[lld][WebAssembly] Introduce Ctx::arg
[llvm-project.git] / llvm / lib / Transforms / Vectorize / VPlan.cpp
blobd3476399dabf15cee22c3c30cd093f8dfe58cc89
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanPatternMatch.h"
23 #include "VPlanTransforms.h"
24 #include "VPlanUtils.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include <cassert>
47 #include <string>
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
55 extern cl::opt<unsigned> ForceTargetInstructionCost;
57 static cl::opt<bool> PrintVPlansInDotFormat(
58 "vplan-print-in-dot-format", cl::Hidden,
59 cl::desc("Use dot format instead of plain text when dumping VPlans"));
61 #define DEBUG_TYPE "loop-vectorize"
63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
65 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
66 VPSlotTracker SlotTracker(
67 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68 V.print(OS, SlotTracker);
69 return OS;
71 #endif
73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
74 const ElementCount &VF) const {
75 switch (LaneKind) {
76 case VPLane::Kind::ScalableLast:
77 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79 Builder.getInt32(VF.getKnownMinValue() - Lane));
80 case VPLane::Kind::First:
81 return Builder.getInt32(Lane);
83 llvm_unreachable("Unknown lane kind");
86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88 if (Def)
89 Def->addDefinedValue(this);
92 VPValue::~VPValue() {
93 assert(Users.empty() && "trying to delete a VPValue with remaining users");
94 if (Def)
95 Def->removeDefinedValue(this);
98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
100 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101 R->print(OS, "", SlotTracker);
102 else
103 printAsOperand(OS, SlotTracker);
106 void VPValue::dump() const {
107 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
108 VPSlotTracker SlotTracker(
109 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
110 print(dbgs(), SlotTracker);
111 dbgs() << "\n";
114 void VPDef::dump() const {
115 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
116 VPSlotTracker SlotTracker(
117 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118 print(dbgs(), "", SlotTracker);
119 dbgs() << "\n";
121 #endif
123 VPRecipeBase *VPValue::getDefiningRecipe() {
124 return cast_or_null<VPRecipeBase>(Def);
127 const VPRecipeBase *VPValue::getDefiningRecipe() const {
128 return cast_or_null<VPRecipeBase>(Def);
131 // Get the top-most entry block of \p Start. This is the entry block of the
132 // containing VPlan. This function is templated to support both const and non-const blocks
133 template <typename T> static T *getPlanEntry(T *Start) {
134 T *Next = Start;
135 T *Current = Start;
136 while ((Next = Next->getParent()))
137 Current = Next;
139 SmallSetVector<T *, 8> WorkList;
140 WorkList.insert(Current);
142 for (unsigned i = 0; i < WorkList.size(); i++) {
143 T *Current = WorkList[i];
144 if (Current->getNumPredecessors() == 0)
145 return Current;
146 auto &Predecessors = Current->getPredecessors();
147 WorkList.insert(Predecessors.begin(), Predecessors.end());
150 llvm_unreachable("VPlan without any entry node without predecessors");
153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
159 const VPBlockBase *Block = this;
160 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161 Block = Region->getEntry();
162 return cast<VPBasicBlock>(Block);
165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
166 VPBlockBase *Block = this;
167 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168 Block = Region->getEntry();
169 return cast<VPBasicBlock>(Block);
172 void VPBlockBase::setPlan(VPlan *ParentPlan) {
173 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
174 Plan = ParentPlan;
177 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
178 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
179 const VPBlockBase *Block = this;
180 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
181 Block = Region->getExiting();
182 return cast<VPBasicBlock>(Block);
185 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
186 VPBlockBase *Block = this;
187 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
188 Block = Region->getExiting();
189 return cast<VPBasicBlock>(Block);
192 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
193 if (!Successors.empty() || !Parent)
194 return this;
195 assert(Parent->getExiting() == this &&
196 "Block w/o successors not the exiting block of its parent.");
197 return Parent->getEnclosingBlockWithSuccessors();
200 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
201 if (!Predecessors.empty() || !Parent)
202 return this;
203 assert(Parent->getEntry() == this &&
204 "Block w/o predecessors not the entry of its parent.");
205 return Parent->getEnclosingBlockWithPredecessors();
208 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
209 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
210 delete Block;
213 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
214 iterator It = begin();
215 while (It != end() && It->isPhi())
216 It++;
217 return It;
220 VPTransformState::VPTransformState(const TargetTransformInfo *TTI,
221 ElementCount VF, unsigned UF, LoopInfo *LI,
222 DominatorTree *DT, IRBuilderBase &Builder,
223 InnerLoopVectorizer *ILV, VPlan *Plan,
224 Type *CanonicalIVTy)
225 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
226 LVer(nullptr), TypeAnalysis(CanonicalIVTy) {}
228 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
229 if (Def->isLiveIn())
230 return Def->getLiveInIRValue();
232 if (hasScalarValue(Def, Lane))
233 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
235 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
236 hasScalarValue(Def, VPLane::getFirstLane())) {
237 return Data.VPV2Scalars[Def][0];
240 assert(hasVectorValue(Def));
241 auto *VecPart = Data.VPV2Vector[Def];
242 if (!VecPart->getType()->isVectorTy()) {
243 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
244 return VecPart;
246 // TODO: Cache created scalar values.
247 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
248 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
249 // set(Def, Extract, Instance);
250 return Extract;
253 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
254 if (NeedsScalar) {
255 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
256 !vputils::onlyFirstLaneUsed(Def) ||
257 (hasScalarValue(Def, VPLane(0)) &&
258 Data.VPV2Scalars[Def].size() == 1)) &&
259 "Trying to access a single scalar per part but has multiple scalars "
260 "per part.");
261 return get(Def, VPLane(0));
264 // If Values have been set for this Def return the one relevant for \p Part.
265 if (hasVectorValue(Def))
266 return Data.VPV2Vector[Def];
268 auto GetBroadcastInstrs = [this, Def](Value *V) {
269 bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
270 if (VF.isScalar())
271 return V;
272 // Place the code for broadcasting invariant variables in the new preheader.
