[NFC][AArch64] Explicitly define undefined bits for instructions (#122129)
[llvm-project.git] / llvm / test / Transforms / BDCE / invalidate-assumptions.ll
blob7280c2757bdc9b3df73ced95aa14b8697bdc34d6
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 4
2 ; RUN: opt -passes=bdce %s -S | FileCheck %s
4 ; The 'nuw' on the subtract allows us to deduce that %setbit is not demanded.
5 ; But if we change that value to '0', then the 'nuw' is no longer valid. If we don't
6 ; remove the 'nuw', another pass (-instcombine) may make a transform based on an
7 ; that incorrect assumption and we can miscompile:
8 ; https://bugs.llvm.org/show_bug.cgi?id=33695
10 define i1 @PR33695(i1 %b, i8 %x) {
11 ; CHECK-LABEL: define i1 @PR33695(
12 ; CHECK-SAME: i1 [[B:%.*]], i8 [[X:%.*]]) {
13 ; CHECK-NEXT:    [[LITTLE_NUMBER:%.*]] = zext i1 [[B]] to i8
14 ; CHECK-NEXT:    [[BIG_NUMBER:%.*]] = shl i8 0, 1
15 ; CHECK-NEXT:    [[SUB:%.*]] = sub i8 [[BIG_NUMBER]], [[LITTLE_NUMBER]]
16 ; CHECK-NEXT:    [[TRUNC:%.*]] = trunc i8 [[SUB]] to i1
17 ; CHECK-NEXT:    ret i1 [[TRUNC]]
19   %setbit = or i8 %x, 64
20   %little_number = zext i1 %b to i8
21   %big_number = shl i8 %setbit, 1
22   %sub = sub nuw i8 %big_number, %little_number
23   %trunc = trunc i8 %sub to i1
24   ret i1 %trunc
27 ; Similar to above, but now with more no-wrap.
28 ; https://bugs.llvm.org/show_bug.cgi?id=34037
30 define i64 @PR34037(i64 %m, i32 %r, i64 %j, i1 %b, i32 %k, i64 %p) {
31 ; CHECK-LABEL: define i64 @PR34037(
32 ; CHECK-SAME: i64 [[M:%.*]], i32 [[R:%.*]], i64 [[J:%.*]], i1 [[B:%.*]], i32 [[K:%.*]], i64 [[P:%.*]]) {
33 ; CHECK-NEXT:    [[SHL:%.*]] = shl i64 0, 29
34 ; CHECK-NEXT:    [[CONV1:%.*]] = select i1 [[B]], i64 7, i64 0
35 ; CHECK-NEXT:    [[SUB:%.*]] = sub i64 [[SHL]], [[CONV1]]
36 ; CHECK-NEXT:    [[CONV2:%.*]] = zext i32 [[K]] to i64
37 ; CHECK-NEXT:    [[MUL:%.*]] = mul i64 [[SUB]], [[CONV2]]
38 ; CHECK-NEXT:    [[CONV4:%.*]] = and i64 [[P]], 65535
39 ; CHECK-NEXT:    [[AND5:%.*]] = and i64 [[MUL]], [[CONV4]]
40 ; CHECK-NEXT:    ret i64 [[AND5]]
42   %conv = zext i32 %r to i64
43   %and = and i64 %m, %conv
44   %neg = xor i64 %and, 34359738367
45   %or = or i64 %j, %neg
46   %shl = shl i64 %or, 29
47   %conv1 = select i1 %b, i64 7, i64 0
48   %sub = sub nuw nsw i64 %shl, %conv1
49   %conv2 = zext i32 %k to i64
50   %mul = mul nsw i64 %sub, %conv2
51   %conv4 = and i64 %p, 65535
52   %and5 = and i64 %mul, %conv4
53   ret i64 %and5
56 ; This is a manufactured example based on the 1st test to prove that the
57 ; assumption-killing algorithm stops at the call. Ie, it does not remove
58 ; nsw/nuw from the 'add' because a call demands all bits of its argument.
