[analyzer][Z3] Restore the original timeout of 15s (#118291)
[llvm-project.git] / llvm / lib / Transforms / Vectorize / LoopVectorizationLegality.cpp
blob555c8435dd330d5e83b314d8c9bee461340a4966
1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Transforms/Utils/SizeOpts.h"
29 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
31 using namespace llvm;
32 using namespace PatternMatch;
34 #define LV_NAME "loop-vectorize"
35 #define DEBUG_TYPE LV_NAME
37 static cl::opt<bool>
38 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
39 cl::desc("Enable if-conversion during vectorization."));
41 static cl::opt<bool>
42 AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
43 cl::desc("Enable recognition of non-constant strided "
44 "pointer induction variables."));
46 namespace llvm {
47 cl::opt<bool>
48 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
49 cl::desc("Allow enabling loop hints to reorder "
50 "FP operations during vectorization."));
51 } // namespace llvm
53 // TODO: Move size-based thresholds out of legality checking, make cost based
54 // decisions instead of hard thresholds.
55 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
56 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
57 cl::desc("The maximum number of SCEV checks allowed."));
59 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
60 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
61 cl::desc("The maximum number of SCEV checks allowed with a "
62 "vectorize(enable) pragma"));
64 static cl::opt<LoopVectorizeHints::ScalableForceKind>
65 ForceScalableVectorization(
66 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
67 cl::Hidden,
68 cl::desc("Control whether the compiler can use scalable vectors to "
69 "vectorize a loop"),
70 cl::values(
71 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
72 "Scalable vectorization is disabled."),
73 clEnumValN(
74 LoopVectorizeHints::SK_PreferScalable, "preferred",
75 "Scalable vectorization is available and favored when the "
76 "cost is inconclusive."),
77 clEnumValN(
78 LoopVectorizeHints::SK_PreferScalable, "on",
79 "Scalable vectorization is available and favored when the "
80 "cost is inconclusive.")));
82 static cl::opt<bool> EnableHistogramVectorization(
83 "enable-histogram-loop-vectorization", cl::init(false), cl::Hidden,
84 cl::desc("Enables autovectorization of some loops containing histograms"));
86 /// Maximum vectorization interleave count.
87 static const unsigned MaxInterleaveFactor = 16;
89 namespace llvm {
91 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
92 switch (Kind) {
93 case HK_WIDTH:
94 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
95 case HK_INTERLEAVE:
96 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
97 case HK_FORCE:
98 return (Val <= 1);
99 case HK_ISVECTORIZED:
100 case HK_PREDICATE:
101 case HK_SCALABLE:
102 return (Val == 0 || Val == 1);
104 return false;
107 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
108 bool InterleaveOnlyWhenForced,
109 OptimizationRemarkEmitter &ORE,
110 const TargetTransformInfo *TTI)
111 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
112 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
113 Force("vectorize.enable", FK_Undefined, HK_FORCE),
114 IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
115 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
116 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
117 TheLoop(L), ORE(ORE) {
118 // Populate values with existing loop metadata.
119 getHintsFromMetadata();
121 // force-vector-interleave overrides DisableInterleaving.
122 if (VectorizerParams::isInterleaveForced())
123 Interleave.Value = VectorizerParams::VectorizationInterleave;
125 // If the metadata doesn't explicitly specify whether to enable scalable
126 // vectorization, then decide based on the following criteria (increasing
127 // level of priority):
128 // - Target default
129 // - Metadata width
130 // - Force option (always overrides)
131 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
132 if (TTI)
133 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
134 : SK_FixedWidthOnly;
136 if (Width.Value)
137 // If the width is set, but the metadata says nothing about the scalable
138 // property, then assume it concerns only a fixed-width UserVF.
139 // If width is not set, the flag takes precedence.
140 Scalable.Value = SK_FixedWidthOnly;
143 // If the flag is set to force any use of scalable vectors, override the loop
144 // hints.
145 if (ForceScalableVectorization.getValue() !=
146 LoopVectorizeHints::SK_Unspecified)
147 Scalable.Value = ForceScalableVectorization.getValue();
149 // Scalable vectorization is disabled if no preference is specified.
150 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
151 Scalable.Value = SK_FixedWidthOnly;
153 if (IsVectorized.Value != 1)
154 // If the vectorization width and interleaving count are both 1 then
155 // consider the loop to have been already vectorized because there's
156 // nothing more that we can do.
157 IsVectorized.Value =
158 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
159 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
160 << "LV: Interleaving disabled by the pass manager\n");
163 void LoopVectorizeHints::setAlreadyVectorized() {
164 LLVMContext &Context = TheLoop->getHeader()->getContext();
166 MDNode *IsVectorizedMD = MDNode::get(
167 Context,
168 {MDString::get(Context, "llvm.loop.isvectorized"),
169 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
170 MDNode *LoopID = TheLoop->getLoopID();
171 MDNode *NewLoopID =
172 makePostTransformationMetadata(Context, LoopID,
173 {Twine(Prefix(), "vectorize.").str(),
174 Twine(Prefix(), "interleave.").str()},
175 {IsVectorizedMD});
176 TheLoop->setLoopID(NewLoopID);
178 // Update internal cache.
179 IsVectorized.Value = 1;
182 bool LoopVectorizeHints::allowVectorization(
183 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
184 if (getForce() == LoopVectorizeHints::FK_Disabled) {
185 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
186 emitRemarkWithHints();
187 return false;
190 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
191 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
192 emitRemarkWithHints();
193 return false;
196 if (getIsVectorized() == 1) {
197 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
198 // FIXME: Add interleave.disable metadata. This will allow
199 // vectorize.disable to be used without disabling the pass and errors
200 // to differentiate between disabled vectorization and a width of 1.
201 ORE.emit([&]() {
202 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
203 "AllDisabled", L->getStartLoc(),
204 L->getHeader())
205 << "loop not vectorized: vectorization and interleaving are "
206 "explicitly disabled, or the loop has already been "
207 "vectorized";
209 return false;
212 return true;
215 void LoopVectorizeHints::emitRemarkWithHints() const {
216 using namespace ore;
218 ORE.emit([&]() {
219 if (Force.Value == LoopVectorizeHints::FK_Disabled)
220 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
221 TheLoop->getStartLoc(),
222 TheLoop->getHeader())
223 << "loop not vectorized: vectorization is explicitly disabled";
225 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(),
226 TheLoop->getHeader());
227 R << "loop not vectorized";
228 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
229 R << " (Force=" << NV("Force", true);
230 if (Width.Value != 0)
231 R << ", Vector Width=" << NV("VectorWidth", getWidth());
232 if (getInterleave() != 0)
233 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
234 R << ")";
236 return R;
240 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
241 if (getWidth() == ElementCount::getFixed(1))
242 return LV_NAME;
243 if (getForce() == LoopVectorizeHints::FK_Disabled)
244 return LV_NAME;
245 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
246 return LV_NAME;
247 return OptimizationRemarkAnalysis::AlwaysPrint;
250 bool LoopVectorizeHints::allowReordering() const {
251 // Allow the vectorizer to change the order of operations if enabling
252 // loop hints are provided
253 ElementCount EC = getWidth();
254 return HintsAllowReordering &&
255 (getForce() == LoopVectorizeHints::FK_Enabled ||
256 EC.getKnownMinValue() > 1);
259 void LoopVectorizeHints::getHintsFromMetadata() {
260 MDNode *LoopID = TheLoop->getLoopID();
261 if (!LoopID)
262 return;
264 // First operand should refer to the loop id itself.
265 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
266 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
268 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
269 const MDString *S = nullptr;
270 SmallVector<Metadata *, 4> Args;
272 // The expected hint is either a MDString or a MDNode with the first
273 // operand a MDString.