273 IRBuilder<>::InsertPointGuard Guard(Builder);
274 if (SafeToHoist) {
275 BasicBlock *LoopVectorPreHeader =
276 CFG.VPBB2IRBB[Plan->getVectorPreheader()];
277 if (LoopVectorPreHeader)
278 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
281 // Place the code for broadcasting invariant variables in the new preheader.
282 // Broadcast the scalar into all locations in the vector.
283 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
285 return Shuf;
288 if (!hasScalarValue(Def, {0})) {
289 assert(Def->isLiveIn() && "expected a live-in");
290 Value *IRV = Def->getLiveInIRValue();
291 Value *B = GetBroadcastInstrs(IRV);
292 set(Def, B);
293 return B;
296 Value *ScalarValue = get(Def, VPLane(0));
297 // If we aren't vectorizing, we can just copy the scalar map values over
298 // to the vector map.
299 if (VF.isScalar()) {
300 set(Def, ScalarValue);
301 return ScalarValue;
304 bool IsUniform = vputils::isUniformAfterVectorization(Def);
306 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
307 // Check if there is a scalar value for the selected lane.
308 if (!hasScalarValue(Def, LastLane)) {
309 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
310 // VPExpandSCEVRecipes can also be uniform.
311 assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe,
312 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
313 "unexpected recipe found to be invariant");
314 IsUniform = true;
315 LastLane = 0;
318 auto *LastInst = cast<Instruction>(get(Def, LastLane));
319 // Set the insert point after the last scalarized instruction or after the
320 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
321 // will directly follow the scalar definitions.
322 auto OldIP = Builder.saveIP();
323 auto NewIP =
324 isa<PHINode>(LastInst)
325 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
326 : std::next(BasicBlock::iterator(LastInst));
327 Builder.SetInsertPoint(&*NewIP);
329 // However, if we are vectorizing, we need to construct the vector values.
330 // If the value is known to be uniform after vectorization, we can just
331 // broadcast the scalar value corresponding to lane zero. Otherwise, we
332 // construct the vector values using insertelement instructions. Since the
333 // resulting vectors are stored in State, we will only generate the
334 // insertelements once.
335 Value *VectorValue = nullptr;
336 if (IsUniform) {
337 VectorValue = GetBroadcastInstrs(ScalarValue);
338 set(Def, VectorValue);
339 } else {
340 // Initialize packing with insertelements to start from undef.
341 assert(!VF.isScalable() && "VF is assumed to be non scalable.");
342 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
343 set(Def, Undef);
344 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
345 packScalarIntoVectorValue(Def, Lane);
346 VectorValue = get(Def);
348 Builder.restoreIP(OldIP);
349 return VectorValue;
352 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
353 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
354 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
357 void VPTransformState::addNewMetadata(Instruction *To,
358 const Instruction *Orig) {
359 // If the loop was versioned with memchecks, add the corresponding no-alias
360 // metadata.
361 if (LVer && isa<LoadInst, StoreInst>(Orig))
362 LVer->annotateInstWithNoAlias(To, Orig);
365 void VPTransformState::addMetadata(Value *To, Instruction *From) {
366 // No source instruction to transfer metadata from?
367 if (!From)
368 return;
370 if (Instruction *ToI = dyn_cast<Instruction>(To)) {
371 propagateMetadata(ToI, From);
372 addNewMetadata(ToI, From);
376 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
377 const DILocation *DIL = DL;
378 // When a FSDiscriminator is enabled, we don't need to add the multiply
379 // factors to the discriminators.
380 if (DIL &&
381 Builder.GetInsertBlock()
382 ->getParent()
383 ->shouldEmitDebugInfoForProfiling() &&
384 !EnableFSDiscriminator) {
385 // FIXME: For scalable vectors, assume vscale=1.
386 unsigned UF = Plan->getUF();
387 auto NewDIL =
388 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
389 if (NewDIL)
390 Builder.SetCurrentDebugLocation(*NewDIL);
391 else
392 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
393 << DIL->getFilename() << " Line: " << DIL->getLine());
394 } else
395 Builder.SetCurrentDebugLocation(DIL);
398 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
399 const VPLane &Lane) {
400 Value *ScalarInst = get(Def, Lane);
401 Value *VectorValue = get(Def);
402 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
403 Lane.getAsRuntimeExpr(Builder, VF));
404 set(Def, VectorValue);
407 BasicBlock *
408 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
409 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
410 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
411 BasicBlock *PrevBB = CFG.PrevBB;
412 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
413 PrevBB->getParent(), CFG.ExitBB);
414 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
416 return NewBB;
419 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) {
420 BasicBlock *NewBB = CFG.VPBB2IRBB[this];
421 // Hook up the new basic block to its predecessors.
422 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
423 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
424 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
425 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
427 assert(PredBB && "Predecessor basic-block not found building successor.");
428 auto *PredBBTerminator = PredBB->getTerminator();
429 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
431 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
432 if (isa<UnreachableInst>(PredBBTerminator)) {
433 assert(PredVPSuccessors.size() == 1 &&
434 "Predecessor ending w/o branch must have single successor.");
435 DebugLoc DL = PredBBTerminator->getDebugLoc();
436 PredBBTerminator->eraseFromParent();
437 auto *Br = BranchInst::Create(NewBB, PredBB);
438 Br->setDebugLoc(DL);
439 } else if (TermBr && !TermBr->isConditional()) {
440 TermBr->setSuccessor(0, NewBB);
441 } else {
442 // Set each forward successor here when it is created, excluding
443 // backedges. A backward successor is set when the branch is created.
444 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
445 assert(
446 (!TermBr->getSuccessor(idx) ||
447 (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) &&
448 "Trying to reset an existing successor block.");
449 TermBr->setSuccessor(idx, NewBB);
451 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
455 void VPIRBasicBlock::execute(VPTransformState *State) {
456 assert(getHierarchicalSuccessors().size() <= 2 &&
457 "VPIRBasicBlock can have at most two successors at the moment!");
458 State->Builder.SetInsertPoint(IRBB->getTerminator());
459 State->CFG.PrevBB = IRBB;
460 State->CFG.VPBB2IRBB[this] = IRBB;
461 executeRecipes(State, IRBB);
462 // Create a branch instruction to terminate IRBB if one was not created yet
463 // and is needed.
