1 ; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
2 ; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s
4 ; The addrecs in this loop are analyzable only by using nsw information.
6 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64"
8 define void @test1(ptr %p) nounwind {
10 ; CHECK-NEXT: Classifying expressions for: @test1
11 ; CHECK-NEXT: %i.01 = phi i32 [ %tmp8, %bb1 ], [ 0, %bb.nph ]
12 ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb> U: [0,-2147483648) S: [0,-2147483648) Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
13 ; CHECK-NEXT: %tmp2 = sext i32 %i.01 to i64
14 ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb> U: [0,-9223372036854775808) S: [0,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
15 ; CHECK-NEXT: %tmp3 = getelementptr double, ptr %p, i64 %tmp2
16 ; CHECK-NEXT: --> {%p,+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
17 ; CHECK-NEXT: %tmp6 = sext i32 %i.01 to i64
18 ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb> U: [0,-9223372036854775808) S: [0,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
19 ; CHECK-NEXT: %tmp7 = getelementptr double, ptr %p, i64 %tmp6
20 ; CHECK-NEXT: --> {%p,+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
21 ; CHECK-NEXT: %tmp8 = add nsw i32 %i.01, 1
22 ; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%bb> U: [1,-2147483648) S: [1,-2147483648) Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
23 ; CHECK-NEXT: %p.gep = getelementptr double, ptr %p, i32 %tmp8
24 ; CHECK-NEXT: --> {(8 + %p),+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
25 ; CHECK-NEXT: %phitmp = sext i32 %tmp8 to i64
26 ; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%bb> U: [1,-9223372036854775808) S: [1,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
27 ; CHECK-NEXT: %tmp9 = getelementptr inbounds double, ptr %p, i64 %phitmp
28 ; CHECK-NEXT: --> {(8 + %p),+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
29 ; CHECK-NEXT: Determining loop execution counts for: @test1
30 ; CHECK-NEXT: Loop %bb: Unpredictable backedge-taken count.
31 ; CHECK-NEXT: Loop %bb: Unpredictable constant max backedge-taken count.
32 ; CHECK-NEXT: Loop %bb: Unpredictable symbolic max backedge-taken count.
35 %tmp = load double, ptr %p, align 8 ; <double> [#uses=1]
36 %tmp1 = fcmp ogt double %tmp, 2.000000e+00 ; <i1> [#uses=1]
37 br i1 %tmp1, label %bb.nph, label %return
39 bb.nph: ; preds = %entry
42 bb: ; preds = %bb1, %bb.nph
43 %i.01 = phi i32 [ %tmp8, %bb1 ], [ 0, %bb.nph ] ; <i32> [#uses=3]
44 %tmp2 = sext i32 %i.01 to i64 ; <i64> [#uses=1]
45 %tmp3 = getelementptr double, ptr %p, i64 %tmp2 ; <ptr> [#uses=1]
46 %tmp4 = load double, ptr %tmp3, align 8 ; <double> [#uses=1]
47 %tmp5 = fmul double %tmp4, 9.200000e+00 ; <double> [#uses=1]
48 %tmp6 = sext i32 %i.01 to i64 ; <i64> [#uses=1]
49 %tmp7 = getelementptr double, ptr %p, i64 %tmp6 ; <ptr> [#uses=1]
50 store double %tmp5, ptr %tmp7, align 8
51 %tmp8 = add nsw i32 %i.01, 1 ; <i32> [#uses=2]
52 %p.gep = getelementptr double, ptr %p, i32 %tmp8
53 %p.val = load double, ptr %p.gep
57 %phitmp = sext i32 %tmp8 to i64 ; <i64> [#uses=1]
58 %tmp9 = getelementptr inbounds double, ptr %p, i64 %phitmp ; <ptr> [#uses=1]
59 %tmp10 = load double, ptr %tmp9, align 8 ; <double> [#uses=1]
