[NFC][AArch64] Explicitly define undefined bits for instructions (#122129)
[llvm-project.git] / llvm / test / CodeGen / AArch64 / bitfield-insert.ll
blobeefb862c5313cfed2edb6cefd31a698885e42546
1 ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
2 ; RUN: llc -mtriple=aarch64-none-linux-gnu < %s | FileCheck %s
4 ; First, a simple example from Clang. The registers could plausibly be
5 ; different, but probably won't be.
7 %struct.foo = type { i8, [2 x i8], i8 }
9 define [1 x i64] @from_clang([1 x i64] %f.coerce, i32 %n) nounwind readnone {
10 ; CHECK-LABEL: from_clang:
11 ; CHECK:       // %bb.0: // %entry
12 ; CHECK-NEXT:    mov w8, #135 // =0x87
13 ; CHECK-NEXT:    and x9, x0, #0xffffff00
14 ; CHECK-NEXT:    and w8, w0, w8
15 ; CHECK-NEXT:    bfi w8, w1, #3, #4
16 ; CHECK-NEXT:    orr x0, x8, x9
17 ; CHECK-NEXT:    ret
18 entry:
19   %f.coerce.fca.0.extract = extractvalue [1 x i64] %f.coerce, 0
20   %tmp.sroa.0.0.extract.trunc = trunc i64 %f.coerce.fca.0.extract to i32
21   %bf.value = shl i32 %n, 3
22   %0 = and i32 %bf.value, 120
23   %f.sroa.0.0.insert.ext.masked = and i32 %tmp.sroa.0.0.extract.trunc, 135
24   %1 = or i32 %f.sroa.0.0.insert.ext.masked, %0
25   %f.sroa.0.0.extract.trunc = zext i32 %1 to i64
26   %tmp1.sroa.1.1.insert.insert = and i64 %f.coerce.fca.0.extract, 4294967040
27   %tmp1.sroa.0.0.insert.insert = or i64 %f.sroa.0.0.extract.trunc, %tmp1.sroa.1.1.insert.insert
28   %.fca.0.insert = insertvalue [1 x i64] undef, i64 %tmp1.sroa.0.0.insert.insert, 0
29   ret [1 x i64] %.fca.0.insert
32 define void @test_whole32(ptr %existing, ptr %new) {
33 ; CHECK-LABEL: test_whole32:
34 ; CHECK:       // %bb.0:
35 ; CHECK-NEXT:    ldr w8, [x0]
36 ; CHECK-NEXT:    ldr w9, [x1]
37 ; CHECK-NEXT:    bfi w8, w9, #26, #5
38 ; CHECK-NEXT:    str w8, [x0]
39 ; CHECK-NEXT:    ret
40   %oldval = load volatile i32, ptr %existing
41   %oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff
43   %newval = load volatile i32, ptr %new
44   %newval_shifted = shl i32 %newval, 26
45   %newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000
47   %combined = or i32 %oldval_keep, %newval_masked
48   store volatile i32 %combined, ptr %existing
50   ret void
53 define void @test_whole64(ptr %existing, ptr %new) {
54 ; CHECK-LABEL: test_whole64:
55 ; CHECK:       // %bb.0:
56 ; CHECK-NEXT:    ldr x8, [x0]
57 ; CHECK-NEXT:    ldr x9, [x1]
58 ; CHECK-NEXT:    bfi x8, x9, #26, #14
59 ; CHECK-NEXT:    str x8, [x0]
60 ; CHECK-NEXT:    ret
61   %oldval = load volatile i64, ptr %existing
62   %oldval_keep = and i64 %oldval, 18446742974265032703 ; = 0xffffff0003ffffffL
64   %newval = load volatile i64, ptr %new
65   %newval_shifted = shl i64 %newval, 26
66   %newval_masked = and i64 %newval_shifted, 1099444518912 ; = 0xfffc000000
68   %combined = or i64 %oldval_keep, %newval_masked
69   store volatile i64 %combined, ptr %existing
71   ret void
74 define void @test_whole32_from64(ptr %existing, ptr %new) {
75 ; CHECK-LABEL: test_whole32_from64:
76 ; CHECK:       // %bb.0:
77 ; CHECK-NEXT:    ldr x8, [x0]
78 ; CHECK-NEXT:    ldr x9, [x1]
79 ; CHECK-NEXT:    and x8, x8, #0xffff0000
80 ; CHECK-NEXT:    bfxil x8, x9, #0, #16
