value *Offset = GEP->getOperand(2);
1003 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
1004 uint64_t ArrSize =
1005 cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
1007 // If Offset is not provably in the range [0, NullTermIdx], we can still
1008 // optimize if we can prove that the program has undefined behavior when
1009 // Offset is outside that range. That is the case when GEP->getOperand(0)
1010 // is a pointer to an object whose memory extent is NullTermIdx+1.
1011 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
1012 (isa<GlobalVariable>(GEP->getOperand(0)) &&
1013 NullTermIdx == ArrSize - 1)) {
1014 Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
1015 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
1016 Offset);
1021 // strlen(x?"foo":"bars") --> x ? 3 : 4
1022 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
1023 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
1024 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
1025 if (LenTrue && LenFalse) {
1026 ORE.emit([&]() {
1027 return OptimizationRemark("instcombine", "simplify-libcalls", CI)
1028 << "folded strlen(select) to select of constants";
1030 return B.CreateSelect(SI->getCondition(),
1031 ConstantInt::get(CI->getType(), LenTrue - 1),
1032 ConstantInt::get(CI->getType(), LenFalse - 1));
1036 return nullptr;
1039 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
1040 if (Value *V = optimizeStringLength(CI, B, 8))
1041 return V;
1042 annotateNonNullNoUndefBasedOnAccess(CI, 0);
1043 return nullptr;
1046 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
1047 Value *Bound = CI->getArgOperand(1);
1048 if (Value *V = optimizeStringLength(CI, B, 8, Bound))
1049 return V;
1051 if (isKnownNonZero(Bound, DL))
1052 annotateNonNullNoUndefBasedOnAccess(CI, 0);
1053 return nullptr;
1056 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
1057 Module &M = *CI->getModule();
1058 unsigned WCharSize = TLI->getWCharSize(M) * 8;
1059 // We cannot perform this optimization without wchar_size metadata.
1060 if (WCharSize == 0)
1061 return nullptr;
1063 return optimizeStringLength(CI, B, WCharSize);
1066 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
1067 StringRef S1, S2;
1068 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1069 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1071 // strpbrk(s, "") -> nullptr
1072 // strpbrk("", s) -> nullptr
1073 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1074 return Constant::getNullValue(CI->getType());
1076 // Constant folding.
1077 if (HasS1 && HasS2) {
1078 size_t I = S1.find_first_of(S2);
1079 if (I == StringRef::npos) // No match.
1080 return Constant::getNullValue(CI->getType());
1082 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
1083 B.getInt64(I), "strpbrk");
1086 // strpbrk(s, "a") -> strchr(s, 'a')
1087 if (HasS2 && S2.size() == 1)
1088 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
1090 return nullptr;
1093 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
1094 Value *EndPtr = CI->getArgOperand(1);
1095 if (isa<ConstantPointerNull>(EndPtr)) {
1096 // With a null EndPtr, this function won't capture the main argument.
1097 // It would be readonly too, except that it still may write to errno.
1098 CI->addParamAttr(0, Attribute::NoCapture);
1101 return nullptr;
1104 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
1105 StringRef S1, S2;
1106 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1107 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1109 // strspn(s, "") -> 0
1110 // strspn("", s) -> 0
1111 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1112 return Constant::getNullValue(CI->getType());
1114 // Constant folding.
1115 if (HasS1 && HasS2) {
1116 size_t Pos = S1.find_first_not_of(S2);
1117 if (Pos == StringRef::npos)
1118 Pos = S1.size();
1119 return ConstantInt::get(CI->getType(), Pos);
1122 return nullptr;
1125 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
1126 StringRef S1, S2;
1127 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1128 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1130 // strcspn("", s) -> 0
1131 if (HasS1 && S1.empty())
1132 return Constant::getNullValue(CI->getType());
1134 // Constant folding.
1135 if (HasS1 && HasS2) {
1136 size_t Pos = S1.find_first_of(S2);
1137 if (Pos == StringRef::npos)
1138 Pos = S1.size();
1139 return ConstantInt::get(CI->getType(), Pos);
1142 // strcspn(s, "") -> strlen(s)
1143 if (HasS2 && S2.empty())
1144 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
1146 return nullptr;
1149 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
1150 // fold strstr(x, x) -> x.
1151 if (CI->getArgOperand(0) == CI->getArgOperand(1))
1152 return CI->getArgOperand(0);
1154 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
1155 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
1156 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
1157 if (!StrLen)
1158 return nullptr;
1159 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
1160 StrLen, B, DL, TLI);
1161 if (!StrNCmp)
1162 return nullptr;
1163 for (User *U : llvm::make_early_inc_range(CI->users())) {
1164 ICmpInst *Old = cast<ICmpInst>(U);
1165 Value *Cmp =
1166 B.CreateICmp(Old->getPredicate(), StrNCmp,
1167 ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
1168 replaceAllUsesWith(Old, Cmp);
1170 return CI;
1173 // See if either input string is a constant string.
1174 StringRef SearchStr, ToFindStr;
1175 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
1176 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
1178 // fold strstr(x, "") -> x.
1179 if (HasStr2 && ToFindStr.empty())
1180 return CI->getArgOperand(0);
1182 // If both strings are known, constant fold it.
1183 if (HasStr1 && HasStr2) {
1184 size_t Offset = SearchStr.find(ToFindStr);
1186 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
1187 return Constant::getNullValue(CI->getType());
1189 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1190 return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0),
1191 Offset, "strstr");
1194 // fold strstr(x, "y") -> strchr(x, 'y').
1195 if (HasStr2 && ToFindStr.size() == 1) {
1196 return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
1199 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
1200 return nullptr;
1203 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
1204 Value *SrcStr = CI->getArgOperand(0);
1205 Value *Size = CI->getArgOperand(2);
1206 annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1207 Value *CharVal = CI->getArgOperand(1);
1208 ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1209 Value *NullPtr = Constant::getNullValue(CI->getType());
1211 if (LenC) {
1212 if (LenC->isZero())
1213 // Fold memrchr(x, y, 0) --> null.
1214 return NullPtr;
1216 if (LenC->isOne()) {
1217 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1218 // constant or otherwise.
1219 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
1220 // Slice off the character's high end bits.
1221 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1222 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
1223 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
1227 StringRef Str;
1228 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1229 return nullptr;
1231 if (Str.size() == 0)
1232 // If the array is empty fold memrchr(A, C, N) to null for any value
1233 // of C and N on the basis that the only valid value of N is zero
1234 // (otherwise the call is undefined).
1235 return NullPtr;
1237 uint64_t EndOff = UINT64_MAX;
1238 if (LenC) {
1239 EndOff = LenC->getZExtValue();
1240 if (Str.size() < EndOff)
1241 // Punt out-of-bounds accesses to sanitizers and/or libc.
1242 return nullptr;
1245 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
1246 // Fold memrchr(S, C, N) for a constant C.
1247 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
1248 if (Pos == StringRef::npos)
1249 // When the character is not in the source array fold the result
1250 // to null regardless of Size.
1251 return NullPtr;
1253 if (LenC)
1254 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1255 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
1257 if (Str.find(Str[Pos]) == Pos) {
1258 // When there is just a single occurrence of C in S, i.e., the one
1259 // in Str[Pos], fold
1260 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1261 // for nonconstant N.
1262 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1263 "memrchr.cmp");
1264 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
1265 B.getInt64(Pos), "memrchr.ptr_plus");
1266 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
1270 // Truncate the string to search at most EndOff characters.
1271 Str = Str.substr(0, EndOff);
1272 if (Str.find_first_not_of(Str[0]) != StringRef::npos)
1273 return nullptr;
1275 // If the source array consists of all equal characters, then for any
1276 // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1277 // N != 0 && *S == C ? S + N - 1 : null
1278 Type *SizeTy = Size->getType();
1279 Type *Int8Ty = B.getInt8Ty();
1280 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1281 // Slice off the sought character's high end bits.
1282 CharVal = B.CreateTrunc(CharVal, Int8Ty);
1283 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1284 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1285 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1286 Value *SrcPlus =
1287 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1288 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1291 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1292 Value *SrcStr = CI->getArgOperand(0);
1293 Value *Size = CI->getArgOperand(2);
1295 if (isKnownNonZero(Size, DL)) {
1296 annotateNonNullNoUndefBasedOnAccess(CI, 0);
1297 if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1298 return memChrToCharCompare(CI, Size, B, DL);
1301 Value *CharVal = CI->getArgOperand(1);
1302 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1303 ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1304 Value *NullPtr = Constant::getNullValue(CI->getType());
1306 // memchr(x, y, 0) -> null
1307 if (LenC) {
1308 if (LenC->isZero())
1309 return NullPtr;
1311 if (LenC->isOne()) {
1312 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1313 // constant or otherwise.
1314 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1315 // Slice off the character's high end bits.
1316 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1317 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1318 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1322 StringRef Str;
1323 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1324 return nullptr;
1326 if (CharC) {
1327 size_t Pos = Str.find(CharC->getZExtValue());
1328 if (Pos == StringRef::npos)
1329 // When the character is not in the source array fold the result
1330 // to null regardless of Size.
1331 return NullPtr;
1333 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1334 // When the constant Size is less than or equal to the character
1335 // position also fold the result to null.
1336 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1337 "memchr.cmp");
1338 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1339 "memchr.ptr");
1340 return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1343 if (Str.size() == 0)
1344 // If the array is empty fold memchr(A, C, N) to null for any value
1345 // of C and N on the basis that the only valid value of N is zero
1346 // (otherwise the call is undefined).
1347 return NullPtr;
1349 if (LenC)
1350 Str = substr(Str, LenC->getZExtValue());
1352 size_t Pos = Str.find_first_not_of(Str[0]);
1353 if (Pos == StringRef::npos
1354 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1355 // If the source array consists of at most two consecutive sequences
1356 // of the same characters, then for any C and N (whether in bounds or
1357 // not), fold memchr(S, C, N) to
1358 // N != 0 && *S == C ? S : null
1359 // or for the two sequences to:
1360 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1361 // ^Sel2 ^Sel1 are denoted above.
1362 // The latter makes it also possible to fold strchr() calls with strings
1363 // of the same characters.
1364 Type *SizeTy = Size->getType();
1365 Type *Int8Ty = B.getInt8Ty();
1367 // Slice off the sought character's high end bits.
1368 CharVal = B.CreateTrunc(CharVal, Int8Ty);
1370 Value *Sel1 = NullPtr;
1371 if (Pos != StringRef::npos) {
1372 // Handle two consecutive sequences of the same characters.
1373 Value *PosVal = ConstantInt::get(SizeTy, Pos);
1374 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1375 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1376 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1377 Value *And = B.CreateAnd(CEqSPos, NGtPos);
1378 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1379 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1382 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1383 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1384 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1385 Value *And = B.CreateAnd(NNeZ, CEqS0);
1386 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1389 if (!LenC) {
1390 if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1391 // S is dereferenceable so it's safe to load from it and fold
1392 // memchr(S, C, N) == S to N && *S == C for any C and N.
1393 // TODO: This is safe even for nonconstant S.
1394 return memChrToCharCompare(CI, Size, B, DL);
1396 // From now on we need a constant length and constant array.
1397 return nullptr;
1400 bool OptForSize = llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
1401 PGSOQueryType::IRPass);
1403 // If the char is variable but the input str and length are not we can turn
1404 // this memchr call into a simple bit field test. Of course this only works
1405 // when the return value is only checked against null.
1407 // It would be really nice to reuse switch lowering here but we can't change
1408 // the CFG at this point.
1410 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1411 // != 0
1412 // after bounds check.
1413 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1414 return nullptr;
1416 unsigned char Max =
1417 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1418 reinterpret_cast<const unsigned char *>(Str.end()));
1420 // Make sure the bit field we're about to create fits in a register on the
1421 // target.
1422 // FIXME: On a 64 bit architecture this prevents us from using the
1423 // interesting range of alpha ascii chars. We could do better by emitting
1424 // two bitfields or shifting the range by 64 if no lower chars are used.
1425 if (!DL.fitsInLegalInteger(Max + 1)) {
1426 // Build chain of ORs
1427 // Transform:
1428 // memchr("abcd", C, 4) != nullptr
1429 // to:
1430 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0
1431 std::string SortedStr = Str.str();
1432 llvm::sort(SortedStr);
1433 // Compute the number of of non-contiguous ranges.
1434 unsigned NonContRanges = 1;
1435 for (size_t i = 1; i < SortedStr.size(); ++i) {
1436 if (SortedStr[i] > SortedStr[i - 1] + 1) {
1437 NonContRanges++;
1441 // Restrict this optimization to profitable cases with one or two range
1442 // checks.
1443 if (NonContRanges > 2)
1444 return nullptr;
1446 // Slice off the character's high end bits.
1447 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1449 SmallVector<Value *> CharCompares;
1450 for (unsigned char C : SortedStr)
1451 CharCompares.push_back(B.CreateICmpEQ(CharVal, B.getInt8(C)));
1453 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType());
1456 // For the bit field use a power-of-2 type with at least 8 bits to avoid
1457 // creating unnecessary illegal types.
1458 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1460 // Now build the bit field.
1461 APInt Bitfield(Width, 0);
1462 for (char C : Str)
1463 Bitfield.setBit((unsigned char)C);
1464 Value *BitfieldC = B.getInt(Bitfield);
1466 // Adjust width of "C" to the bitfield width, then mask off the high bits.
1467 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1468 C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1470 // First check that the bit field access is within bounds.
1471 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1472 "memchr.bounds");
1474 // Create code that checks if the given bit is set in the field.
1475 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1476 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1478 // Finally merge both checks and cast to pointer type. The inttoptr
1479 // implicitly zexts the i1 to intptr type.
1480 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1481 CI->getType());
1484 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1485 // arrays LHS and RHS and nonconstant Size.
1486 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1487 Value *Size, bool StrNCmp,
1488 IRBuilderBase &B, const DataLayout &DL) {
1489 if (LHS == RHS) // memcmp(s,s,x) -> 0
1490 return Constant::getNullValue(CI->getType());
1492 StringRef LStr, RStr;
1493 if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) ||
1494 !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false))
1495 return nullptr;
1497 // If the contents of both constant arrays are known, fold a call to
1498 // memcmp(A, B, N) to
1499 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1500 // where Pos is the first mismatch between A and B, determined below.
1502 uint64_t Pos = 0;
1503 Value *Zero = ConstantInt::get(CI->getType(), 0);
1504 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1505 if (Pos == MinSize ||
1506 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1507 // One array is a leading part of the other of equal or greater
1508 // size, or for strncmp, the arrays are equal strings.
1509 // Fold the result to zero. Size is assumed to be in bounds, since
1510 // otherwise the call would be undefined.