274 if (const MDNode *MD = dyn_cast<MDNode>(MDO)) {
275 if (!MD || MD->getNumOperands() == 0)
276 continue;
277 S = dyn_cast<MDString>(MD->getOperand(0));
278 for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx)
279 Args.push_back(MD->getOperand(Idx));
280 } else {
281 S = dyn_cast<MDString>(MDO);
282 assert(Args.size() == 0 && "too many arguments for MDString");
285 if (!S)
286 continue;
288 // Check if the hint starts with the loop metadata prefix.
289 StringRef Name = S->getString();
290 if (Args.size() == 1)
291 setHint(Name, Args[0]);
295 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
296 if (!Name.starts_with(Prefix()))
297 return;
298 Name = Name.substr(Prefix().size(), StringRef::npos);
300 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
301 if (!C)
302 return;
303 unsigned Val = C->getZExtValue();
305 Hint *Hints[] = {&Width, &Interleave, &Force,
306 &IsVectorized, &Predicate, &Scalable};
307 for (auto *H : Hints) {
308 if (Name == H->Name) {
309 if (H->validate(Val))
310 H->Value = Val;
311 else
312 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
313 break;
318 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
319 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
320 // executing the inner loop will execute the same iterations). This check is
321 // very constrained for now but it will be relaxed in the future. \p Lp is
322 // considered uniform if it meets all the following conditions:
323 // 1) it has a canonical IV (starting from 0 and with stride 1),
324 // 2) its latch terminator is a conditional branch and,
325 // 3) its latch condition is a compare instruction whose operands are the
326 // canonical IV and an OuterLp invariant.
327 // This check doesn't take into account the uniformity of other conditions not
328 // related to the loop latch because they don't affect the loop uniformity.
330 // NOTE: We decided to keep all these checks and its associated documentation
331 // together so that we can easily have a picture of the current supported loop
332 // nests. However, some of the current checks don't depend on \p OuterLp and
333 // would be redundantly executed for each \p Lp if we invoked this function for
334 // different candidate outer loops. This is not the case for now because we
335 // don't currently have the infrastructure to evaluate multiple candidate outer
336 // loops and \p OuterLp will be a fixed parameter while we only support explicit
337 // outer loop vectorization. It's also very likely that these checks go away
338 // before introducing the aforementioned infrastructure. However, if this is not
339 // the case, we should move the \p OuterLp independent checks to a separate
340 // function that is only executed once for each \p Lp.
341 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
342 assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
344 // If Lp is the outer loop, it's uniform by definition.
345 if (Lp == OuterLp)
346 return true;
347 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
349 // 1.
350 PHINode *IV = Lp->getCanonicalInductionVariable();
351 if (!IV) {
352 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
353 return false;
356 // 2.
357 BasicBlock *Latch = Lp->getLoopLatch();
358 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
359 if (!LatchBr || LatchBr->isUnconditional()) {
360 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
361 return false;
364 // 3.
365 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
366 if (!LatchCmp) {
367 LLVM_DEBUG(
368 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
369 return false;
372 Value *CondOp0 = LatchCmp->getOperand(0);
373 Value *CondOp1 = LatchCmp->getOperand(1);
374 Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
375 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
376 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
377 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
378 return false;
381 return true;
384 // Return true if \p Lp and all its nested loops are uniform with regard to \p
385 // OuterLp.
386 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
387 if (!isUniformLoop(Lp, OuterLp))
388 return false;
390 // Check if nested loops are uniform.
391 for (Loop *SubLp : *Lp)
392 if (!isUniformLoopNest(SubLp, OuterLp))
393 return false;
395 return true;
398 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
399 if (Ty->isPointerTy())
400 return DL.getIntPtrType(Ty);
402 // It is possible that char's or short's overflow when we ask for the loop's
403 // trip count, work around this by changing the type size.
404 if (Ty->getScalarSizeInBits() < 32)
405 return Type::getInt32Ty(Ty->getContext());
407 return Ty;
410 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
411 Ty0 = convertPointerToIntegerType(DL, Ty0);
412 Ty1 = convertPointerToIntegerType(DL, Ty1);
413 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
414 return Ty0;
415 return Ty1;
418 /// Check that the instruction has outside loop users and is not an
419 /// identified reduction variable.
420 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
421 SmallPtrSetImpl<Value *> &AllowedExit) {
422 // Reductions, Inductions and non-header phis are allowed to have exit users. All
423 // other instructions must not have external users.
424 if (!AllowedExit.count(Inst))
425 // Check that all of the users of the loop are inside the BB.
426 for (User *U : Inst->users()) {
427 Instruction *UI = cast<Instruction>(U);
428 // This user may be a reduction exit value.
429 if (!TheLoop->contains(UI)) {
430 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
431 return true;
434 return false;
437 /// Returns true if A and B have same pointer operands or same SCEVs addresses
438 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
439 StoreInst *B) {
440 // Compare store
441 if (A == B)
442 return true;
444 // Otherwise Compare pointers
445 Value *APtr = A->getPointerOperand();
446 Value *BPtr = B->getPointerOperand();
447 if (APtr == BPtr)
448 return true;
450 // Otherwise compare address SCEVs
451 return SE->getSCEV(APtr) == SE->getSCEV(BPtr);
454 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
455 Value *Ptr) const {
456 // FIXME: Currently, the set of symbolic strides is sometimes queried before
457 // it's collected. This happens from canVectorizeWithIfConvert, when the
458 // pointer is checked to reference consecutive elements suitable for a
459 // masked access.
460 const auto &Strides =
461 LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
463 bool CanAddPredicate = !llvm::shouldOptimizeForSize(
464 TheLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
466 CanAddPredicate, false).value_or(0);
467 if (Stride == 1 || Stride == -1)
468 return Stride;
469 return 0;
472 bool LoopVectorizationLegality::isInvariant(Value *V) const {
473 return LAI->isInvariant(V);
476 namespace {
477 /// A rewriter to build the SCEVs for each of the VF lanes in the expected
478 /// vectorized loop, which can then be compared to detect their uniformity. This
479 /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
480 /// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
481 /// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
482 /// uniformity.
483 class SCEVAddRecForUniformityRewriter
484 : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
485 /// Multiplier to be applied to the step of AddRecs in TheLoop.
486 unsigned StepMultiplier;
488 /// Offset to be added to the AddRecs in TheLoop.
489 unsigned Offset;
491 /// Loop for which to rewrite AddRecsFor.
492 Loop *TheLoop;
494 /// Is any sub-expressions not analyzable w.r.t. uniformity?
495 bool CannotAnalyze = false;
497 bool canAnalyze() const { return !CannotAnalyze; }
499 public:
500 SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
501 unsigned Offset, Loop *TheLoop)
502 : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
503 TheLoop(TheLoop) {}
505 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
506 assert(Expr->getLoop() == TheLoop &&
507 "addrec outside of TheLoop must be invariant and should have been "
508 "handled earlier");
509 // Build a new AddRec by multiplying the step by StepMultiplier and
510 // incrementing the start by Offset * step.
511 Type *Ty = Expr->getType();
512 const SCEV *Step = Expr->getStepRecurrence(SE);
513 if (!SE.isLoopInvariant(Step, TheLoop)) {
514 CannotAnalyze = true;
515 return Expr;
517 const SCEV *NewStep =
518 SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
519 const SCEV *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
520 const SCEV *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
521 return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
524 const SCEV *visit(const SCEV *S) {
525 if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
526 return S;
527 return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S);
530 const SCEV *visitUnknown(const SCEVUnknown *S) {
531 if (SE.isLoopInvariant(S, TheLoop))
532 return S;
533 // The value could vary across iterations.
534 CannotAnalyze = true;
535 return S;
538 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
539 // Could not analyze the expression.
540 CannotAnalyze = true;
541 return S;
544 static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
545 unsigned StepMultiplier, unsigned Offset,
546 Loop *TheLoop) {
547 /// Bail out if the expression does not contain an UDiv expression.