60 %tmp11 = fcmp ogt double %tmp10, 2.000000e+00 ; <i1> [#uses=1]
61 br i1 %tmp11, label %bb, label %bb1.return_crit_edge
63 bb1.return_crit_edge: ; preds = %bb1
66 return: ; preds = %bb1.return_crit_edge, %entry
70 define void @test2(ptr %begin, ptr %end) ssp {
71 ; CHECK-LABEL: 'test2'
72 ; CHECK-NEXT: Classifying expressions for: @test2
73 ; CHECK-NEXT: %__first.addr.02.i.i = phi ptr [ %begin, %for.body.lr.ph.i.i ], [ %ptrincdec.i.i, %for.body.i.i ]
74 ; CHECK-NEXT: --> {%begin,+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: ((4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable }
75 ; CHECK-NEXT: %ptrincdec.i.i = getelementptr inbounds i32, ptr %__first.addr.02.i.i, i64 1
76 ; CHECK-NEXT: --> {(4 + %begin),+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: (4 + (4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable }
77 ; CHECK-NEXT: Determining loop execution counts for: @test2
78 ; CHECK-NEXT: Loop %for.body.i.i: backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4)
79 ; CHECK-NEXT: Loop %for.body.i.i: constant max backedge-taken count is i64 4611686018427387903
80 ; CHECK-NEXT: Loop %for.body.i.i: symbolic max backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4)
81 ; CHECK-NEXT: Loop %for.body.i.i: Trip multiple is 1
84 %cmp1.i.i = icmp eq ptr %begin, %end
85 br i1 %cmp1.i.i, label %_ZSt4fillIPiiEvT_S1_RKT0_.exit, label %for.body.lr.ph.i.i
87 for.body.lr.ph.i.i: ; preds = %entry
88 br label %for.body.i.i
90 for.body.i.i: ; preds = %for.body.i.i, %for.body.lr.ph.i.i
91 %__first.addr.02.i.i = phi ptr [ %begin, %for.body.lr.ph.i.i ], [ %ptrincdec.i.i, %for.body.i.i ]
92 store i32 0, ptr %__first.addr.02.i.i, align 4
93 %ptrincdec.i.i = getelementptr inbounds i32, ptr %__first.addr.02.i.i, i64 1
94 %cmp.i.i = icmp eq ptr %ptrincdec.i.i, %end
95 br i1 %cmp.i.i, label %for.cond.for.end_crit_edge.i.i, label %for.body.i.i
97 for.cond.for.end_crit_edge.i.i: ; preds = %for.body.i.i
98 br label %_ZSt4fillIPiiEvT_S1_RKT0_.exit
100 _ZSt4fillIPiiEvT_S1_RKT0_.exit: ; preds = %entry, %for.cond.for.end_crit_edge.i.i
104 ; Various checks for inbounds geps.
105 define void @test3(ptr %begin, ptr %end) nounwind ssp {
106 ; CHECK-LABEL: 'test3'
107 ; CHECK-NEXT: Classifying expressions for: @test3
108 ; CHECK-NEXT: %indvar.i.i = phi i64 [ %tmp, %for.body.i.i ], [ 0, %entry ]
109 ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body.i.i> U: [0,4611686018427387904) S: [0,4611686018427387904) Exits: ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4) LoopDispositions: { %for.body.i.i: Computable }
110 ; CHECK-NEXT: %tmp = add nsw i64 %indvar.i.i, 1
111 ; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%for.body.i.i> U: [1,4611686018427387905) S: [1,4611686018427387905) Exits: (1 + ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw><nsw> LoopDispositions: { %for.body.i.i: Computable }
112 ; CHECK-NEXT: %ptrincdec.i.i = getelementptr inbounds i32, ptr %begin, i64 %tmp
113 ; CHECK-NEXT: --> {(4 + %begin),+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: (4 + (4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable }
114 ; CHECK-NEXT: %__first.addr.08.i.i = getelementptr inbounds i32, ptr %begin, i64 %indvar.i.i
