[AMDGPU] Mark AGPR tuple implicit in the first instr of AGPR spills. (#115285)
[llvm-project.git] / llvm / test / CodeGen / AArch64 / soft-float-abi.ll
blob291c3875c2488d18e14920ad06968de63a535769
1 ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 4
2 ; RUN: llc --mtriple aarch64-none-eabi < %s -mattr=-fp-armv8 | FileCheck %s
4 ; See also clang/test/CodeGen/aarch64-soft-float-abi.c, which tests the clang
5 ; parts of the soft-float ABI.
7 ; FP types up to 64-bit are passed in a general purpose register.
8 define half @test0(half %a, half %b)  {
9 ; CHECK-LABEL: test0:
10 ; CHECK:       // %bb.0: // %entry
11 ; CHECK-NEXT:    mov w0, w1
12 ; CHECK-NEXT:    ret
13 entry:
14   ret half %b
17 define bfloat @test1(i32 %a, bfloat %b) {
18 ; CHECK-LABEL: test1:
19 ; CHECK:       // %bb.0: // %entry
20 ; CHECK-NEXT:    mov w0, w1
21 ; CHECK-NEXT:    ret
22 entry:
23   ret bfloat %b
26 define float @test2(i64 %a, float %b) {
27 ; CHECK-LABEL: test2:
28 ; CHECK:       // %bb.0: // %entry
29 ; CHECK-NEXT:    mov w0, w1
30 ; CHECK-NEXT:    ret
31 entry:
32   ret float %b
35 define double @test3(half %a, double %b) {
36 ; CHECK-LABEL: test3:
37 ; CHECK:       // %bb.0: // %entry
38 ; CHECK-NEXT:    mov x0, x1
39 ; CHECK-NEXT:    ret
40 entry:
41   ret double %b
44 ; fp128 is passed in a pair of GPRs.
45 define fp128 @test4(fp128 %a, fp128 %b) {
46 ; CHECK-LABEL: test4:
47 ; CHECK:       // %bb.0: // %entry
48 ; CHECK-NEXT:    mov x1, x3
49 ; CHECK-NEXT:    mov x0, x2
50 ; CHECK-NEXT:    ret
51 entry:
52   ret fp128 %b
55 ; fp128 is passed in an aligned pair of GPRs, leaving one register unused is
56 ; necessary.
57 define fp128 @test5(float %a, fp128 %b) {
58 ; CHECK-LABEL: test5:
59 ; CHECK:       // %bb.0: // %entry
60 ; CHECK-NEXT:    mov x1, x3
61 ; CHECK-NEXT:    mov x0, x2
62 ; CHECK-NEXT:    ret
63 entry:
64   ret fp128 %b
67 ; If the alignment of an fp128 leaves a register unused, it remains unused even
68 ; if a later argument could fit in it.
69 define i64 @test6(i64 %a, fp128 %b, i64 %c) {
70 ; CHECK-LABEL: test6:
71 ; CHECK:       // %bb.0: // %entry
72 ; CHECK-NEXT:    mov x0, x4
73 ; CHECK-NEXT:    ret
74 entry:
75   ret i64 %c
78 ; HFAs are all bit-casted to integer types in the frontend when using the
79 ; soft-float ABI, so they get passed in the same way as non-homeogeneous
80 ; aggregates. The IR is identical to the equivalent integer types, so nothing
81 ; to test here.
83 ; The PCS for vector and HVA types is not defined by the soft-float ABI because
84 ; these types are only defined by the ACLE when vector hardware is available,
85 ; so nothing to test here.
87 ; The front-end generates IR for va_arg which always reads from the integer
88 ; register save area, and never the floating-point register save area. The
89 ; layout of the va_list type remains the same, the floating-point related
90 ; fields are unused. The only change needed in the backend is  in va_start, to
91 ; not attempt to save the floating-point registers or set the FP fields in the
92 ; va_list.