548 /// Uniform values which are not loop invariant require operations to strip
549 /// out the lowest bits. For now just look for UDivs and use it to avoid
550 /// re-writing UDIV-free expressions for other lanes to limit compile time.
551 if (!SCEVExprContains(S,
552 [](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
553 return SE.getCouldNotCompute();
555 SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
556 TheLoop);
557 const SCEV *Result = Rewriter.visit(S);
559 if (Rewriter.canAnalyze())
560 return Result;
561 return SE.getCouldNotCompute();
565 } // namespace
567 bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const {
568 if (isInvariant(V))
569 return true;
570 if (VF.isScalable())
571 return false;
572 if (VF.isScalar())
573 return true;
575 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
576 // never considered uniform.
577 auto *SE = PSE.getSE();
578 if (!SE->isSCEVable(V->getType()))
579 return false;
580 const SCEV *S = SE->getSCEV(V);
582 // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
583 // lane 0 matches the expressions for all other lanes.
584 unsigned FixedVF = VF.getKnownMinValue();
585 const SCEV *FirstLaneExpr =
586 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
587 if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
588 return false;
590 // Make sure the expressions for lanes FixedVF-1..1 match the expression for
591 // lane 0. We check lanes in reverse order for compile-time, as frequently
592 // checking the last lane is sufficient to rule out uniformity.
593 return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
594 const SCEV *IthLaneExpr =
595 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
596 return FirstLaneExpr == IthLaneExpr;
600 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I,
601 ElementCount VF) const {
602 Value *Ptr = getLoadStorePointerOperand(&I);
603 if (!Ptr)
604 return false;
605 // Note: There's nothing inherent which prevents predicated loads and
606 // stores from being uniform. The current lowering simply doesn't handle
607 // it; in particular, the cost model distinguishes scatter/gather from
608 // scalar w/predication, and we currently rely on the scalar path.
609 return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
612 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
613 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
614 // Store the result and return it at the end instead of exiting early, in case
615 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
616 bool Result = true;
617 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
619 for (BasicBlock *BB : TheLoop->blocks()) {
620 // Check whether the BB terminator is a BranchInst. Any other terminator is
621 // not supported yet.
622 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
623 if (!Br) {
624 reportVectorizationFailure("Unsupported basic block terminator",
625 "loop control flow is not understood by vectorizer",
626 "CFGNotUnderstood", ORE, TheLoop);
627 if (DoExtraAnalysis)
628 Result = false;
629 else
630 return false;
633 // Check whether the BranchInst is a supported one. Only unconditional
634 // branches, conditional branches with an outer loop invariant condition or
635 // backedges are supported.
636 // FIXME: We skip these checks when VPlan predication is enabled as we
637 // want to allow divergent branches. This whole check will be removed
638 // once VPlan predication is on by default.
639 if (Br && Br->isConditional() &&
640 !TheLoop->isLoopInvariant(Br->getCondition()) &&
641 !LI->isLoopHeader(Br->getSuccessor(0)) &&
642 !LI->isLoopHeader(Br->getSuccessor(1))) {
643 reportVectorizationFailure("Unsupported conditional branch",
644 "loop control flow is not understood by vectorizer",
645 "CFGNotUnderstood", ORE, TheLoop);
646 if (DoExtraAnalysis)
647 Result = false;
648 else
649 return false;
653 // Check whether inner loops are uniform. At this point, we only support
654 // simple outer loops scenarios with uniform nested loops.
655 if (!isUniformLoopNest(TheLoop /*loop nest*/,
656 TheLoop /*context outer loop*/)) {
657 reportVectorizationFailure("Outer loop contains divergent loops",
658 "loop control flow is not understood by vectorizer",
659 "CFGNotUnderstood", ORE, TheLoop);
660 if (DoExtraAnalysis)
661 Result = false;
662 else
663 return false;
666 // Check whether we are able to set up outer loop induction.
667 if (!setupOuterLoopInductions()) {
668 reportVectorizationFailure("Unsupported outer loop Phi(s)",
669 "Unsupported outer loop Phi(s)",
670 "UnsupportedPhi", ORE, TheLoop);
671 if (DoExtraAnalysis)
672 Result = false;
673 else
674 return false;
677 return Result;
680 void LoopVectorizationLegality::addInductionPhi(
681 PHINode *Phi, const InductionDescriptor &ID,
682 SmallPtrSetImpl<Value *> &AllowedExit) {
683 Inductions[Phi] = ID;
685 // In case this induction also comes with casts that we know we can ignore
686 // in the vectorized loop body, record them here. All casts could be recorded
687 // here for ignoring, but suffices to record only the first (as it is the
688 // only one that may bw used outside the cast sequence).
689 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
690 if (!Casts.empty())
691 InductionCastsToIgnore.insert(*Casts.begin());
693 Type *PhiTy = Phi->getType();
694 const DataLayout &DL = Phi->getDataLayout();
696 // Get the widest type.
697 if (!PhiTy->isFloatingPointTy()) {
698 if (!WidestIndTy)
699 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
700 else
701 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
704 // Int inductions are special because we only allow one IV.
705 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
706 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
707 isa<Constant>(ID.getStartValue()) &&
708 cast<Constant>(ID.getStartValue())->isNullValue()) {
710 // Use the phi node with the widest type as induction. Use the last
711 // one if there are multiple (no good reason for doing this other
712 // than it is expedient). We've checked that it begins at zero and
713 // steps by one, so this is a canonical induction variable.
714 if (!PrimaryInduction || PhiTy == WidestIndTy)
715 PrimaryInduction = Phi;
718 // Both the PHI node itself, and the "post-increment" value feeding
719 // back into the PHI node may have external users.
720 // We can allow those uses, except if the SCEVs we have for them rely
721 // on predicates that only hold within the loop, since allowing the exit
722 // currently means re-using this SCEV outside the loop (see PR33706 for more
723 // details).
724 if (PSE.getPredicate().isAlwaysTrue()) {
725 AllowedExit.insert(Phi);
726 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
729 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
732 bool LoopVectorizationLegality::setupOuterLoopInductions() {
733 BasicBlock *Header = TheLoop->getHeader();
735 // Returns true if a given Phi is a supported induction.
736 auto IsSupportedPhi = [&](PHINode &Phi) -> bool {
737 InductionDescriptor ID;
738 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
739 ID.getKind() == InductionDescriptor::IK_IntInduction) {
740 addInductionPhi(&Phi, ID, AllowedExit);
741 return true;
743 // Bail out for any Phi in the outer loop header that is not a supported
744 // induction.
745 LLVM_DEBUG(
746 dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n");
747 return false;
750 return llvm::all_of(Header->phis(), IsSupportedPhi);
753 /// Checks if a function is scalarizable according to the TLI, in
754 /// the sense that it should be vectorized and then expanded in
755 /// multiple scalar calls. This is represented in the
756 /// TLI via mappings that do not specify a vector name, as in the
757 /// following example:
759 /// const VecDesc VecIntrinsics[] = {
760 /// {"llvm.phx.abs.i32", "", 4}
761 /// };
762 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
763 const StringRef ScalarName = CI.getCalledFunction()->getName();
764 bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
765 // Check that all known VFs are not associated to a vector
766 // function, i.e. the vector name is emty.
767 if (Scalarize) {
768 ElementCount WidestFixedVF, WidestScalableVF;
769 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
770 for (ElementCount VF = ElementCount::getFixed(2);
771 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
772 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
773 for (ElementCount VF = ElementCount::getScalable(1);
774 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
775 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
776 assert((WidestScalableVF.isZero() || !Scalarize) &&
777 "Caller may decide to scalarize a variant using a scalable VF");
779 return Scalarize;
782 bool LoopVectorizationLegality::canVectorizeInstrs() {
783 BasicBlock *Header = TheLoop->getHeader();
785 // For each block in the loop.