81 ; CHECK-NEXT:    str x8, [x0]
82 ; CHECK-NEXT:    ret
83   %oldval = load volatile i64, ptr %existing
84   %oldval_keep = and i64 %oldval, 4294901760 ; = 0xffff0000
86   %newval = load volatile i64, ptr %new
87   %newval_masked = and i64 %newval, 65535 ; = 0xffff
89   %combined = or i64 %oldval_keep, %newval_masked
90   store volatile i64 %combined, ptr %existing
92   ret void
95 define void @test_32bit_masked(ptr %existing, ptr %new) {
96 ; CHECK-LABEL: test_32bit_masked:
97 ; CHECK:       // %bb.0:
98 ; CHECK-NEXT:    ldr w9, [x0]
99 ; CHECK-NEXT:    mov w8, #135 // =0x87
100 ; CHECK-NEXT:    ldr w10, [x1]
101 ; CHECK-NEXT:    and w8, w9, w8
102 ; CHECK-NEXT:    bfi w8, w10, #3, #4
103 ; CHECK-NEXT:    str w8, [x0]
104 ; CHECK-NEXT:    ret
105   %oldval = load volatile i32, ptr %existing
106   %oldval_keep = and i32 %oldval, 135 ; = 0x87
108   %newval = load volatile i32, ptr %new
109   %newval_shifted = shl i32 %newval, 3
110   %newval_masked = and i32 %newval_shifted, 120 ; = 0x78
112   %combined = or i32 %oldval_keep, %newval_masked
113   store volatile i32 %combined, ptr %existing
115   ret void
118 define void @test_64bit_masked(ptr %existing, ptr %new) {
119 ; CHECK-LABEL: test_64bit_masked:
120 ; CHECK:       // %bb.0:
121 ; CHECK-NEXT:    ldr x8, [x0]
122 ; CHECK-NEXT:    ldr x9, [x1]
123 ; CHECK-NEXT:    and x8, x8, #0xff00000000
124 ; CHECK-NEXT:    bfi x8, x9, #40, #8
125 ; CHECK-NEXT:    str x8, [x0]
126 ; CHECK-NEXT:    ret
127   %oldval = load volatile i64, ptr %existing
128   %oldval_keep = and i64 %oldval, 1095216660480 ; = 0xff_0000_0000
130   %newval = load volatile i64, ptr %new
131   %newval_shifted = shl i64 %newval, 40
132   %newval_masked = and i64 %newval_shifted, 280375465082880 ; = 0xff00_0000_0000
134   %combined = or i64 %newval_masked, %oldval_keep
135   store volatile i64 %combined, ptr %existing
137   ret void
140 ; Mask is too complicated for literal ANDwwi, make sure other avenues are tried.
141 define void @test_32bit_complexmask(ptr %existing, ptr %new) {
142 ; CHECK-LABEL: test_32bit_complexmask:
143 ; CHECK:       // %bb.0:
144 ; CHECK-NEXT:    ldr w9, [x0]
145 ; CHECK-NEXT:    mov w8, #647 // =0x287
146 ; CHECK-NEXT:    ldr w10, [x1]
147 ; CHECK-NEXT:    and w8, w9, w8
148 ; CHECK-NEXT:    bfi w8, w10, #3, #4
149 ; CHECK-NEXT:    str w8, [x0]
150 ; CHECK-NEXT:    ret
151   %oldval = load volatile i32, ptr %existing
152   %oldval_keep = and i32 %oldval, 647 ; = 0x287
154   %newval = load volatile i32, ptr %new
155   %newval_shifted = shl i32 %newval, 3
156   %newval_masked = and i32 %newval_shifted, 120 ; = 0x278
158   %combined = or i32 %oldval_keep, %newval_masked
159   store volatile i32 %combined, ptr %existing
161   ret void
164 ; Neither mask is a contiguous set of 1s. BFI can't be used
165 define void @test_32bit_badmask(ptr %existing, ptr %new) {
166 ; CHECK-LABEL: test_32bit_badmask:
167 ; CHECK:       // %bb.0:
168 ; CHECK-NEXT:    ldr w8, [x0]
169 ; CHECK-NEXT:    ldr w9, [x1]
170 ; CHECK-NEXT:    mov w10, #632 // =0x278
171 ; CHECK-NEXT:    mov w11, #135 // =0x87
172 ; CHECK-NEXT:    and w9, w10, w9, lsl #3
173 ; CHECK-NEXT:    and w8, w8, w11
174 ; CHECK-NEXT:    orr w8, w8, w9
