1 ; RUN: opt -S -passes=loop-vectorize -force-vector-width=4 -force-vector-interleave=1 < %s | FileCheck %s
2 target datalayout = "e-p:32:32:32-S128-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f16:16:16-f32:32:32-f64:32:64-f128:128:128-v64:64:64-v128:128:128-a0:0:64-f80:32:32-n8:16:32"
5 ; We can vectorize this code because if the address computation would wrap then
6 ; a load from 0 would take place which is undefined behaviour in address space 0
7 ; according to LLVM IR semantics.
14 define void @safe(ptr %A, ptr %B, float %K) {
19 %i_15 = phi i32 [ 0, %entry ], [ %i_19, %"<bb 3>" ]
20 %pp3 = getelementptr float, ptr %A, i32 %i_15
21 %D.1396_10 = load float, ptr %pp3, align 4
22 %pp24 = getelementptr float, ptr %B, i32 %i_15
23 %D.1398_15 = load float, ptr %pp24, align 4
24 %D.1399_17 = fadd float %D.1398_15, %K
25 %D.1400_18 = fmul float %D.1396_10, %D.1399_17
26 store float %D.1400_18, ptr %pp3, align 4
27 %i_19 = add nsw i32 %i_15, 1
28 %exitcond = icmp ne i32 %i_19, 64
29 br i1 %exitcond, label %"<bb 3>", label %return
35 ; In a non-default address space we don't have this rule.
37 ; CHECK-LABEL: @notsafe(
38 ; CHECK-NOT: <4 x float>
40 define void @notsafe(ptr addrspace(5) %A, ptr %B, float %K) {
45 %i_15 = phi i32 [ 0, %entry ], [ %i_19, %"<bb 3>" ]
46 %pp3 = getelementptr float, ptr addrspace(5) %A, i32 %i_15
47 %D.1396_10 = load float, ptr addrspace(5) %pp3, align 4
48 %pp24 = getelementptr float, ptr %B, i32 %i_15
49 %D.1398_15 = load float, ptr %pp24, align 4
50 %D.1399_17 = fadd float %D.1398_15, %K
51 %D.1400_18 = fmul float %D.1396_10, %D.1399_17
52 store float %D.1400_18, ptr addrspace(5) %pp3, align 4
53 %i_19 = add nsw i32 %i_15, 1
54 %exitcond = icmp ne i32 %i_19, 64
55 br i1 %exitcond, label %"<bb 3>", label %return