1511 return Zero;
1514 if (LStr[Pos] != RStr[Pos])
1515 break;
1518 // Normalize the result.
1519 typedef unsigned char UChar;
1520 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1521 Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1522 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1523 Value *Res = ConstantInt::get(CI->getType(), IRes);
1524 return B.CreateSelect(Cmp, Zero, Res);
1527 // Optimize a memcmp call CI with constant size Len.
1528 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1529 uint64_t Len, IRBuilderBase &B,
1530 const DataLayout &DL) {
1531 if (Len == 0) // memcmp(s1,s2,0) -> 0
1532 return Constant::getNullValue(CI->getType());
1534 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1535 if (Len == 1) {
1536 Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"),
1537 CI->getType(), "lhsv");
1538 Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"),
1539 CI->getType(), "rhsv");
1540 return B.CreateSub(LHSV, RHSV, "chardiff");
1543 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1544 // TODO: The case where both inputs are constants does not need to be limited
1545 // to legal integers or equality comparison. See block below this.
1546 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1547 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1548 Align PrefAlignment = DL.getPrefTypeAlign(IntType);
1550 // First, see if we can fold either argument to a constant.
1551 Value *LHSV = nullptr;
1552 if (auto *LHSC = dyn_cast<Constant>(LHS))
1553 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1555 Value *RHSV = nullptr;
1556 if (auto *RHSC = dyn_cast<Constant>(RHS))
1557 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1559 // Don't generate unaligned loads. If either source is constant data,
1560 // alignment doesn't matter for that source because there is no load.
1561 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1562 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1563 if (!LHSV)
1564 LHSV = B.CreateLoad(IntType, LHS, "lhsv");
1565 if (!RHSV)
1566 RHSV = B.CreateLoad(IntType, RHS, "rhsv");
1567 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1571 return nullptr;
1574 // Most simplifications for memcmp also apply to bcmp.
1575 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1576 IRBuilderBase &B) {
1577 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1578 Value *Size = CI->getArgOperand(2);
1580 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1582 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1583 return Res;
1585 // Handle constant Size.
1586 ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1587 if (!LenC)
1588 return nullptr;
1590 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1593 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1594 Module *M = CI->getModule();
1595 if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1596 return V;
1598 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1599 // bcmp can be more efficient than memcmp because it only has to know that
1600 // there is a difference, not how different one is to the other.
1601 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1602 isOnlyUsedInZeroEqualityComparison(CI)) {
1603 Value *LHS = CI->getArgOperand(0);
1604 Value *RHS = CI->getArgOperand(1);
1605 Value *Size = CI->getArgOperand(2);
1606 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1609 return nullptr;
1612 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1613 return optimizeMemCmpBCmpCommon(CI, B);
1616 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1617 Value *Size = CI->getArgOperand(2);
1618 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1619 if (isa<IntrinsicInst>(CI))
1620 return nullptr;
1622 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1623 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1624 CI->getArgOperand(1), Align(1), Size);
1625 mergeAttributesAndFlags(NewCI, *CI);
1626 return CI->getArgOperand(0);
1629 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1630 Value *Dst = CI->getArgOperand(0);
1631 Value *Src = CI->getArgOperand(1);
1632 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1633 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1634 StringRef SrcStr;
1635 if (CI->use_empty() && Dst == Src)
1636 return Dst;
1637 // memccpy(d, s, c, 0) -> nullptr
1638 if (N) {
1639 if (N->isNullValue())
1640 return Constant::getNullValue(CI->getType());
1641 if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) ||
1642 // TODO: Handle zeroinitializer.
1643 !StopChar)
1644 return nullptr;
1645 } else {
1646 return nullptr;
1649 // Wrap arg 'c' of type int to char
1650 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1651 if (Pos == StringRef::npos) {
1652 if (N->getZExtValue() <= SrcStr.size()) {
1653 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1654 CI->getArgOperand(3)));
1655 return Constant::getNullValue(CI->getType());
1657 return nullptr;
1660 Value *NewN =
1661 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1662 // memccpy -> llvm.memcpy
1663 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1664 return Pos + 1 <= N->getZExtValue()
1665 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1666 : Constant::getNullValue(CI->getType());
1669 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1670 Value *Dst = CI->getArgOperand(0);
1671 Value *N = CI->getArgOperand(2);
1672 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1673 CallInst *NewCI =
1674 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1675 // Propagate attributes, but memcpy has no return value, so make sure that
1676 // any return attributes are compliant.
1677 // TODO: Attach return value attributes to the 1st operand to preserve them?
1678 mergeAttributesAndFlags(NewCI, *CI);
1679 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1682 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1683 Value *Size = CI->getArgOperand(2);
1684 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1685 if (isa<IntrinsicInst>(CI))
1686 return nullptr;
1688 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1689 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1690 CI->getArgOperand(1), Align(1), Size);
1691 mergeAttributesAndFlags(NewCI, *CI);
1692 return CI->getArgOperand(0);
1695 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1696 Value *Size = CI->getArgOperand(2);
1697 annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1698 if (isa<IntrinsicInst>(CI))
1699 return nullptr;
1701 // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1702 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1703 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1704 mergeAttributesAndFlags(NewCI, *CI);
1705 return CI->getArgOperand(0);
1708 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1709 if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1710 return copyFlags(*CI, emitMalloc(CI->getArgOperand(0)->getType(),
1711 CI->getArgOperand(1), B, DL, TLI));
1713 return nullptr;
1716 // When enabled, replace operator new() calls marked with a hot or cold memprof
1717 // attribute with an operator new() call that takes a __hot_cold_t parameter.
1718 // Currently this is supported by the open source version of tcmalloc, see:
1719 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h
1720 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B,
1721 LibFunc &Func) {
1722 if (!OptimizeHotColdNew)
1723 return nullptr;
1725 uint8_t HotCold;
1726 if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold")
1727 HotCold = ColdNewHintValue;
1728 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() ==
1729 "notcold")
1730 HotCold = NotColdNewHintValue;
1731 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot")
1732 HotCold = HotNewHintValue;
1733 else
1734 return nullptr;
1736 // For calls that already pass a hot/cold hint, only update the hint if
1737 // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint
1738 // if cold or hot, and leave as-is for default handling if "notcold" aka warm.
1739 // Note that in cases where we decide it is "notcold", it might be slightly
1740 // better to replace the hinted call with a non hinted call, to avoid the
1741 // extra parameter and the if condition check of the hint value in the
1742 // allocator. This can be considered in the future.
1743 switch (Func) {
1744 case LibFunc_Znwm12__hot_cold_t:
1745 if (OptimizeExistingHotColdNew)
1746 return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI,
1747 LibFunc_Znwm12__hot_cold_t, HotCold);
1748 break;
1749 case LibFunc_Znwm:
1750 if (HotCold != NotColdNewHintValue)
1751 return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI,
1752 LibFunc_Znwm12__hot_cold_t, HotCold);
1753 break;
1754 case LibFunc_Znam12__hot_cold_t:
1755 if (OptimizeExistingHotColdNew)
1756 return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI,
1757 LibFunc_Znam12__hot_cold_t, HotCold);
1758 break;
1759 case LibFunc_Znam:
1760 if (HotCold != NotColdNewHintValue)
1761 return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI,
1762 LibFunc_Znam12__hot_cold_t, HotCold);
1763 break;
1764 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
1765 if (OptimizeExistingHotColdNew)
1766 return emitHotColdNewNoThrow(
1767 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1768 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1769 break;
1770 case LibFunc_ZnwmRKSt9nothrow_t:
1771 if (HotCold != NotColdNewHintValue)
1772 return emitHotColdNewNoThrow(
1773 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1774 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1775 break;
1776 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
1777 if (OptimizeExistingHotColdNew)
1778 return emitHotColdNewNoThrow(
1779 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1780 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1781 break;
1782 case LibFunc_ZnamRKSt9nothrow_t:
1783 if (HotCold != NotColdNewHintValue)
1784 return emitHotColdNewNoThrow(
1785 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1786 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1787 break;
1788 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
1789 if (OptimizeExistingHotColdNew)
1790 return emitHotColdNewAligned(
1791 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1792 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1793 break;
1794 case LibFunc_ZnwmSt11align_val_t:
1795 if (HotCold != NotColdNewHintValue)
1796 return emitHotColdNewAligned(
1797 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1798 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1799 break;
1800 case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
1801 if (OptimizeExistingHotColdNew)
1802 return emitHotColdNewAligned(
1803 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1804 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1805 break;
1806 case LibFunc_ZnamSt11align_val_t:
1807 if (HotCold != NotColdNewHintValue)
1808 return emitHotColdNewAligned(
1809 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1810 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1811 break;
1812 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1813 if (OptimizeExistingHotColdNew)
1814 return emitHotColdNewAlignedNoThrow(
1815 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1),
1816 CI->getArgOperand(2), B, TLI,
1817 LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1818 break;
1819 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
1820 if (HotCold != NotColdNewHintValue)
1821 return emitHotColdNewAlignedNoThrow(
1822 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1),
1823 CI->getArgOperand(2), B, TLI,
1824 LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1825 break;
1826 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1827 if (OptimizeExistingHotColdNew)
1828 return emitHotColdNewAlignedNoThrow(
1829 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1),
1830 CI->getArgOperand(2), B, TLI,
1831 LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1832 break;
1833 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
1834 if (HotCold != NotColdNewHintValue)
1835 return emitHotColdNewAlignedNoThrow(
1836 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1),
1837 CI->getArgOperand(2), B, TLI,
1838 LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1839 break;
1840 case LibFunc_size_returning_new:
1841 if (HotCold != NotColdNewHintValue)
1842 return emitHotColdSizeReturningNew(
1843 CI->getType()->getStructElementType(0), CI->getArgOperand(0), B, TLI,
1844 LibFunc_size_returning_new_hot_cold, HotCold);
1845 break;
1846 case LibFunc_size_returning_new_hot_cold:
1847 if (OptimizeExistingHotColdNew)
1848 return emitHotColdSizeReturningNew(
1849 CI->getType()->getStructElementType(0), CI->getArgOperand(0), B, TLI,
1850 LibFunc_size_returning_new_hot_cold, HotCold);
1851 break;
1852 case LibFunc_size_returning_new_aligned:
1853 if (HotCold != NotColdNewHintValue)
1854 return emitHotColdSizeReturningNewAligned(
1855 CI->getType()->getStructElementType(0), CI->getArgOperand(0),
1856 CI->getArgOperand(1), B, TLI,
1857 LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1858 break;
1859 case LibFunc_size_returning_new_aligned_hot_cold:
1860 if (OptimizeExistingHotColdNew)
1861 return emitHotColdSizeReturningNewAligned(
1862 CI->getType()->getStructElementType(0), CI->getArgOperand(0),
1863 CI->getArgOperand(1), B, TLI,
1864 LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1865 break;
1866 default:
1867 return nullptr;
1869 return nullptr;
1872 //===----------------------------------------------------------------------===//
1873 // Math Library Optimizations
1874 //===----------------------------------------------------------------------===//
1876 // Replace a libcall \p CI with a call to intrinsic \p IID
1877 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1878 Intrinsic::ID IID) {
1879 CallInst *NewCall = B.CreateUnaryIntrinsic(IID, CI->getArgOperand(0), CI);
1880 NewCall->takeName(CI);
1881 return copyFlags(*CI, NewCall);
1884 /// Return a variant of Val with float type.
1885 /// Currently this works in two cases: If Val is an FPExtension of a float
1886 /// value to something bigger, simply return the operand.
1887 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1888 /// loss of precision do so.
1889 static Value *valueHasFloatPrecision(Value *Val) {
1890 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1891 Value *Op = Cast->getOperand(0);
1892 if (Op->getType()->isFloatTy())
1893 return Op;
1895 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1896 APFloat F = Const->getValueAPF();
1897 bool losesInfo;
1898 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1899 &losesInfo);
1900 if (!losesInfo)
1901 return ConstantFP::get(Const->getContext(), F);
1903 return nullptr;
1906 /// Shrink double -> float functions.
1907 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1908 bool isBinary, const TargetLibraryInfo *TLI,
1909 bool isPrecise = false) {
1910 Function *CalleeFn = CI->getCalledFunction();
1911 if (!CI->getType()->isDoubleTy() || !CalleeFn)
1912 return nullptr;
1914 // If not all the uses of the function are converted to float, then bail out.
1915 // This matters if the precision of the result is more important than the
1916 // precision of the arguments.
1917 if (isPrecise)
1918 for (User *U : CI->users()) {
1919 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1920 if (!Cast || !Cast->getType()->isFloatTy())
1921 return nullptr;
1924 // If this is something like 'g((double) float)', convert to 'gf(float)'.
1925 Value *V[2];
1926 V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1927 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1928 if (!V[0] || (isBinary && !V[1]))
1929 return nullptr;
1931 // If call isn't an intrinsic, check that it isn't within a function with the
1932 // same name as the float version of this call, otherwise the result is an
1933 // infinite loop. For example, from MinGW-w64:
1935 // float expf(float val) { return (float) exp((double) val); }
1936 StringRef CalleeName = CalleeFn->getName();
1937 bool IsIntrinsic = CalleeFn->isIntrinsic();
1938 if (!IsIntrinsic) {
1939 StringRef CallerName = CI->getFunction()->getName();
1940 if (!CallerName.empty() && CallerName.back() == 'f' &&
1941 CallerName.size() == (CalleeName.size() + 1) &&
1942 CallerName.starts_with(CalleeName))
1943 return nullptr;
1946 // Propagate the math semantics from the current function to the new function.
1947 IRBuilderBase::FastMathFlagGuard Guard(B);
1948 B.setFastMathFlags(CI->getFastMathFlags());
1950 // g((double) float) -> (double) gf(float)
1951 Value *R;
1952 if (IsIntrinsic) {
1953 Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1954 R = isBinary ? B.CreateIntrinsic(IID, B.getFloatTy(), V)
1955 : B.CreateIntrinsic(IID, B.getFloatTy(), V[0]);
1956 } else {
1957 AttributeList CalleeAttrs = CalleeFn->getAttributes();
1958 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1959 CalleeAttrs)
1960 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1962 return B.CreateFPExt(R, B.getDoubleTy());
1965 /// Shrink double -> float for unary functions.
1966 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1967 const TargetLibraryInfo *TLI,
1968 bool isPrecise = false) {
1969 return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1972 /// Shrink double -> float for binary functions.