115 ; CHECK-NEXT: --> {%begin,+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: ((4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable }
116 ; CHECK-NEXT: Determining loop execution counts for: @test3
117 ; CHECK-NEXT: Loop %for.body.i.i: backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4)
118 ; CHECK-NEXT: Loop %for.body.i.i: constant max backedge-taken count is i64 4611686018427387903
119 ; CHECK-NEXT: Loop %for.body.i.i: symbolic max backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4)
120 ; CHECK-NEXT: Loop %for.body.i.i: Trip multiple is 1
123 %cmp7.i.i = icmp eq ptr %begin, %end
124 br i1 %cmp7.i.i, label %_ZSt4fillIPiiEvT_S1_RKT0_.exit, label %for.body.i.i
126 for.body.i.i: ; preds = %entry, %for.body.i.i
127 %indvar.i.i = phi i64 [ %tmp, %for.body.i.i ], [ 0, %entry ]
128 %tmp = add nsw i64 %indvar.i.i, 1
129 %ptrincdec.i.i = getelementptr inbounds i32, ptr %begin, i64 %tmp
130 %__first.addr.08.i.i = getelementptr inbounds i32, ptr %begin, i64 %indvar.i.i
131 store i32 0, ptr %__first.addr.08.i.i, align 4
132 %cmp.i.i = icmp eq ptr %ptrincdec.i.i, %end
133 br i1 %cmp.i.i, label %_ZSt4fillIPiiEvT_S1_RKT0_.exit, label %for.body.i.i
134 _ZSt4fillIPiiEvT_S1_RKT0_.exit: ; preds = %for.body.i.i, %entry
138 ; A single AddExpr exists for (%a + %b), which is not always <nsw>.
139 define i32 @addnsw(i32 %a, i32 %b) nounwind ssp {
140 ; CHECK-LABEL: 'addnsw'
141 ; CHECK-NEXT: Classifying expressions for: @addnsw
142 ; CHECK-NEXT: %tmp = add i32 %a, %b
143 ; CHECK-NEXT: --> (%a + %b) U: full-set S: full-set
144 ; CHECK-NEXT: %tmp2 = add nsw i32 %a, %b
145 ; CHECK-NEXT: --> (%a + %b) U: full-set S: full-set
146 ; CHECK-NEXT: %result = phi i32 [ %a, %entry ], [ %tmp2, %greater ]
147 ; CHECK-NEXT: --> %result U: full-set S: full-set
148 ; CHECK-NEXT: Determining loop execution counts for: @addnsw
151 %tmp = add i32 %a, %b
152 %cmp = icmp sgt i32 %tmp, 0
153 br i1 %cmp, label %greater, label %exit
156 %tmp2 = add nsw i32 %a, %b
160 %result = phi i32 [ %a, %entry ], [ %tmp2, %greater ]
164 define i32 @PR12375(ptr readnone %arg) {
165 ; CHECK-LABEL: 'PR12375'
166 ; CHECK-NEXT: Classifying expressions for: @PR12375
167 ; CHECK-NEXT: %tmp = getelementptr inbounds i32, ptr %arg, i64 2
168 ; CHECK-NEXT: --> (8 + %arg)<nuw> U: [8,0) S: [8,0)
169 ; CHECK-NEXT: %tmp2 = phi ptr [ %arg, %bb ], [ %tmp5, %bb1 ]
170 ; CHECK-NEXT: --> {%arg,+,4}<nuw><%bb1> U: full-set S: full-set Exits: (4 + %arg)<nuw> LoopDispositions: { %bb1: Computable }
171 ; CHECK-NEXT: %tmp3 = phi i32 [ 0, %bb ], [ %tmp4, %bb1 ]
172 ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,2) S: [0,2) Exits: 1 LoopDispositions: { %bb1: Computable }
173 ; CHECK-NEXT: %tmp4 = add nsw i32 %tmp3, 1
174 ; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%bb1> U: [1,3) S: [1,3) Exits: 2 LoopDispositions: { %bb1: Computable }
175 ; CHECK-NEXT: %tmp5 = getelementptr inbounds i32, ptr %tmp2, i64 1
176 ; CHECK-NEXT: --> {(4 + %arg)<nuw>,+,4}<nuw><%bb1> U: [4,0) S: [4,0) Exits: (8 + %arg)<nuw> LoopDispositions: { %bb1: Computable }
177 ; CHECK-NEXT: Determining loop execution counts for: @PR12375
178 ; CHECK-NEXT: Loop %bb1: backedge-taken count is i64 1
179 ; CHECK-NEXT: Loop %bb1: constant max backedge-taken count is i64 1