786 for (BasicBlock *BB : TheLoop->blocks()) {
787 // Scan the instructions in the block and look for hazards.
788 for (Instruction &I : *BB) {
789 if (auto *Phi = dyn_cast<PHINode>(&I)) {
790 Type *PhiTy = Phi->getType();
791 // Check that this PHI type is allowed.
792 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
793 !PhiTy->isPointerTy()) {
794 reportVectorizationFailure("Found a non-int non-pointer PHI",
795 "loop control flow is not understood by vectorizer",
796 "CFGNotUnderstood", ORE, TheLoop);
797 return false;
800 // If this PHINode is not in the header block, then we know that we
801 // can convert it to select during if-conversion. No need to check if
802 // the PHIs in this block are induction or reduction variables.
803 if (BB != Header) {
804 // Non-header phi nodes that have outside uses can be vectorized. Add
805 // them to the list of allowed exits.
806 // Unsafe cyclic dependencies with header phis are identified during
807 // legalization for reduction, induction and fixed order
808 // recurrences.
809 AllowedExit.insert(&I);
810 continue;
813 // We only allow if-converted PHIs with exactly two incoming values.
814 if (Phi->getNumIncomingValues() != 2) {
815 reportVectorizationFailure("Found an invalid PHI",
816 "loop control flow is not understood by vectorizer",
817 "CFGNotUnderstood", ORE, TheLoop, Phi);
818 return false;
821 RecurrenceDescriptor RedDes;
822 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
823 DT, PSE.getSE())) {
824 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
825 AllowedExit.insert(RedDes.getLoopExitInstr());
826 Reductions[Phi] = RedDes;
827 continue;
830 // We prevent matching non-constant strided pointer IVS to preserve
831 // historical vectorizer behavior after a generalization of the
832 // IVDescriptor code. The intent is to remove this check, but we
833 // have to fix issues around code quality for such loops first.
834 auto IsDisallowedStridedPointerInduction =
835 [](const InductionDescriptor &ID) {
836 if (AllowStridedPointerIVs)
837 return false;
838 return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
839 ID.getConstIntStepValue() == nullptr;
842 // TODO: Instead of recording the AllowedExit, it would be good to
843 // record the complementary set: NotAllowedExit. These include (but may
844 // not be limited to):
845 // 1. Reduction phis as they represent the one-before-last value, which
846 // is not available when vectorized
847 // 2. Induction phis and increment when SCEV predicates cannot be used
848 // outside the loop - see addInductionPhi
849 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
850 // outside the loop - see call to hasOutsideLoopUser in the non-phi
851 // handling below
852 // 4. FixedOrderRecurrence phis that can possibly be handled by
853 // extraction.
854 // By recording these, we can then reason about ways to vectorize each
855 // of these NotAllowedExit.
856 InductionDescriptor ID;
857 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
858 !IsDisallowedStridedPointerInduction(ID)) {
859 addInductionPhi(Phi, ID, AllowedExit);
860 Requirements->addExactFPMathInst(ID.getExactFPMathInst());
861 continue;
864 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
865 AllowedExit.insert(Phi);
866 FixedOrderRecurrences.insert(Phi);
867 continue;
870 // As a last resort, coerce the PHI to a AddRec expression
871 // and re-try classifying it a an induction PHI.
872 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
873 !IsDisallowedStridedPointerInduction(ID)) {
874 addInductionPhi(Phi, ID, AllowedExit);
875 continue;
878 reportVectorizationFailure("Found an unidentified PHI",
879 "value that could not be identified as "
880 "reduction is used outside the loop",
881 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
882 return false;
883 } // end of PHI handling
885 // We handle calls that:
886 // * Are debug info intrinsics.
887 // * Have a mapping to an IR intrinsic.
888 // * Have a vector version available.
889 auto *CI = dyn_cast<CallInst>(&I);
891 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
892 !isa<DbgInfoIntrinsic>(CI) &&
893 !(CI->getCalledFunction() && TLI &&
894 (!VFDatabase::getMappings(*CI).empty() ||
895 isTLIScalarize(*TLI, *CI)))) {
896 // If the call is a recognized math libary call, it is likely that
897 // we can vectorize it given loosened floating-point constraints.
898 LibFunc Func;
899 bool IsMathLibCall =
900 TLI && CI->getCalledFunction() &&
901 CI->getType()->isFloatingPointTy() &&
902 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
903 TLI->hasOptimizedCodeGen(Func);
905 if (IsMathLibCall) {
906 // TODO: Ideally, we should not use clang-specific language here,
907 // but it's hard to provide meaningful yet generic advice.
908 // Also, should this be guarded by allowExtraAnalysis() and/or be part
909 // of the returned info from isFunctionVectorizable()?
910 reportVectorizationFailure(
911 "Found a non-intrinsic callsite",
912 "library call cannot be vectorized. "
913 "Try compiling with -fno-math-errno, -ffast-math, "
914 "or similar flags",
915 "CantVectorizeLibcall", ORE, TheLoop, CI);
916 } else {
917 reportVectorizationFailure("Found a non-intrinsic callsite",
918 "call instruction cannot be vectorized",
919 "CantVectorizeLibcall", ORE, TheLoop, CI);
921 return false;
924 // Some intrinsics have scalar arguments and should be same in order for
925 // them to be vectorized (i.e. loop invariant).
926 if (CI) {
927 auto *SE = PSE.getSE();
928 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
929 for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx)
930 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, Idx)) {
931 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)),
932 TheLoop)) {
933 reportVectorizationFailure("Found unvectorizable intrinsic",
934 "intrinsic instruction cannot be vectorized",
935 "CantVectorizeIntrinsic", ORE, TheLoop, CI);
936 return false;
941 // If we found a vectorized variant of a function, note that so LV can
942 // make better decisions about maximum VF.
943 if (CI && !VFDatabase::getMappings(*CI).empty())
944 VecCallVariantsFound = true;
946 // Check that the instruction return type is vectorizable.
947 // We can't vectorize casts from vector type to scalar type.
948 // Also, we can't vectorize extractelement instructions.
949 if ((!VectorType::isValidElementType(I.getType()) &&
950 !I.getType()->isVoidTy()) ||
951 (isa<CastInst>(I) &&
952 !VectorType::isValidElementType(I.getOperand(0)->getType())) ||
953 isa<ExtractElementInst>(I)) {
954 reportVectorizationFailure("Found unvectorizable type",
955 "instruction return type cannot be vectorized",
956 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
957 return false;
960 // Check that the stored type is vectorizable.
961 if (auto *ST = dyn_cast<StoreInst>(&I)) {
962 Type *T = ST->getValueOperand()->getType();
963 if (!VectorType::isValidElementType(T)) {
964 reportVectorizationFailure("Store instruction cannot be vectorized",
965 "store instruction cannot be vectorized",
966 "CantVectorizeStore", ORE, TheLoop, ST);
967 return false;
970 // For nontemporal stores, check that a nontemporal vector version is
971 // supported on the target.
972 if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
973 // Arbitrarily try a vector of 2 elements.
974 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
975 assert(VecTy && "did not find vectorized version of stored type");
976 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
977 reportVectorizationFailure(
978 "nontemporal store instruction cannot be vectorized",
979 "nontemporal store instruction cannot be vectorized",
980 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
981 return false;
985 } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
986 if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
987 // For nontemporal loads, check that a nontemporal vector version is
988 // supported on the target (arbitrarily try a vector of 2 elements).
989 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
990 assert(VecTy && "did not find vectorized version of load type");
991 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
992 reportVectorizationFailure(
993 "nontemporal load instruction cannot be vectorized",
994 "nontemporal load instruction cannot be vectorized",
995 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
996 return false;
1000 // FP instructions can allow unsafe algebra, thus vectorizable by
1001 // non-IEEE-754 compliant SIMD units.