1973 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1974 const TargetLibraryInfo *TLI,
1975 bool isPrecise = false) {
1976 return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1979 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1980 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1981 Value *Real, *Imag;
1983 if (CI->arg_size() == 1) {
1985 if (!CI->isFast())
1986 return nullptr;
1988 Value *Op = CI->getArgOperand(0);
1989 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1991 Real = B.CreateExtractValue(Op, 0, "real");
1992 Imag = B.CreateExtractValue(Op, 1, "imag");
1994 } else {
1995 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1997 Real = CI->getArgOperand(0);
1998 Imag = CI->getArgOperand(1);
2000 // if real or imaginary part is zero, simplify to abs(cimag(z))
2001 // or abs(creal(z))
2002 Value *AbsOp = nullptr;
2003 if (ConstantFP *ConstReal = dyn_cast<ConstantFP>(Real)) {
2004 if (ConstReal->isZero())
2005 AbsOp = Imag;
2007 } else if (ConstantFP *ConstImag = dyn_cast<ConstantFP>(Imag)) {
2008 if (ConstImag->isZero())
2009 AbsOp = Real;
2012 if (AbsOp) {
2013 IRBuilderBase::FastMathFlagGuard Guard(B);
2014 B.setFastMathFlags(CI->getFastMathFlags());
2016 return copyFlags(
2017 *CI, B.CreateUnaryIntrinsic(Intrinsic::fabs, AbsOp, nullptr, "cabs"));
2020 if (!CI->isFast())
2021 return nullptr;
2024 // Propagate fast-math flags from the existing call to new instructions.
2025 IRBuilderBase::FastMathFlagGuard Guard(B);
2026 B.setFastMathFlags(CI->getFastMathFlags());
2028 Value *RealReal = B.CreateFMul(Real, Real);
2029 Value *ImagImag = B.CreateFMul(Imag, Imag);
2031 return copyFlags(*CI, B.CreateUnaryIntrinsic(Intrinsic::sqrt,
2032 B.CreateFAdd(RealReal, ImagImag),
2033 nullptr, "cabs"));
2036 // Return a properly extended integer (DstWidth bits wide) if the operation is
2037 // an itofp.
2038 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
2039 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
2040 Value *Op = cast<Instruction>(I2F)->getOperand(0);
2041 // Make sure that the exponent fits inside an "int" of size DstWidth,
2042 // thus avoiding any range issues that FP has not.
2043 unsigned BitWidth = Op->getType()->getScalarSizeInBits();
2044 if (BitWidth < DstWidth || (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) {
2045 Type *IntTy = Op->getType()->getWithNewBitWidth(DstWidth);
2046 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, IntTy)
2047 : B.CreateZExt(Op, IntTy);
2051 return nullptr;
2054 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
2055 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
2056 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
2057 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
2058 Module *M = Pow->getModule();
2059 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2060 Type *Ty = Pow->getType();
2061 bool Ignored;
2063 // Evaluate special cases related to a nested function as the base.
2065 // pow(exp(x), y) -> exp(x * y)
2066 // pow(exp2(x), y) -> exp2(x * y)
2067 // If exp{,2}() is used only once, it is better to fold two transcendental
2068 // math functions into one. If used again, exp{,2}() would still have to be
2069 // called with the original argument, then keep both original transcendental
2070 // functions. However, this transformation is only safe with fully relaxed
2071 // math semantics, since, besides rounding differences, it changes overflow
2072 // and underflow behavior quite dramatically. For example:
2073 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
2074 // Whereas:
2075 // exp(1000 * 0.001) = exp(1)
2076 // TODO: Loosen the requirement for fully relaxed math semantics.
2077 // TODO: Handle exp10() when more targets have it available.
2078 CallInst *BaseFn = dyn_cast<CallInst>(Base);
2079 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
2080 LibFunc LibFn;
2082 Function *CalleeFn = BaseFn->getCalledFunction();
2083 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
2084 isLibFuncEmittable(M, TLI, LibFn)) {
2085 StringRef ExpName;
2086 Intrinsic::ID ID;
2087 Value *ExpFn;
2088 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
2090 switch (LibFn) {
2091 default:
2092 return nullptr;
2093 case LibFunc_expf:
2094 case LibFunc_exp:
2095 case LibFunc_expl:
2096 ExpName = TLI->getName(LibFunc_exp);
2097 ID = Intrinsic::exp;
2098 LibFnFloat = LibFunc_expf;
2099 LibFnDouble = LibFunc_exp;
2100 LibFnLongDouble = LibFunc_expl;
2101 break;
2102 case LibFunc_exp2f:
2103 case LibFunc_exp2:
2104 case LibFunc_exp2l:
2105 ExpName = TLI->getName(LibFunc_exp2);
2106 ID = Intrinsic::exp2;
2107 LibFnFloat = LibFunc_exp2f;
2108 LibFnDouble = LibFunc_exp2;
2109 LibFnLongDouble = LibFunc_exp2l;
2110 break;
2113 // Create new exp{,2}() with the product as its argument.
2114 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
2115 ExpFn = BaseFn->doesNotAccessMemory()
2116 ? B.CreateUnaryIntrinsic(ID, FMul, nullptr, ExpName)
2117 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
2118 LibFnLongDouble, B,
2119 BaseFn->getAttributes());
2121 // Since the new exp{,2}() is different from the original one, dead code
2122 // elimination cannot be trusted to remove it, since it may have side
2123 // effects (e.g., errno). When the only consumer for the original
2124 // exp{,2}() is pow(), then it has to be explicitly erased.
2125 substituteInParent(BaseFn, ExpFn);
2126 return ExpFn;
2130 // Evaluate special cases related to a constant base.
2132 const APFloat *BaseF;
2133 if (!match(Base, m_APFloat(BaseF)))
2134 return nullptr;
2136 AttributeList NoAttrs; // Attributes are only meaningful on the original call
2138 const bool UseIntrinsic = Pow->doesNotAccessMemory();
2140 // pow(2.0, itofp(x)) -> ldexp(1.0, x)
2141 if ((UseIntrinsic || !Ty->isVectorTy()) && BaseF->isExactlyValue(2.0) &&
2142 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
2143 (UseIntrinsic ||
2144 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2146 // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can
2147 // just directly use the original integer type.
2148 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) {
2149 Constant *One = ConstantFP::get(Ty, 1.0);
2151 if (UseIntrinsic) {
2152 return copyFlags(*Pow, B.CreateIntrinsic(Intrinsic::ldexp,
2153 {Ty, ExpoI->getType()},
2154 {One, ExpoI}, Pow, "exp2"));
2157 return copyFlags(*Pow, emitBinaryFloatFnCall(
2158 One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2159 LibFunc_ldexpl, B, NoAttrs));
2163 // pow(2.0 ** n, x) -> exp2(n * x)
2164 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
2165 APFloat BaseR = APFloat(1.0);
2166 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
2167 BaseR = BaseR / *BaseF;
2168 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
2169 const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
2170 APSInt NI(64, false);
2171 if ((IsInteger || IsReciprocal) &&
2172 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
2173 APFloat::opOK &&
2174 NI > 1 && NI.isPowerOf2()) {
2175 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
2176 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
2177 if (Pow->doesNotAccessMemory())
2178 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul,
2179 nullptr, "exp2"));
2180 else
2181 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2182 LibFunc_exp2f,
2183 LibFunc_exp2l, B, NoAttrs));
2187 // pow(10.0, x) -> exp10(x)
2188 if (BaseF->isExactlyValue(10.0) &&
2189 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) {
2191 if (Pow->doesNotAccessMemory()) {
2192 CallInst *NewExp10 =
2193 B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow, "exp10");
2194 return copyFlags(*Pow, NewExp10);
2197 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
2198 LibFunc_exp10f, LibFunc_exp10l,
2199 B, NoAttrs));
2202 // pow(x, y) -> exp2(log2(x) * y)
2203 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
2204 !BaseF->isNegative()) {
2205 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
2206 // Luckily optimizePow has already handled the x == 1 case.
2207 assert(!match(Base, m_FPOne()) &&
2208 "pow(1.0, y) should have been simplified earlier!");
2210 Value *Log = nullptr;
2211 if (Ty->isFloatTy())
2212 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
2213 else if (Ty->isDoubleTy())
2214 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
2216 if (Log) {
2217 Value *FMul = B.CreateFMul(Log, Expo, "mul");
2218 if (Pow->doesNotAccessMemory())
2219 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul,
2220 nullptr, "exp2"));
2221 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
2222 LibFunc_exp2l))
2223 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2224 LibFunc_exp2f,
2225 LibFunc_exp2l, B, NoAttrs));
2229 return nullptr;
2232 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
2233 Module *M, IRBuilderBase &B,
2234 const TargetLibraryInfo *TLI) {
2235 // If errno is never set, then use the intrinsic for sqrt().
2236 if (NoErrno)
2237 return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V, nullptr, "sqrt");
2239 // Otherwise, use the libcall for sqrt().
2240 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
2241 LibFunc_sqrtl))
2242 // TODO: We also should check that the target can in fact lower the sqrt()
2243 // libcall. We currently have no way to ask this question, so we ask if
2244 // the target has a sqrt() libcall, which is not exactly the same.
2245 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
2246 LibFunc_sqrtl, B, Attrs);
2248 return nullptr;
2251 /// Use square root in place of pow(x, +/-0.5).
2252 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
2253 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2254 Module *Mod = Pow->getModule();
2255 Type *Ty = Pow->getType();
2257 const APFloat *ExpoF;
2258 if (!match(Expo, m_APFloat(ExpoF)) ||
2259 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
2260 return nullptr;
2262 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
2263 // so that requires fast-math-flags (afn or reassoc).
2264 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
2265 return nullptr;
2267 // If we have a pow() library call (accesses memory) and we can't guarantee
2268 // that the base is not an infinity, give up:
2269 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
2270 // errno), but sqrt(-Inf) is required by various standards to set errno.
2271 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
2272 !isKnownNeverInfinity(
2273 Base, 0, SimplifyQuery(DL, TLI, DT, AC, Pow, true, true, DC)))
2274 return nullptr;
2276 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B,
2277 TLI);
2278 if (!Sqrt)
2279 return nullptr;
2281 // Handle signed zero base by expanding to fabs(sqrt(x)).
2282 if (!Pow->hasNoSignedZeros())
2283 Sqrt = B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt, nullptr, "abs");
2285 Sqrt = copyFlags(*Pow, Sqrt);
2287 // Handle non finite base by expanding to
2288 // (x == -infinity ? +infinity : sqrt(x)).
2289 if (!Pow->hasNoInfs()) {
2290 Value *PosInf = ConstantFP::getInfinity(Ty),
2291 *NegInf = ConstantFP::getInfinity(Ty, true);
2292 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
2293 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
2296 // If the exponent is negative, then get the reciprocal.
2297 if (ExpoF->isNegative())
2298 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
2300 return Sqrt;
2303 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
2304 IRBuilderBase &B) {
2305 Value *Args[] = {Base, Expo};
2306 Type *Types[] = {Base->getType(), Expo->getType()};
2307 return B.CreateIntrinsic(Intrinsic::powi, Types, Args);
2310 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
2311 Value *Base = Pow->getArgOperand(0);
2312 Value *Expo = Pow->getArgOperand(1);
2313 Function *Callee = Pow->getCalledFunction();
2314 StringRef Name = Callee->getName();
2315 Type *Ty = Pow->getType();
2316 Module *M = Pow->getModule();
2317 bool AllowApprox = Pow->hasApproxFunc();
2318 bool Ignored;
2320 // Propagate the math semantics from the call to any created instructions.
2321 IRBuilderBase::FastMathFlagGuard Guard(B);
2322 B.setFastMathFlags(Pow->getFastMathFlags());
2323 // Evaluate special cases related to the base.
2325 // pow(1.0, x) -> 1.0
2326 if (match(Base, m_FPOne()))
2327 return Base;
2329 if (Value *Exp = replacePowWithExp(Pow, B))
2330 return Exp;
2332 // Evaluate special cases related to the exponent.
2334 // pow(x, -1.0) -> 1.0 / x
2335 if (match(Expo, m_SpecificFP(-1.0)))
2336 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
2338 // pow(x, +/-0.0) -> 1.0
2339 if (match(Expo, m_AnyZeroFP()))
2340 return ConstantFP::get(Ty, 1.0);
2342 // pow(x, 1.0) -> x
2343 if (match(Expo, m_FPOne()))
2344 return Base;
2346 // pow(x, 2.0) -> x * x
2347 if (match(Expo, m_SpecificFP(2.0)))
2348 return B.CreateFMul(Base, Base, "square");
2350 if (Value *Sqrt = replacePowWithSqrt(Pow, B))
2351 return Sqrt;
2353 // If we can approximate pow:
2354 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2355 // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2356 const APFloat *ExpoF;
2357 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
2358 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
2359 APFloat ExpoA(abs(*ExpoF));
2360 APFloat ExpoI(*ExpoF);
2361 Value *Sqrt = nullptr;
2362 if (!ExpoA.isInteger()) {
2363 APFloat Expo2 = ExpoA;
2364 // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2365 // is no floating point exception and the result is an integer, then
2366 // ExpoA == integer + 0.5
2367 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
2368 return nullptr;
2370 if (!Expo2.isInteger())
2371 return nullptr;
2373 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) !=
2374 APFloat::opInexact)
2375 return nullptr;
2376 if (!ExpoI.isInteger())
2377 return nullptr;
2378 ExpoF = &ExpoI;
2380 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M,
2381 B, TLI);
2382 if (!Sqrt)
2383 return nullptr;
2386 // 0.5 fraction is now optionally handled.
2387 // Do pow -> powi for remaining integer exponent
2388 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
2389 if (ExpoF->isInteger() &&
2390 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
2391 APFloat::opOK) {
2392 Value *PowI = copyFlags(
2393 *Pow,
2394 createPowWithIntegerExponent(
2395 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
2396 M, B));
2398 if (PowI && Sqrt)
2399 return B.CreateFMul(PowI, Sqrt);
2401 return PowI;
2405 // powf(x, itofp(y)) -> powi(x, y)
2406 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
2407 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
2408 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
2411 // Shrink pow() to powf() if the arguments are single precision,
2412 // unless the result is expected to be double precision.
2413 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
2414 hasFloatVersion(M, Name)) {
2415 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
2416 return Shrunk;
2419 return nullptr;
2422 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2423 Module *M = CI->getModule();
2424 Function *Callee = CI->getCalledFunction();
2425 StringRef Name = Callee->getName();
2426 Value *Ret = nullptr;
2427 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2428 hasFloatVersion(M, Name))
2429 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2431 // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we
2432 // have the libcall, emit the libcall.
2434 // TODO: In principle we should be able to just always use the intrinsic for
2435 // any doesNotAccessMemory callsite.
2437 const bool UseIntrinsic = Callee->isIntrinsic();
2438 // Bail out for vectors because the code below only expects scalars.