180 ; CHECK-NEXT: Loop %bb1: symbolic max backedge-taken count is i64 1
181 ; CHECK-NEXT: Loop %bb1: Trip multiple is 2
184 %tmp = getelementptr inbounds i32, ptr %arg, i64 2
187 bb1: ; preds = %bb1, %bb
188 %tmp2 = phi ptr [ %arg, %bb ], [ %tmp5, %bb1 ]
189 %tmp3 = phi i32 [ 0, %bb ], [ %tmp4, %bb1 ]
190 %tmp4 = add nsw i32 %tmp3, 1
191 %tmp5 = getelementptr inbounds i32, ptr %tmp2, i64 1
192 %tmp6 = icmp ult ptr %tmp5, %tmp
193 br i1 %tmp6, label %bb1, label %bb7
199 define void @PR12376(ptr nocapture %arg, ptr nocapture %arg1) {
200 ; CHECK-LABEL: 'PR12376'
201 ; CHECK-NEXT: Classifying expressions for: @PR12376
202 ; CHECK-NEXT: %tmp = phi ptr [ %arg, %bb ], [ %tmp4, %bb2 ]
203 ; CHECK-NEXT: --> {%arg,+,4}<nuw><%bb2> U: full-set S: full-set Exits: ((4 * ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4))<nuw> + %arg) LoopDispositions: { %bb2: Computable }
204 ; CHECK-NEXT: %tmp4 = getelementptr inbounds i32, ptr %tmp, i64 1
205 ; CHECK-NEXT: --> {(4 + %arg)<nuw>,+,4}<nuw><%bb2> U: [4,0) S: [4,0) Exits: (4 + (4 * ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4))<nuw> + %arg) LoopDispositions: { %bb2: Computable }
206 ; CHECK-NEXT: Determining loop execution counts for: @PR12376
207 ; CHECK-NEXT: Loop %bb2: backedge-taken count is ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4)
208 ; CHECK-NEXT: Loop %bb2: constant max backedge-taken count is i64 4611686018427387902
209 ; CHECK-NEXT: Loop %bb2: symbolic max backedge-taken count is ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4)
210 ; CHECK-NEXT: Loop %bb2: Trip multiple is 1
215 bb2: ; preds = %bb2, %bb
216 %tmp = phi ptr [ %arg, %bb ], [ %tmp4, %bb2 ]
217 %tmp4 = getelementptr inbounds i32, ptr %tmp, i64 1
218 %tmp3 = icmp ult ptr %tmp4, %arg1
219 br i1 %tmp3, label %bb2, label %bb5
227 define void @nswnowrap(i32 %v, ptr %buf) {
228 ; CHECK-LABEL: 'nswnowrap'
229 ; CHECK-NEXT: Classifying expressions for: @nswnowrap
230 ; CHECK-NEXT: %add = add nsw i32 %v, 1
231 ; CHECK-NEXT: --> (1 + %v) U: full-set S: full-set
232 ; CHECK-NEXT: %i.04 = phi i32 [ %v, %entry ], [ %inc, %for.body ]
233 ; CHECK-NEXT: --> {%v,+,1}<nsw><%for.body> U: full-set S: full-set Exits: ((1 + %v) smax %v) LoopDispositions: { %for.body: Computable }
234 ; CHECK-NEXT: %inc = add nsw i32 %i.04, 1
235 ; CHECK-NEXT: --> {(1 + %v)<nsw>,+,1}<nsw><%for.body> U: full-set S: full-set Exits: (1 + ((1 + %v)<nsw> smax %v)) LoopDispositions: { %for.body: Computable }
236 ; CHECK-NEXT: %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %inc
237 ; CHECK-NEXT: --> {(4 + (4 * (sext i32 %v to i64))<nsw> + %buf),+,4}<nw><%for.body> U: full-set S: full-set Exits: (4 + (4 * (zext i32 ((-1 * %v) + ((1 + %v)<nsw> smax %v)) to i64))<nuw><nsw> + (4 * (sext i32 %v to i64))<nsw> + %buf) LoopDispositions: { %for.body: Computable }
238 ; CHECK-NEXT: %buf.val = load i32, ptr %buf.gep, align 4
239 ; CHECK-NEXT: --> %buf.val U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.body: Variant }
240 ; CHECK-NEXT: Determining loop execution counts for: @nswnowrap
241 ; CHECK-NEXT: Loop %for.body: backedge-taken count is ((-1 * %v) + ((1 + %v)<nsw> smax %v))
242 ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 1, actual taken count either this or zero.