175 ; CHECK-NEXT:    str w8, [x0]
176 ; CHECK-NEXT:    ret
177   %oldval = load volatile i32, ptr %existing
178   %oldval_keep = and i32 %oldval, 135 ; = 0x87
180   %newval = load volatile i32, ptr %new
181   %newval_shifted = shl i32 %newval, 3
182   %newval_masked = and i32 %newval_shifted, 632 ; = 0x278
184   %combined = or i32 %oldval_keep, %newval_masked
185   store volatile i32 %combined, ptr %existing
187   ret void
190 ; Ditto
191 define void @test_64bit_badmask(ptr %existing, ptr %new) {
192 ; CHECK-LABEL: test_64bit_badmask:
193 ; CHECK:       // %bb.0:
194 ; CHECK-NEXT:    ldr x8, [x0]
195 ; CHECK-NEXT:    ldr x9, [x1]
196 ; CHECK-NEXT:    mov w10, #664 // =0x298
197 ; CHECK-NEXT:    mov w11, #135 // =0x87
198 ; CHECK-NEXT:    and x9, x10, x9, lsl #3
199 ; CHECK-NEXT:    and x8, x8, x11
200 ; CHECK-NEXT:    orr x8, x8, x9
201 ; CHECK-NEXT:    str x8, [x0]
202 ; CHECK-NEXT:    ret
203   %oldval = load volatile i64, ptr %existing
204   %oldval_keep = and i64 %oldval, 135 ; = 0x87
206   %newval = load volatile i64, ptr %new
207   %newval_shifted = shl i64 %newval, 3
208   %newval_masked = and i64 %newval_shifted, 664 ; = 0x278
210   %combined = or i64 %oldval_keep, %newval_masked
211   store volatile i64 %combined, ptr %existing
213   ret void
216 ; Bitfield insert where there's a left-over shr needed at the beginning
217 ; (e.g. result of str.bf1 = str.bf2)
218 define void @test_32bit_with_shr(ptr %existing, ptr %new) {
219 ; CHECK-LABEL: test_32bit_with_shr:
220 ; CHECK:       // %bb.0:
221 ; CHECK-NEXT:    ldr w8, [x0]
222 ; CHECK-NEXT:    ldr w9, [x1]
223 ; CHECK-NEXT:    lsr w9, w9, #14
224 ; CHECK-NEXT:    bfi w8, w9, #26, #5
225 ; CHECK-NEXT:    str w8, [x0]
226 ; CHECK-NEXT:    ret
227   %oldval = load volatile i32, ptr %existing
228   %oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff
230   %newval = load i32, ptr %new
231   %newval_shifted = shl i32 %newval, 12
232   %newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000
234   %combined = or i32 %oldval_keep, %newval_masked
235   store volatile i32 %combined, ptr %existing
237   ret void
240 ; Bitfield insert where the second or operand is a better match to be folded into the BFM
241 define void @test_32bit_opnd1_better(ptr %existing, ptr %new) {
242 ; CHECK-LABEL: test_32bit_opnd1_better:
243 ; CHECK:       // %bb.0:
244 ; CHECK-NEXT:    ldr w8, [x0]
245 ; CHECK-NEXT:    ldr w9, [x1]
246 ; CHECK-NEXT:    and w8, w8, #0xffff
247 ; CHECK-NEXT:    bfi w8, w9, #16, #8
248 ; CHECK-NEXT:    str w8, [x0]
249 ; CHECK-NEXT:    ret
250   %oldval = load volatile i32, ptr %existing
251   %oldval_keep = and i32 %oldval, 65535 ; 0x0000ffff
253   %newval = load i32, ptr %new
254   %newval_shifted = shl i32 %newval, 16
255   %newval_masked = and i32 %newval_shifted, 16711680 ; 0x00ff0000
257   %combined = or i32 %oldval_keep, %newval_masked
258   store volatile i32 %combined, ptr %existing
260   ret void
263 ; Tests when all the bits from one operand are not useful
264 define i32 @test_nouseful_bits(i8 %a, i32 %b) {
265 ; CHECK-LABEL: test_nouseful_bits:
266 ; CHECK:       // %bb.0:
267 ; CHECK-NEXT:    and w8, w0, #0xff