60 declare i1 @foo(i1)
62 define i1 @poison_on_call_user_is_ok(i1 %b, i8 %x) {
63 ; CHECK-LABEL: define i1 @poison_on_call_user_is_ok(
64 ; CHECK-SAME: i1 [[B:%.*]], i8 [[X:%.*]]) {
65 ; CHECK-NEXT:    [[LITTLE_NUMBER:%.*]] = zext i1 [[B]] to i8
66 ; CHECK-NEXT:    [[BIG_NUMBER:%.*]] = shl i8 0, 1
67 ; CHECK-NEXT:    [[SUB:%.*]] = sub i8 [[BIG_NUMBER]], [[LITTLE_NUMBER]]
68 ; CHECK-NEXT:    [[TRUNC:%.*]] = trunc i8 [[SUB]] to i1
69 ; CHECK-NEXT:    [[CALL_RESULT:%.*]] = call i1 @foo(i1 [[TRUNC]])
70 ; CHECK-NEXT:    [[ADD:%.*]] = add nuw nsw i1 [[CALL_RESULT]], true
71 ; CHECK-NEXT:    [[MUL:%.*]] = mul i1 [[TRUNC]], [[ADD]]
72 ; CHECK-NEXT:    ret i1 [[MUL]]
74   %setbit = or i8 %x, 64
75   %little_number = zext i1 %b to i8
76   %big_number = shl i8 %setbit, 1
77   %sub = sub nuw i8 %big_number, %little_number
78   %trunc = trunc i8 %sub to i1
79   %call_result = call i1 @foo(i1 %trunc)
80   %add = add nsw nuw i1 %call_result, 1
81   %mul = mul i1 %trunc, %add
82   ret i1 %mul
86 ; We were asserting that all users of a trivialized integer-type instruction were
87 ; also integer-typed, but that's too strong. The alloca has a pointer-type result.
89 define void @PR34179(ptr %a) {
90 ; CHECK-LABEL: define void @PR34179(
91 ; CHECK-SAME: ptr [[A:%.*]]) {
92 ; CHECK-NEXT:    [[T0:%.*]] = load volatile i32, ptr [[A]], align 4
93 ; CHECK-NEXT:    ret void
95   %t0 = load volatile i32, ptr %a
96   %vla = alloca i32, i32 %t0
97   ret void
100 define i64 @disjoint(i64 %x) {
101 ; CHECK-LABEL: define i64 @disjoint(
102 ; CHECK-SAME: i64 [[X:%.*]]) {
103 ; CHECK-NEXT:    [[OR:%.*]] = or i64 [[X]], -2
104 ; CHECK-NEXT:    ret i64 [[OR]]
106   %and = and i64 %x, 1
107   %or = or disjoint i64 %and, -2
108   ret i64 %or
111 define i32 @disjoint_indirect(i64 %x) {
112 ; CHECK-LABEL: define i32 @disjoint_indirect(
113 ; CHECK-SAME: i64 [[X:%.*]]) {
114 ; CHECK-NEXT:    [[TRUNC:%.*]] = trunc i64 [[X]] to i32
115 ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[TRUNC]], -2
116 ; CHECK-NEXT:    ret i32 [[OR]]
118   %and = and i64 %x, 1
119   %trunc = trunc i64 %and to i32
120   %or = or disjoint i32 %trunc, -2
121   ret i32 %or
124 define i32 @range(i32 %x) {
125 ; CHECK-LABEL: define i32 @range(
126 ; CHECK-SAME: i32 [[X:%.*]]) {
127 ; CHECK-NEXT:    [[UMIN:%.*]] = call i32 @llvm.umin.i32(i32 [[X]], i32 100)
128 ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[UMIN]], -2
129 ; CHECK-NEXT:    ret i32 [[AND]]
131   %or = or i32 %x, 1
132   %umin = call i32 @llvm.umin.i32(i32 %or, i32 100), !range !{i32 1, i32 101}
133   %and = and i32 %umin, -2
134   ret i32 %and