243 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is ((-1 * %v) + ((1 + %v)<nsw> smax %v)), actual taken count either this or zero.
244 ; CHECK-NEXT: Loop %for.body: Trip multiple is 1
247 %add = add nsw i32 %v, 1
251 %i.04 = phi i32 [ %v, %entry ], [ %inc, %for.body ]
252 %inc = add nsw i32 %i.04, 1
253 %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %inc
254 %buf.val = load i32, ptr %buf.gep
255 %cmp = icmp slt i32 %i.04, %add
256 tail call void @f(i32 %i.04)
257 br i1 %cmp, label %for.body, label %for.end
263 ; This test checks if no-wrap flags are propagated when folding {S,+,X}+T ==> {S+T,+,X}
264 define void @test4(i32 %arg) {
265 ; CHECK-LABEL: 'test4'
266 ; CHECK-NEXT: Classifying expressions for: @test4
267 ; CHECK-NEXT: %array = alloca [10 x i32], align 4
268 ; CHECK-NEXT: --> %array U: [4,-43) S: [-9223372036854775808,9223372036854775805)
269 ; CHECK-NEXT: %index = phi i32 [ %inc5, %for.body ], [ %arg, %entry ]
270 ; CHECK-NEXT: --> {%arg,+,1}<nsw><%for.body> U: full-set S: full-set Exits: (-1 + (10 smax (1 + %arg)<nsw>))<nsw> LoopDispositions: { %for.body: Computable }
271 ; CHECK-NEXT: %sub = add nsw i32 %index, -2
272 ; CHECK-NEXT: --> {(-2 + %arg)<nsw>,+,1}<nsw><%for.body> U: full-set S: full-set Exits: (-3 + (10 smax (1 + %arg)<nsw>))<nsw> LoopDispositions: { %for.body: Computable }
273 ; CHECK-NEXT: %idxprom = sext i32 %sub to i64
274 ; CHECK-NEXT: --> {(-2 + (sext i32 %arg to i64))<nsw>,+,1}<nsw><%for.body> U: [-2147483650,4294967303) S: [-2147483650,4294967303) Exits: (-2 + (zext i32 (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>)) to i64) + (sext i32 %arg to i64)) LoopDispositions: { %for.body: Computable }
275 ; CHECK-NEXT: %arrayidx = getelementptr inbounds [10 x i32], ptr %array, i64 0, i64 %idxprom
276 ; CHECK-NEXT: --> {(-8 + (4 * (sext i32 %arg to i64))<nsw> + %array),+,4}<nw><%for.body> U: [0,-3) S: [-9223372036854775808,9223372036854775805) Exits: (-8 + (4 * (zext i32 (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>)) to i64))<nuw><nsw> + (4 * (sext i32 %arg to i64))<nsw> + %array) LoopDispositions: { %for.body: Computable }
277 ; CHECK-NEXT: %data = load i32, ptr %arrayidx, align 4
278 ; CHECK-NEXT: --> %data U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.body: Variant }
279 ; CHECK-NEXT: %inc5 = add nsw i32 %index, 1
280 ; CHECK-NEXT: --> {(1 + %arg)<nsw>,+,1}<nsw><%for.body> U: [-2147483647,-2147483648) S: [-2147483647,-2147483648) Exits: (10 smax (1 + %arg)<nsw>) LoopDispositions: { %for.body: Computable }
281 ; CHECK-NEXT: Determining loop execution counts for: @test4
282 ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>))
283 ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 -2147483639