268 ; CHECK-NEXT:    lsl w8, w8, #8
269 ; CHECK-NEXT:    mov w9, w8
270 ; CHECK-NEXT:    bfxil w9, w0, #0, #8
271 ; CHECK-NEXT:    orr w0, w8, w9, lsl #16
272 ; CHECK-NEXT:    ret
273   %conv = zext i8 %a to i32     ;   0  0  0  A
274   %shl = shl i32 %b, 8          ;   B2 B1 B0 0
275   %or = or i32 %conv, %shl      ;   B2 B1 B0 A
276   %shl.1 = shl i32 %or, 8       ;   B1 B0 A 0
277   %or.1 = or i32 %conv, %shl.1  ;   B1 B0 A A
278   %shl.2 = shl i32 %or.1, 8     ;   B0 A A 0
279   %or.2 = or i32 %conv, %shl.2  ;   B0 A A A
280   %shl.3 = shl i32 %or.2, 8     ;   A A A 0
281   %or.3 = or i32 %conv, %shl.3  ;   A A A A
282   %shl.4 = shl i32 %or.3, 8     ;   A A A 0
283   ret i32 %shl.4
286 define void @test_nouseful_strb(ptr %ptr32, ptr %ptr8, i32 %x)  {
287 ; CHECK-LABEL: test_nouseful_strb:
288 ; CHECK:       // %bb.0: // %entry
289 ; CHECK-NEXT:    ldr w8, [x0]
290 ; CHECK-NEXT:    bfxil w8, w2, #16, #3
291 ; CHECK-NEXT:    strb w8, [x1]
292 ; CHECK-NEXT:    ret
293 entry:
294   %0 = load i32, ptr %ptr32, align 8
295   %and = and i32 %0, -8
296   %shr = lshr i32 %x, 16
297   %and1 = and i32 %shr, 7
298   %or = or i32 %and, %and1
299   %trunc = trunc i32 %or to i8
300   store i8 %trunc, ptr %ptr8
301   ret void
304 define void @test_nouseful_strh(ptr %ptr32, ptr %ptr16, i32 %x)  {
305 ; CHECK-LABEL: test_nouseful_strh:
306 ; CHECK:       // %bb.0: // %entry
307 ; CHECK-NEXT:    ldr w8, [x0]
308 ; CHECK-NEXT:    bfxil w8, w2, #16, #4
309 ; CHECK-NEXT:    strh w8, [x1]
310 ; CHECK-NEXT:    ret
311 entry:
312   %0 = load i32, ptr %ptr32, align 8
313   %and = and i32 %0, -16
314   %shr = lshr i32 %x, 16
315   %and1 = and i32 %shr, 15
316   %or = or i32 %and, %and1
317   %trunc = trunc i32 %or to i16
318   store i16 %trunc, ptr %ptr16
319   ret void
322 define void @test_nouseful_sturb(ptr %ptr32, ptr %ptr8, i32 %x)  {
323 ; CHECK-LABEL: test_nouseful_sturb:
324 ; CHECK:       // %bb.0: // %entry
325 ; CHECK-NEXT:    ldr w8, [x0]
326 ; CHECK-NEXT:    bfxil w8, w2, #16, #3
327 ; CHECK-NEXT:    sturb w8, [x1, #-1]
328 ; CHECK-NEXT:    ret
329 entry:
330   %0 = load i32, ptr %ptr32, align 8
331   %and = and i32 %0, -8
332   %shr = lshr i32 %x, 16
333   %and1 = and i32 %shr, 7
334   %or = or i32 %and, %and1
335   %trunc = trunc i32 %or to i8
336   %gep = getelementptr i8, ptr %ptr8, i64 -1
337   store i8 %trunc, ptr %gep
338   ret void
341 define void @test_nouseful_sturh(ptr %ptr32, ptr %ptr16, i32 %x)  {
342 ; CHECK-LABEL: test_nouseful_sturh:
343 ; CHECK:       // %bb.0: // %entry
344 ; CHECK-NEXT:    ldr w8, [x0]
345 ; CHECK-NEXT:    bfxil w8, w2, #16, #4
346 ; CHECK-NEXT:    sturh w8, [x1, #-2]
347 ; CHECK-NEXT:    ret
348 entry:
349   %0 = load i32, ptr %ptr32, align 8
350   %and = and i32 %0, -16
351   %shr = lshr i32 %x, 16
352   %and1 = and i32 %shr, 15
353   %or = or i32 %and, %and1
354   %trunc = trunc i32 %or to i16
355   %gep = getelementptr i16, ptr %ptr16, i64 -1
356   store i16 %trunc, ptr %gep
357   ret void
360 ; The next set of tests generate a BFXIL from 'or (and X, Mask0Imm),
361 ; (and Y, Mask1Imm)' iff Mask0Imm and ~Mask1Imm are equivalent and one of the
362 ; MaskImms is a shifted mask (e.g., 0x000ffff0).