464 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
465 auto *Br = State->Builder.CreateBr(IRBB);
466 Br->setOperand(0, nullptr);
467 IRBB->getTerminator()->eraseFromParent();
468 } else {
469 assert(
470 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
471 "other blocks must be terminated by a branch");
474 connectToPredecessors(State->CFG);
477 void VPBasicBlock::execute(VPTransformState *State) {
478 bool Replica = bool(State->Lane);
479 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
481 auto IsReplicateRegion = [](VPBlockBase *BB) {
482 auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
483 return R && R->isReplicator();
486 // 1. Create an IR basic block.
487 if (this == getPlan()->getVectorPreheader() ||
488 (Replica && this == getParent()->getEntry()) ||
489 IsReplicateRegion(getSingleHierarchicalPredecessor())) {
490 // Reuse the previous basic block if the current VPBB is either
491 // * the vector preheader,
492 // * the entry to a replicate region, or
493 // * the exit of a replicate region.
494 State->CFG.VPBB2IRBB[this] = NewBB;
495 } else {
496 NewBB = createEmptyBasicBlock(State->CFG);
498 State->Builder.SetInsertPoint(NewBB);
499 // Temporarily terminate with unreachable until CFG is rewired.
500 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
501 // Register NewBB in its loop. In innermost loops its the same for all
502 // BB's.
503 if (State->CurrentVectorLoop)
504 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
505 State->Builder.SetInsertPoint(Terminator);
507 State->CFG.PrevBB = NewBB;
508 State->CFG.VPBB2IRBB[this] = NewBB;
509 connectToPredecessors(State->CFG);
512 // 2. Fill the IR basic block with IR instructions.
513 executeRecipes(State, NewBB);
516 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
517 for (VPRecipeBase &R : Recipes) {
518 for (auto *Def : R.definedValues())
519 Def->replaceAllUsesWith(NewValue);
521 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
522 R.setOperand(I, NewValue);
526 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
527 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
528 << " in BB:" << BB->getName() << '\n');
530 State->CFG.PrevVPBB = this;
532 for (VPRecipeBase &Recipe : Recipes)
533 Recipe.execute(*State);
535 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
538 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
539 assert((SplitAt == end() || SplitAt->getParent() == this) &&
540 "can only split at a position in the same block");
542 SmallVector<VPBlockBase *, 2> Succs(successors());
543 // Create new empty block after the block to split.
544 auto *SplitBlock = new VPBasicBlock(getName() + ".split");
545 VPBlockUtils::insertBlockAfter(SplitBlock, this);
547 // Finally, move the recipes starting at SplitAt to new block.
548 for (VPRecipeBase &ToMove :
549 make_early_inc_range(make_range(SplitAt, this->end())))
550 ToMove.moveBefore(*SplitBlock, SplitBlock->end());
552 return SplitBlock;
555 /// Return the enclosing loop region for region \p P. The templated version is
556 /// used to support both const and non-const block arguments.
557 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
558 if (P && P->isReplicator()) {
559 P = P->getParent();
560 assert(!cast<VPRegionBlock>(P)->isReplicator() &&
561 "unexpected nested replicate regions");
563 return P;
566 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
567 return getEnclosingLoopRegionForRegion(getParent());
570 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
571 return getEnclosingLoopRegionForRegion(getParent());
574 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
575 if (VPBB->empty()) {
576 assert(
577 VPBB->getNumSuccessors() < 2 &&
578 "block with multiple successors doesn't have a recipe as terminator");
579 return false;
582 const VPRecipeBase *R = &VPBB->back();
583 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
584 match(R, m_BranchOnCond(m_VPValue())) ||
585 match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
586 (void)IsCondBranch;
588 if (VPBB->getNumSuccessors() >= 2 ||
589 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
590 assert(IsCondBranch && "block with multiple successors not terminated by "
591 "conditional branch recipe");
593 return true;
596 assert(
597 !IsCondBranch &&
598 "block with 0 or 1 successors terminated by conditional branch recipe");
599 return false;
602 VPRecipeBase *VPBasicBlock::getTerminator() {
603 if (hasConditionalTerminator(this))
604 return &back();
605 return nullptr;
608 const VPRecipeBase *VPBasicBlock::getTerminator() const {
609 if (hasConditionalTerminator(this))
610 return &back();
611 return nullptr;
614 bool VPBasicBlock::isExiting() const {
615 return getParent() && getParent()->getExitingBasicBlock() == this;
618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
619 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
620 if (getSuccessors().empty()) {
621 O << Indent << "No successors\n";
622 } else {
623 O << Indent << "Successor(s): ";
624 ListSeparator LS;
625 for (auto *Succ : getSuccessors())
626 O << LS << Succ->getName();
627 O << '\n';
631 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
632 VPSlotTracker &SlotTracker) const {
633 O << Indent << getName() << ":\n";
635 auto RecipeIndent = Indent + " ";
636 for (const VPRecipeBase &Recipe : *this) {
637 Recipe.print(O, RecipeIndent, SlotTracker);
638 O << '\n';
641 printSuccessors(O, Indent);
643 #endif
645 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
647 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
648 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
649 // Remapping of operands must be done separately. Returns a pair with the new
650 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
651 // region, return nullptr for the exiting block.
652 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
653 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
654 VPBlockBase *Exiting = nullptr;
655 bool InRegion = Entry->getParent();
656 // First, clone blocks reachable from Entry.
657 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
658 VPBlockBase *NewBB = BB->clone();
659 Old2NewVPBlocks[BB] = NewBB;
660 if (InRegion && BB->getNumSuccessors() == 0) {
661 assert(!Exiting && "Multiple exiting blocks?");
662 Exiting = BB;
665 assert((!InRegion || Exiting) && "regions must have a single exiting block");
667 // Second, update the predecessors & successors of the cloned blocks.
