Make test more lenient for custom clang version strings
[llvm-project.git] / llvm / tools / llvm-mca / Views / BottleneckAnalysis.h
blob529090cf543fc41b918d4ee906d9141586613adb
1 //===--------------------- BottleneckAnalysis.h -----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the bottleneck analysis view.
11 ///
12 /// This view internally observes backend pressure increase events in order to
13 /// identify problematic data dependencies and processor resource interferences.
14 ///
15 /// Example of bottleneck analysis report for a dot-product on X86 btver2:
16 ///
17 /// Cycles with backend pressure increase [ 40.76% ]
18 /// Throughput Bottlenecks:
19 /// Resource Pressure [ 39.34% ]
20 /// - JFPA [ 39.34% ]
21 /// - JFPU0 [ 39.34% ]
22 /// Data Dependencies: [ 1.42% ]
23 /// - Register Dependencies [ 1.42% ]
24 /// - Memory Dependencies [ 0.00% ]
25 ///
26 /// According to the example, backend pressure increased during the 40.76% of
27 /// the simulated cycles. In particular, the major cause of backend pressure
28 /// increases was the contention on floating point adder JFPA accessible from
29 /// pipeline resource JFPU0.
30 ///
31 /// At the end of each cycle, if pressure on the simulated out-of-order buffers
32 /// has increased, a backend pressure event is reported.
33 /// In particular, this occurs when there is a delta between the number of uOps
34 /// dispatched and the number of uOps issued to the underlying pipelines.
35 ///
36 /// The bottleneck analysis view is also responsible for identifying and
37 /// printing the most "critical" sequence of dependent instructions according to
38 /// the simulated run.
39 ///
40 /// Below is the critical sequence computed for the dot-product example on
41 /// btver2:
42 ///
43 /// Instruction Dependency Information
44 /// +----< 2. vhaddps %xmm3, %xmm3, %xmm4
45 /// |
46 /// | < loop carried >
47 /// |
48 /// | 0. vmulps %xmm0, %xmm0, %xmm2
49 /// +----> 1. vhaddps %xmm2, %xmm2, %xmm3 ## RESOURCE interference: JFPA [ probability: 73% ]
50 /// +----> 2. vhaddps %xmm3, %xmm3, %xmm4 ## REGISTER dependency: %xmm3
51 /// |
52 /// | < loop carried >
53 /// |
54 /// +----> 1. vhaddps %xmm2, %xmm2, %xmm3 ## RESOURCE interference: JFPA [ probability: 73% ]
55 ///
56 ///
57 /// The algorithm that computes the critical sequence is very similar to a
58 /// critical path analysis.
59 ///
60 /// A dependency graph is used internally to track dependencies between nodes.
61 /// Nodes of the graph represent instructions from the input assembly sequence,
62 /// and edges of the graph represent data dependencies or processor resource
63 /// interferences.
64 ///
65 /// Edges are dynamically 'discovered' by observing instruction state
66 /// transitions and backend pressure increase events. Edges are internally
67 /// ranked based on their "criticality". A dependency is considered to be
68 /// critical if it takes a long time to execute, and if it contributes to
69 /// backend pressure increases. Criticality is internally measured in terms of
70 /// cycles; it is computed for every edge in the graph as a function of the edge
71 /// latency and the number of backend pressure increase cycles contributed by
72 /// that edge.
73 ///
74 /// At the end of simulation, costs are propagated to nodes through the edges of
75 /// the graph, and the most expensive path connecting the root-set (a
76 /// set of nodes with no predecessors) to a leaf node is reported as critical
77 /// sequence.
79 //===----------------------------------------------------------------------===//
81 #ifndef LLVM_TOOLS_LLVM_MCA_BOTTLENECK_ANALYSIS_H
82 #define LLVM_TOOLS_LLVM_MCA_BOTTLENECK_ANALYSIS_H
84 #include "Views/InstructionView.h"
85 #include "llvm/ADT/DenseMap.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/MC/MCInstPrinter.h"
88 #include "llvm/MC/MCSchedule.h"
89 #include "llvm/MC/MCSubtargetInfo.h"
90 #include "llvm/Support/FormattedStream.h"
91 #include "llvm/Support/raw_ostream.h"
93 namespace llvm {
94 namespace mca {
96 class PressureTracker {
97 const MCSchedModel &SM;
99 // Resource pressure distribution. There is an element for every processor
100 // resource declared by the scheduling model. Quantities are number of cycles.
101 SmallVector<unsigned, 4> ResourcePressureDistribution;
103 // Each processor resource is associated with a so-called processor resource
104 // mask. This vector allows to correlate processor resource IDs with processor
105 // resource masks. There is exactly one element per each processor resource
106 // declared by the scheduling model.
107 SmallVector<uint64_t, 4> ProcResID2Mask;
109 // Maps processor resource state indices (returned by calls to
110 // `getResourceStateIndex(Mask)` to processor resource identifiers.