364 define i32 @test_or_and_and1(i32 %a, i32 %b) {
365 ; CHECK-LABEL: test_or_and_and1:
366 ; CHECK:       // %bb.0: // %entry
367 ; CHECK-NEXT:    lsr w8, w1, #4
368 ; CHECK-NEXT:    bfi w0, w8, #4, #12
369 ; CHECK-NEXT:    ret
370 entry:
371   %and = and i32 %a, -65521 ; 0xffff000f
372   %and1 = and i32 %b, 65520 ; 0x0000fff0
373   %or = or i32 %and1, %and
374   ret i32 %or
377 define i32 @test_or_and_and2(i32 %a, i32 %b) {
378 ; CHECK-LABEL: test_or_and_and2:
379 ; CHECK:       // %bb.0: // %entry
380 ; CHECK-NEXT:    lsr w8, w0, #4
381 ; CHECK-NEXT:    mov w0, w1
382 ; CHECK-NEXT:    bfi w0, w8, #4, #12
383 ; CHECK-NEXT:    ret
384 entry:
385   %and = and i32 %a, 65520   ; 0x0000fff0
386   %and1 = and i32 %b, -65521 ; 0xffff000f
387   %or = or i32 %and1, %and
388   ret i32 %or
391 define i64 @test_or_and_and3(i64 %a, i64 %b) {
392 ; CHECK-LABEL: test_or_and_and3:
393 ; CHECK:       // %bb.0: // %entry
394 ; CHECK-NEXT:    lsr x8, x1, #16
395 ; CHECK-NEXT:    bfi x0, x8, #16, #32
396 ; CHECK-NEXT:    ret
397 entry:
398   %and = and i64 %a, -281474976645121 ; 0xffff00000000ffff
399   %and1 = and i64 %b, 281474976645120 ; 0x0000ffffffff0000
400   %or = or i64 %and1, %and
401   ret i64 %or
404 ; Don't convert 'and' with multiple uses.
405 define i32 @test_or_and_and4(i32 %a, i32 %b, ptr %ptr) {
406 ; CHECK-LABEL: test_or_and_and4:
407 ; CHECK:       // %bb.0: // %entry
408 ; CHECK-NEXT:    and w8, w0, #0xffff000f
409 ; CHECK-NEXT:    and w9, w1, #0xfff0
410 ; CHECK-NEXT:    orr w0, w9, w8
411 ; CHECK-NEXT:    str w8, [x2]
412 ; CHECK-NEXT:    ret
413 entry:
414   %and = and i32 %a, -65521
415   store i32 %and, ptr %ptr, align 4
416   %and2 = and i32 %b, 65520
417   %or = or i32 %and2, %and
418   ret i32 %or
421 ; Don't convert 'and' with multiple uses.
422 define i32 @test_or_and_and5(i32 %a, i32 %b, ptr %ptr) {
423 ; CHECK-LABEL: test_or_and_and5:
424 ; CHECK:       // %bb.0: // %entry
425 ; CHECK-NEXT:    and w8, w1, #0xfff0
426 ; CHECK-NEXT:    and w9, w0, #0xffff000f
427 ; CHECK-NEXT:    orr w0, w8, w9
428 ; CHECK-NEXT:    str w8, [x2]
429 ; CHECK-NEXT:    ret
430 entry:
431   %and = and i32 %b, 65520
432   store i32 %and, ptr %ptr, align 4
433   %and1 = and i32 %a, -65521
434   %or = or i32 %and, %and1
435   ret i32 %or
438 define i32 @test1(i32 %a) {
439 ; CHECK-LABEL: test1:
440 ; CHECK:       // %bb.0:
441 ; CHECK-NEXT:    mov w8, #5 // =0x5
442 ; CHECK-NEXT:    bfxil w0, w8, #0, #4
443 ; CHECK-NEXT:    ret
444   %1 = and i32 %a, -16 ; 0xfffffff0
445   %2 = or i32 %1, 5    ; 0x00000005
446   ret i32 %2
449 define i32 @test2(i32 %a) {
450 ; CHECK-LABEL: test2:
451 ; CHECK:       // %bb.0:
452 ; CHECK-NEXT:    mov w8, #10 // =0xa
453 ; CHECK-NEXT:    bfi w0, w8, #22, #4
454 ; CHECK-NEXT:    ret
455   %1 = and i32 %a, -62914561 ; 0xfc3fffff
456   %2 = or i32 %1, 41943040   ; 0x06400000
457   ret i32 %2
460 define i64 @test3(i64 %a) {
461 ; CHECK-LABEL: test3:
462 ; CHECK:       // %bb.0:
463 ; CHECK-NEXT:    mov x8, #5 // =0x5
464 ; CHECK-NEXT:    bfxil x0, x8, #0, #3
465 ; CHECK-NEXT:    ret
466   %1 = and i64 %a, -8 ; 0xfffffffffffffff8
467   %2 = or i64 %1, 5   ; 0x0000000000000005
468   ret i64 %2
471 define i64 @test4(i64 %a) {
472 ; CHECK-LABEL: test4:
473 ; CHECK:       // %bb.0:
474 ; CHECK-NEXT:    mov x8, #9 // =0x9
475 ; CHECK-NEXT:    bfi x0, x8, #1, #7
476 ; CHECK-NEXT:    ret
477   %1 = and i64 %a, -255 ; 0xffffffffffffff01
478   %2 = or i64 %1,  18   ; 0x0000000000000012
479   ret i64 %2
482 ; Don't generate BFI/BFXIL if the immediate can be encoded in the ORR.
