[win/asan] GetInstructionSize: Fix `83 E4 XX` to return 3. (#119644)
[llvm-project.git] / llvm / lib / Transforms / Utils / VNCoercion.cpp
blob1e0ae280516410248c5628c64f9de9b7a0aa7246
1 #include "llvm/Transforms/Utils/VNCoercion.h"
2 #include "llvm/Analysis/ConstantFolding.h"
3 #include "llvm/Analysis/ValueTracking.h"
4 #include "llvm/IR/IRBuilder.h"
5 #include "llvm/IR/IntrinsicInst.h"
7 #define DEBUG_TYPE "vncoerce"
9 namespace llvm {
10 namespace VNCoercion {
12 static bool isFirstClassAggregateOrScalableType(Type *Ty) {
13 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
16 /// Return true if coerceAvailableValueToLoadType will succeed.
17 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
18 const DataLayout &DL) {
19 Type *StoredTy = StoredVal->getType();
21 if (StoredTy == LoadTy)
22 return true;
24 // If the loaded/stored value is a first class array/struct, or scalable type,
25 // don't try to transform them. We need to be able to bitcast to integer.
26 if (isFirstClassAggregateOrScalableType(LoadTy) ||
27 isFirstClassAggregateOrScalableType(StoredTy))
28 return false;
30 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedValue();
32 // The store size must be byte-aligned to support future type casts.
33 if (llvm::alignTo(StoreSize, 8) != StoreSize)
34 return false;
36 // The store has to be at least as big as the load.
37 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedValue())
38 return false;
40 bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
41 bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
42 // Don't coerce non-integral pointers to integers or vice versa.
43 if (StoredNI != LoadNI) {
44 // As a special case, allow coercion of memset used to initialize
45 // an array w/null. Despite non-integral pointers not generally having a
46 // specific bit pattern, we do assume null is zero.
47 if (auto *CI = dyn_cast<Constant>(StoredVal))
48 return CI->isNullValue();
49 return false;
50 } else if (StoredNI && LoadNI &&
51 StoredTy->getPointerAddressSpace() !=
52 LoadTy->getPointerAddressSpace()) {
53 return false;
57 // The implementation below uses inttoptr for vectors of unequal size; we
58 // can't allow this for non integral pointers. We could teach it to extract
59 // exact subvectors if desired.
60 if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedValue())
61 return false;
63 if (StoredTy->isTargetExtTy() || LoadTy->isTargetExtTy())
64 return false;
66 return true;
69 /// If we saw a store of a value to memory, and
70 /// then a load from a must-aliased pointer of a different type, try to coerce
71 /// the stored value. LoadedTy is the type of the load we want to replace.
72 /// IRB is IRBuilder used to insert new instructions.
73 ///
74 /// If we can't do it, return null.
75 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
76 IRBuilderBase &Helper,
77 const DataLayout &DL) {
78 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
79 "precondition violation - materialization can't fail");
80 if (auto *C = dyn_cast<Constant>(StoredVal))
81 StoredVal = ConstantFoldConstant(C, DL);
83 // If this is already the right type, just return it.
84 Type *StoredValTy = StoredVal->getType();
86 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedValue();
87 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedValue();
89 // If the store and reload are the same size, we can always reuse it.
90 if (StoredValSize == LoadedValSize) {
91 // Pointer to Pointer -> use bitcast.
92 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
93 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
94 } else {
95 // Convert source pointers to integers, which can be bitcast.
96 if (StoredValTy->isPtrOrPtrVectorTy()) {
97 StoredValTy = DL.getIntPtrType(StoredValTy);
98 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
101 Type *TypeToCastTo = LoadedTy;
102 if (TypeToCastTo->isPtrOrPtrVectorTy())
103 TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
105 if (StoredValTy != TypeToCastTo)
106 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
108 // Cast to pointer if the load needs a pointer type.
109 if (LoadedTy->isPtrOrPtrVectorTy())
110 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
113 if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
114 StoredVal = ConstantFoldConstant(C, DL);
116 return StoredVal;
118 // If the loaded value is smaller than the available value, then we can
119 // extract out a piece from it. If the available value is too small, then we
120 // can't do anything.
121 assert(StoredValSize >= LoadedValSize &&
122 "canCoerceMustAliasedValueToLoad fail");
124 // Convert source pointers to integers, which can be manipulated.
125 if (StoredValTy->isPtrOrPtrVectorTy()) {
126 StoredValTy = DL.getIntPtrType(StoredValTy);
127 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
130 // Convert vectors and fp to integer, which can be manipulated.