111 SmallVector<unsigned, 4> ResIdx2ProcResID;
113 // Maps Processor Resource identifiers to ResourceUsers indices.
114 SmallVector<unsigned, 4> ProcResID2ResourceUsersIndex;
116 // Identifies the last user of a processor resource unit.
117 // This vector is updated on every instruction issued event.
118 // There is one entry for every processor resource unit declared by the
119 // processor model. An all_ones value is treated like an invalid instruction
120 // identifier.
121 using User = std::pair<unsigned, unsigned>;
122 SmallVector<User, 4> ResourceUsers;
124 struct InstructionPressureInfo {
125 unsigned RegisterPressureCycles;
126 unsigned MemoryPressureCycles;
127 unsigned ResourcePressureCycles;
129 DenseMap<unsigned, InstructionPressureInfo> IPI;
131 void updateResourcePressureDistribution(uint64_t CumulativeMask);
133 User getResourceUser(unsigned ProcResID, unsigned UnitID) const {
134 unsigned Index = ProcResID2ResourceUsersIndex[ProcResID];
135 return ResourceUsers[Index + UnitID];
138 public:
139 PressureTracker(const MCSchedModel &Model);
141 ArrayRef<unsigned> getResourcePressureDistribution() const {
142 return ResourcePressureDistribution;
145 void getResourceUsers(uint64_t ResourceMask,
146 SmallVectorImpl<User> &Users) const;
148 unsigned getRegisterPressureCycles(unsigned IID) const {
149 assert(IPI.contains(IID) && "Instruction is not tracked!");
150 const InstructionPressureInfo &Info = IPI.find(IID)->second;
151 return Info.RegisterPressureCycles;
154 unsigned getMemoryPressureCycles(unsigned IID) const {
155 assert(IPI.contains(IID) && "Instruction is not tracked!");
156 const InstructionPressureInfo &Info = IPI.find(IID)->second;
157 return Info.MemoryPressureCycles;
160 unsigned getResourcePressureCycles(unsigned IID) const {
161 assert(IPI.contains(IID) && "Instruction is not tracked!");
162 const InstructionPressureInfo &Info = IPI.find(IID)->second;
163 return Info.ResourcePressureCycles;
166 const char *resolveResourceName(uint64_t ResourceMask) const {
167 unsigned Index = getResourceStateIndex(ResourceMask);
168 unsigned ProcResID = ResIdx2ProcResID[Index];
169 const MCProcResourceDesc &PRDesc = *SM.getProcResource(ProcResID);
170 return PRDesc.Name;
173 void onInstructionDispatched(unsigned IID);
174 void onInstructionExecuted(unsigned IID);
176 void handlePressureEvent(const HWPressureEvent &Event);
177 void handleInstructionIssuedEvent(const HWInstructionIssuedEvent &Event);
180 // A dependency edge.
181 struct DependencyEdge {
182 enum DependencyType { DT_INVALID, DT_REGISTER, DT_MEMORY, DT_RESOURCE };
184 // Dependency edge descriptor.
186 // It specifies the dependency type, as well as the edge cost in cycles.
187 struct Dependency {
188 DependencyType Type;
189 uint64_t ResourceOrRegID;
190 uint64_t Cost;
192 Dependency Dep;
194 unsigned FromIID;
195 unsigned ToIID;
197 // Used by the bottleneck analysis to compute the interference
198 // probability for processor resources.
199 unsigned Frequency;
202 // A dependency graph used by the bottleneck analysis to describe data
203 // dependencies and processor resource interferences between instructions.
205 // There is a node (an instance of struct DGNode) for every instruction in the
206 // input assembly sequence. Edges of the graph represent dependencies between
207 // instructions.
209 // Each edge of the graph is associated with a cost value which is used
210 // internally to rank dependency based on their impact on the runtime
211 // performance (see field DependencyEdge::Dependency::Cost). In general, the
212 // higher the cost of an edge, the higher the impact on performance.
214 // The cost of a dependency is a function of both the latency and the number of
215 // cycles where the dependency has been seen as critical (i.e. contributing to
216 // back-pressure increases).
218 // Loop carried dependencies are carefully expanded by the bottleneck analysis
219 // to guarantee that the graph stays acyclic. To this end, extra nodes are
220 // pre-allocated at construction time to describe instructions from "past and
221 // future" iterations. The graph is kept acyclic mainly because it simplifies
222 // the complexity of the algorithm that computes the critical sequence.