483 define i32 @test5(i32 %a) {
484 ; CHECK-LABEL: test5:
485 ; CHECK:       // %bb.0:
486 ; CHECK-NEXT:    and w8, w0, #0xfffffff0
487 ; CHECK-NEXT:    orr w0, w8, #0x6
488 ; CHECK-NEXT:    ret
489   %1 = and i32 %a, 4294967280 ; 0xfffffff0
490   %2 = or i32 %1, 6           ; 0x00000006
491   ret i32 %2
494 ; BFXIL will use the same constant as the ORR, so we don't care how the constant
495 ; is materialized (it's an equal cost either way).
496 define i32 @test6(i32 %a) {
497 ; CHECK-LABEL: test6:
498 ; CHECK:       // %bb.0:
499 ; CHECK-NEXT:    mov w8, #23250 // =0x5ad2
500 ; CHECK-NEXT:    movk w8, #11, lsl #16
501 ; CHECK-NEXT:    bfxil w0, w8, #0, #20
502 ; CHECK-NEXT:    ret
503   %1 = and i32 %a, 4293918720 ; 0xfff00000
504   %2 = or i32 %1, 744146      ; 0x000b5ad2
505   ret i32 %2
508 ; BFIs that require the same number of instruction to materialize the constant
509 ; as the original ORR are okay.
510 define i32 @test7(i32 %a) {
511 ; CHECK-LABEL: test7:
512 ; CHECK:       // %bb.0:
513 ; CHECK-NEXT:    mov w8, #44393 // =0xad69
514 ; CHECK-NEXT:    movk w8, #5, lsl #16
515 ; CHECK-NEXT:    bfi w0, w8, #1, #19
516 ; CHECK-NEXT:    ret
517   %1 = and i32 %a, 4293918721 ; 0xfff00001
518   %2 = or i32 %1, 744146      ; 0x000b5ad2
519   ret i32 %2
522 ; BFIs that require more instructions to materialize the constant as compared
523 ; to the original ORR are not okay.  In this case we would be replacing the
524 ; 'and' with a 'movk', which would decrease ILP while using the same number of
525 ; instructions.
526 define i64 @test8(i64 %a) {
527 ; CHECK-LABEL: test8:
528 ; CHECK:       // %bb.0:
529 ; CHECK-NEXT:    mov x8, #2035482624 // =0x79530000
530 ; CHECK-NEXT:    and x9, x0, #0xff000000000000ff
531 ; CHECK-NEXT:    movk x8, #36694, lsl #32
532 ; CHECK-NEXT:    orr x0, x9, x8
533 ; CHECK-NEXT:    ret
534   %1 = and i64 %a, -72057594037927681 ; 0xff000000000000ff
535   %2 = or i64 %1, 157601565442048     ; 0x00008f5679530000
536   ret i64 %2
539 ; This test exposed an issue with an overly aggressive assert.  The bit of code
540 ; that is expected to catch this case is unable to deal with the trunc, which
541 ; results in a failing check due to a mismatch between the BFI opcode and
542 ; the expected value type of the OR.