2439 Type *Ty = CI->getType();
2440 if (!UseIntrinsic && Ty->isVectorTy())
2441 return Ret;
2443 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize
2444 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize
2445 Value *Op = CI->getArgOperand(0);
2446 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2447 (UseIntrinsic ||
2448 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2449 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) {
2450 Constant *One = ConstantFP::get(Ty, 1.0);
2452 if (UseIntrinsic) {
2453 return copyFlags(*CI, B.CreateIntrinsic(Intrinsic::ldexp,
2454 {Ty, Exp->getType()},
2455 {One, Exp}, CI));
2458 IRBuilderBase::FastMathFlagGuard Guard(B);
2459 B.setFastMathFlags(CI->getFastMathFlags());
2460 return copyFlags(*CI, emitBinaryFloatFnCall(
2461 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2462 LibFunc_ldexpl, B, AttributeList()));
2466 return Ret;
2469 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2470 Module *M = CI->getModule();
2472 // If we can shrink the call to a float function rather than a double
2473 // function, do that first.
2474 Function *Callee = CI->getCalledFunction();
2475 StringRef Name = Callee->getName();
2476 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2477 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2478 return Ret;
2480 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2481 // the intrinsics for improved optimization (for example, vectorization).
2482 // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2483 // From the C standard draft WG14/N1256:
2484 // "Ideally, fmax would be sensitive to the sign of zero, for example
2485 // fmax(-0.0, +0.0) would return +0; however, implementation in software
2486 // might be impractical."
2487 IRBuilderBase::FastMathFlagGuard Guard(B);
2488 FastMathFlags FMF = CI->getFastMathFlags();
2489 FMF.setNoSignedZeros();
2490 B.setFastMathFlags(FMF);
2492 Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum
2493 : Intrinsic::maxnum;
2494 return copyFlags(*CI, B.CreateBinaryIntrinsic(IID, CI->getArgOperand(0),
2495 CI->getArgOperand(1)));
2498 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2499 Function *LogFn = Log->getCalledFunction();
2500 StringRef LogNm = LogFn->getName();
2501 Intrinsic::ID LogID = LogFn->getIntrinsicID();
2502 Module *Mod = Log->getModule();
2503 Type *Ty = Log->getType();
2505 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2506 if (Value *Ret = optimizeUnaryDoubleFP(Log, B, TLI, true))
2507 return Ret;
2509 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2511 // This is only applicable to log(), log2(), log10().
2512 if (TLI->getLibFunc(LogNm, LogLb)) {
2513 switch (LogLb) {
2514 case LibFunc_logf:
2515 LogID = Intrinsic::log;
2516 ExpLb = LibFunc_expf;
2517 Exp2Lb = LibFunc_exp2f;
2518 Exp10Lb = LibFunc_exp10f;
2519 PowLb = LibFunc_powf;
2520 break;
2521 case LibFunc_log:
2522 LogID = Intrinsic::log;
2523 ExpLb = LibFunc_exp;
2524 Exp2Lb = LibFunc_exp2;
2525 Exp10Lb = LibFunc_exp10;
2526 PowLb = LibFunc_pow;
2527 break;
2528 case LibFunc_logl:
2529 LogID = Intrinsic::log;
2530 ExpLb = LibFunc_expl;
2531 Exp2Lb = LibFunc_exp2l;
2532 Exp10Lb = LibFunc_exp10l;
2533 PowLb = LibFunc_powl;
2534 break;
2535 case LibFunc_log2f:
2536 LogID = Intrinsic::log2;
2537 ExpLb = LibFunc_expf;
2538 Exp2Lb = LibFunc_exp2f;
2539 Exp10Lb = LibFunc_exp10f;
2540 PowLb = LibFunc_powf;
2541 break;
2542 case LibFunc_log2:
2543 LogID = Intrinsic::log2;
2544 ExpLb = LibFunc_exp;
2545 Exp2Lb = LibFunc_exp2;
2546 Exp10Lb = LibFunc_exp10;
2547 PowLb = LibFunc_pow;
2548 break;
2549 case LibFunc_log2l:
2550 LogID = Intrinsic::log2;
2551 ExpLb = LibFunc_expl;
2552 Exp2Lb = LibFunc_exp2l;
2553 Exp10Lb = LibFunc_exp10l;
2554 PowLb = LibFunc_powl;
2555 break;
2556 case LibFunc_log10f:
2557 LogID = Intrinsic::log10;
2558 ExpLb = LibFunc_expf;
2559 Exp2Lb = LibFunc_exp2f;
2560 Exp10Lb = LibFunc_exp10f;
2561 PowLb = LibFunc_powf;
2562 break;
2563 case LibFunc_log10:
2564 LogID = Intrinsic::log10;
2565 ExpLb = LibFunc_exp;
2566 Exp2Lb = LibFunc_exp2;
2567 Exp10Lb = LibFunc_exp10;
2568 PowLb = LibFunc_pow;
2569 break;
2570 case LibFunc_log10l:
2571 LogID = Intrinsic::log10;
2572 ExpLb = LibFunc_expl;
2573 Exp2Lb = LibFunc_exp2l;
2574 Exp10Lb = LibFunc_exp10l;
2575 PowLb = LibFunc_powl;
2576 break;
2577 default:
2578 return nullptr;
2581 // Convert libcall to intrinsic if the value is known > 0.
2582 bool IsKnownNoErrno = Log->hasNoNaNs() && Log->hasNoInfs();
2583 if (!IsKnownNoErrno) {
2584 SimplifyQuery SQ(DL, TLI, DT, AC, Log, true, true, DC);
2585 KnownFPClass Known = computeKnownFPClass(
2586 Log->getOperand(0),
2587 KnownFPClass::OrderedLessThanZeroMask | fcSubnormal,
2588 /*Depth=*/0, SQ);
2589 Function *F = Log->getParent()->getParent();
2590 IsKnownNoErrno = Known.cannotBeOrderedLessThanZero() &&
2591 Known.isKnownNeverLogicalZero(*F, Ty);
2593 if (IsKnownNoErrno) {
2594 auto *NewLog = B.CreateUnaryIntrinsic(LogID, Log->getArgOperand(0), Log);
2595 NewLog->copyMetadata(*Log);
2596 return copyFlags(*Log, NewLog);
2598 } else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2599 LogID == Intrinsic::log10) {
2600 if (Ty->getScalarType()->isFloatTy()) {
2601 ExpLb = LibFunc_expf;
2602 Exp2Lb = LibFunc_exp2f;
2603 Exp10Lb = LibFunc_exp10f;
2604 PowLb = LibFunc_powf;
2605 } else if (Ty->getScalarType()->isDoubleTy()) {
2606 ExpLb = LibFunc_exp;
2607 Exp2Lb = LibFunc_exp2;
2608 Exp10Lb = LibFunc_exp10;
2609 PowLb = LibFunc_pow;
2610 } else
2611 return nullptr;
2612 } else
2613 return nullptr;
2615 // The earlier call must also be 'fast' in order to do these transforms.
2616 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2617 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2618 return nullptr;
2620 IRBuilderBase::FastMathFlagGuard Guard(B);
2621 B.setFastMathFlags(FastMathFlags::getFast());
2623 Intrinsic::ID ArgID = Arg->getIntrinsicID();
2624 LibFunc ArgLb = NotLibFunc;
2625 TLI->getLibFunc(*Arg, ArgLb);
2627 // log(pow(x,y)) -> y*log(x)
2628 AttributeList NoAttrs;
2629 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) {
2630 Value *LogX =
2631 Log->doesNotAccessMemory()
2632 ? B.CreateUnaryIntrinsic(LogID, Arg->getOperand(0), nullptr, "log")
2633 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs);
2634 Value *Y = Arg->getArgOperand(1);
2635 // Cast exponent to FP if integer.
2636 if (ArgID == Intrinsic::powi)
2637 Y = B.CreateSIToFP(Y, Ty, "cast");
2638 Value *MulY = B.CreateFMul(Y, LogX, "mul");
2639 // Since pow() may have side effects, e.g. errno,
2640 // dead code elimination may not be trusted to remove it.
2641 substituteInParent(Arg, MulY);
2642 return MulY;
2645 // log(exp{,2,10}(y)) -> y*log({e,2,10})
2646 // TODO: There is no exp10() intrinsic yet.
2647 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2648 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2649 Constant *Eul;
2650 if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2651 // FIXME: Add more precise value of e for long double.
2652 Eul = ConstantFP::get(Log->getType(), numbers::e);
2653 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2654 Eul = ConstantFP::get(Log->getType(), 2.0);
2655 else
2656 Eul = ConstantFP::get(Log->getType(), 10.0);
2657 Value *LogE = Log->doesNotAccessMemory()
2658 ? B.CreateUnaryIntrinsic(LogID, Eul, nullptr, "log")
2659 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs);
2660 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2661 // Since exp() may have side effects, e.g. errno,
2662 // dead code elimination may not be trusted to remove it.
2663 substituteInParent(Arg, MulY);
2664 return MulY;
2667 return nullptr;
2670 // sqrt(exp(X)) -> exp(X * 0.5)
2671 Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) {
2672 if (!CI->hasAllowReassoc())
2673 return nullptr;
2675 Function *SqrtFn = CI->getCalledFunction();
2676 CallInst *Arg = dyn_cast<CallInst>(CI->getArgOperand(0));
2677 if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse())
2678 return nullptr;
2679 Intrinsic::ID ArgID = Arg->getIntrinsicID();
2680 LibFunc ArgLb = NotLibFunc;
2681 TLI->getLibFunc(*Arg, ArgLb);
2683 LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb;
2685 if (TLI->getLibFunc(SqrtFn->getName(), SqrtLb))
2686 switch (SqrtLb) {
2687 case LibFunc_sqrtf:
2688 ExpLb = LibFunc_expf;
2689 Exp2Lb = LibFunc_exp2f;
2690 Exp10Lb = LibFunc_exp10f;
2691 break;
2692 case LibFunc_sqrt:
2693 ExpLb = LibFunc_exp;
2694 Exp2Lb = LibFunc_exp2;
2695 Exp10Lb = LibFunc_exp10;
2696 break;
2697 case LibFunc_sqrtl:
2698 ExpLb = LibFunc_expl;
2699 Exp2Lb = LibFunc_exp2l;
2700 Exp10Lb = LibFunc_exp10l;
2701 break;
2702 default:
2703 return nullptr;
2705 else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) {
2706 if (CI->getType()->getScalarType()->isFloatTy()) {
2707 ExpLb = LibFunc_expf;
2708 Exp2Lb = LibFunc_exp2f;
2709 Exp10Lb = LibFunc_exp10f;
2710 } else if (CI->getType()->getScalarType()->isDoubleTy()) {
2711 ExpLb = LibFunc_exp;
2712 Exp2Lb = LibFunc_exp2;
2713 Exp10Lb = LibFunc_exp10;
2714 } else
2715 return nullptr;
2716 } else
2717 return nullptr;
2719 if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb &&
2720 ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2)
2721 return nullptr;
2723 IRBuilderBase::InsertPointGuard Guard(B);
2724 B.SetInsertPoint(Arg);
2725 auto *ExpOperand = Arg->getOperand(0);
2726 auto *FMul =
2727 B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5),
2728 CI, "merged.sqrt");
2730 Arg->setOperand(0, FMul);
2731 return Arg;
2734 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2735 Module *M = CI->getModule();
2736 Function *Callee = CI->getCalledFunction();
2737 Value *Ret = nullptr;
2738 // TODO: Once we have a way (other than checking for the existince of the
2739 // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2740 // condition below.
2741 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2742 (Callee->getName() == "sqrt" ||
2743 Callee->getIntrinsicID() == Intrinsic::sqrt))
2744 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2746 if (Value *Opt = mergeSqrtToExp(CI, B))
2747 return Opt;
2749 if (!CI->isFast())
2750 return Ret;
2752 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2753 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2754 return Ret;
2756 // We're looking for a repeated factor in a multiplication tree,
2757 // so we can do this fold: sqrt(x * x) -> fabs(x);
2758 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2759 Value *Op0 = I->getOperand(0);
2760 Value *Op1 = I->getOperand(1);
2761 Value *RepeatOp = nullptr;
2762 Value *OtherOp = nullptr;
2763 if (Op0 == Op1) {
2764 // Simple match: the operands of the multiply are identical.
2765 RepeatOp = Op0;
2766 } else {
2767 // Look for a more complicated pattern: one of the operands is itself
2768 // a multiply, so search for a common factor in that multiply.
2769 // Note: We don't bother looking any deeper than this first level or for
2770 // variations of this pattern because instcombine's visitFMUL and/or the
2771 // reassociation pass should give us this form.
2772 Value *MulOp;
2773 if (match(Op0, m_FMul(m_Value(MulOp), m_Deferred(MulOp))) &&
2774 cast<Instruction>(Op0)->isFast()) {
2775 // Pattern: sqrt((x * x) * z)
2776 RepeatOp = MulOp;
2777 OtherOp = Op1;
2778 } else if (match(Op1, m_FMul(m_Value(MulOp), m_Deferred(MulOp))) &&
2779 cast<Instruction>(Op1)->isFast()) {
2780 // Pattern: sqrt(z * (x * x))
2781 RepeatOp = MulOp;
2782 OtherOp = Op0;
2785 if (!RepeatOp)
2786 return Ret;
2788 // Fast math flags for any created instructions should match the sqrt
2789 // and multiply.
2790 IRBuilderBase::FastMathFlagGuard Guard(B);
2791 B.setFastMathFlags(I->getFastMathFlags());
2793 // If we found a repeated factor, hoist it out of the square root and
2794 // replace it with the fabs of that factor.
2795 Value *FabsCall =
2796 B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp, nullptr, "fabs");
2797 if (OtherOp) {
2798 // If we found a non-repeated factor, we still need to get its square
2799 // root. We then multiply that by the value that was simplified out
2800 // of the square root calculation.
2801 Value *SqrtCall =
2802 B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp, nullptr, "sqrt");
2803 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2805 return copyFlags(*CI, FabsCall);
2808 Value *LibCallSimplifier::optimizeFMod(CallInst *CI, IRBuilderBase &B) {
2810 // fmod(x,y) can set errno if y == 0 or x == +/-inf, and returns Nan in those
2811 // case. If we know those do not happen, then we can convert the fmod into
2812 // frem.