284 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>))
285 ; CHECK-NEXT: Loop %for.body: Trip multiple is 1
288 %array = alloca [10 x i32], align 4
292 %index = phi i32 [ %inc5, %for.body ], [ %arg, %entry ]
293 %sub = add nsw i32 %index, -2
294 %idxprom = sext i32 %sub to i64
295 %arrayidx = getelementptr inbounds [10 x i32], ptr %array, i64 0, i64 %idxprom
296 %data = load i32, ptr %arrayidx, align 4
297 %inc5 = add nsw i32 %index, 1
298 %cmp2 = icmp slt i32 %inc5, 10
299 br i1 %cmp2, label %for.body, label %for.end
306 define void @bad_postinc_nsw_a(i32 %n) {
307 ; CHECK-LABEL: 'bad_postinc_nsw_a'
308 ; CHECK-NEXT: Classifying expressions for: @bad_postinc_nsw_a
309 ; CHECK-NEXT: %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
310 ; CHECK-NEXT: --> {0,+,7}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: (7 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n))) LoopDispositions: { %loop: Computable }
311 ; CHECK-NEXT: %iv.inc = add nsw i32 %iv, 7
312 ; CHECK-NEXT: --> {7,+,7}<nuw><%loop> U: [7,-3) S: [7,0) Exits: (7 + (7 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n)))) LoopDispositions: { %loop: Computable }
313 ; CHECK-NEXT: Determining loop execution counts for: @bad_postinc_nsw_a
314 ; CHECK-NEXT: Loop %loop: backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n))
315 ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 613566756
316 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n))
317 ; CHECK-NEXT: Loop %loop: Trip multiple is 1
323 %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
324 %iv.inc = add nsw i32 %iv, 7
325 %becond = icmp ult i32 %iv, %n
326 br i1 %becond, label %loop, label %leave
332 ; Unlike @bad_postinc_nsw_a(), the SCEV expression of %iv.inc has <nsw> flag
333 ; because poison can be propagated through 'and %iv.inc, 0'.
334 define void @postinc_poison_prop_through_and(i32 %n) {
335 ; CHECK-LABEL: 'postinc_poison_prop_through_and'
336 ; CHECK-NEXT: Classifying expressions for: @postinc_poison_prop_through_and
337 ; CHECK-NEXT: %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
338 ; CHECK-NEXT: --> {0,+,7}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
339 ; CHECK-NEXT: %iv.inc = add nsw i32 %iv, 7
340 ; CHECK-NEXT: --> {7,+,7}<nuw><nsw><%loop> U: [7,-2147483648) S: [7,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
341 ; CHECK-NEXT: %iv.inc.and = and i32 %iv.inc, 0
342 ; CHECK-NEXT: --> 0 U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Invariant }
343 ; CHECK-NEXT: Determining loop execution counts for: @postinc_poison_prop_through_and
344 ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count.
345 ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count.
346 ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count.