1002 // This applies to floating-point math operations and calls, not memory
1003 // operations, shuffles, or casts, as they don't change precision or
1004 // semantics.
1005 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
1006 !I.isFast()) {
1007 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1008 Hints->setPotentiallyUnsafe();
1011 // Reduction instructions are allowed to have exit users.
1012 // All other instructions must not have external users.
1013 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
1014 // We can safely vectorize loops where instructions within the loop are
1015 // used outside the loop only if the SCEV predicates within the loop is
1016 // same as outside the loop. Allowing the exit means reusing the SCEV
1017 // outside the loop.
1018 if (PSE.getPredicate().isAlwaysTrue()) {
1019 AllowedExit.insert(&I);
1020 continue;
1022 reportVectorizationFailure("Value cannot be used outside the loop",
1023 "value cannot be used outside the loop",
1024 "ValueUsedOutsideLoop", ORE, TheLoop, &I);
1025 return false;
1027 } // next instr.
1030 if (!PrimaryInduction) {
1031 if (Inductions.empty()) {
1032 reportVectorizationFailure("Did not find one integer induction var",
1033 "loop induction variable could not be identified",
1034 "NoInductionVariable", ORE, TheLoop);
1035 return false;
1037 if (!WidestIndTy) {
1038 reportVectorizationFailure("Did not find one integer induction var",
1039 "integer loop induction variable could not be identified",
1040 "NoIntegerInductionVariable", ORE, TheLoop);
1041 return false;
1043 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1046 // Now we know the widest induction type, check if our found induction
1047 // is the same size. If it's not, unset it here and InnerLoopVectorizer
1048 // will create another.
1049 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
1050 PrimaryInduction = nullptr;
1052 return true;
1055 /// Find histogram operations that match high-level code in loops:
1056 /// \code
1057 /// buckets[indices[i]]+=step;
1058 /// \endcode
1060 /// It matches a pattern starting from \p HSt, which Stores to the 'buckets'
1061 /// array the computed histogram. It uses a BinOp to sum all counts, storing
1062 /// them using a loop-variant index Load from the 'indices' input array.
1064 /// On successful matches it updates the STATISTIC 'HistogramsDetected',
1065 /// regardless of hardware support. When there is support, it additionally
1066 /// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers
1067 /// used to update histogram in \p HistogramPtrs.
1068 static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop,
1069 const PredicatedScalarEvolution &PSE,
1070 SmallVectorImpl<HistogramInfo> &Histograms) {
1072 // Store value must come from a Binary Operation.
1073 Instruction *HPtrInstr = nullptr;
1074 BinaryOperator *HBinOp = nullptr;
1075 if (!match(HSt, m_Store(m_BinOp(HBinOp), m_Instruction(HPtrInstr))))
1076 return false;
1078 // BinOp must be an Add or a Sub modifying the bucket value by a
1079 // loop invariant amount.
1080 // FIXME: We assume the loop invariant term is on the RHS.
1081 // Fine for an immediate/constant, but maybe not a generic value?
1082 Value *HIncVal = nullptr;
1083 if (!match(HBinOp, m_Add(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))) &&
1084 !match(HBinOp, m_Sub(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))))
1085 return false;
1087 // Make sure the increment value is loop invariant.
1088 if (!TheLoop->isLoopInvariant(HIncVal))
1089 return false;
1091 // The address to store is calculated through a GEP Instruction.
1092 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(HPtrInstr);
1093 if (!GEP)
1094 return false;
1096 // Restrict address calculation to constant indices except for the last term.
1097 Value *HIdx = nullptr;
1098 for (Value *Index : GEP->indices()) {
1099 if (HIdx)
1100 return false;
1101 if (!isa<ConstantInt>(Index))
1102 HIdx = Index;
1105 if (!HIdx)
1106 return false;
1108 // Check that the index is calculated by loading from another array. Ignore
1109 // any extensions.
1110 // FIXME: Support indices from other sources than a linear load from memory?
1111 // We're currently trying to match an operation looping over an array
1112 // of indices, but there could be additional levels of indirection
1113 // in place, or possibly some additional calculation to form the index
1114 // from the loaded data.
1115 Value *VPtrVal;
1116 if (!match(HIdx, m_ZExtOrSExtOrSelf(m_Load(m_Value(VPtrVal)))))
1117 return false;
1119 // Make sure the index address varies in this loop, not an outer loop.
1120 const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(VPtrVal));
1121 if (!AR || AR->getLoop() != TheLoop)
1122 return false;
1124 // Ensure we'll have the same mask by checking that all parts of the histogram
1125 // (gather load, update, scatter store) are in the same block.
1126 LoadInst *IndexedLoad = cast<LoadInst>(HBinOp->getOperand(0));
1127 BasicBlock *LdBB = IndexedLoad->getParent();
1128 if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent())
1129 return false;
1131 LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n");
1133 // Store the operations that make up the histogram.
1134 Histograms.emplace_back(IndexedLoad, HBinOp, HSt);
1135 return true;
1138 bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() {
1139 // For now, we only support an IndirectUnsafe dependency that calculates
1140 // a histogram
1141 if (!EnableHistogramVectorization)
1142 return false;
1144 // Find a single IndirectUnsafe dependency.
1145 const MemoryDepChecker::Dependence *IUDep = nullptr;
1146 const MemoryDepChecker &DepChecker = LAI->getDepChecker();
1147 const auto *Deps = DepChecker.getDependences();
1148 // If there were too many dependences, LAA abandons recording them. We can't
1149 // proceed safely if we don't know what the dependences are.
1150 if (!Deps)
1151 return false;
1153 for (const MemoryDepChecker::Dependence &Dep : *Deps) {
1154 // Ignore dependencies that are either known to be safe or can be
1155 // checked at runtime.
1156 if (MemoryDepChecker::Dependence::isSafeForVectorization(Dep.Type) !=
1157 MemoryDepChecker::VectorizationSafetyStatus::Unsafe)
1158 continue;
1160 // We're only interested in IndirectUnsafe dependencies here, where the
1161 // address might come from a load from memory. We also only want to handle
1162 // one such dependency, at least for now.
1163 if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep)
1164 return false;
1166 IUDep = &Dep;
1168 if (!IUDep)
1169 return false;
1171 // For now only normal loads and stores are supported.
1172 LoadInst *LI = dyn_cast<LoadInst>(IUDep->getSource(DepChecker));
1173 StoreInst *SI = dyn_cast<StoreInst>(IUDep->getDestination(DepChecker));
1175 if (!LI || !SI)
1176 return false;
1178 LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n");
1179 return findHistogram(LI, SI, TheLoop, LAI->getPSE(), Histograms);
1182 bool LoopVectorizationLegality::canVectorizeMemory() {
1183 LAI = &LAIs.getInfo(*TheLoop);
1184 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
1185 if (LAR) {
1186 ORE->emit([&]() {
1187 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
1188 "loop not vectorized: ", *LAR);
1192 if (!LAI->canVectorizeMemory())
1193 return canVectorizeIndirectUnsafeDependences();
1195 if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) {
1196 reportVectorizationFailure("We don't allow storing to uniform addresses",
1197 "write to a loop invariant address could not "
1198 "be vectorized",
1199 "CantVectorizeStoreToLoopInvariantAddress", ORE,
1200 TheLoop);
1201 return false;
1204 // We can vectorize stores to invariant address when final reduction value is
1205 // guaranteed to be stored at the end of the loop. Also, if decision to
1206 // vectorize loop is made, runtime checks are added so as to make sure that
1207 // invariant address won't alias with any other objects.
1208 if (!LAI->getStoresToInvariantAddresses().empty()) {
1209 // For each invariant address, check if last stored value is unconditional
1210 // and the address is not calculated inside the loop.