668 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
669 VPBlockBase *NewBB = Old2NewVPBlocks[BB];
670 SmallVector<VPBlockBase *> NewPreds;
671 for (VPBlockBase *Pred : BB->getPredecessors()) {
672 NewPreds.push_back(Old2NewVPBlocks[Pred]);
674 NewBB->setPredecessors(NewPreds);
675 SmallVector<VPBlockBase *> NewSuccs;
676 for (VPBlockBase *Succ : BB->successors()) {
677 NewSuccs.push_back(Old2NewVPBlocks[Succ]);
679 NewBB->setSuccessors(NewSuccs);
682 #if !defined(NDEBUG)
683 // Verify that the order of predecessors and successors matches in the cloned
684 // version.
685 for (const auto &[OldBB, NewBB] :
686 zip(vp_depth_first_shallow(Entry),
687 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
688 for (const auto &[OldPred, NewPred] :
689 zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
690 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
692 for (const auto &[OldSucc, NewSucc] :
693 zip(OldBB->successors(), NewBB->successors()))
694 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
696 #endif
698 return std::make_pair(Old2NewVPBlocks[Entry],
699 Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
702 VPRegionBlock *VPRegionBlock::clone() {
703 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
704 auto *NewRegion =
705 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
706 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
707 Block->setParent(NewRegion);
708 return NewRegion;
711 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
712 for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
713 // Drop all references in VPBasicBlocks and replace all uses with
714 // DummyValue.
715 Block->dropAllReferences(NewValue);
718 void VPRegionBlock::execute(VPTransformState *State) {
719 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
720 RPOT(Entry);
722 if (!isReplicator()) {
723 // Create and register the new vector loop.
724 Loop *PrevLoop = State->CurrentVectorLoop;
725 State->CurrentVectorLoop = State->LI->AllocateLoop();
726 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
727 Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
729 // Insert the new loop into the loop nest and register the new basic blocks
730 // before calling any utilities such as SCEV that require valid LoopInfo.
731 if (ParentLoop)
732 ParentLoop->addChildLoop(State->CurrentVectorLoop);
733 else
734 State->LI->addTopLevelLoop(State->CurrentVectorLoop);
736 // Visit the VPBlocks connected to "this", starting from it.
737 for (VPBlockBase *Block : RPOT) {
738 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
739 Block->execute(State);
742 State->CurrentVectorLoop = PrevLoop;
743 return;
746 assert(!State->Lane && "Replicating a Region with non-null instance.");
748 // Enter replicating mode.
749 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
750 State->Lane = VPLane(0);
751 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
752 ++Lane) {
753 State->Lane = VPLane(Lane, VPLane::Kind::First);
754 // Visit the VPBlocks connected to \p this, starting from it.
755 for (VPBlockBase *Block : RPOT) {
756 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
757 Block->execute(State);
761 // Exit replicating mode.
762 State->Lane.reset();
765 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
766 InstructionCost Cost = 0;
767 for (VPRecipeBase &R : Recipes)
768 Cost += R.cost(VF, Ctx);
769 return Cost;
772 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
773 if (!isReplicator()) {
774 InstructionCost Cost = 0;
775 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
776 Cost += Block->cost(VF, Ctx);
777 InstructionCost BackedgeCost =
778 ForceTargetInstructionCost.getNumOccurrences()
779 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
780 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
781 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
782 << ": vector loop backedge\n");
783 Cost += BackedgeCost;
784 return Cost;
787 // Compute the cost of a replicate region. Replicating isn't supported for
788 // scalable vectors, return an invalid cost for them.
789 // TODO: Discard scalable VPlans with replicate recipes earlier after
790 // construction.
791 if (VF.isScalable())
792 return InstructionCost::getInvalid();
794 // First compute the cost of the conditionally executed recipes, followed by
795 // account for the branching cost, except if the mask is a header mask or
796 // uniform condition.
797 using namespace llvm::VPlanPatternMatch;
798 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
799 InstructionCost ThenCost = Then->cost(VF, Ctx);
801 // For the scalar case, we may not always execute the original predicated
802 // block, Thus, scale the block's cost by the probability of executing it.
803 if (VF.isScalar())
804 return ThenCost / getReciprocalPredBlockProb();
806 return ThenCost;
809 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
810 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
811 VPSlotTracker &SlotTracker) const {
812 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
813 auto NewIndent = Indent + " ";
814 for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
815 O << '\n';
816 BlockBase->print(O, NewIndent, SlotTracker);
818 O << Indent << "}\n";
820 printSuccessors(O, Indent);
822 #endif
824 VPlan::VPlan(VPBasicBlock *OriginalPreheader, VPValue *TC,
825 VPBasicBlock *EntryVectorPreHeader, VPIRBasicBlock *ScalarHeader)
826 : VPlan(OriginalPreheader, TC, ScalarHeader) {
827 VPBlockUtils::connectBlocks(OriginalPreheader, EntryVectorPreHeader);
830 VPlan::VPlan(VPBasicBlock *OriginalPreheader,
831 VPBasicBlock *EntryVectorPreHeader, VPIRBasicBlock *ScalarHeader)
832 : VPlan(OriginalPreheader, ScalarHeader) {
833 VPBlockUtils::connectBlocks(OriginalPreheader, EntryVectorPreHeader);
836 VPlan::~VPlan() {
837 if (Entry) {
838 VPValue DummyValue;
839 for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
840 Block->dropAllReferences(&DummyValue);
842 VPBlockBase::deleteCFG(Entry);
844 for (VPValue *VPV : VPLiveInsToFree)
845 delete VPV;
846 if (BackedgeTakenCount)
847 delete BackedgeTakenCount;
850 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) {
851 auto *VPIRBB = new VPIRBasicBlock(IRBB);
852 for (Instruction &I :
853 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
854 VPIRBB->appendRecipe(new VPIRInstruction(I));
855 return VPIRBB;
858 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
859 PredicatedScalarEvolution &PSE,
860 bool RequiresScalarEpilogueCheck,
861 bool TailFolded, Loop *TheLoop) {
862 VPIRBasicBlock *Entry =
863 VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader());
864 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
865 // Connect entry only to vector preheader initially. Entry will also be
866 // connected to the scalar preheader later, during skeleton creation when
867 // runtime guards are added as needed. Note that when executing the VPlan for
868 // an epilogue vector loop, the original entry block here will be replaced by
869 // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
870 // generating code for the main vector loop.