131 if (!StoredValTy->isIntegerTy()) {
132 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
133 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
136 // If this is a big-endian system, we need to shift the value down to the low
137 // bits so that a truncate will work.
138 if (DL.isBigEndian()) {
139 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedValue() -
140 DL.getTypeStoreSizeInBits(LoadedTy).getFixedValue();
141 StoredVal = Helper.CreateLShr(
142 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
145 // Truncate the integer to the right size now.
146 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
147 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
149 if (LoadedTy != NewIntTy) {
150 // If the result is a pointer, inttoptr.
151 if (LoadedTy->isPtrOrPtrVectorTy())
152 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
153 else
154 // Otherwise, bitcast.
155 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
158 if (auto *C = dyn_cast<Constant>(StoredVal))
159 StoredVal = ConstantFoldConstant(C, DL);
161 return StoredVal;
164 /// This function is called when we have a memdep query of a load that ends up
165 /// being a clobbering memory write (store, memset, memcpy, memmove). This
166 /// means that the write *may* provide bits used by the load but we can't be
167 /// sure because the pointers don't must-alias.
169 /// Check this case to see if there is anything more we can do before we give
170 /// up. This returns -1 if we have to give up, or a byte number in the stored
171 /// value of the piece that feeds the load.
172 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
173 Value *WritePtr,
174 uint64_t WriteSizeInBits,
175 const DataLayout &DL) {
176 // If the loaded/stored value is a first class array/struct, or scalable type,
177 // don't try to transform them. We need to be able to bitcast to integer.
178 if (isFirstClassAggregateOrScalableType(LoadTy))
179 return -1;
181 int64_t StoreOffset = 0, LoadOffset = 0;
182 Value *StoreBase =
183 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
184 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
185 if (StoreBase != LoadBase)
186 return -1;
188 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue();
190 if ((WriteSizeInBits & 7) | (LoadSize & 7))
191 return -1;
192 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
193 LoadSize /= 8;
195 // If the Load isn't completely contained within the stored bits, we don't
196 // have all the bits to feed it. We could do something crazy in the future
197 // (issue a smaller load then merge the bits in) but this seems unlikely to be
198 // valuable.
199 if (StoreOffset > LoadOffset ||
200 StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
201 return -1;
203 // Okay, we can do this transformation. Return the number of bytes into the
204 // store that the load is.
205 return LoadOffset - StoreOffset;
208 /// This function is called when we have a
209 /// memdep query of a load that ends up being a clobbering store.
210 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
211 StoreInst *DepSI, const DataLayout &DL) {
212 auto *StoredVal = DepSI->getValueOperand();
214 // Cannot handle reading from store of first-class aggregate or scalable type.
215 if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
216 return -1;
218 if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
219 return -1;
221 Value *StorePtr = DepSI->getPointerOperand();
222 uint64_t StoreSize =
223 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedValue();
224 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
225 DL);
228 /// This function is called when we have a
229 /// memdep query of a load that ends up being clobbered by another load. See if
230 /// the other load can feed into the second load.
231 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
232 const DataLayout &DL) {
233 // Cannot handle reading from store of first-class aggregate yet.
234 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
235 return -1;
237 if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
238 return -1;
240 Value *DepPtr = DepLI->getPointerOperand();
241 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedValue();
242 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
245 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
246 MemIntrinsic *MI, const DataLayout &DL) {
247 // If the mem operation is a non-constant size, we can't handle it.
248 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
249 if (!SizeCst)
250 return -1;
251 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
253 // If this is memset, we just need to see if the offset is valid in the size
254 // of the memset..
255 if (const auto *memset_inst = dyn_cast<MemSetInst>(MI)) {
256 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
257 auto *CI = dyn_cast<ConstantInt>(memset_inst->getValue());
258 if (!CI || !CI->isZero())
259 return -1;
261 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
262 MemSizeInBits, DL);
265 // If we have a memcpy/memmove, the only case we can handle is if this is a
266 // copy from constant memory. In that case, we can read directly from the
267 // constant memory.
268 MemTransferInst *MTI = cast<MemTransferInst>(MI);
270 Constant *Src = dyn_cast<Constant>(MTI->getSource());
271 if (!Src)
272 return -1;
274 GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
275 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
276 return -1;
278 // See if the access is within the bounds of the transfer.
279 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
280 MemSizeInBits, DL);
281 if (Offset == -1)
282 return Offset;
284 // Otherwise, see if we can constant fold a load from the constant with the
285 // offset applied as appropriate.