2813 bool IsNoNan = CI->hasNoNaNs();
2814 if (!IsNoNan) {
2815 SimplifyQuery SQ(DL, TLI, DT, AC, CI, true, true, DC);
2816 KnownFPClass Known0 = computeKnownFPClass(CI->getOperand(0), fcInf,
2817 /*Depth=*/0, SQ);
2818 if (Known0.isKnownNeverInfinity()) {
2819 KnownFPClass Known1 =
2820 computeKnownFPClass(CI->getOperand(1), fcZero | fcSubnormal,
2821 /*Depth=*/0, SQ);
2822 Function *F = CI->getParent()->getParent();
2823 IsNoNan = Known1.isKnownNeverLogicalZero(*F, CI->getType());
2827 if (IsNoNan) {
2828 Value *FRem = B.CreateFRemFMF(CI->getOperand(0), CI->getOperand(1), CI);
2829 if (auto *FRemI = dyn_cast<Instruction>(FRem))
2830 FRemI->setHasNoNaNs(true);
2831 return FRem;
2833 return nullptr;
2836 Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI,
2837 IRBuilderBase &B) {
2838 Module *M = CI->getModule();
2839 Function *Callee = CI->getCalledFunction();
2840 Value *Ret = nullptr;
2841 StringRef Name = Callee->getName();
2842 if (UnsafeFPShrink &&
2843 (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" ||
2844 Name == "asinh") &&
2845 hasFloatVersion(M, Name))
2846 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2848 Value *Op1 = CI->getArgOperand(0);
2849 auto *OpC = dyn_cast<CallInst>(Op1);
2850 if (!OpC)
2851 return Ret;
2853 // Both calls must be 'fast' in order to remove them.
2854 if (!CI->isFast() || !OpC->isFast())
2855 return Ret;
2857 // tan(atan(x)) -> x
2858 // atanh(tanh(x)) -> x
2859 // sinh(asinh(x)) -> x
2860 // asinh(sinh(x)) -> x
2861 // cosh(acosh(x)) -> x
2862 LibFunc Func;
2863 Function *F = OpC->getCalledFunction();
2864 if (F && TLI->getLibFunc(F->getName(), Func) &&
2865 isLibFuncEmittable(M, TLI, Func)) {
2866 LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName())
2867 .Case("tan", LibFunc_atan)
2868 .Case("atanh", LibFunc_tanh)
2869 .Case("sinh", LibFunc_asinh)
2870 .Case("cosh", LibFunc_acosh)
2871 .Case("tanf", LibFunc_atanf)
2872 .Case("atanhf", LibFunc_tanhf)
2873 .Case("sinhf", LibFunc_asinhf)
2874 .Case("coshf", LibFunc_acoshf)
2875 .Case("tanl", LibFunc_atanl)
2876 .Case("atanhl", LibFunc_tanhl)
2877 .Case("sinhl", LibFunc_asinhl)
2878 .Case("coshl", LibFunc_acoshl)
2879 .Case("asinh", LibFunc_sinh)
2880 .Case("asinhf", LibFunc_sinhf)
2881 .Case("asinhl", LibFunc_sinhl)
2882 .Default(NumLibFuncs); // Used as error value
2883 if (Func == inverseFunc)
2884 Ret = OpC->getArgOperand(0);
2886 return Ret;
2889 static bool isTrigLibCall(CallInst *CI) {
2890 // We can only hope to do anything useful if we can ignore things like errno
2891 // and floating-point exceptions.
2892 // We already checked the prototype.
2893 return CI->doesNotThrow() && CI->doesNotAccessMemory();
2896 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2897 bool UseFloat, Value *&Sin, Value *&Cos,
2898 Value *&SinCos, const TargetLibraryInfo *TLI) {
2899 Module *M = OrigCallee->getParent();
2900 Type *ArgTy = Arg->getType();
2901 Type *ResTy;
2902 StringRef Name;
2904 Triple T(OrigCallee->getParent()->getTargetTriple());
2905 if (UseFloat) {
2906 Name = "__sincospif_stret";
2908 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2909 // x86_64 can't use {float, float} since that would be returned in both
2910 // xmm0 and xmm1, which isn't what a real struct would do.
2911 ResTy = T.getArch() == Triple::x86_64
2912 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2913 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2914 } else {
2915 Name = "__sincospi_stret";
2916 ResTy = StructType::get(ArgTy, ArgTy);
2919 if (!isLibFuncEmittable(M, TLI, Name))
2920 return false;
2921 LibFunc TheLibFunc;
2922 TLI->getLibFunc(Name, TheLibFunc);
2923 FunctionCallee Callee = getOrInsertLibFunc(
2924 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2926 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2927 // If the argument is an instruction, it must dominate all uses so put our
2928 // sincos call there.
2929 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2930 } else {
2931 // Otherwise (e.g. for a constant) the beginning of the function is as
2932 // good a place as any.
2933 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2934 B.SetInsertPoint(&EntryBB, EntryBB.begin());
2937 SinCos = B.CreateCall(Callee, Arg, "sincospi");
2939 if (SinCos->getType()->isStructTy()) {
2940 Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2941 Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2942 } else {
2943 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2944 "sinpi");
2945 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2946 "cospi");
2949 return true;
2952 static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven,
2953 IRBuilderBase &B) {
2954 Value *X;
2955 Value *Src = CI->getArgOperand(0);
2957 if (match(Src, m_OneUse(m_FNeg(m_Value(X))))) {
2958 IRBuilderBase::FastMathFlagGuard Guard(B);
2959 B.setFastMathFlags(CI->getFastMathFlags());
2961 auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X}));
2962 if (IsEven) {
2963 // Even function: f(-x) = f(x)
2964 return CallInst;
2966 // Odd function: f(-x) = -f(x)
2967 return B.CreateFNeg(CallInst);
2970 // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x)
2971 if (IsEven && (match(Src, m_FAbs(m_Value(X))) ||
2972 match(Src, m_CopySign(m_Value(X), m_Value())))) {
2973 IRBuilderBase::FastMathFlagGuard Guard(B);
2974 B.setFastMathFlags(CI->getFastMathFlags());
2976 auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X}));
2977 return CallInst;
2980 return nullptr;
2983 Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func,
2984 IRBuilderBase &B) {
2985 switch (Func) {
2986 case LibFunc_cos:
2987 case LibFunc_cosf:
2988 case LibFunc_cosl:
2989 return optimizeSymmetricCall(CI, /*IsEven*/ true, B);
2991 case LibFunc_sin:
2992 case LibFunc_sinf:
2993 case LibFunc_sinl:
2995 case LibFunc_tan:
2996 case LibFunc_tanf:
2997 case LibFunc_tanl:
2999 case LibFunc_erf:
3000 case LibFunc_erff:
3001 case LibFunc_erfl:
3002 return optimizeSymmetricCall(CI, /*IsEven*/ false, B);
3004 default:
3005 return nullptr;
3009 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) {
3010 // Make sure the prototype is as expected, otherwise the rest of the
3011 // function is probably invalid and likely to abort.
3012 if (!isTrigLibCall(CI))
3013 return nullptr;
3015 Value *Arg = CI->getArgOperand(0);
3016 SmallVector<CallInst *, 1> SinCalls;
3017 SmallVector<CallInst *, 1> CosCalls;
3018 SmallVector<CallInst *, 1> SinCosCalls;
3020 bool IsFloat = Arg->getType()->isFloatTy();
3022 // Look for all compatible sinpi, cospi and sincospi calls with the same
3023 // argument. If there are enough (in some sense) we can make the
3024 // substitution.
3025 Function *F = CI->getFunction();
3026 for (User *U : Arg->users())
3027 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
3029 // It's only worthwhile if both sinpi and cospi are actually used.
3030 if (SinCalls.empty() || CosCalls.empty())
3031 return nullptr;
3033 Value *Sin, *Cos, *SinCos;
3034 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
3035 SinCos, TLI))
3036 return nullptr;
3038 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
3039 Value *Res) {
3040 for (CallInst *C : Calls)
3041 replaceAllUsesWith(C, Res);
3044 replaceTrigInsts(SinCalls, Sin);
3045 replaceTrigInsts(CosCalls, Cos);
3046 replaceTrigInsts(SinCosCalls, SinCos);
3048 return IsSin ? Sin : Cos;
3051 void LibCallSimplifier::classifyArgUse(
3052 Value *Val, Function *F, bool IsFloat,
3053 SmallVectorImpl<CallInst *> &SinCalls,
3054 SmallVectorImpl<CallInst *> &CosCalls,
3055 SmallVectorImpl<CallInst *> &SinCosCalls) {
3056 auto *CI = dyn_cast<CallInst>(Val);
3057 if (!CI || CI->use_empty())
3058 return;
3060 // Don't consider calls in other functions.
3061 if (CI->getFunction() != F)
3062 return;
3064 Module *M = CI->getModule();
3065 Function *Callee = CI->getCalledFunction();
3066 LibFunc Func;
3067 if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
3068 !isLibFuncEmittable(M, TLI, Func) ||
3069 !isTrigLibCall(CI))
3070 return;
3072 if (IsFloat) {
3073 if (Func == LibFunc_sinpif)
3074 SinCalls.push_back(CI);
3075 else if (Func == LibFunc_cospif)
3076 CosCalls.push_back(CI);
3077 else if (Func == LibFunc_sincospif_stret)
3078 SinCosCalls.push_back(CI);
3079 } else {
3080 if (Func == LibFunc_sinpi)
3081 SinCalls.push_back(CI);
3082 else if (Func == LibFunc_cospi)
3083 CosCalls.push_back(CI);
3084 else if (Func == LibFunc_sincospi_stret)
3085 SinCosCalls.push_back(CI);
3089 /// Constant folds remquo
3090 Value *LibCallSimplifier::optimizeRemquo(CallInst *CI, IRBuilderBase &B) {
3091 const APFloat *X, *Y;
3092 if (!match(CI->getArgOperand(0), m_APFloat(X)) ||
3093 !match(CI->getArgOperand(1), m_APFloat(Y)))
3094 return nullptr;
3096 APFloat::opStatus Status;
3097 APFloat Quot = *X;
3098 Status = Quot.divide(*Y, APFloat::rmNearestTiesToEven);
3099 if (Status != APFloat::opOK && Status != APFloat::opInexact)
3100 return nullptr;
3101 APFloat Rem = *X;
3102 if (Rem.remainder(*Y) != APFloat::opOK)
3103 return nullptr;
3105 // TODO: We can only keep at least the three of the last bits of x/y
3106 unsigned IntBW = TLI->getIntSize();
3107 APSInt QuotInt(IntBW, /*isUnsigned=*/false);
3108 bool IsExact;
3109 Status =
3110 Quot.convertToInteger(QuotInt, APFloat::rmNearestTiesToEven, &IsExact);
3111 if (Status != APFloat::opOK && Status != APFloat::opInexact)
3112 return nullptr;
3114 B.CreateAlignedStore(
3115 ConstantInt::get(B.getIntNTy(IntBW), QuotInt.getExtValue()),
3116 CI->getArgOperand(2), CI->getParamAlign(2));
3117 return ConstantFP::get(CI->getType(), Rem);
3120 /// Constant folds fdim
3121 Value *LibCallSimplifier::optimizeFdim(CallInst *CI, IRBuilderBase &B) {
3122 // Cannot perform the fold unless the call has attribute memory(none)
3123 if (!CI->doesNotAccessMemory())
3124 return nullptr;
3126 // TODO : Handle undef values
3127 // Propagate poison if any
3128 if (isa<PoisonValue>(CI->getArgOperand(0)))
3129 return CI->getArgOperand(0);
3130 if (isa<PoisonValue>(CI->getArgOperand(1)))
3131 return CI->getArgOperand(1);
3133 const APFloat *X, *Y;
3134 // Check if both values are constants
3135 if (!match(CI->getArgOperand(0), m_APFloat(X)) ||
3136 !match(CI->getArgOperand(1), m_APFloat(Y)))
3137 return nullptr;
3139 APFloat Difference = *X;
3140 Difference.subtract(*Y, RoundingMode::NearestTiesToEven);
3142 APFloat MaxVal =
3143 maximum(Difference, APFloat::getZero(CI->getType()->getFltSemantics()));
3144 return ConstantFP::get(CI->getType(), MaxVal);
3147 //===----------------------------------------------------------------------===//
3148 // Integer Library Call Optimizations
3149 //===----------------------------------------------------------------------===//
3151 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
3152 // All variants of ffs return int which need not be 32 bits wide.
3153 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
3154 Type *RetType = CI->getType();
3155 Value *Op = CI->getArgOperand(0);
3156 Type *ArgType = Op->getType();
3157 Value *V = B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {Op, B.getTrue()},
3158 nullptr, "cttz");
3159 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
3160 V = B.CreateIntCast(V, RetType, false);
3162 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
3163 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0));
3166 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
3167 // All variants of fls return int which need not be 32 bits wide.
3168 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
3169 Value *Op = CI->getArgOperand(0);
3170 Type *ArgType = Op->getType();
3171 Value *V = B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {Op, B.getFalse()},
3172 nullptr, "ctlz");
3173 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
3175 return B.CreateIntCast(V, CI->getType(), false);
3178 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
3179 // abs(x) -> x <s 0 ? -x : x
3180 // The negation has 'nsw' because abs of INT_MIN is undefined.
3181 Value *X = CI->getArgOperand(0);
3182 Value *IsNeg = B.CreateIsNeg(X);
3183 Value *NegX = B.CreateNSWNeg(X, "neg");
3184 return B.CreateSelect(IsNeg, NegX, X);
3187 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
3188 // isdigit(c) -> (c-'0') <u 10
3189 Value *Op = CI->getArgOperand(0);
3190 Type *ArgType = Op->getType();
3191 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp");
3192 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit");
3193 return B.CreateZExt(Op, CI->getType());
3196 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
3197 // isascii(c) -> c <u 128
3198 Value *Op = CI->getArgOperand(0);
3199 Type *ArgType = Op->getType();
3200 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii");
3201 return B.CreateZExt(Op, CI->getType());
3204 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
3205 // toascii(c) -> c & 0x7f
3206 return B.CreateAnd(CI->getArgOperand(0),
3207 ConstantInt::get(CI->getType(), 0x7F));
3210 // Fold calls to atoi, atol, and atoll.
3211 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
3212 CI->addParamAttr(0, Attribute::NoCapture);
3214 StringRef Str;
3215 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
3216 return nullptr;
3218 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B);
3221 // Fold calls to strtol, strtoll, strtoul, and strtoull.
3222 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
3223 bool AsSigned) {
3224 Value *EndPtr = CI->getArgOperand(1);
3225 if (isa<ConstantPointerNull>(EndPtr)) {
3226 // With a null EndPtr, this function won't capture the main argument.
3227 // It would be readonly too, except that it still may write to errno.
