Revert "[lldb][test] Remove compiler version check and use regex" (#124101)
[llvm-project.git] / llvm / tools / llvm-mca / Views / TimelineView.cpp
blob2eca48aadfd7073564d9ee481ba36dc73bdbb91e
1 //===--------------------- TimelineView.cpp ---------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \brief
9 ///
10 /// This file implements the TimelineView interface.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "Views/TimelineView.h"
15 #include <numeric>
17 namespace llvm {
18 namespace mca {
20 TimelineView::TimelineView(const MCSubtargetInfo &sti, MCInstPrinter &Printer,
21 llvm::ArrayRef<llvm::MCInst> S, unsigned Iterations,
22 unsigned Cycles)
23 : InstructionView(sti, Printer, S), CurrentCycle(0),
24 MaxCycle(Cycles == 0 ? std::numeric_limits<unsigned>::max() : Cycles),
25 LastCycle(0), WaitTime(S.size()), UsedBuffer(S.size()) {
26 unsigned NumInstructions = getSource().size();
27 assert(Iterations && "Invalid number of iterations specified!");
28 NumInstructions *= Iterations;
29 Timeline.resize(NumInstructions);
30 TimelineViewEntry InvalidTVEntry = {-1, 0, 0, 0, 0};
31 std::fill(Timeline.begin(), Timeline.end(), InvalidTVEntry);
33 WaitTimeEntry NullWTEntry = {0, 0, 0};
34 std::fill(WaitTime.begin(), WaitTime.end(), NullWTEntry);
36 std::pair<unsigned, int> NullUsedBufferEntry = {/* Invalid resource ID*/ 0,
37 /* unknown buffer size */ -1};
38 std::fill(UsedBuffer.begin(), UsedBuffer.end(), NullUsedBufferEntry);
41 void TimelineView::onReservedBuffers(const InstRef &IR,
42 ArrayRef<unsigned> Buffers) {
43 if (IR.getSourceIndex() >= getSource().size())
44 return;
46 const MCSchedModel &SM = getSubTargetInfo().getSchedModel();
47 std::pair<unsigned, int> BufferInfo = {0, -1};
48 for (const unsigned Buffer : Buffers) {
49 const MCProcResourceDesc &MCDesc = *SM.getProcResource(Buffer);
50 if (!BufferInfo.first || BufferInfo.second > MCDesc.BufferSize) {
51 BufferInfo.first = Buffer;
52 BufferInfo.second = MCDesc.BufferSize;
56 UsedBuffer[IR.getSourceIndex()] = BufferInfo;
59 void TimelineView::onEvent(const HWInstructionEvent &Event) {
60 const unsigned Index = Event.IR.getSourceIndex();
61 if (Index >= Timeline.size())
62 return;
64 switch (Event.Type) {
65 case HWInstructionEvent::Retired: {
66 TimelineViewEntry &TVEntry = Timeline[Index];
67 if (CurrentCycle < MaxCycle)
68 TVEntry.CycleRetired = CurrentCycle;
70 // Update the WaitTime entry which corresponds to this Index.
71 assert(TVEntry.CycleDispatched >= 0 && "Invalid TVEntry found!");
72 unsigned CycleDispatched = static_cast<unsigned>(TVEntry.CycleDispatched);
73 WaitTimeEntry &WTEntry = WaitTime[Index % getSource().size()];
74 WTEntry.CyclesSpentInSchedulerQueue +=
75 TVEntry.CycleIssued - CycleDispatched;
76 assert(CycleDispatched <= TVEntry.CycleReady &&
77 "Instruction cannot be ready if it hasn't been dispatched yet!");
78 WTEntry.CyclesSpentInSQWhileReady +=
79 TVEntry.CycleIssued - TVEntry.CycleReady;
80 if (CurrentCycle > TVEntry.CycleExecuted) {
81 WTEntry.CyclesSpentAfterWBAndBeforeRetire +=
82 (CurrentCycle - 1) - TVEntry.CycleExecuted;
84 break;
86 case HWInstructionEvent::Ready:
87 Timeline[Index].CycleReady = CurrentCycle;
88 break;
89 case HWInstructionEvent::Issued:
90 Timeline[Index].CycleIssued = CurrentCycle;
91 break;
92 case HWInstructionEvent::Executed:
93 Timeline[Index].CycleExecuted = CurrentCycle;
94 break;
95 case HWInstructionEvent::Dispatched:
96 // There may be multiple dispatch events. Microcoded instructions that are
97 // expanded into multiple uOps may require multiple dispatch cycles. Here,
98 // we want to capture the first dispatch cycle.