543 define i32 @test9(i64 %b, i32 %e) {
544 ; CHECK-LABEL: test9:
545 ; CHECK:       // %bb.0:
546 ; CHECK-NEXT:    lsr x0, x0, #12
547 ; CHECK-NEXT:    lsr w8, w1, #23
548 ; CHECK-NEXT:    bfi w0, w8, #23, #9
549 ; CHECK-NEXT:    // kill: def $w0 killed $w0 killed $x0
550 ; CHECK-NEXT:    ret
551   %c = lshr i64 %b, 12
552   %d = trunc i64 %c to i32
553   %f = and i32 %d, 8388607
554   %g = and i32 %e, -8388608
555   %h = or i32 %g, %f
556   ret i32 %h
559 define <2 x i32> @test_complex_type(ptr %addr, i64 %in, ptr %bf ) {
560 ; CHECK-LABEL: test_complex_type:
561 ; CHECK:       // %bb.0:
562 ; CHECK-NEXT:    ldr d0, [x0], #8
563 ; CHECK-NEXT:    orr x8, x0, x1, lsl #32
564 ; CHECK-NEXT:    str x8, [x2]
565 ; CHECK-NEXT:    ret
566   %vec = load <2 x i32>, ptr %addr
568   %vec.next = getelementptr <2 x i32>, ptr %addr, i32 1
569   %lo = ptrtoint ptr %vec.next to i64
571   %hi = shl i64 %in, 32
572   %both = or i64 %lo, %hi
573   store i64 %both, ptr %bf
575   ret <2 x i32> %vec
578 define i64 @test_truncated_shift(i64 %x, i64 %y) {
579 ; CHECK-LABEL: test_truncated_shift:
580 ; CHECK:       // %bb.0: // %entry
581 ; CHECK-NEXT:    bfi x0, x1, #25, #5
582 ; CHECK-NEXT:    ret
583 entry:
584   %and = and i64 %x, -1040187393
585   %shl4 = shl i64 %y, 25
586   %and5 = and i64 %shl4, 1040187392
587   %or = or i64 %and5, %and
588   ret i64 %or
591 define i64 @test_and_extended_shift_with_imm(i64 %0) {
592 ; CHECK-LABEL: test_and_extended_shift_with_imm:
593 ; CHECK:       // %bb.0:
594 ; CHECK-NEXT:    ubfiz x0, x0, #7, #8
595 ; CHECK-NEXT:    ret
596   %2 = shl i64 %0, 7
597   %3 = and i64 %2, 32640  ; #0x7f80
598   ret i64 %3
601 ; orr with left-shifted operand is better than bfi, since it improves data
602 ; dependency, and orr has a smaller latency and higher throughput than bfm on
603 ; some AArch64 processors (for the rest, orr is at least as good as bfm)
605 ; ubfx x8, x0, #8, #7
606 ; and x9, x0, #0x7f
607 ; orr x0, x9, x8, lsl #7
608 define i64 @test_orr_not_bfxil_i64(i64 %0) {
609 ; CHECK-LABEL: test_orr_not_bfxil_i64:
610 ; CHECK:       // %bb.0:
611 ; CHECK-NEXT:    ubfx x8, x0, #8, #7
612 ; CHECK-NEXT:    and x9, x0, #0x7f
613 ; CHECK-NEXT:    orr x0, x9, x8, lsl #7
614 ; CHECK-NEXT:    ret
615   %2 = and i64 %0, 127
616   %3 = lshr i64 %0, 1
617   %4 = and i64 %3, 16256  ; 0x3f80
618   %5 = or i64 %4, %2
619   ret i64 %5
622 ; The 32-bit test for `test_orr_not_bfxil_i64`.
623 define i32 @test_orr_not_bfxil_i32(i32 %0) {
624 ; CHECK-LABEL: test_orr_not_bfxil_i32:
625 ; CHECK:       // %bb.0:
626 ; CHECK-NEXT:    ubfx w8, w0, #8, #7
627 ; CHECK-NEXT:    and w9, w0, #0x7f
628 ; CHECK-NEXT:    orr w0, w9, w8, lsl #7
629 ; CHECK-NEXT:    ret
630   %2 = and i32 %0, 127
631   %3 = lshr i32 %0, 1
632   %4 = and i32 %3, 16256  ; 0x3f80
633   %5 = or i32 %4, %2
634   ret i32 %5
637 ; For or operation, one operand is a left shift of another operand.
638 ; So orr with a left-shifted operand is generated (not bfi).
639 define i64 @test_orr_not_bfi_i64(i64 %0) {
640 ; CHECK-LABEL: test_orr_not_bfi_i64:
641 ; CHECK:       // %bb.0:
642 ; CHECK-NEXT:    and x8, x0, #0xff
643 ; CHECK-NEXT:    orr x0, x8, x8, lsl #8
644 ; CHECK-NEXT:    ret
645   %2 = and i64 %0, 255
646   %3 = shl i64 %2, 8
647   %4 = or i64 %2, %3
648   ret i64 %4
651 ; bfi is better than orr, since it would simplify away two instructions
652 ; (%mask and %bit-field-pos-op).
653 define i32 @test_bfi_not_orr_i32(i32 %0, i32 %1) {
654 ; CHECK-LABEL: test_bfi_not_orr_i32:
655 ; CHECK:       // %bb.0:
656 ; CHECK-NEXT:    and w8, w1, #0xff
657 ; CHECK-NEXT:    bfi w8, w0, #8, #8
658 ; CHECK-NEXT:    mov w0, w8
659 ; CHECK-NEXT:    ret
660   %bfi_dst = and i32 %1, 255
661   %mask = and i32 %0, 255
662   %bit-field-pos-op = shl i32 %mask, 8
663   %or_res = or i32 %bit-field-pos-op, %bfi_dst
664   ret i32 %or_res
667 ; orr is generated (not bfi), since both simplify away one instruction (%3)
668 ; while orr has shorter latency and higher throughput.