1211 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1212 if (!isInvariantStoreOfReduction(SI))
1213 continue;
1215 if (blockNeedsPredication(SI->getParent())) {
1216 reportVectorizationFailure(
1217 "We don't allow storing to uniform addresses",
1218 "write of conditional recurring variant value to a loop "
1219 "invariant address could not be vectorized",
1220 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1221 return false;
1224 // Invariant address should be defined outside of loop. LICM pass usually
1225 // makes sure it happens, but in rare cases it does not, we do not want
1226 // to overcomplicate vectorization to support this case.
1227 if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
1228 if (TheLoop->contains(Ptr)) {
1229 reportVectorizationFailure(
1230 "Invariant address is calculated inside the loop",
1231 "write to a loop invariant address could not "
1232 "be vectorized",
1233 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1234 return false;
1239 if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) {
1240 // For each invariant address, check its last stored value is the result
1241 // of one of our reductions.
1243 // We do not check if dependence with loads exists because that is already
1244 // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress.
1245 ScalarEvolution *SE = PSE.getSE();
1246 SmallVector<StoreInst *, 4> UnhandledStores;
1247 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1248 if (isInvariantStoreOfReduction(SI)) {
1249 // Earlier stores to this address are effectively deadcode.
1250 // With opaque pointers it is possible for one pointer to be used with
1251 // different sizes of stored values:
1252 // store i32 0, ptr %x
1253 // store i8 0, ptr %x
1254 // The latest store doesn't complitely overwrite the first one in the
1255 // example. That is why we have to make sure that types of stored
1256 // values are same.
1257 // TODO: Check that bitwidth of unhandled store is smaller then the
1258 // one that overwrites it and add a test.
1259 erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
1260 return storeToSameAddress(SE, SI, I) &&
1261 I->getValueOperand()->getType() ==
1262 SI->getValueOperand()->getType();
1264 continue;
1266 UnhandledStores.push_back(SI);
1269 bool IsOK = UnhandledStores.empty();
1270 // TODO: we should also validate against InvariantMemSets.
1271 if (!IsOK) {
1272 reportVectorizationFailure(
1273 "We don't allow storing to uniform addresses",
1274 "write to a loop invariant address could not "
1275 "be vectorized",
1276 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1277 return false;
1282 PSE.addPredicate(LAI->getPSE().getPredicate());
1283 return true;
1286 bool LoopVectorizationLegality::canVectorizeFPMath(
1287 bool EnableStrictReductions) {
1289 // First check if there is any ExactFP math or if we allow reassociations
1290 if (!Requirements->getExactFPInst() || Hints->allowReordering())
1291 return true;
1293 // If the above is false, we have ExactFPMath & do not allow reordering.
1294 // If the EnableStrictReductions flag is set, first check if we have any
1295 // Exact FP induction vars, which we cannot vectorize.
1296 if (!EnableStrictReductions ||
1297 any_of(getInductionVars(), [&](auto &Induction) -> bool {
1298 InductionDescriptor IndDesc = Induction.second;
1299 return IndDesc.getExactFPMathInst();
1301 return false;
1303 // We can now only vectorize if all reductions with Exact FP math also
1304 // have the isOrdered flag set, which indicates that we can move the
1305 // reduction operations in-loop.
1306 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1307 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1308 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1309 }));
1312 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1313 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1314 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1315 return RdxDesc.IntermediateStore == SI;
1319 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1320 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1321 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1322 if (!RdxDesc.IntermediateStore)
1323 return false;
1325 ScalarEvolution *SE = PSE.getSE();
1326 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1327 return V == InvariantAddress ||
1328 SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1332 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1333 Value *In0 = const_cast<Value *>(V);
1334 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1335 if (!PN)
1336 return false;
1338 return Inductions.count(PN);
1341 const InductionDescriptor *
1342 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1343 if (!isInductionPhi(Phi))
1344 return nullptr;
1345 auto &ID = getInductionVars().find(Phi)->second;
1346 if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1347 ID.getKind() == InductionDescriptor::IK_FpInduction)
1348 return &ID;
1349 return nullptr;
1352 const InductionDescriptor *
1353 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
1354 if (!isInductionPhi(Phi))
1355 return nullptr;
1356 auto &ID = getInductionVars().find(Phi)->second;
1357 if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
1358 return &ID;
1359 return nullptr;
1362 bool LoopVectorizationLegality::isCastedInductionVariable(
1363 const Value *V) const {
1364 auto *Inst = dyn_cast<Instruction>(V);
1365 return (Inst && InductionCastsToIgnore.count(Inst));
1368 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1369 return isInductionPhi(V) || isCastedInductionVariable(V);
1372 bool LoopVectorizationLegality::isFixedOrderRecurrence(
1373 const PHINode *Phi) const {
1374 return FixedOrderRecurrences.count(Phi);
1377 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1378 // When vectorizing early exits, create predicates for the latch block only.
1379 // The early exiting block must be a direct predecessor of the latch at the
1380 // moment.
1381 BasicBlock *Latch = TheLoop->getLoopLatch();
1382 if (hasUncountableEarlyExit()) {
1383 assert(
1384 is_contained(predecessors(Latch), getUncountableEarlyExitingBlock()) &&
1385 "Uncountable exiting block must be a direct predecessor of latch");
1386 return BB == Latch;
1388 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1391 bool LoopVectorizationLegality::blockCanBePredicated(
1392 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1393 SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
1394 for (Instruction &I : *BB) {
1395 // We can predicate blocks with calls to assume, as long as we drop them in
1396 // case we flatten the CFG via predication.
1397 if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1398 MaskedOp.insert(&I);
1399 continue;
1402 // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1403 // TODO: there might be cases that it should block the vectorization. Let's
1404 // ignore those for now.
1405 if (isa<NoAliasScopeDeclInst>(&I))
1406 continue;
1408 // We can allow masked calls if there's at least one vector variant, even
1409 // if we end up scalarizing due to the cost model calculations.
1410 // TODO: Allow other calls if they have appropriate attributes... readonly
1411 // and argmemonly?
1412 if (CallInst *CI = dyn_cast<CallInst>(&I))
1413 if (VFDatabase::hasMaskedVariant(*CI)) {
1414 MaskedOp.insert(CI);
1415 continue;
1418 // Loads are handled via masking (or speculated if safe to do so.)
1419 if (auto *LI = dyn_cast<LoadInst>(&I)) {
1420 if (!SafePtrs.count(LI->getPointerOperand()))
1421 MaskedOp.insert(LI);
1422 continue;
1425 // Predicated store requires some form of masking:
1426 // 1) masked store HW instruction,
1427 // 2) emulation via load-blend-store (only if safe and legal to do so,
1428 // be aware on the race conditions), or
1429 // 3) element-by-element predicate check and scalar store.
1430 if (auto *SI = dyn_cast<StoreInst>(&I)) {
1431 MaskedOp.insert(SI);
1432 continue;
1435 if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1436 return false;
1439 return true;
1442 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1443 if (!EnableIfConversion) {
1444 reportVectorizationFailure("If-conversion is disabled",
1445 "if-conversion is disabled",
1446 "IfConversionDisabled",
1447 ORE, TheLoop);
1448 return false;
1451 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1453 // A list of pointers which are known to be dereferenceable within scope of
1454 // the loop body for each iteration of the loop which executes. That is,
1455 // the memory pointed to can be dereferenced (with the access size implied by
1456 // the value's type) unconditionally within the loop header without
1457 // introducing a new fault.
1458 SmallPtrSet<Value *, 8> SafePointers;
1460 // Collect safe addresses.