3228 CI->addParamAttr(0, Attribute::NoCapture);
3229 EndPtr = nullptr;
3230 } else if (!isKnownNonZero(EndPtr, DL))
3231 return nullptr;
3233 StringRef Str;
3234 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
3235 return nullptr;
3237 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
3238 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
3241 return nullptr;
3244 //===----------------------------------------------------------------------===//
3245 // Formatting and IO Library Call Optimizations
3246 //===----------------------------------------------------------------------===//
3248 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
3250 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
3251 int StreamArg) {
3252 Function *Callee = CI->getCalledFunction();
3253 // Error reporting calls should be cold, mark them as such.
3254 // This applies even to non-builtin calls: it is only a hint and applies to
3255 // functions that the frontend might not understand as builtins.
3257 // This heuristic was suggested in:
3258 // Improving Static Branch Prediction in a Compiler
3259 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
3260 // Proceedings of PACT'98, Oct. 1998, IEEE
3261 if (!CI->hasFnAttr(Attribute::Cold) &&
3262 isReportingError(Callee, CI, StreamArg)) {
3263 CI->addFnAttr(Attribute::Cold);
3266 return nullptr;
3269 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
3270 if (!Callee || !Callee->isDeclaration())
3271 return false;
3273 if (StreamArg < 0)
3274 return true;
3276 // These functions might be considered cold, but only if their stream
3277 // argument is stderr.
3279 if (StreamArg >= (int)CI->arg_size())
3280 return false;
3281 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
3282 if (!LI)
3283 return false;
3284 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
3285 if (!GV || !GV->isDeclaration())
3286 return false;
3287 return GV->getName() == "stderr";
3290 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
3291 // Check for a fixed format string.
3292 StringRef FormatStr;
3293 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
3294 return nullptr;
3296 // Empty format string -> noop.
3297 if (FormatStr.empty()) // Tolerate printf's declared void.
3298 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
3300 // Do not do any of the following transformations if the printf return value
3301 // is used, in general the printf return value is not compatible with either
3302 // putchar() or puts().
3303 if (!CI->use_empty())
3304 return nullptr;
3306 Type *IntTy = CI->getType();
3307 // printf("x") -> putchar('x'), even for "%" and "%%".
3308 if (FormatStr.size() == 1 || FormatStr == "%%") {
3309 // Convert the character to unsigned char before passing it to putchar
3310 // to avoid host-specific sign extension in the IR. Putchar converts
3311 // it to unsigned char regardless.
3312 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]);
3313 return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3316 // Try to remove call or emit putchar/puts.
3317 if (FormatStr == "%s" && CI->arg_size() > 1) {
3318 StringRef OperandStr;
3319 if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
3320 return nullptr;
3321 // printf("%s", "") --> NOP
3322 if (OperandStr.empty())
3323 return (Value *)CI;
3324 // printf("%s", "a") --> putchar('a')
3325 if (OperandStr.size() == 1) {
3326 // Convert the character to unsigned char before passing it to putchar
3327 // to avoid host-specific sign extension in the IR. Putchar converts
3328 // it to unsigned char regardless.
3329 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]);
3330 return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3332 // printf("%s", str"\n") --> puts(str)
3333 if (OperandStr.back() == '\n') {
3334 OperandStr = OperandStr.drop_back();
3335 Value *GV = B.CreateGlobalString(OperandStr, "str",
3336 DL.getDefaultGlobalsAddressSpace());
3337 return copyFlags(*CI, emitPutS(GV, B, TLI));
3339 return nullptr;
3342 // printf("foo\n") --> puts("foo")
3343 if (FormatStr.back() == '\n' &&
3344 !FormatStr.contains('%')) { // No format characters.
3345 // Create a string literal with no \n on it. We expect the constant merge
3346 // pass to be run after this pass, to merge duplicate strings.
3347 FormatStr = FormatStr.drop_back();
3348 Value *GV = B.CreateGlobalString(FormatStr, "str",
3349 DL.getDefaultGlobalsAddressSpace());
3350 return copyFlags(*CI, emitPutS(GV, B, TLI));
3353 // Optimize specific format strings.
3354 // printf("%c", chr) --> putchar(chr)
3355 if (FormatStr == "%c" && CI->arg_size() > 1 &&
3356 CI->getArgOperand(1)->getType()->isIntegerTy()) {
3357 // Convert the argument to the type expected by putchar, i.e., int, which
3358 // need not be 32 bits wide but which is the same as printf's return type.
3359 Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false);
3360 return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3363 // printf("%s\n", str) --> puts(str)
3364 if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
3365 CI->getArgOperand(1)->getType()->isPointerTy())
3366 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
3367 return nullptr;
3370 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
3372 Module *M = CI->getModule();
3373 Function *Callee = CI->getCalledFunction();
3374 FunctionType *FT = Callee->getFunctionType();
3375 if (Value *V = optimizePrintFString(CI, B)) {
3376 return V;
3379 annotateNonNullNoUndefBasedOnAccess(CI, 0);
3381 // printf(format, ...) -> iprintf(format, ...) if no floating point
3382 // arguments.
3383 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
3384 !callHasFloatingPointArgument(CI)) {
3385 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
3386 Callee->getAttributes());
3387 CallInst *New = cast<CallInst>(CI->clone());
3388 New->setCalledFunction(IPrintFFn);
3389 B.Insert(New);
3390 return New;
3393 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
3394 // arguments.
3395 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
3396 !callHasFP128Argument(CI)) {
3397 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
3398 Callee->getAttributes());
3399 CallInst *New = cast<CallInst>(CI->clone());
3400 New->setCalledFunction(SmallPrintFFn);
3401 B.Insert(New);
3402 return New;
3405 return nullptr;
3408 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
3409 IRBuilderBase &B) {
3410 // Check for a fixed format string.
3411 StringRef FormatStr;
3412 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3413 return nullptr;
3415 // If we just have a format string (nothing else crazy) transform it.
3416 Value *Dest = CI->getArgOperand(0);
3417 if (CI->arg_size() == 2) {
3418 // Make sure there's no % in the constant array. We could try to handle
3419 // %% -> % in the future if we cared.
3420 if (FormatStr.contains('%'))
3421 return nullptr; // we found a format specifier, bail out.
3423 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
3424 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(1), Align(1),
3425 // Copy the null byte.
3426 TLI->getAsSizeT(FormatStr.size() + 1, *CI->getModule()));
3427 return ConstantInt::get(CI->getType(), FormatStr.size());
3430 // The remaining optimizations require the format string to be "%s" or "%c"
3431 // and have an extra operand.
3432 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3433 return nullptr;
3435 // Decode the second character of the format string.
3436 if (FormatStr[1] == 'c') {
3437 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3438 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3439 return nullptr;
3440 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
3441 Value *Ptr = Dest;
3442 B.CreateStore(V, Ptr);
3443 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3444 B.CreateStore(B.getInt8(0), Ptr);
3446 return ConstantInt::get(CI->getType(), 1);
3449 if (FormatStr[1] == 's') {
3450 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
3451 // strlen(str)+1)
3452 if (!CI->getArgOperand(2)->getType()->isPointerTy())
3453 return nullptr;
3455 if (CI->use_empty())
3456 // sprintf(dest, "%s", str) -> strcpy(dest, str)
3457 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
3459 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
3460 if (SrcLen) {
3461 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1),
3462 TLI->getAsSizeT(SrcLen, *CI->getModule()));
3463 // Returns total number of characters written without null-character.
3464 return ConstantInt::get(CI->getType(), SrcLen - 1);
3465 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
3466 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
3467 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
3468 return B.CreateIntCast(PtrDiff, CI->getType(), false);
3471 if (llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3472 PGSOQueryType::IRPass))
3473 return nullptr;
3475 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
3476 if (!Len)
3477 return nullptr;
3478 Value *IncLen =
3479 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
3480 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
3482 // The sprintf result is the unincremented number of bytes in the string.
3483 return B.CreateIntCast(Len, CI->getType(), false);
3485 return nullptr;
3488 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
3489 Module *M = CI->getModule();
3490 Function *Callee = CI->getCalledFunction();
3491 FunctionType *FT = Callee->getFunctionType();
3492 if (Value *V = optimizeSPrintFString(CI, B)) {
3493 return V;
3496 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
3498 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
3499 // point arguments.
3500 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
3501 !callHasFloatingPointArgument(CI)) {
3502 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
3503 FT, Callee->getAttributes());
3504 CallInst *New = cast<CallInst>(CI->clone());
3505 New->setCalledFunction(SIPrintFFn);
3506 B.Insert(New);
3507 return New;
3510 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
3511 // floating point arguments.
3512 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
3513 !callHasFP128Argument(CI)) {
3514 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
3515 Callee->getAttributes());
3516 CallInst *New = cast<CallInst>(CI->clone());
3517 New->setCalledFunction(SmallSPrintFFn);
3518 B.Insert(New);
3519 return New;
3522 return nullptr;
3525 // Transform an snprintf call CI with the bound N to format the string Str
3526 // either to a call to memcpy, or to single character a store, or to nothing,
3527 // and fold the result to a constant. A nonnull StrArg refers to the string
3528 // argument being formatted. Otherwise the call is one with N < 2 and
3529 // the "%c" directive to format a single character.
3530 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg,
3531 StringRef Str, uint64_t N,
3532 IRBuilderBase &B) {
3533 assert(StrArg || (N < 2 && Str.size() == 1));
3535 unsigned IntBits = TLI->getIntSize();
3536 uint64_t IntMax = maxIntN(IntBits);
3537 if (Str.size() > IntMax)
3538 // Bail if the string is longer than INT_MAX. POSIX requires
3539 // implementations to set errno to EOVERFLOW in this case, in
3540 // addition to when N is larger than that (checked by the caller).
3541 return nullptr;
3543 Value *StrLen = ConstantInt::get(CI->getType(), Str.size());
3544 if (N == 0)
3545 return StrLen;
3547 // Set to the number of bytes to copy fron StrArg which is also
3548 // the offset of the terinating nul.
3549 uint64_t NCopy;
3550 if (N > Str.size())
3551 // Copy the full string, including the terminating nul (which must
3552 // be present regardless of the bound).
3553 NCopy = Str.size() + 1;
3554 else
3555 NCopy = N - 1;
3557 Value *DstArg = CI->getArgOperand(0);
3558 if (NCopy && StrArg)
3559 // Transform the call to lvm.memcpy(dst, fmt, N).
3560 copyFlags(*CI, B.CreateMemCpy(DstArg, Align(1), StrArg, Align(1),
3561 TLI->getAsSizeT(NCopy, *CI->getModule())));
3563 if (N > Str.size())
3564 // Return early when the whole format string, including the final nul,
3565 // has been copied.
3566 return StrLen;
3568 // Otherwise, when truncating the string append a terminating nul.
3569 Type *Int8Ty = B.getInt8Ty();
3570 Value *NulOff = B.getIntN(IntBits, NCopy);
3571 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr");
3572 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd);
3573 return StrLen;
3576 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
3577 IRBuilderBase &B) {
3578 // Check for size
3579 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3580 if (!Size)
3581 return nullptr;
3583 uint64_t N = Size->getZExtValue();
3584 uint64_t IntMax = maxIntN(TLI->getIntSize());
3585 if (N > IntMax)
3586 // Bail if the bound exceeds INT_MAX. POSIX requires implementations
3587 // to set errno to EOVERFLOW in this case.
3588 return nullptr;
3590 Value *DstArg = CI->getArgOperand(0);
3591 Value *FmtArg = CI->getArgOperand(2);
3593 // Check for a fixed format string.
3594 StringRef FormatStr;
3595 if (!getConstantStringInfo(FmtArg, FormatStr))
3596 return nullptr;
3598 // If we just have a format string (nothing else crazy) transform it.
3599 if (CI->arg_size() == 3) {
3600 if (FormatStr.contains('%'))
3601 // Bail if the format string contains a directive and there are
3602 // no arguments. We could handle "%%" in the future.
3603 return nullptr;
3605 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B);
3608 // The remaining optimizations require the format string to be "%s" or "%c"
3609 // and have an extra operand.
3610 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4)
3611 return nullptr;
3613 // Decode the second character of the format string.
3614 if (FormatStr[1] == 'c') {
3615 if (N <= 1) {
3616 // Use an arbitary string of length 1 to transform the call into
3617 // either a nul store (N == 1) or a no-op (N == 0) and fold it
3618 // to one.
3619 StringRef CharStr("*");
3620 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B);
3623 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3624 if (!CI->getArgOperand(3)->getType()->isIntegerTy())
3625 return nullptr;
3626 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
3627 Value *Ptr = DstArg;
3628 B.CreateStore(V, Ptr);
3629 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3630 B.CreateStore(B.getInt8(0), Ptr);
3631 return ConstantInt::get(CI->getType(), 1);
3634 if (FormatStr[1] != 's')
3635 return nullptr;
3637 Value *StrArg = CI->getArgOperand(3);
3638 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
3639 StringRef Str;
3640 if (!getConstantStringInfo(StrArg, Str))
3641 return nullptr;
3643 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B);
3646 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
3647 if (Value *V = optimizeSnPrintFString(CI, B)) {
3648 return V;
3651 if (isKnownNonZero(CI->getOperand(1), DL))
3652 annotateNonNullNoUndefBasedOnAccess(CI, 0);
3653 return nullptr;
3656 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
3657 IRBuilderBase &B) {
3658 optimizeErrorReporting(CI, B, 0);
3660 // All the optimizations depend on the format string.
3661 StringRef FormatStr;
3662 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3663 return nullptr;
3665 // Do not do any of the following transformations if the fprintf return
3666 // value is used, in general the fprintf return value is not compatible
3667 // with fwrite(), fputc() or fputs().
3668 if (!CI->use_empty())
3669 return nullptr;
3671 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3672 if (CI->arg_size() == 2) {
3673 // Could handle %% -> % if we cared.
3674 if (FormatStr.contains('%'))
3675 return nullptr; // We found a format specifier.
3677 return copyFlags(
3678 *CI, emitFWrite(CI->getArgOperand(1),
3679 TLI->getAsSizeT(FormatStr.size(), *CI->getModule()),
3680 CI->getArgOperand(0), B, DL, TLI));
3683 // The remaining optimizations require the format string to be "%s" or "%c"
3684 // and have an extra operand.
3685 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3686 return nullptr;
3688 // Decode the second character of the format string.
3689 if (FormatStr[1] == 'c') {
3690 // fprintf(F, "%c", chr) --> fputc((int)chr, F)
3691 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3692 return nullptr;
3693 Type *IntTy = B.getIntNTy(TLI->getIntSize());
3694 Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true,
3695 "chari");
3696 return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI));
3699 if (FormatStr[1] == 's') {
3700 // fprintf(F, "%s", str) --> fputs(str, F)
3701 if (!CI->getArgOperand(2)->getType()->isPointerTy())
3702 return nullptr;
3703 return copyFlags(
3704 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
3706 return nullptr;
3709 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
3710 Module *M = CI->getModule();
3711 Function *Callee = CI->getCalledFunction();
3712 FunctionType *FT = Callee->getFunctionType();
3713 if (Value *V = optimizeFPrintFString(CI, B)) {
3714 return V;
3717 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3718 // floating point arguments.