223 class DependencyGraph {
224 struct DGNode {
225 unsigned NumPredecessors;
226 unsigned NumVisitedPredecessors;
227 uint64_t Cost;
228 unsigned Depth;
230 DependencyEdge CriticalPredecessor;
231 SmallVector<DependencyEdge, 8> OutgoingEdges;
233 SmallVector<DGNode, 16> Nodes;
235 DependencyGraph(const DependencyGraph &) = delete;
236 DependencyGraph &operator=(const DependencyGraph &) = delete;
238 void addDependency(unsigned From, unsigned To,
239 DependencyEdge::Dependency &&DE);
241 void pruneEdges(unsigned Iterations);
242 void initializeRootSet(SmallVectorImpl<unsigned> &RootSet) const;
243 void propagateThroughEdges(SmallVectorImpl<unsigned> &RootSet,
244 unsigned Iterations);
246 #ifndef NDEBUG
247 void dumpDependencyEdge(raw_ostream &OS, const DependencyEdge &DE,
248 MCInstPrinter &MCIP) const;
249 #endif
251 public:
252 DependencyGraph(unsigned Size) : Nodes(Size) {}
254 void addRegisterDep(unsigned From, unsigned To, unsigned RegID,
255 unsigned Cost) {
256 addDependency(From, To, {DependencyEdge::DT_REGISTER, RegID, Cost});
259 void addMemoryDep(unsigned From, unsigned To, unsigned Cost) {
260 addDependency(From, To, {DependencyEdge::DT_MEMORY, /* unused */ 0, Cost});
263 void addResourceDep(unsigned From, unsigned To, uint64_t Mask,
264 unsigned Cost) {
265 addDependency(From, To, {DependencyEdge::DT_RESOURCE, Mask, Cost});
268 // Called by the bottleneck analysis at the end of simulation to propagate
269 // costs through the edges of the graph, and compute a critical path.
270 void finalizeGraph(unsigned Iterations) {
271 SmallVector<unsigned, 16> RootSet;
272 pruneEdges(Iterations);
273 initializeRootSet(RootSet);
274 propagateThroughEdges(RootSet, Iterations);
277 // Returns a sequence of edges representing the critical sequence based on the
278 // simulated run. It assumes that the graph has already been finalized (i.e.
279 // method `finalizeGraph()` has already been called on this graph).
280 void getCriticalSequence(SmallVectorImpl<const DependencyEdge *> &Seq) const;
282 #ifndef NDEBUG
283 void dump(raw_ostream &OS, MCInstPrinter &MCIP) const;
284 #endif
287 /// A view that collects and prints a few performance numbers.
288 class BottleneckAnalysis : public InstructionView {
289 PressureTracker Tracker;
290 DependencyGraph DG;
292 unsigned Iterations;
293 unsigned TotalCycles;
295 bool PressureIncreasedBecauseOfResources;
296 bool PressureIncreasedBecauseOfRegisterDependencies;
297 bool PressureIncreasedBecauseOfMemoryDependencies;
298 // True if throughput was affected by dispatch stalls.
299 bool SeenStallCycles;
301 struct BackPressureInfo {
302 // Cycles where backpressure increased.
303 unsigned PressureIncreaseCycles;
304 // Cycles where backpressure increased because of pipeline pressure.
305 unsigned ResourcePressureCycles;
306 // Cycles where backpressure increased because of data dependencies.
307 unsigned DataDependencyCycles;
308 // Cycles where backpressure increased because of register dependencies.
309 unsigned RegisterDependencyCycles;
310 // Cycles where backpressure increased because of memory dependencies.
311 unsigned MemoryDependencyCycles;
313 BackPressureInfo BPI;
315 // Used to populate the dependency graph DG.
316 void addRegisterDep(unsigned From, unsigned To, unsigned RegID, unsigned Cy);
317 void addMemoryDep(unsigned From, unsigned To, unsigned Cy);
318 void addResourceDep(unsigned From, unsigned To, uint64_t Mask, unsigned Cy);
320 void printInstruction(formatted_raw_ostream &FOS, const MCInst &MCI,
321 bool UseDifferentColor = false) const;
323 // Prints a bottleneck message to OS.
324 void printBottleneckHints(raw_ostream &OS) const;
325 void printCriticalSequence(raw_ostream &OS) const;
327 public:
328 BottleneckAnalysis(const MCSubtargetInfo &STI, MCInstPrinter &MCIP,
329 ArrayRef<MCInst> Sequence, unsigned Iterations);
331 void onCycleEnd() override;
332 void onEvent(const HWStallEvent &Event) override { SeenStallCycles = true; }
333 void onEvent(const HWPressureEvent &Event) override;
334 void onEvent(const HWInstructionEvent &Event) override;
336 void printView(raw_ostream &OS) const override;
337 StringRef getNameAsString() const override { return "BottleneckAnalysis"; }
338 bool isSerializable() const override { return true; }
339 json::Value toJSON() const override;
341 #ifndef NDEBUG
342 void dump(raw_ostream &OS, MCInstPrinter &MCIP) const { DG.dump(OS, MCIP); }
343 #endif
346 } // namespace mca
347 } // namespace llvm
349 #endif