1461 for (BasicBlock *BB : TheLoop->blocks()) {
1462 if (!blockNeedsPredication(BB)) {
1463 for (Instruction &I : *BB)
1464 if (auto *Ptr = getLoadStorePointerOperand(&I))
1465 SafePointers.insert(Ptr);
1466 continue;
1469 // For a block which requires predication, a address may be safe to access
1470 // in the loop w/o predication if we can prove dereferenceability facts
1471 // sufficient to ensure it'll never fault within the loop. For the moment,
1472 // we restrict this to loads; stores are more complicated due to
1473 // concurrency restrictions.
1474 ScalarEvolution &SE = *PSE.getSE();
1475 SmallVector<const SCEVPredicate *, 4> Predicates;
1476 for (Instruction &I : *BB) {
1477 LoadInst *LI = dyn_cast<LoadInst>(&I);
1478 // Pass the Predicates pointer to isDereferenceableAndAlignedInLoop so
1479 // that it will consider loops that need guarding by SCEV checks. The
1480 // vectoriser will generate these checks if we decide to vectorise.
1481 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1482 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC,
1483 &Predicates))
1484 SafePointers.insert(LI->getPointerOperand());
1485 Predicates.clear();
1489 // Collect the blocks that need predication.
1490 for (BasicBlock *BB : TheLoop->blocks()) {
1491 // We support only branches and switch statements as terminators inside the
1492 // loop.
1493 if (isa<SwitchInst>(BB->getTerminator())) {
1494 if (TheLoop->isLoopExiting(BB)) {
1495 reportVectorizationFailure("Loop contains an unsupported switch",
1496 "loop contains an unsupported switch",
1497 "LoopContainsUnsupportedSwitch", ORE,
1498 TheLoop, BB->getTerminator());
1499 return false;
1501 } else if (!isa<BranchInst>(BB->getTerminator())) {
1502 reportVectorizationFailure("Loop contains an unsupported terminator",
1503 "loop contains an unsupported terminator",
1504 "LoopContainsUnsupportedTerminator", ORE,
1505 TheLoop, BB->getTerminator());
1506 return false;
1509 // We must be able to predicate all blocks that need to be predicated.
1510 if (blockNeedsPredication(BB) &&
1511 !blockCanBePredicated(BB, SafePointers, MaskedOp)) {
1512 reportVectorizationFailure(
1513 "Control flow cannot be substituted for a select",
1514 "control flow cannot be substituted for a select", "NoCFGForSelect",
1515 ORE, TheLoop, BB->getTerminator());
1516 return false;
1520 // We can if-convert this loop.
1521 return true;
1524 // Helper function to canVectorizeLoopNestCFG.
1525 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1526 bool UseVPlanNativePath) {
1527 assert((UseVPlanNativePath || Lp->isInnermost()) &&
1528 "VPlan-native path is not enabled.");
1530 // TODO: ORE should be improved to show more accurate information when an
1531 // outer loop can't be vectorized because a nested loop is not understood or
1532 // legal. Something like: "outer_loop_location: loop not vectorized:
1533 // (inner_loop_location) loop control flow is not understood by vectorizer".
1535 // Store the result and return it at the end instead of exiting early, in case
1536 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1537 bool Result = true;
1538 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1540 // We must have a loop in canonical form. Loops with indirectbr in them cannot
1541 // be canonicalized.
1542 if (!Lp->getLoopPreheader()) {
1543 reportVectorizationFailure("Loop doesn't have a legal pre-header",
1544 "loop control flow is not understood by vectorizer",
1545 "CFGNotUnderstood", ORE, TheLoop);
1546 if (DoExtraAnalysis)
1547 Result = false;
1548 else
1549 return false;
1552 // We must have a single backedge.
1553 if (Lp->getNumBackEdges() != 1) {
1554 reportVectorizationFailure("The loop must have a single backedge",
1555 "loop control flow is not understood by vectorizer",
1556 "CFGNotUnderstood", ORE, TheLoop);
1557 if (DoExtraAnalysis)
1558 Result = false;
1559 else
1560 return false;
1563 return Result;
1566 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1567 Loop *Lp, bool UseVPlanNativePath) {
1568 // Store the result and return it at the end instead of exiting early, in case
1569 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1570 bool Result = true;
1571 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1572 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1573 if (DoExtraAnalysis)
1574 Result = false;
1575 else
1576 return false;
1579 // Recursively check whether the loop control flow of nested loops is
1580 // understood.
1581 for (Loop *SubLp : *Lp)
1582 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1583 if (DoExtraAnalysis)
1584 Result = false;
1585 else
1586 return false;
1589 return Result;
1592 bool LoopVectorizationLegality::isVectorizableEarlyExitLoop() {
1593 BasicBlock *LatchBB = TheLoop->getLoopLatch();
1594 if (!LatchBB) {
1595 reportVectorizationFailure("Loop does not have a latch",
1596 "Cannot vectorize early exit loop",
1597 "NoLatchEarlyExit", ORE, TheLoop);
1598 return false;
1601 if (Reductions.size() || FixedOrderRecurrences.size()) {
1602 reportVectorizationFailure(
1603 "Found reductions or recurrences in early-exit loop",
1604 "Cannot vectorize early exit loop with reductions or recurrences",
1605 "RecurrencesInEarlyExitLoop", ORE, TheLoop);
1606 return false;
1609 SmallVector<BasicBlock *, 8> ExitingBlocks;
1610 TheLoop->getExitingBlocks(ExitingBlocks);
1612 // Keep a record of all the exiting blocks.
1613 SmallVector<const SCEVPredicate *, 4> Predicates;
1614 for (BasicBlock *BB : ExitingBlocks) {
1615 const SCEV *EC =
1616 PSE.getSE()->getPredicatedExitCount(TheLoop, BB, &Predicates);
1617 if (isa<SCEVCouldNotCompute>(EC)) {
1618 UncountableExitingBlocks.push_back(BB);
1620 SmallVector<BasicBlock *, 2> Succs(successors(BB));
1621 if (Succs.size() != 2) {
1622 reportVectorizationFailure(
1623 "Early exiting block does not have exactly two successors",
1624 "Incorrect number of successors from early exiting block",
1625 "EarlyExitTooManySuccessors", ORE, TheLoop);
1626 return false;
1629 BasicBlock *ExitBlock;
1630 if (!TheLoop->contains(Succs[0]))
1631 ExitBlock = Succs[0];
1632 else {
1633 assert(!TheLoop->contains(Succs[1]));
1634 ExitBlock = Succs[1];
1636 UncountableExitBlocks.push_back(ExitBlock);
1637 } else
1638 CountableExitingBlocks.push_back(BB);
1640 // We can safely ignore the predicates here because when vectorizing the loop
1641 // the PredicatatedScalarEvolution class will keep track of all predicates
1642 // for each exiting block anyway. This happens when calling
1643 // PSE.getSymbolicMaxBackedgeTakenCount() below.
1644 Predicates.clear();
1646 // We only support one uncountable early exit.
1647 if (getUncountableExitingBlocks().size() != 1) {
1648 reportVectorizationFailure(
1649 "Loop has too many uncountable exits",
1650 "Cannot vectorize early exit loop with more than one early exit",
1651 "TooManyUncountableEarlyExits", ORE, TheLoop);
1652 return false;
1655 // The only supported early exit loops so far are ones where the early
1656 // exiting block is a unique predecessor of the latch block.
1657 BasicBlock *LatchPredBB = LatchBB->getUniquePredecessor();
1658 if (LatchPredBB != getUncountableEarlyExitingBlock()) {
1659 reportVectorizationFailure("Early exit is not the latch predecessor",
1660 "Cannot vectorize early exit loop",
1661 "EarlyExitNotLatchPredecessor", ORE, TheLoop);
1662 return false;
1665 // The latch block must have a countable exit.