871 VPBlockUtils::connectBlocks(Entry, VecPreheader);
872 VPIRBasicBlock *ScalarHeader =
873 VPIRBasicBlock::fromBasicBlock(TheLoop->getHeader());
874 auto Plan = std::make_unique<VPlan>(Entry, ScalarHeader);
876 // Create SCEV and VPValue for the trip count.
877 // We use the symbolic max backedge-taken-count, which works also when
878 // vectorizing loops with uncountable early exits.
879 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
880 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
881 "Invalid loop count");
882 ScalarEvolution &SE = *PSE.getSE();
883 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
884 InductionTy, TheLoop);
885 Plan->TripCount =
886 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
888 // Create VPRegionBlock, with empty header and latch blocks, to be filled
889 // during processing later.
890 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
891 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
892 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
893 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
894 false /*isReplicator*/);
896 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
897 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
898 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
900 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
901 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
902 if (!RequiresScalarEpilogueCheck) {
903 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
904 return Plan;
907 // If needed, add a check in the middle block to see if we have completed
908 // all of the iterations in the first vector loop. Three cases:
909 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
910 // Thus if tail is to be folded, we know we don't need to run the
911 // remainder and we can set the condition to true.
912 // 2) If we require a scalar epilogue, there is no conditional branch as
913 // we unconditionally branch to the scalar preheader. Do nothing.
914 // 3) Otherwise, construct a runtime check.
915 BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
916 auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock);
917 // The connection order corresponds to the operands of the conditional branch.
918 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
919 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
921 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
922 // Here we use the same DebugLoc as the scalar loop latch terminator instead
923 // of the corresponding compare because they may have ended up with
924 // different line numbers and we want to avoid awkward line stepping while
925 // debugging. Eg. if the compare has got a line number inside the loop.
926 VPBuilder Builder(MiddleVPBB);
927 VPValue *Cmp =
928 TailFolded
929 ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
930 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
931 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
932 &Plan->getVectorTripCount(),
933 ScalarLatchTerm->getDebugLoc(), "cmp.n");
934 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
935 ScalarLatchTerm->getDebugLoc());
936 return Plan;
939 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
940 VPTransformState &State) {
941 Type *TCTy = TripCountV->getType();
942 // Check if the backedge taken count is needed, and if so build it.
943 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
944 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
945 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
946 "trip.count.minus.1");
947 BackedgeTakenCount->setUnderlyingValue(TCMO);
950 VectorTripCount.setUnderlyingValue(VectorTripCountV);
952 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
953 // FIXME: Model VF * UF computation completely in VPlan.
954 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
955 unsigned UF = getUF();
956 if (VF.getNumUsers()) {
957 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
958 VF.setUnderlyingValue(RuntimeVF);
959 VFxUF.setUnderlyingValue(
960 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
961 : RuntimeVF);
962 } else {
963 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
967 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
968 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
969 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
970 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
971 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
972 VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB);
973 for (auto &R : make_early_inc_range(*VPBB)) {
974 assert(!R.isPhi() && "Tried to move phi recipe to end of block");
975 R.moveBefore(*IRVPBB, IRVPBB->end());
978 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
980 delete VPBB;
983 /// Generate the code inside the preheader and body of the vectorized loop.
984 /// Assumes a single pre-header basic-block was created for this. Introduce
985 /// additional basic-blocks as needed, and fill them all.
986 void VPlan::execute(VPTransformState *State) {
987 // Initialize CFG state.
988 State->CFG.PrevVPBB = nullptr;
989 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
990 BasicBlock *VectorPreHeader = State->CFG.PrevBB;
991 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
993 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
994 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
995 State->CFG.DTU.applyUpdates(
996 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
998 // Replace regular VPBB's for the vector preheader, middle and scalar
999 // preheader blocks with VPIRBasicBlocks wrapping their IR blocks. The IR
1000 // blocks are created during skeleton creation, so we can only create the
1001 // VPIRBasicBlocks now during VPlan execution rather than earlier during VPlan
1002 // construction.
1003 BasicBlock *MiddleBB = State->CFG.ExitBB;
1004 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1005 replaceVPBBWithIRVPBB(getVectorPreheader(), VectorPreHeader);
1006 replaceVPBBWithIRVPBB(getMiddleBlock(), MiddleBB);
1007 replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh);
1009 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
1010 << ", UF=" << getUF() << '\n');
1011 setName("Final VPlan");
1012 LLVM_DEBUG(dump());
1014 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
1015 << ", UF=" << getUF() << '\n');
1016 setName("Final VPlan");
1017 LLVM_DEBUG(dump());
1019 // Disconnect the middle block from its single successor (the scalar loop
1020 // header) in both the CFG and DT. The branch will be recreated during VPlan
1021 // execution.
1022 auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1023 BrInst->insertBefore(MiddleBB->getTerminator());
1024 MiddleBB->getTerminator()->eraseFromParent();
1025 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1026 // Disconnect scalar preheader and scalar header, as the dominator tree edge
1027 // will be updated as part of VPlan execution. This allows keeping the DTU
1028 // logic generic during VPlan execution.
1029 State->CFG.DTU.applyUpdates(
1030 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
1032 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
1033 Entry);
1034 // Generate code for the VPlan, in parts of the vector skeleton, loop body and
1035 // successor blocks including the middle, exit and scalar preheader blocks.
1036 for (VPBlockBase *Block : RPOT)
1037 Block->execute(State);
1039 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1040 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1042 // Fix the latch value of canonical, reduction and first-order recurrences
1043 // phis in the vector loop.
1044 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1045 for (VPRecipeBase &R : Header->phis()) {
1046 // Skip phi-like recipes that generate their backedege values themselves.