669 define i32 @test_orr_not_bfi_i32(i32 %0) {
670 ; CHECK-LABEL: test_orr_not_bfi_i32:
671 ; CHECK:       // %bb.0:
672 ; CHECK-NEXT:    and w8, w0, #0xff
673 ; CHECK-NEXT:    orr w0, w8, w8, lsl #8
674 ; CHECK-NEXT:    ret
675   %2 = and i32 %0, 255
676   %3 = shl i32 %2, 8
677   %4 = or i32 %2, %3
678   ret i32 %4
681 ; bfxil is better than orr, since it would simplify away two instructions
682 ; (%mask and %bit-field-extract-op).
683 define i64 @test_bfxil_not_orr_i64(i64 %0, i64 %1) {
684 ; CHECK-LABEL: test_bfxil_not_orr_i64:
685 ; CHECK:       // %bb.0:
686 ; CHECK-NEXT:    and x0, x0, #0xff000
687 ; CHECK-NEXT:    bfxil x0, x1, #12, #8
688 ; CHECK-NEXT:    ret
689   %shifted-mask = and i64 %1, 1044480
690   %bfi-dst = and i64 %0, 1044480
691   %bit-field-extract-op = lshr i64 %shifted-mask, 12
692   %or_res = or i64 %bit-field-extract-op, %bfi-dst
693   ret i64 %or_res
696 ; orr is generated (not bfxil), since one operand is the right shift of another
697 ; operand.
698 define i64 @orr_not_bfxil_test2_i64(i64 %0) {
699 ; CHECK-LABEL: orr_not_bfxil_test2_i64:
700 ; CHECK:       // %bb.0:
701 ; CHECK-NEXT:    and x8, x0, #0xff000
702 ; CHECK-NEXT:    orr x0, x8, x8, lsr #12
703 ; CHECK-NEXT:    ret
704   %2 = and i64 %0, 1044480 ; 0xff000
705   %3 = lshr i64 %2, 12
706   %4 = or i64 %2, %3
707   ret i64 %4
710 ; bfxil simplifies away two instructions (that computes %shifted-mask and
711 ; %bit-field-extract-op respectively), so it's better than orr (which
712 ; simplifies away at most one shift).
713 define i32 @test_bfxil_not_orr_i32(i32 %0, i32 %1) {
714 ; CHECK-LABEL: test_bfxil_not_orr_i32:
715 ; CHECK:       // %bb.0:
716 ; CHECK-NEXT:    and w0, w0, #0xff000
717 ; CHECK-NEXT:    bfxil w0, w1, #12, #8
718 ; CHECK-NEXT:    ret
719   %shifted-mask = and i32 %1, 1044480
720   %bfxil-dst = and i32 %0, 1044480
721   %bit-field-extract-op = lshr i32 %shifted-mask, 12
722   %or_res = or i32 %bit-field-extract-op, %bfxil-dst
723   ret i32 %or_res
726 ; one operand is the shift of another operand, so orr is generated (not bfxil).
727 define i32 @orr_not_bfxil_test2_i32(i32 %0) {
728 ; CHECK-LABEL: orr_not_bfxil_test2_i32:
729 ; CHECK:       // %bb.0:
730 ; CHECK-NEXT:    and w8, w0, #0xff000
731 ; CHECK-NEXT:    orr w0, w8, w8, lsr #12
732 ; CHECK-NEXT:    ret
733   %2 = and i32 %0, 1044480  ; 0xff000
734   %3 = lshr i32 %2, 12
735   %4 = or i32 %2, %3
736   ret i32 %4
739 define i16 @implicit_trunc_of_imm(ptr %p, i16 %a, i16 %b) {
740 ; CHECK-LABEL: implicit_trunc_of_imm:
741 ; CHECK:       // %bb.0: // %entry
742 ; CHECK-NEXT:    and w8, w1, #0xffffe000
743 ; CHECK-NEXT:    mov x9, x0
744 ; CHECK-NEXT:    mov w10, w8
745 ; CHECK-NEXT:    mov w0, w8
746 ; CHECK-NEXT:    bfxil w10, w2, #0, #1
747 ; CHECK-NEXT:    strh w10, [x9]
748 ; CHECK-NEXT:    ret
749 entry:
750   %and1 = and i16 %a, -8192
751   %and2 = and i16 %b, 1
752   %or = or i16 %and2, %and1
753   store i16 %or, ptr %p
754   ret i16 %and1