3719 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
3720 !callHasFloatingPointArgument(CI)) {
3721 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
3722 FT, Callee->getAttributes());
3723 CallInst *New = cast<CallInst>(CI->clone());
3724 New->setCalledFunction(FIPrintFFn);
3725 B.Insert(New);
3726 return New;
3729 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3730 // 128-bit floating point arguments.
3731 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
3732 !callHasFP128Argument(CI)) {
3733 auto SmallFPrintFFn =
3734 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
3735 Callee->getAttributes());
3736 CallInst *New = cast<CallInst>(CI->clone());
3737 New->setCalledFunction(SmallFPrintFFn);
3738 B.Insert(New);
3739 return New;
3742 return nullptr;
3745 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
3746 optimizeErrorReporting(CI, B, 3);
3748 // Get the element size and count.
3749 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3750 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
3751 if (SizeC && CountC) {
3752 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3754 // If this is writing zero records, remove the call (it's a noop).
3755 if (Bytes == 0)
3756 return ConstantInt::get(CI->getType(), 0);
3758 // If this is writing one byte, turn it into fputc.
3759 // This optimisation is only valid, if the return value is unused.
3760 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3761 Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char");
3762 Type *IntTy = B.getIntNTy(TLI->getIntSize());
3763 Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari");
3764 Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI);
3765 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3769 return nullptr;
3772 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3773 optimizeErrorReporting(CI, B, 1);
3775 // Don't rewrite fputs to fwrite when optimising for size because fwrite
3776 // requires more arguments and thus extra MOVs are required.
3777 if (llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3778 PGSOQueryType::IRPass))
3779 return nullptr;
3781 // We can't optimize if return value is used.
3782 if (!CI->use_empty())
3783 return nullptr;
3785 // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3786 uint64_t Len = GetStringLength(CI->getArgOperand(0));
3787 if (!Len)
3788 return nullptr;
3790 // Known to have no uses (see above).
3791 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3792 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3793 return copyFlags(
3794 *CI,
3795 emitFWrite(CI->getArgOperand(0),
3796 ConstantInt::get(SizeTTy, Len - 1),
3797 CI->getArgOperand(1), B, DL, TLI));
3800 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3801 annotateNonNullNoUndefBasedOnAccess(CI, 0);
3802 if (!CI->use_empty())
3803 return nullptr;
3805 // Check for a constant string.
3806 // puts("") -> putchar('\n')
3807 StringRef Str;
3808 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) {
3809 // putchar takes an argument of the same type as puts returns, i.e.,
3810 // int, which need not be 32 bits wide.
3811 Type *IntTy = CI->getType();
3812 return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI));
3815 return nullptr;
3818 Value *LibCallSimplifier::optimizeExit(CallInst *CI) {
3820 // Mark 'exit' as cold if its not exit(0) (success).
3821 const APInt *C;
3822 if (!CI->hasFnAttr(Attribute::Cold) &&
3823 match(CI->getArgOperand(0), m_APInt(C)) && !C->isZero()) {
3824 CI->addFnAttr(Attribute::Cold);
3826 return nullptr;
3829 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3830 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3831 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3832 CI->getArgOperand(0), Align(1),
3833 CI->getArgOperand(2)));
3836 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3837 SmallString<20> FloatFuncName = FuncName;
3838 FloatFuncName += 'f';
3839 return isLibFuncEmittable(M, TLI, FloatFuncName);
3842 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3843 IRBuilderBase &Builder) {
3844 Module *M = CI->getModule();
3845 LibFunc Func;
3846 Function *Callee = CI->getCalledFunction();
3848 // Check for string/memory library functions.
3849 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3850 // Make sure we never change the calling convention.
3851 assert(
3852 (ignoreCallingConv(Func) ||
3853 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3854 "Optimizing string/memory libcall would change the calling convention");
3855 switch (Func) {
3856 case LibFunc_strcat:
3857 return optimizeStrCat(CI, Builder);
3858 case LibFunc_strncat:
3859 return optimizeStrNCat(CI, Builder);
3860 case LibFunc_strchr:
3861 return optimizeStrChr(CI, Builder);
3862 case LibFunc_strrchr:
3863 return optimizeStrRChr(CI, Builder);
3864 case LibFunc_strcmp:
3865 return optimizeStrCmp(CI, Builder);
3866 case LibFunc_strncmp:
3867 return optimizeStrNCmp(CI, Builder);
3868 case LibFunc_strcpy:
3869 return optimizeStrCpy(CI, Builder);
3870 case LibFunc_stpcpy:
3871 return optimizeStpCpy(CI, Builder);
3872 case LibFunc_strlcpy:
3873 return optimizeStrLCpy(CI, Builder);
3874 case LibFunc_stpncpy:
3875 return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder);
3876 case LibFunc_strncpy:
3877 return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder);
3878 case LibFunc_strlen:
3879 return optimizeStrLen(CI, Builder);
3880 case LibFunc_strnlen:
3881 return optimizeStrNLen(CI, Builder);
3882 case LibFunc_strpbrk:
3883 return optimizeStrPBrk(CI, Builder);
3884 case LibFunc_strndup:
3885 return optimizeStrNDup(CI, Builder);
3886 case LibFunc_strtol:
3887 case LibFunc_strtod:
3888 case LibFunc_strtof:
3889 case LibFunc_strtoul:
3890 case LibFunc_strtoll:
3891 case LibFunc_strtold:
3892 case LibFunc_strtoull:
3893 return optimizeStrTo(CI, Builder);
3894 case LibFunc_strspn:
3895 return optimizeStrSpn(CI, Builder);
3896 case LibFunc_strcspn:
3897 return optimizeStrCSpn(CI, Builder);
3898 case LibFunc_strstr:
3899 return optimizeStrStr(CI, Builder);
3900 case LibFunc_memchr:
3901 return optimizeMemChr(CI, Builder);
3902 case LibFunc_memrchr:
3903 return optimizeMemRChr(CI, Builder);
3904 case LibFunc_bcmp:
3905 return optimizeBCmp(CI, Builder);
3906 case LibFunc_memcmp:
3907 return optimizeMemCmp(CI, Builder);
3908 case LibFunc_memcpy:
3909 return optimizeMemCpy(CI, Builder);
3910 case LibFunc_memccpy:
3911 return optimizeMemCCpy(CI, Builder);
3912 case LibFunc_mempcpy:
3913 return optimizeMemPCpy(CI, Builder);
3914 case LibFunc_memmove:
3915 return optimizeMemMove(CI, Builder);
3916 case LibFunc_memset:
3917 return optimizeMemSet(CI, Builder);
3918 case LibFunc_realloc:
3919 return optimizeRealloc(CI, Builder);
3920 case LibFunc_wcslen:
3921 return optimizeWcslen(CI, Builder);
3922 case LibFunc_bcopy:
3923 return optimizeBCopy(CI, Builder);
3924 case LibFunc_Znwm:
3925 case LibFunc_ZnwmRKSt9nothrow_t:
3926 case LibFunc_ZnwmSt11align_val_t:
3927 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
3928 case LibFunc_Znam:
3929 case LibFunc_ZnamRKSt9nothrow_t:
3930 case LibFunc_ZnamSt11align_val_t:
3931 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
3932 case LibFunc_Znwm12__hot_cold_t:
3933 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
3934 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
3935 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3936 case LibFunc_Znam12__hot_cold_t:
3937 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
3938 case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
3939 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3940 case LibFunc_size_returning_new:
3941 case LibFunc_size_returning_new_hot_cold:
3942 case LibFunc_size_returning_new_aligned:
3943 case LibFunc_size_returning_new_aligned_hot_cold:
3944 return optimizeNew(CI, Builder, Func);
3945 default:
3946 break;
3949 return nullptr;
3952 /// Constant folding nan/nanf/nanl.
3953 static Value *optimizeNaN(CallInst *CI) {
3954 StringRef CharSeq;
3955 if (!getConstantStringInfo(CI->getArgOperand(0), CharSeq))
3956 return nullptr;
3958 APInt Fill;
3959 // Treat empty strings as if they were zero.
3960 if (CharSeq.empty())
3961 Fill = APInt(32, 0);
3962 else if (CharSeq.getAsInteger(0, Fill))
3963 return nullptr;
3965 return ConstantFP::getQNaN(CI->getType(), /*Negative=*/false, &Fill);
3968 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3969 LibFunc Func,
3970 IRBuilderBase &Builder) {
3971 const Module *M = CI->getModule();
3973 // Don't optimize calls that require strict floating point semantics.
3974 if (CI->isStrictFP())
3975 return nullptr;
3977 if (Value *V = optimizeSymmetric(CI, Func, Builder))
3978 return V;
3980 switch (Func) {
3981 case LibFunc_sinpif:
3982 case LibFunc_sinpi:
3983 return optimizeSinCosPi(CI, /*IsSin*/true, Builder);
3984 case LibFunc_cospif:
3985 case LibFunc_cospi:
3986 return optimizeSinCosPi(CI, /*IsSin*/false, Builder);
3987 case LibFunc_powf:
3988 case LibFunc_pow:
3989 case LibFunc_powl:
3990 return optimizePow(CI, Builder);
3991 case LibFunc_exp2l:
3992 case LibFunc_exp2:
3993 case LibFunc_exp2f:
3994 return optimizeExp2(CI, Builder);
3995 case LibFunc_fabsf:
3996 case LibFunc_fabs:
3997 case LibFunc_fabsl:
3998 return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3999 case LibFunc_sqrtf:
4000 case LibFunc_sqrt:
4001 case LibFunc_sqrtl:
4002 return optimizeSqrt(CI, Builder);
4003 case LibFunc_fmod:
4004 case LibFunc_fmodf:
4005 case LibFunc_fmodl:
4006 return optimizeFMod(CI, Builder);
4007 case LibFunc_logf:
4008 case LibFunc_log:
4009 case LibFunc_logl:
4010 case LibFunc_log10f:
4011 case LibFunc_log10:
4012 case LibFunc_log10l:
4013 case LibFunc_log1pf:
4014 case LibFunc_log1p:
4015 case LibFunc_log1pl:
4016 case LibFunc_log2f:
4017 case LibFunc_log2:
4018 case LibFunc_log2l:
4019 case LibFunc_logbf:
4020 case LibFunc_logb:
4021 case LibFunc_logbl:
4022 return optimizeLog(CI, Builder);
4023 case LibFunc_tan:
4024 case LibFunc_tanf:
4025 case LibFunc_tanl:
4026 case LibFunc_sinh:
4027 case LibFunc_sinhf:
4028 case LibFunc_sinhl:
4029 case LibFunc_asinh:
4030 case LibFunc_asinhf:
4031 case LibFunc_asinhl:
4032 case LibFunc_cosh:
4033 case LibFunc_coshf:
4034 case LibFunc_coshl:
4035 case LibFunc_atanh:
4036 case LibFunc_atanhf:
4037 case LibFunc_atanhl:
4038 return optimizeTrigInversionPairs(CI, Builder);
4039 case LibFunc_ceil:
4040 return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
4041 case LibFunc_floor:
4042 return replaceUnaryCall(CI, Builder, Intrinsic::floor);
4043 case LibFunc_round:
4044 return replaceUnaryCall(CI, Builder, Intrinsic::round);
4045 case LibFunc_roundeven:
4046 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
4047 case LibFunc_nearbyint:
4048 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
4049 case LibFunc_rint:
4050 return replaceUnaryCall(CI, Builder, Intrinsic::rint);
4051 case LibFunc_trunc:
4052 return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
4053 case LibFunc_acos:
4054 case LibFunc_acosh:
4055 case LibFunc_asin:
4056 case LibFunc_atan:
4057 case LibFunc_cbrt:
4058 case LibFunc_exp:
4059 case LibFunc_exp10:
4060 case LibFunc_expm1:
4061 case LibFunc_cos:
4062 case LibFunc_sin:
4063 case LibFunc_tanh:
4064 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
4065 return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
4066 return nullptr;
4067 case LibFunc_copysign:
4068 if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
4069 return optimizeBinaryDoubleFP(CI, Builder, TLI);
4070 return nullptr;
4071 case LibFunc_fdim:
4072 case LibFunc_fdimf:
4073 case LibFunc_fdiml:
4074 return optimizeFdim(CI, Builder);
4075 case LibFunc_fminf:
4076 case LibFunc_fmin:
4077 case LibFunc_fminl:
4078 case LibFunc_fmaxf:
4079 case LibFunc_fmax:
4080 case LibFunc_fmaxl:
4081 return optimizeFMinFMax(CI, Builder);
4082 case LibFunc_cabs:
4083 case LibFunc_cabsf:
4084 case LibFunc_cabsl:
4085 return optimizeCAbs(CI, Builder);
4086 case LibFunc_remquo:
4087 case LibFunc_remquof:
4088 case LibFunc_remquol:
4089 return optimizeRemquo(CI, Builder);
4090 case LibFunc_nan:
4091 case LibFunc_nanf:
4092 case LibFunc_nanl:
4093 return optimizeNaN(CI);
4094 default:
4095 return nullptr;
4099 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
4100 Module *M = CI->getModule();
4101 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
4103 // TODO: Split out the code below that operates on FP calls so that
4104 // we can all non-FP calls with the StrictFP attribute to be
4105 // optimized.
4106 if (CI->isNoBuiltin())
4107 return nullptr;
4109 LibFunc Func;
4110 Function *Callee = CI->getCalledFunction();
4111 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4113 SmallVector<OperandBundleDef, 2> OpBundles;
4114 CI->getOperandBundlesAsDefs(OpBundles);
4116 IRBuilderBase::OperandBundlesGuard Guard(Builder);
4117 Builder.setDefaultOperandBundles(OpBundles);
4119 // Command-line parameter overrides instruction attribute.
4120 // This can't be moved to optimizeFloatingPointLibCall() because it may be
4121 // used by the intrinsic optimizations.
4122 if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
4123 UnsafeFPShrink = EnableUnsafeFPShrink;
4124 else if (isa<FPMathOperator>(CI) && CI->isFast())
4125 UnsafeFPShrink = true;
4127 // First, check for intrinsics.
4128 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
4129 if (!IsCallingConvC)
4130 return nullptr;
4131 // The FP intrinsics have corresponding constrained versions so we don't
4132 // need to check for the StrictFP attribute here.