1047 if (isa<VPWidenPHIRecipe>(&R))
1048 continue;
1050 if (isa<VPWidenPointerInductionRecipe, VPWidenIntOrFpInductionRecipe>(&R)) {
1051 PHINode *Phi = nullptr;
1052 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1053 Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1054 } else {
1055 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1056 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1057 "recipe generating only scalars should have been replaced");
1058 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1059 Phi = cast<PHINode>(GEP->getPointerOperand());
1062 Phi->setIncomingBlock(1, VectorLatchBB);
1064 // Move the last step to the end of the latch block. This ensures
1065 // consistent placement of all induction updates.
1066 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1067 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1069 // Use the steps for the last part as backedge value for the induction.
1070 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1071 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1072 continue;
1075 auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1076 bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1077 (isa<VPReductionPHIRecipe>(PhiR) &&
1078 cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1079 Value *Phi = State->get(PhiR, NeedsScalar);
1080 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1081 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1084 State->CFG.DTU.flush();
1087 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1088 // For now only return the cost of the vector loop region, ignoring any other
1089 // blocks, like the preheader or middle blocks.
1090 return getVectorLoopRegion()->cost(VF, Ctx);
1093 VPRegionBlock *VPlan::getVectorLoopRegion() {
1094 // TODO: Cache if possible.
1095 for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1096 if (auto *R = dyn_cast<VPRegionBlock>(B))
1097 return R;
1098 return nullptr;
1101 const VPRegionBlock *VPlan::getVectorLoopRegion() const {
1102 for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1103 if (auto *R = dyn_cast<VPRegionBlock>(B))
1104 return R;
1105 return nullptr;
1108 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1109 void VPlan::printLiveIns(raw_ostream &O) const {
1110 VPSlotTracker SlotTracker(this);
1112 if (VF.getNumUsers() > 0) {
1113 O << "\nLive-in ";
1114 VF.printAsOperand(O, SlotTracker);
1115 O << " = VF";
1118 if (VFxUF.getNumUsers() > 0) {
1119 O << "\nLive-in ";
1120 VFxUF.printAsOperand(O, SlotTracker);
1121 O << " = VF * UF";
1124 if (VectorTripCount.getNumUsers() > 0) {
1125 O << "\nLive-in ";
1126 VectorTripCount.printAsOperand(O, SlotTracker);
1127 O << " = vector-trip-count";
1130 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1131 O << "\nLive-in ";
1132 BackedgeTakenCount->printAsOperand(O, SlotTracker);
1133 O << " = backedge-taken count";
1136 O << "\n";
1137 if (TripCount->isLiveIn())
1138 O << "Live-in ";
1139 TripCount->printAsOperand(O, SlotTracker);
1140 O << " = original trip-count";
1141 O << "\n";
1144 LLVM_DUMP_METHOD
1145 void VPlan::print(raw_ostream &O) const {
1146 VPSlotTracker SlotTracker(this);
1148 O << "VPlan '" << getName() << "' {";
1150 printLiveIns(O);
1152 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>>
1153 RPOT(getEntry());
1154 for (const VPBlockBase *Block : RPOT) {
1155 O << '\n';
1156 Block->print(O, "", SlotTracker);
1159 O << "}\n";
1162 std::string VPlan::getName() const {
1163 std::string Out;
1164 raw_string_ostream RSO(Out);
1165 RSO << Name << " for ";
1166 if (!VFs.empty()) {
1167 RSO << "VF={" << VFs[0];
1168 for (ElementCount VF : drop_begin(VFs))
1169 RSO << "," << VF;
1170 RSO << "},";
1173 if (UFs.empty()) {
1174 RSO << "UF>=1";
1175 } else {
1176 RSO << "UF={" << UFs[0];
1177 for (unsigned UF : drop_begin(UFs))
1178 RSO << "," << UF;
1179 RSO << "}";
1182 return Out;
1185 LLVM_DUMP_METHOD
1186 void VPlan::printDOT(raw_ostream &O) const {
1187 VPlanPrinter Printer(O, *this);
1188 Printer.dump();
1191 LLVM_DUMP_METHOD
1192 void VPlan::dump() const { print(dbgs()); }
1193 #endif
1195 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1196 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1197 // Update the operands of all cloned recipes starting at NewEntry. This
1198 // traverses all reachable blocks. This is done in two steps, to handle cycles
1199 // in PHI recipes.
1200 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1201 OldDeepRPOT(Entry);
1202 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1203 NewDeepRPOT(NewEntry);
1204 // First, collect all mappings from old to new VPValues defined by cloned
1205 // recipes.
1206 for (const auto &[OldBB, NewBB] :
1207 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1208 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1209 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1210 "blocks must have the same number of recipes");
1211 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1212 assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1213 "recipes must have the same number of operands");
1214 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1215 "recipes must define the same number of operands");
1216 for (const auto &[OldV, NewV] :
1217 zip(OldR.definedValues(), NewR.definedValues()))
1218 Old2NewVPValues[OldV] = NewV;
1222 // Update all operands to use cloned VPValues.
1223 for (VPBasicBlock *NewBB :
1224 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1225 for (VPRecipeBase &NewR : *NewBB)
1226 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1227 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1228 NewR.setOperand(I, NewOp);
1233 VPlan *VPlan::duplicate() {
1234 // Clone blocks.
1235 const auto &[NewEntry, __] = cloneFrom(Entry);
1237 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1238 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1239 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1240 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1241 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1242 }));
1243 // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1244 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1245 DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1246 for (VPValue *OldLiveIn : VPLiveInsToFree) {
1247 Old2NewVPValues[OldLiveIn] =
1248 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1250 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1251 Old2NewVPValues[&VF] = &NewPlan->VF;
1252 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1253 if (BackedgeTakenCount) {
1254 NewPlan->BackedgeTakenCount = new VPValue();
1255 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1257 assert(TripCount && "trip count must be set");
1258 if (TripCount->isLiveIn())
1259 Old2NewVPValues[TripCount] =
1260 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1261 // else NewTripCount will be created and inserted into Old2NewVPValues when
1262 // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1264 remapOperands(Entry, NewEntry, Old2NewVPValues);
1266 // Initialize remaining fields of cloned VPlan.
1267 NewPlan->VFs = VFs;
1268 NewPlan->UFs = UFs;
1269 // TODO: Adjust names.