1666 if (isa<SCEVCouldNotCompute>(
1667 PSE.getSE()->getPredicatedExitCount(TheLoop, LatchBB, &Predicates))) {
1668 reportVectorizationFailure(
1669 "Cannot determine exact exit count for latch block",
1670 "Cannot vectorize early exit loop",
1671 "UnknownLatchExitCountEarlyExitLoop", ORE, TheLoop);
1672 return false;
1674 assert(llvm::is_contained(CountableExitingBlocks, LatchBB) &&
1675 "Latch block not found in list of countable exits!");
1677 // Check to see if there are instructions that could potentially generate
1678 // exceptions or have side-effects.
1679 auto IsSafeOperation = [](Instruction *I) -> bool {
1680 switch (I->getOpcode()) {
1681 case Instruction::Load:
1682 case Instruction::Store:
1683 case Instruction::PHI:
1684 case Instruction::Br:
1685 // These are checked separately.
1686 return true;
1687 default:
1688 return isSafeToSpeculativelyExecute(I);
1692 for (auto *BB : TheLoop->blocks())
1693 for (auto &I : *BB) {
1694 if (I.mayWriteToMemory()) {
1695 // We don't support writes to memory.
1696 reportVectorizationFailure(
1697 "Writes to memory unsupported in early exit loops",
1698 "Cannot vectorize early exit loop with writes to memory",
1699 "WritesInEarlyExitLoop", ORE, TheLoop);
1700 return false;
1701 } else if (!IsSafeOperation(&I)) {
1702 reportVectorizationFailure("Early exit loop contains operations that "
1703 "cannot be speculatively executed",
1704 "Early exit loop contains operations that "
1705 "cannot be speculatively executed",
1706 "UnsafeOperationsEarlyExitLoop", ORE,
1707 TheLoop);
1708 return false;
1712 // The vectoriser cannot handle loads that occur after the early exit block.
1713 assert(LatchBB->getUniquePredecessor() == getUncountableEarlyExitingBlock() &&
1714 "Expected latch predecessor to be the early exiting block");
1716 // TODO: Handle loops that may fault.
1717 Predicates.clear();
1718 if (!isDereferenceableReadOnlyLoop(TheLoop, PSE.getSE(), DT, AC,
1719 &Predicates)) {
1720 reportVectorizationFailure(
1721 "Loop may fault",
1722 "Cannot vectorize potentially faulting early exit loop",
1723 "PotentiallyFaultingEarlyExitLoop", ORE, TheLoop);
1724 return false;
1727 [[maybe_unused]] const SCEV *SymbolicMaxBTC =
1728 PSE.getSymbolicMaxBackedgeTakenCount();
1729 // Since we have an exact exit count for the latch and the early exit
1730 // dominates the latch, then this should guarantee a computed SCEV value.
1731 assert(!isa<SCEVCouldNotCompute>(SymbolicMaxBTC) &&
1732 "Failed to get symbolic expression for backedge taken count");
1733 LLVM_DEBUG(dbgs() << "LV: Found an early exit loop with symbolic max "
1734 "backedge taken count: "
1735 << *SymbolicMaxBTC << '\n');
1736 return true;
1739 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1740 // Store the result and return it at the end instead of exiting early, in case
1741 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1742 bool Result = true;
1744 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1745 // Check whether the loop-related control flow in the loop nest is expected by
1746 // vectorizer.
1747 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1748 if (DoExtraAnalysis) {
1749 LLVM_DEBUG(dbgs() << "LV: legality check failed: loop nest");
1750 Result = false;
1751 } else {
1752 return false;
1756 // We need to have a loop header.
1757 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1758 << '\n');
1760 // Specific checks for outer loops. We skip the remaining legal checks at this
1761 // point because they don't support outer loops.
1762 if (!TheLoop->isInnermost()) {
1763 assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1765 if (!canVectorizeOuterLoop()) {
1766 reportVectorizationFailure("Unsupported outer loop",
1767 "unsupported outer loop",
1768 "UnsupportedOuterLoop",
1769 ORE, TheLoop);
1770 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1771 // outer loops.
1772 return false;
1775 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1776 return Result;
1779 assert(TheLoop->isInnermost() && "Inner loop expected.");
1780 // Check if we can if-convert non-single-bb loops.
1781 unsigned NumBlocks = TheLoop->getNumBlocks();
1782 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1783 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1784 if (DoExtraAnalysis)
1785 Result = false;
1786 else
1787 return false;
1790 // Check if we can vectorize the instructions and CFG in this loop.
1791 if (!canVectorizeInstrs()) {
1792 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1793 if (DoExtraAnalysis)
1794 Result = false;
1795 else
1796 return false;
1799 HasUncountableEarlyExit = false;
1800 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
1801 HasUncountableEarlyExit = true;
1802 if (!isVectorizableEarlyExitLoop()) {
1803 UncountableExitingBlocks.clear();
1804 HasUncountableEarlyExit = false;
1805 if (DoExtraAnalysis)
1806 Result = false;
1807 else
1808 return false;
1812 // Go over each instruction and look at memory deps.
1813 if (!canVectorizeMemory()) {
1814 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1815 if (DoExtraAnalysis)
1816 Result = false;
1817 else
1818 return false;
1821 if (Result) {
1822 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1823 << (LAI->getRuntimePointerChecking()->Need
1824 ? " (with a runtime bound check)"
1825 : "")
1826 << "!\n");
1829 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1830 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1831 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1833 if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1834 LLVM_DEBUG(dbgs() << "LV: Vectorization not profitable "
1835 "due to SCEVThreshold");
1836 reportVectorizationFailure("Too many SCEV checks needed",
1837 "Too many SCEV assumptions need to be made and checked at runtime",
1838 "TooManySCEVRunTimeChecks", ORE, TheLoop);
1839 if (DoExtraAnalysis)
1840 Result = false;
1841 else
1842 return false;
1845 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1846 // we can vectorize, and at this point we don't have any other mem analysis
1847 // which may limit our maximum vectorization factor, so just return true with
1848 // no restrictions.
1849 return Result;
1852 bool LoopVectorizationLegality::canFoldTailByMasking() const {
1854 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1856 SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1858 for (const auto &Reduction : getReductionVars())
1859 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1861 // TODO: handle non-reduction outside users when tail is folded by masking.
1862 for (auto *AE : AllowedExit) {
1863 // Check that all users of allowed exit values are inside the loop or
1864 // are the live-out of a reduction.
1865 if (ReductionLiveOuts.count(AE))
1866 continue;
1867 for (User *U : AE->users()) {
1868 Instruction *UI = cast<Instruction>(U);
1869 if (TheLoop->contains(UI))
1870 continue;
1871 LLVM_DEBUG(
1872 dbgs()
1873 << "LV: Cannot fold tail by masking, loop has an outside user for "
1874 << *UI << "\n");
1875 return false;
1879 for (const auto &Entry : getInductionVars()) {
1880 PHINode *OrigPhi = Entry.first;
1881 for (User *U : OrigPhi->users()) {
1882 auto *UI = cast<Instruction>(U);
1883 if (!TheLoop->contains(UI)) {
1884 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an "
1885 "outside user for "
1886 << *UI << "\n");
1887 return false;
1892 // The list of pointers that we can safely read and write to remains empty.
1893 SmallPtrSet<Value *, 8> SafePointers;
1895 // Check all blocks for predication, including those that ordinarily do not
1896 // need predication such as the header block.
1897 SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1898 for (BasicBlock *BB : TheLoop->blocks()) {
1899 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) {
1900 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n");
1901 return false;
1905 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1907 return true;
1910 void LoopVectorizationLegality::prepareToFoldTailByMasking() {
1911 // The list of pointers that we can safely read and write to remains empty.
1912 SmallPtrSet<Value *, 8> SafePointers;
1914 // Mark all blocks for predication, including those that ordinarily do not
1915 // need predication such as the header block.
1916 for (BasicBlock *BB : TheLoop->blocks()) {
1917 [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp);
1918 assert(R && "Must be able to predicate block when tail-folding.");
1922 } // namespace llvm