4133 switch (II->getIntrinsicID()) {
4134 case Intrinsic::pow:
4135 return optimizePow(CI, Builder);
4136 case Intrinsic::exp2:
4137 return optimizeExp2(CI, Builder);
4138 case Intrinsic::log:
4139 case Intrinsic::log2:
4140 case Intrinsic::log10:
4141 return optimizeLog(CI, Builder);
4142 case Intrinsic::sqrt:
4143 return optimizeSqrt(CI, Builder);
4144 case Intrinsic::memset:
4145 return optimizeMemSet(CI, Builder);
4146 case Intrinsic::memcpy:
4147 return optimizeMemCpy(CI, Builder);
4148 case Intrinsic::memmove:
4149 return optimizeMemMove(CI, Builder);
4150 default:
4151 return nullptr;
4155 // Also try to simplify calls to fortified library functions.
4156 if (Value *SimplifiedFortifiedCI =
4157 FortifiedSimplifier.optimizeCall(CI, Builder))
4158 return SimplifiedFortifiedCI;
4160 // Then check for known library functions.
4161 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
4162 // We never change the calling convention.
4163 if (!ignoreCallingConv(Func) && !IsCallingConvC)
4164 return nullptr;
4165 if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
4166 return V;
4167 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
4168 return V;
4169 switch (Func) {
4170 case LibFunc_ffs:
4171 case LibFunc_ffsl:
4172 case LibFunc_ffsll:
4173 return optimizeFFS(CI, Builder);
4174 case LibFunc_fls:
4175 case LibFunc_flsl:
4176 case LibFunc_flsll:
4177 return optimizeFls(CI, Builder);
4178 case LibFunc_abs:
4179 case LibFunc_labs:
4180 case LibFunc_llabs:
4181 return optimizeAbs(CI, Builder);
4182 case LibFunc_isdigit:
4183 return optimizeIsDigit(CI, Builder);
4184 case LibFunc_isascii:
4185 return optimizeIsAscii(CI, Builder);
4186 case LibFunc_toascii:
4187 return optimizeToAscii(CI, Builder);
4188 case LibFunc_atoi:
4189 case LibFunc_atol:
4190 case LibFunc_atoll:
4191 return optimizeAtoi(CI, Builder);
4192 case LibFunc_strtol:
4193 case LibFunc_strtoll:
4194 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true);
4195 case LibFunc_strtoul:
4196 case LibFunc_strtoull:
4197 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false);
4198 case LibFunc_printf:
4199 return optimizePrintF(CI, Builder);
4200 case LibFunc_sprintf:
4201 return optimizeSPrintF(CI, Builder);
4202 case LibFunc_snprintf:
4203 return optimizeSnPrintF(CI, Builder);
4204 case LibFunc_fprintf:
4205 return optimizeFPrintF(CI, Builder);
4206 case LibFunc_fwrite:
4207 return optimizeFWrite(CI, Builder);
4208 case LibFunc_fputs:
4209 return optimizeFPuts(CI, Builder);
4210 case LibFunc_puts:
4211 return optimizePuts(CI, Builder);
4212 case LibFunc_perror:
4213 return optimizeErrorReporting(CI, Builder);
4214 case LibFunc_vfprintf:
4215 case LibFunc_fiprintf:
4216 return optimizeErrorReporting(CI, Builder, 0);
4217 case LibFunc_exit:
4218 case LibFunc_Exit:
4219 return optimizeExit(CI);
4220 default:
4221 return nullptr;
4224 return nullptr;
4227 LibCallSimplifier::LibCallSimplifier(
4228 const DataLayout &DL, const TargetLibraryInfo *TLI, DominatorTree *DT,
4229 DomConditionCache *DC, AssumptionCache *AC, OptimizationRemarkEmitter &ORE,
4230 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
4231 function_ref<void(Instruction *, Value *)> Replacer,
4232 function_ref<void(Instruction *)> Eraser)
4233 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), DT(DT), DC(DC), AC(AC),
4234 ORE(ORE), BFI(BFI), PSI(PSI), Replacer(Replacer), Eraser(Eraser) {}
4236 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
4237 // Indirect through the replacer used in this instance.
4238 Replacer(I, With);
4241 void LibCallSimplifier::eraseFromParent(Instruction *I) {
4242 Eraser(I);
4245 // TODO:
4246 // Additional cases that we need to add to this file:
4248 // cbrt:
4249 // * cbrt(expN(X)) -> expN(x/3)
4250 // * cbrt(sqrt(x)) -> pow(x,1/6)
4251 // * cbrt(cbrt(x)) -> pow(x,1/9)
4253 // exp, expf, expl:
4254 // * exp(log(x)) -> x
4256 // log, logf, logl:
4257 // * log(exp(x)) -> x
4258 // * log(exp(y)) -> y*log(e)
4259 // * log(exp10(y)) -> y*log(10)
4260 // * log(sqrt(x)) -> 0.5*log(x)
4262 // pow, powf, powl:
4263 // * pow(sqrt(x),y) -> pow(x,y*0.5)
4264 // * pow(pow(x,y),z)-> pow(x,y*z)
4266 // signbit:
4267 // * signbit(cnst) -> cnst'
4268 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
4270 // sqrt, sqrtf, sqrtl:
4271 // * sqrt(expN(x)) -> expN(x*0.5)
4272 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
4273 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
4276 //===----------------------------------------------------------------------===//
4277 // Fortified Library Call Optimizations
4278 //===----------------------------------------------------------------------===//
4280 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
4281 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp,
4282 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) {
4283 // If this function takes a flag argument, the implementation may use it to
4284 // perform extra checks. Don't fold into the non-checking variant.
4285 if (FlagOp) {
4286 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
4287 if (!Flag || !Flag->isZero())
4288 return false;
4291 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
4292 return true;
4294 if (ConstantInt *ObjSizeCI =
4295 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
4296 if (ObjSizeCI->isMinusOne())
4297 return true;
4298 // If the object size wasn't -1 (unknown), bail out if we were asked to.
4299 if (OnlyLowerUnknownSize)
4300 return false;
4301 if (StrOp) {
4302 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
4303 // If the length is 0 we don't know how long it is and so we can't
4304 // remove the check.
4305 if (Len)
4306 annotateDereferenceableBytes(CI, *StrOp, Len);
4307 else
4308 return false;
4309 return ObjSizeCI->getZExtValue() >= Len;
4312 if (SizeOp) {
4313 if (ConstantInt *SizeCI =
4314 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
4315 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
4318 return false;
4321 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
4322 IRBuilderBase &B) {
4323 if (isFortifiedCallFoldable(CI, 3, 2)) {
4324 CallInst *NewCI =
4325 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
4326 Align(1), CI->getArgOperand(2));
4327 mergeAttributesAndFlags(NewCI, *CI);
4328 return CI->getArgOperand(0);
4330 return nullptr;
4333 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
4334 IRBuilderBase &B) {
4335 if (isFortifiedCallFoldable(CI, 3, 2)) {
4336 CallInst *NewCI =
4337 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
4338 Align(1), CI->getArgOperand(2));
4339 mergeAttributesAndFlags(NewCI, *CI);
4340 return CI->getArgOperand(0);
4342 return nullptr;
4345 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
4346 IRBuilderBase &B) {
4347 if (isFortifiedCallFoldable(CI, 3, 2)) {
4348 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
4349 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
4350 CI->getArgOperand(2), Align(1));
4351 mergeAttributesAndFlags(NewCI, *CI);
4352 return CI->getArgOperand(0);
4354 return nullptr;
4357 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
4358 IRBuilderBase &B) {
4359 const DataLayout &DL = CI->getDataLayout();
4360 if (isFortifiedCallFoldable(CI, 3, 2))
4361 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4362 CI->getArgOperand(2), B, DL, TLI)) {
4363 return mergeAttributesAndFlags(cast<CallInst>(Call), *CI);
4365 return nullptr;
4368 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
4369 IRBuilderBase &B,
4370 LibFunc Func) {
4371 const DataLayout &DL = CI->getDataLayout();
4372 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
4373 *ObjSize = CI->getArgOperand(2);
4375 // __stpcpy_chk(x,x,...) -> x+strlen(x)
4376 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
4377 Value *StrLen = emitStrLen(Src, B, DL, TLI);
4378 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
4381 // If a) we don't have any length information, or b) we know this will
4382 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
4383 // st[rp]cpy_chk call which may fail at runtime if the size is too long.
4384 // TODO: It might be nice to get a maximum length out of the possible
4385 // string lengths for varying.
4386 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) {
4387 if (Func == LibFunc_strcpy_chk)
4388 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
4389 else
4390 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
4393 if (OnlyLowerUnknownSize)
4394 return nullptr;
4396 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
4397 uint64_t Len = GetStringLength(Src);
4398 if (Len)
4399 annotateDereferenceableBytes(CI, 1, Len);
4400 else
4401 return nullptr;
4403 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
4404 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
4405 Value *LenV = ConstantInt::get(SizeTTy, Len);
4406 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
4407 // If the function was an __stpcpy_chk, and we were able to fold it into
4408 // a __memcpy_chk, we still need to return the correct end pointer.
4409 if (Ret && Func == LibFunc_stpcpy_chk)
4410 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
4411 ConstantInt::get(SizeTTy, Len - 1));
4412 return copyFlags(*CI, cast<CallInst>(Ret));
4415 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
4416 IRBuilderBase &B) {
4417 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0))
4418 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
4419 CI->getDataLayout(), TLI));
4420 return nullptr;
4423 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
4424 IRBuilderBase &B,
4425 LibFunc Func) {
4426 if (isFortifiedCallFoldable(CI, 3, 2)) {
4427 if (Func == LibFunc_strncpy_chk)
4428 return copyFlags(*CI,
4429 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4430 CI->getArgOperand(2), B, TLI));
4431 else
4432 return copyFlags(*CI,
4433 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4434 CI->getArgOperand(2), B, TLI));
4437 return nullptr;
4440 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
4441 IRBuilderBase &B) {
4442 if (isFortifiedCallFoldable(CI, 4, 3))
4443 return copyFlags(
4444 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4445 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
4447 return nullptr;
4450 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
4451 IRBuilderBase &B) {
4452 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) {
4453 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
4454 return copyFlags(*CI,
4455 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
4456 CI->getArgOperand(4), VariadicArgs, B, TLI));
4459 return nullptr;
4462 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
4463 IRBuilderBase &B) {
4464 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) {
4465 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
4466 return copyFlags(*CI,
4467 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
4468 VariadicArgs, B, TLI));
4471 return nullptr;
4474 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
4475 IRBuilderBase &B) {
4476 if (isFortifiedCallFoldable(CI, 2))
4477 return copyFlags(
4478 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
4480 return nullptr;
4483 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
4484 IRBuilderBase &B) {
4485 if (isFortifiedCallFoldable(CI, 3))
4486 return copyFlags(*CI,
4487 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
4488 CI->getArgOperand(2), B, TLI));
4490 return nullptr;
4493 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
4494 IRBuilderBase &B) {
4495 if (isFortifiedCallFoldable(CI, 3))
4496 return copyFlags(*CI,
4497 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
4498 CI->getArgOperand(2), B, TLI));
4500 return nullptr;
4503 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
4504 IRBuilderBase &B) {
4505 if (isFortifiedCallFoldable(CI, 3))
4506 return copyFlags(*CI,
4507 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4508 CI->getArgOperand(2), B, TLI));
4510 return nullptr;
4513 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
4514 IRBuilderBase &B) {
4515 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2))
4516 return copyFlags(
4517 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
4518 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
4520 return nullptr;
4523 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
4524 IRBuilderBase &B) {
4525 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1))
4526 return copyFlags(*CI,
4527 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
4528 CI->getArgOperand(4), B, TLI));
4530 return nullptr;
4533 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
4534 IRBuilderBase &Builder) {
4535 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
4536 // Some clang users checked for _chk libcall availability using:
4537 // __has_builtin(__builtin___memcpy_chk)
4538 // When compiling with -fno-builtin, this is always true.
4539 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
4540 // end up with fortified libcalls, which isn't acceptable in a freestanding
4541 // environment which only provides their non-fortified counterparts.
4543 // Until we change clang and/or teach external users to check for availability
4544 // differently, disregard the "nobuiltin" attribute and TLI::has.
4546 // PR23093.
4548 LibFunc Func;
4549 Function *Callee = CI->getCalledFunction();
4550 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4552 SmallVector<OperandBundleDef, 2> OpBundles;
4553 CI->getOperandBundlesAsDefs(OpBundles);
4555 IRBuilderBase::OperandBundlesGuard Guard(Builder);
4556 Builder.setDefaultOperandBundles(OpBundles);
4558 // First, check that this is a known library functions and that the prototype
4559 // is correct.
4560 if (!TLI->getLibFunc(*Callee, Func))
4561 return nullptr;
4563 // We never change the calling convention.
4564 if (!ignoreCallingConv(Func) && !IsCallingConvC)
4565 return nullptr;
4567 switch (Func) {
4568 case LibFunc_memcpy_chk:
4569 return optimizeMemCpyChk(CI, Builder);
4570 case LibFunc_mempcpy_chk:
4571 return optimizeMemPCpyChk(CI, Builder);
4572 case LibFunc_memmove_chk:
4573 return optimizeMemMoveChk(CI, Builder);
4574 case LibFunc_memset_chk:
4575 return optimizeMemSetChk(CI, Builder);
4576 case LibFunc_stpcpy_chk:
4577 case LibFunc_strcpy_chk:
4578 return optimizeStrpCpyChk(CI, Builder, Func);
4579 case LibFunc_strlen_chk:
4580 return optimizeStrLenChk(CI, Builder);
4581 case LibFunc_stpncpy_chk:
4582 case LibFunc_strncpy_chk:
4583 return optimizeStrpNCpyChk(CI, Builder, Func);
4584 case LibFunc_memccpy_chk:
4585 return optimizeMemCCpyChk(CI, Builder);
4586 case LibFunc_snprintf_chk:
4587 return optimizeSNPrintfChk(CI, Builder);
4588 case LibFunc_sprintf_chk:
4589 return optimizeSPrintfChk(CI, Builder);
4590 case LibFunc_strcat_chk:
4591 return optimizeStrCatChk(CI, Builder);
4592 case LibFunc_strlcat_chk:
4593 return optimizeStrLCat(CI, Builder);
4594 case LibFunc_strncat_chk:
4595 return optimizeStrNCatChk(CI, Builder);
4596 case LibFunc_strlcpy_chk:
4597 return optimizeStrLCpyChk(CI, Builder);
4598 case LibFunc_vsnprintf_chk:
4599 return optimizeVSNPrintfChk(CI, Builder);
4600 case LibFunc_vsprintf_chk:
4601 return optimizeVSPrintfChk(CI, Builder);
4602 default:
4603 break;
4605 return nullptr;
4608 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
4609 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
4610 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}