1270 NewPlan->Name = Name;
1271 assert(Old2NewVPValues.contains(TripCount) &&
1272 "TripCount must have been added to Old2NewVPValues");
1273 NewPlan->TripCount = Old2NewVPValues[TripCount];
1274 return NewPlan;
1277 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1279 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1280 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1281 Twine(getOrCreateBID(Block));
1284 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1285 const std::string &Name = Block->getName();
1286 if (!Name.empty())
1287 return Name;
1288 return "VPB" + Twine(getOrCreateBID(Block));
1291 void VPlanPrinter::dump() {
1292 Depth = 1;
1293 bumpIndent(0);
1294 OS << "digraph VPlan {\n";
1295 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1296 if (!Plan.getName().empty())
1297 OS << "\\n" << DOT::EscapeString(Plan.getName());
1300 // Print live-ins.
1301 std::string Str;
1302 raw_string_ostream SS(Str);
1303 Plan.printLiveIns(SS);
1304 SmallVector<StringRef, 0> Lines;
1305 StringRef(Str).rtrim('\n').split(Lines, "\n");
1306 for (auto Line : Lines)
1307 OS << DOT::EscapeString(Line.str()) << "\\n";
1310 OS << "\"]\n";
1311 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1312 OS << "edge [fontname=Courier, fontsize=30]\n";
1313 OS << "compound=true\n";
1315 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1316 dumpBlock(Block);
1318 OS << "}\n";
1321 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1322 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1323 dumpBasicBlock(BasicBlock);
1324 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1325 dumpRegion(Region);
1326 else
1327 llvm_unreachable("Unsupported kind of VPBlock.");
1330 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1331 bool Hidden, const Twine &Label) {
1332 // Due to "dot" we print an edge between two regions as an edge between the
1333 // exiting basic block and the entry basic of the respective regions.
1334 const VPBlockBase *Tail = From->getExitingBasicBlock();
1335 const VPBlockBase *Head = To->getEntryBasicBlock();
1336 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1337 OS << " [ label=\"" << Label << '\"';
1338 if (Tail != From)
1339 OS << " ltail=" << getUID(From);
1340 if (Head != To)
1341 OS << " lhead=" << getUID(To);
1342 if (Hidden)
1343 OS << "; splines=none";
1344 OS << "]\n";
1347 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1348 auto &Successors = Block->getSuccessors();
1349 if (Successors.size() == 1)
1350 drawEdge(Block, Successors.front(), false, "");
1351 else if (Successors.size() == 2) {
1352 drawEdge(Block, Successors.front(), false, "T");
1353 drawEdge(Block, Successors.back(), false, "F");
1354 } else {
1355 unsigned SuccessorNumber = 0;
1356 for (auto *Successor : Successors)
1357 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1361 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1362 // Implement dot-formatted dump by performing plain-text dump into the
1363 // temporary storage followed by some post-processing.
1364 OS << Indent << getUID(BasicBlock) << " [label =\n";
1365 bumpIndent(1);
1366 std::string Str;
1367 raw_string_ostream SS(Str);
1368 // Use no indentation as we need to wrap the lines into quotes ourselves.
1369 BasicBlock->print(SS, "", SlotTracker);
1371 // We need to process each line of the output separately, so split
1372 // single-string plain-text dump.
1373 SmallVector<StringRef, 0> Lines;
1374 StringRef(Str).rtrim('\n').split(Lines, "\n");
1376 auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1377 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1380 // Don't need the "+" after the last line.
1381 for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1382 EmitLine(Line, " +\n");
1383 EmitLine(Lines.back(), "\n");
1385 bumpIndent(-1);
1386 OS << Indent << "]\n";
1388 dumpEdges(BasicBlock);
1391 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1392 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1393 bumpIndent(1);
1394 OS << Indent << "fontname=Courier\n"
1395 << Indent << "label=\""
1396 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1397 << DOT::EscapeString(Region->getName()) << "\"\n";
1398 // Dump the blocks of the region.
1399 assert(Region->getEntry() && "Region contains no inner blocks.");
1400 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1401 dumpBlock(Block);
1402 bumpIndent(-1);
1403 OS << Indent << "}\n";
1404 dumpEdges(Region);
1407 void VPlanIngredient::print(raw_ostream &O) const {
1408 if (auto *Inst = dyn_cast<Instruction>(V)) {
1409 if (!Inst->getType()->isVoidTy()) {
1410 Inst->printAsOperand(O, false);
1411 O << " = ";
1413 O << Inst->getOpcodeName() << " ";
1414 unsigned E = Inst->getNumOperands();
1415 if (E > 0) {
1416 Inst->getOperand(0)->printAsOperand(O, false);
1417 for (unsigned I = 1; I < E; ++I)
1418 Inst->getOperand(I)->printAsOperand(O << ", ", false);
1420 } else // !Inst
1421 V->printAsOperand(O, false);
1424 #endif
1426 bool VPValue::isDefinedOutsideLoopRegions() const {
1427 return !hasDefiningRecipe() ||
1428 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion();
1431 void VPValue::replaceAllUsesWith(VPValue *New) {
1432 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1435 void VPValue::replaceUsesWithIf(
1436 VPValue *New,
1437 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1438 // Note that this early exit is required for correctness; the implementation
1439 // below relies on the number of users for this VPValue to decrease, which
1440 // isn't the case if this == New.
1441 if (this == New)
1442 return;
1444 for (unsigned J = 0; J < getNumUsers();) {
1445 VPUser *User = Users[J];
1446 bool RemovedUser = false;
1447 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1448 if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1449 continue;
1451 RemovedUser = true;
1452 User->setOperand(I, New);
1454 // If a user got removed after updating the current user, the next user to
1455 // update will be moved to the current position, so we only need to
1456 // increment the index if the number of users did not change.