352 %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
353 %iv.inc = add nsw i32 %iv, 7
354 %iv.inc.and = and i32 %iv.inc, 0
355 %becond = icmp ult i32 %iv.inc.and, %n
356 br i1 %becond, label %loop, label %leave
362 declare void @may_exit() nounwind
364 define void @pr28012(i32 %n) {
365 ; CHECK-LABEL: 'pr28012'
366 ; CHECK-NEXT: Classifying expressions for: @pr28012
367 ; CHECK-NEXT: %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
368 ; CHECK-NEXT: --> {0,+,7}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: (7 * ((-1 + (7 umax %n)) /u 7))<nuw> LoopDispositions: { %loop: Computable }
369 ; CHECK-NEXT: %iv.inc = add nsw i32 %iv, 7
370 ; CHECK-NEXT: --> {7,+,7}<nuw><%loop> U: [7,-3) S: [7,-3) Exits: (7 + (7 * ((-1 + (7 umax %n)) /u 7))<nuw>) LoopDispositions: { %loop: Computable }
371 ; CHECK-NEXT: Determining loop execution counts for: @pr28012
372 ; CHECK-NEXT: Loop %loop: backedge-taken count is ((-1 + (7 umax %n)) /u 7)
373 ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 613566755
374 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-1 + (7 umax %n)) /u 7)
375 ; CHECK-NEXT: Loop %loop: Trip multiple is 1
381 %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
382 %iv.inc = add nsw i32 %iv, 7
383 %becond = icmp ult i32 %iv.inc, %n
384 call void @may_exit()
385 br i1 %becond, label %loop, label %leave
391 define void @select_cond_poison_propagation(ptr %p, i32 %x) nounwind {
392 ; CHECK-LABEL: 'select_cond_poison_propagation'
393 ; CHECK-NEXT: Classifying expressions for: @select_cond_poison_propagation
394 ; CHECK-NEXT: %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ]
395 ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
396 ; CHECK-NEXT: %iv.next = add nsw i32 %iv, 1
397 ; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%loop> U: [1,-2147483648) S: [1,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
398 ; CHECK-NEXT: %sel = select i1 %cmp, i32 10, i32 20
399 ; CHECK-NEXT: --> %sel U: [0,31) S: [0,31) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
400 ; CHECK-NEXT: %cond = call i1 @cond()
401 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
402 ; CHECK-NEXT: Determining loop execution counts for: @select_cond_poison_propagation
403 ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count.
404 ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count.
405 ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count.
411 %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ]
412 %iv.next = add nsw i32 %iv, 1
413 %cmp = icmp ult i32 %iv.next, %x
414 %sel = select i1 %cmp, i32 10, i32 20
415 call void @foo(i32 noundef %sel)
416 %cond = call i1 @cond()
417 br i1 %cond, label %loop, label %return
423 ; {-128,+,-128} should not be <nsw>.
424 define void @pr66066() {
425 ; CHECK-LABEL: 'pr66066'
426 ; CHECK-NEXT: Classifying expressions for: @pr66066
427 ; CHECK-NEXT: %iv = phi i8 [ 1, %entry ], [ %iv.dec, %loop ]
428 ; CHECK-NEXT: --> {1,+,-1}<nsw><%loop> U: [0,2) S: [0,2) Exits: 0 LoopDispositions: { %loop: Computable }
429 ; CHECK-NEXT: %iv.dec = add i8 %iv, -1
430 ; CHECK-NEXT: --> {0,+,-1}<nsw><%loop> U: [-1,1) S: [-1,1) Exits: -1 LoopDispositions: { %loop: Computable }
431 ; CHECK-NEXT: %shl = shl i8 %iv, 7
432 ; CHECK-NEXT: --> {-128,+,-128}<%loop> U: [0,-127) S: [-128,1) Exits: 0 LoopDispositions: { %loop: Computable }
433 ; CHECK-NEXT: Determining loop execution counts for: @pr66066
434 ; CHECK-NEXT: Loop %loop: backedge-taken count is i8 1
435 ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i8 1
436 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is i8 1
437 ; CHECK-NEXT: Loop %loop: Trip multiple is 2
443 %iv = phi i8 [ 1, %entry ], [ %iv.dec, %loop ]
444 %iv.dec = add i8 %iv, -1
446 %cmp1 = icmp eq i8 %shl, 0
447 br i1 %cmp1, label %exit, label %loop
453 declare void @print(i32)
455 declare void @foo(i32)