2 ; Here we have 5-way unswitchable switch with each successor also having an unswitchable
3 ; exiting branch in it. If we start unswitching those branches we start duplicating the
4 ; whole switch. This can easily lead to exponential behavior w/o proper control.
5 ; On a real-life testcase there was 16-way switch and that took forever to compile w/o
9 ; When we use the stricted multiplier candidates formula (unscaled candidates == 0)
10 ; we should be getting just a single loop.
12 ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \
13 ; RUN: -unswitch-num-initial-unscaled-candidates=0 -unswitch-siblings-toplevel-div=1 \
14 ; RUN: -passes='loop(simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | FileCheck %s --check-prefixes=LOOP1
16 ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \
17 ; RUN: -unswitch-num-initial-unscaled-candidates=0 -unswitch-siblings-toplevel-div=16 \
18 ; RUN: -passes='loop(simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | FileCheck %s --check-prefixes=LOOP1
20 ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \
21 ; RUN: -unswitch-num-initial-unscaled-candidates=0 -unswitch-siblings-toplevel-div=1 \
22 ; RUN: -passes='loop-mssa(simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | FileCheck %s --check-prefixes=LOOP1
24 ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \
25 ; RUN: -unswitch-num-initial-unscaled-candidates=0 -unswitch-siblings-toplevel-div=16 \
26 ; RUN: -passes='loop-mssa(simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | FileCheck %s --check-prefixes=LOOP1
28 ; With relaxed candidates multiplier (unscaled candidates == 8) we should allow
29 ; some unswitches to happen until siblings multiplier starts kicking in:
31 ; The tests below also run licm, because it is needed to hoist out
32 ; loop-invariant freeze instructions, which otherwise may block further
35 ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \
36 ; RUN: -unswitch-num-initial-unscaled-candidates=8 -unswitch-siblings-toplevel-div=1 \
37 ; RUN: -passes='loop-mssa(licm,simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | \
38 ; RUN: sort -b -k 1 | FileCheck %s --check-prefixes=LOOP-RELAX
40 ; With relaxed candidates multiplier (unscaled candidates == 8) and with relaxed
41 ; siblings multiplier for top-level loops (toplevel-div == 8) we should get
42 ; considerably more copies of the loop (especially top-level ones).
44 ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \
45 ; RUN: -unswitch-num-initial-unscaled-candidates=8 -unswitch-siblings-toplevel-div=8 \
46 ; RUN: -passes='loop-mssa(licm,simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | \
47 ; RUN: sort -b -k 1 | FileCheck %s --check-prefixes=LOOP-RELAX2
49 ; We get hundreds of copies of the loop when cost multiplier is disabled:
51 ; RUN: opt < %s -enable-unswitch-cost-multiplier=false \
52 ; RUN: -passes='loop-mssa(licm,simple-loop-unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | \
53 ; RUN: sort -b -k 1 | FileCheck %s --check-prefixes=LOOP-MAX
55 ; Single loop nest, not unswitched
56 ; LOOP1: Loop at depth 1 containing:
57 ; LOOP1-NOT: Loop at depth 1 containing:
58 ; LOOP1: Loop at depth 2 containing:
59 ; LOOP1-NOT: Loop at depth 2 containing:
61 ; Somewhat relaxed restrictions on candidates:
62 ; LOOP-RELAX-COUNT-5: Loop at depth 1 containing:
63 ; LOOP-RELAX-NOT: Loop at depth 1 containing:
64 ; LOOP-RELAX-COUNT-32: Loop at depth 2 containing:
65 ; LOOP-RELAX-NOT: Loop at depth 2 containing:
67 ; Even more relaxed restrictions on candidates and siblings.
68 ; LOOP-RELAX2-COUNT-11: Loop at depth 1 containing:
69 ; LOOP-RELAX2-NOT: Loop at depth 1 containing:
70 ; LOOP-RELAX2-COUNT-40: Loop at depth 2 containing:
71 ; LOOP-RELAX-NOT: Loop at depth 2 containing:
73 ; Unswitched as much as it could (with multiplier disabled).
74 ; LOOP-MAX-COUNT-56: Loop at depth 1 containing:
75 ; LOOP-MAX-NOT: Loop at depth 1 containing:
76 ; LOOP-MAX-COUNT-111: Loop at depth 2 containing:
77 ; LOOP-MAX-NOT: Loop at depth 2 containing:
79 define i32 @loop_switch(ptr %addr, i32 %c1, i32 %c2) {
81 %addr2 = getelementptr i32, ptr %addr, i64 1
82 %check0 = icmp eq i32 %c2, 0
83 %check1 = icmp eq i32 %c2, 31
84 %check2 = icmp eq i32 %c2, 32
85 %check3 = icmp eq i32 %c2, 33
86 %check4 = icmp eq i32 %c2, 34
90 %iv1 = phi i32 [0, %entry], [%iv1.next, %outer_latch]
91 %iv1.next = add i32 %iv1, 1
94 %iv2 = phi i32 [0, %outer_loop], [%iv2.next, %inner_latch]
95 %iv2.next = add i32 %iv2, 1
96 switch i32 %c1, label %inner_latch [
105 br i1 %check4, label %exit, label %inner_latch
107 br i1 %check3, label %exit, label %inner_latch
109 br i1 %check2, label %exit, label %inner_latch
111 br i1 %check1, label %exit, label %inner_latch
113 br i1 %check0, label %exit, label %inner_latch
116 store volatile i32 0, ptr %addr
117 %test_inner = icmp slt i32 %iv2, 50
118 br i1 %test_inner, label %inner_loop, label %outer_latch
121 store volatile i32 0, ptr %addr2
122 %test_outer = icmp slt i32 %iv1, 50
123 br i1 %test_outer, label %outer_loop, label %exit
125 exit: ; preds = %bci_0