1457 if (!RemovedUser)
1458 J++;
1462 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1463 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1464 OS << Tracker.getOrCreateName(this);
1467 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1468 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1469 Op->printAsOperand(O, SlotTracker);
1472 #endif
1474 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1475 Old2NewTy &Old2New,
1476 InterleavedAccessInfo &IAI) {
1477 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1478 RPOT(Region->getEntry());
1479 for (VPBlockBase *Base : RPOT) {
1480 visitBlock(Base, Old2New, IAI);
1484 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1485 InterleavedAccessInfo &IAI) {
1486 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1487 for (VPRecipeBase &VPI : *VPBB) {
1488 if (isa<VPWidenPHIRecipe>(&VPI))
1489 continue;
1490 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1491 auto *VPInst = cast<VPInstruction>(&VPI);
1493 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1494 if (!Inst)
1495 continue;
1496 auto *IG = IAI.getInterleaveGroup(Inst);
1497 if (!IG)
1498 continue;
1500 auto NewIGIter = Old2New.find(IG);
1501 if (NewIGIter == Old2New.end())
1502 Old2New[IG] = new InterleaveGroup<VPInstruction>(
1503 IG->getFactor(), IG->isReverse(), IG->getAlign());
1505 if (Inst == IG->getInsertPos())
1506 Old2New[IG]->setInsertPos(VPInst);
1508 InterleaveGroupMap[VPInst] = Old2New[IG];
1509 InterleaveGroupMap[VPInst]->insertMember(
1510 VPInst, IG->getIndex(Inst),
1511 Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1512 : IG->getFactor()));
1514 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1515 visitRegion(Region, Old2New, IAI);
1516 else
1517 llvm_unreachable("Unsupported kind of VPBlock.");
1520 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1521 InterleavedAccessInfo &IAI) {
1522 Old2NewTy Old2New;
1523 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1526 void VPSlotTracker::assignName(const VPValue *V) {
1527 assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1528 auto *UV = V->getUnderlyingValue();
1529 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1530 if (!UV && !(VPI && !VPI->getName().empty())) {
1531 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1532 NextSlot++;
1533 return;
1536 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1537 // appending ".Number" to the name if there are multiple uses.
1538 std::string Name;
1539 if (UV) {
1540 raw_string_ostream S(Name);
1541 UV->printAsOperand(S, false);
1542 } else
1543 Name = VPI->getName();
1545 assert(!Name.empty() && "Name cannot be empty.");
1546 StringRef Prefix = UV ? "ir<" : "vp<%";
1547 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1549 // First assign the base name for V.
1550 const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1551 // Integer or FP constants with different types will result in he same string
1552 // due to stripping types.
1553 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1554 return;
1556 // If it is already used by C > 0 other VPValues, increase the version counter
1557 // C and use it for V.
1558 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1559 if (!UseInserted) {
1560 C->second++;
1561 A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1565 void VPSlotTracker::assignNames(const VPlan &Plan) {
1566 if (Plan.VF.getNumUsers() > 0)
1567 assignName(&Plan.VF);
1568 if (Plan.VFxUF.getNumUsers() > 0)
1569 assignName(&Plan.VFxUF);
1570 assignName(&Plan.VectorTripCount);
1571 if (Plan.BackedgeTakenCount)
1572 assignName(Plan.BackedgeTakenCount);
1573 for (VPValue *LI : Plan.VPLiveInsToFree)
1574 assignName(LI);
1576 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1577 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1578 for (const VPBasicBlock *VPBB :
1579 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1580 assignNames(VPBB);
1583 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1584 for (const VPRecipeBase &Recipe : *VPBB)
1585 for (VPValue *Def : Recipe.definedValues())
1586 assignName(Def);
1589 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1590 std::string Name = VPValue2Name.lookup(V);
1591 if (!Name.empty())
1592 return Name;
1594 // If no name was assigned, no VPlan was provided when creating the slot
1595 // tracker or it is not reachable from the provided VPlan. This can happen,
1596 // e.g. when trying to print a recipe that has not been inserted into a VPlan
1597 // in a debugger.
1598 // TODO: Update VPSlotTracker constructor to assign names to recipes &
1599 // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1600 // here.
1601 const VPRecipeBase *DefR = V->getDefiningRecipe();
1602 (void)DefR;
1603 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1604 "VPValue defined by a recipe in a VPlan?");
1606 // Use the underlying value's name, if there is one.
1607 if (auto *UV = V->getUnderlyingValue()) {
1608 std::string Name;
1609 raw_string_ostream S(Name);
1610 UV->printAsOperand(S, false);
1611 return (Twine("ir<") + Name + ">").str();
1614 return "<badref>";
1617 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1618 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1619 assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1620 bool PredicateAtRangeStart = Predicate(Range.Start);
1622 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1623 if (Predicate(TmpVF) != PredicateAtRangeStart) {
1624 Range.End = TmpVF;
1625 break;
1628 return PredicateAtRangeStart;
1631 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1632 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1633 /// of VF's starting at a given VF and extending it as much as possible. Each
1634 /// vectorization decision can potentially shorten this sub-range during
1635 /// buildVPlan().
1636 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1637 ElementCount MaxVF) {
1638 auto MaxVFTimes2 = MaxVF * 2;
1639 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1640 VFRange SubRange = {VF, MaxVFTimes2};
1641 auto Plan = buildVPlan(SubRange);
1642 VPlanTransforms::optimize(*Plan);
1643 VPlans.push_back(std::move(Plan));
1644 VF = SubRange.End;
1648 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1649 assert(count_if(VPlans,
1650 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1651 1 &&
1652 "Multiple VPlans for VF.");
1654 for (const VPlanPtr &Plan : VPlans) {
1655 if (Plan->hasVF(VF))
1656 return *Plan.get();
1658 llvm_unreachable("No plan found!");
1661 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1662 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1663 if (VPlans.empty()) {
1664 O << "LV: No VPlans built.\n";
1665 return;
1667 for (const auto &Plan : VPlans)
1668 if (PrintVPlansInDotFormat)
1669 Plan->printDOT(O);
1670 else
1671 Plan->print(O);
1673 #endif
1675 TargetTransformInfo::OperandValueInfo
1676 VPCostContext::getOperandInfo(VPValue *V) const {
1677 if (!V->isLiveIn())
1678 return {};
1680 return TTI::getOperandInfo(V->getLiveInIRValue());