286 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
287 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
288 return Offset;
289 return -1;
292 static Value *getStoreValueForLoadHelper(Value *SrcVal, unsigned Offset,
293 Type *LoadTy, IRBuilderBase &Builder,
294 const DataLayout &DL) {
295 LLVMContext &Ctx = SrcVal->getType()->getContext();
297 // If two pointers are in the same address space, they have the same size,
298 // so we don't need to do any truncation, etc. This avoids introducing
299 // ptrtoint instructions for pointers that may be non-integral.
300 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
301 cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
302 cast<PointerType>(LoadTy)->getAddressSpace()) {
303 return SrcVal;
306 uint64_t StoreSize =
307 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedValue() + 7) / 8;
308 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedValue() + 7) / 8;
309 // Compute which bits of the stored value are being used by the load. Convert
310 // to an integer type to start with.
311 if (SrcVal->getType()->isPtrOrPtrVectorTy())
312 SrcVal =
313 Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
314 if (!SrcVal->getType()->isIntegerTy())
315 SrcVal =
316 Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
318 // Shift the bits to the least significant depending on endianness.
319 unsigned ShiftAmt;
320 if (DL.isLittleEndian())
321 ShiftAmt = Offset * 8;
322 else
323 ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
324 if (ShiftAmt)
325 SrcVal = Builder.CreateLShr(SrcVal,
326 ConstantInt::get(SrcVal->getType(), ShiftAmt));
328 if (LoadSize != StoreSize)
329 SrcVal = Builder.CreateTruncOrBitCast(SrcVal,
330 IntegerType::get(Ctx, LoadSize * 8));
331 return SrcVal;
334 Value *getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
335 Instruction *InsertPt, const DataLayout &DL) {
337 #ifndef NDEBUG
338 unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
339 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
340 assert(Offset + LoadSize <= SrcValSize);
341 #endif
342 IRBuilder<> Builder(InsertPt);
343 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
344 return coerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
347 Constant *getConstantValueForLoad(Constant *SrcVal, unsigned Offset,
348 Type *LoadTy, const DataLayout &DL) {
349 #ifndef NDEBUG
350 unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
351 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
352 assert(Offset + LoadSize <= SrcValSize);
353 #endif
354 return ConstantFoldLoadFromConst(SrcVal, LoadTy, APInt(32, Offset), DL);
357 /// This function is called when we have a
358 /// memdep query of a load that ends up being a clobbering mem intrinsic.
359 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
360 Type *LoadTy, Instruction *InsertPt,
361 const DataLayout &DL) {
362 LLVMContext &Ctx = LoadTy->getContext();
363 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
364 IRBuilder<> Builder(InsertPt);
366 // We know that this method is only called when the mem transfer fully
367 // provides the bits for the load.
368 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
369 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
370 // independently of what the offset is.
371 Value *Val = MSI->getValue();
372 if (LoadSize != 1)
373 Val =
374 Builder.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
375 Value *OneElt = Val;
377 // Splat the value out to the right number of bits.
378 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
379 // If we can double the number of bytes set, do it.
380 if (NumBytesSet * 2 <= LoadSize) {
381 Value *ShVal = Builder.CreateShl(
382 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
383 Val = Builder.CreateOr(Val, ShVal);
384 NumBytesSet <<= 1;
385 continue;
388 // Otherwise insert one byte at a time.
389 Value *ShVal =
390 Builder.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
391 Val = Builder.CreateOr(OneElt, ShVal);
392 ++NumBytesSet;
395 return coerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
398 // Otherwise, this is a memcpy/memmove from a constant global.
399 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
400 Constant *Src = cast<Constant>(MTI->getSource());
401 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
402 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
403 DL);
406 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
407 Type *LoadTy, const DataLayout &DL) {
408 LLVMContext &Ctx = LoadTy->getContext();
409 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
411 // We know that this method is only called when the mem transfer fully
412 // provides the bits for the load.
413 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
414 auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
415 if (!Val)
416 return nullptr;
418 Val = ConstantInt::get(Ctx, APInt::getSplat(LoadSize * 8, Val->getValue()));
419 return ConstantFoldLoadFromConst(Val, LoadTy, DL);
422 // Otherwise, this is a memcpy/memmove from a constant global.
423 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
424 Constant *Src = cast<Constant>(MTI->getSource());
425 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
426 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
427 DL);
429 } // namespace VNCoercion
430 } // namespace llvm