93 %struct.__va_list = type { ptr, ptr, ptr, i32, i32 }
94 declare void @llvm.va_start(ptr)
95 define double @test20(i32 %a, ...) {
96 ; CHECK-LABEL: test20:
97 ; CHECK:       // %bb.0: // %entry
98 ; CHECK-NEXT:    sub sp, sp, #96
99 ; CHECK-NEXT:    .cfi_def_cfa_offset 96
100 ; CHECK-NEXT:    mov w8, #-56 // =0xffffffc8
101 ; CHECK-NEXT:    add x10, sp, #8
102 ; CHECK-NEXT:    add x9, sp, #96
103 ; CHECK-NEXT:    str x8, [sp, #88]
104 ; CHECK-NEXT:    add x10, x10, #56
105 ; CHECK-NEXT:    ldrsw x8, [sp, #88]
106 ; CHECK-NEXT:    stp x1, x2, [sp, #8]
107 ; CHECK-NEXT:    stp x3, x4, [sp, #24]
108 ; CHECK-NEXT:    stp x5, x6, [sp, #40]
109 ; CHECK-NEXT:    stp x7, x9, [sp, #56]
110 ; CHECK-NEXT:    str x10, [sp, #72]
111 ; CHECK-NEXT:    tbz w8, #31, .LBB7_3
112 ; CHECK-NEXT:  // %bb.1: // %vaarg.maybe_reg
113 ; CHECK-NEXT:    add w9, w8, #8
114 ; CHECK-NEXT:    cmn w8, #8
115 ; CHECK-NEXT:    str w9, [sp, #88]
116 ; CHECK-NEXT:    b.gt .LBB7_3
117 ; CHECK-NEXT:  // %bb.2: // %vaarg.in_reg
118 ; CHECK-NEXT:    ldr x9, [sp, #72]
119 ; CHECK-NEXT:    add x8, x9, x8
120 ; CHECK-NEXT:    b .LBB7_4
121 ; CHECK-NEXT:  .LBB7_3: // %vaarg.on_stack
122 ; CHECK-NEXT:    ldr x8, [sp, #64]
123 ; CHECK-NEXT:    add x9, x8, #8
124 ; CHECK-NEXT:    str x9, [sp, #64]
125 ; CHECK-NEXT:  .LBB7_4: // %vaarg.end
126 ; CHECK-NEXT:    ldr x0, [x8]
127 ; CHECK-NEXT:    add sp, sp, #96
128 ; CHECK-NEXT:    ret
129 entry:
130   %vl = alloca %struct.__va_list, align 8
131   call void @llvm.va_start(ptr nonnull %vl)
132   %gr_offs_p = getelementptr inbounds %struct.__va_list, ptr %vl, i64 0, i32 3
133   %gr_offs = load i32, ptr %gr_offs_p, align 8
134   %0 = icmp sgt i32 %gr_offs, -1
135   br i1 %0, label %vaarg.on_stack, label %vaarg.maybe_reg
137 vaarg.maybe_reg:                                  ; preds = %entry
138   %new_reg_offs = add nsw i32 %gr_offs, 8
139   store i32 %new_reg_offs, ptr %gr_offs_p, align 8
140   %inreg = icmp slt i32 %gr_offs, -7
141   br i1 %inreg, label %vaarg.in_reg, label %vaarg.on_stack
143 vaarg.in_reg:                                     ; preds = %vaarg.maybe_reg
144   %reg_top_p = getelementptr inbounds %struct.__va_list, ptr %vl, i64 0, i32 1
145   %reg_top = load ptr, ptr %reg_top_p, align 8
146   %1 = sext i32 %gr_offs to i64
147   %2 = getelementptr inbounds i8, ptr %reg_top, i64 %1
148   br label %vaarg.end
150 vaarg.on_stack:                                   ; preds = %vaarg.maybe_reg, %entry
151   %stack = load ptr, ptr %vl, align 8
152   %new_stack = getelementptr inbounds i8, ptr %stack, i64 8
153   store ptr %new_stack, ptr %vl, align 8
154   br label %vaarg.end
156 vaarg.end:                                        ; preds = %vaarg.on_stack, %vaarg.in_reg
157   %vaargs.addr = phi ptr [ %2, %vaarg.in_reg ], [ %stack, %vaarg.on_stack ]
158   %3 = load double, ptr %vaargs.addr, align 8
159   ret double %3