99 if (Timeline[Index].CycleDispatched == -1)
100 Timeline[Index].CycleDispatched = static_cast<int>(CurrentCycle);
101 break;
102 default:
103 return;
105 if (CurrentCycle < MaxCycle)
106 LastCycle = std::max(LastCycle, CurrentCycle);
109 static raw_ostream::Colors chooseColor(unsigned CumulativeCycles,
110 unsigned Executions, int BufferSize) {
111 if (CumulativeCycles && BufferSize < 0)
112 return raw_ostream::MAGENTA;
113 unsigned Size = static_cast<unsigned>(BufferSize);
114 if (CumulativeCycles >= Size * Executions)
115 return raw_ostream::RED;
116 if ((CumulativeCycles * 2) >= Size * Executions)
117 return raw_ostream::YELLOW;
118 return raw_ostream::SAVEDCOLOR;
121 static void tryChangeColor(raw_ostream &OS, unsigned Cycles,
122 unsigned Executions, int BufferSize) {
123 if (!OS.has_colors())
124 return;
126 raw_ostream::Colors Color = chooseColor(Cycles, Executions, BufferSize);
127 if (Color == raw_ostream::SAVEDCOLOR) {
128 OS.resetColor();
129 return;
131 OS.changeColor(Color, /* bold */ true, /* BG */ false);
134 void TimelineView::printWaitTimeEntry(formatted_raw_ostream &OS,
135 const WaitTimeEntry &Entry,
136 unsigned SourceIndex,
137 unsigned Executions) const {
138 bool PrintingTotals = SourceIndex == getSource().size();
139 unsigned CumulativeExecutions = PrintingTotals ? Timeline.size() : Executions;
141 if (!PrintingTotals)
142 OS << SourceIndex << '.';
144 OS.PadToColumn(7);
146 double AverageTime1, AverageTime2, AverageTime3;
147 AverageTime1 =
148 (double)(Entry.CyclesSpentInSchedulerQueue * 10) / CumulativeExecutions;
149 AverageTime2 =
150 (double)(Entry.CyclesSpentInSQWhileReady * 10) / CumulativeExecutions;
151 AverageTime3 = (double)(Entry.CyclesSpentAfterWBAndBeforeRetire * 10) /
152 CumulativeExecutions;
154 OS << Executions;
155 OS.PadToColumn(13);
157 int BufferSize = PrintingTotals ? 0 : UsedBuffer[SourceIndex].second;
158 if (!PrintingTotals)
159 tryChangeColor(OS, Entry.CyclesSpentInSchedulerQueue, CumulativeExecutions,
160 BufferSize);
161 OS << format("%.1f", floor(AverageTime1 + 0.5) / 10);
162 OS.PadToColumn(20);
163 if (!PrintingTotals)
164 tryChangeColor(OS, Entry.CyclesSpentInSQWhileReady, CumulativeExecutions,
165 BufferSize);
166 OS << format("%.1f", floor(AverageTime2 + 0.5) / 10);
167 OS.PadToColumn(27);
168 if (!PrintingTotals)
169 tryChangeColor(OS, Entry.CyclesSpentAfterWBAndBeforeRetire,
170 CumulativeExecutions,
171 getSubTargetInfo().getSchedModel().MicroOpBufferSize);
172 OS << format("%.1f", floor(AverageTime3 + 0.5) / 10);
174 if (OS.has_colors())
175 OS.resetColor();
176 OS.PadToColumn(34);
179 void TimelineView::printAverageWaitTimes(raw_ostream &OS) const {
180 std::string Header =
181 "\n\nAverage Wait times (based on the timeline view):\n"
182 "[0]: Executions\n"
183 "[1]: Average time spent waiting in a scheduler's queue\n"
184 "[2]: Average time spent waiting in a scheduler's queue while ready\n"
185 "[3]: Average time elapsed from WB until retire stage\n\n"
186 " [0] [1] [2] [3]\n";
187 OS << Header;
188 formatted_raw_ostream FOS(OS);
189 unsigned Executions = Timeline.size() / getSource().size();
190 unsigned IID = 0;
191 for (const MCInst &Inst : getSource()) {
192 printWaitTimeEntry(FOS, WaitTime[IID], IID, Executions);
193 FOS << " " << printInstructionString(Inst) << '\n';
194 FOS.flush();
195 ++IID;
198 // If the timeline contains more than one instruction,
199 // let's also print global averages.
200 if (getSource().size() != 1) {
201 WaitTimeEntry TotalWaitTime = std::accumulate(
202 WaitTime.begin(), WaitTime.end(), WaitTimeEntry{0, 0, 0},
203 [](const WaitTimeEntry &A, const WaitTimeEntry &B) {
204 return WaitTimeEntry{
205 A.CyclesSpentInSchedulerQueue + B.CyclesSpentInSchedulerQueue,
206 A.CyclesSpentInSQWhileReady + B.CyclesSpentInSQWhileReady,
207 A.CyclesSpentAfterWBAndBeforeRetire +
208 B.CyclesSpentAfterWBAndBeforeRetire};
210 printWaitTimeEntry(FOS, TotalWaitTime, IID, Executions);
211 FOS << " "
212 << "<total>" << '\n';
213 FOS.flush();
217 void TimelineView::printTimelineViewEntry(formatted_raw_ostream &OS,
218 const TimelineViewEntry &Entry,
219 unsigned Iteration,
220 unsigned SourceIndex) const {
221 if (Iteration == 0 && SourceIndex == 0)
222 OS << '\n';
223 OS << '[' << Iteration << ',' << SourceIndex << ']';
224 OS.PadToColumn(10);
225 assert(Entry.CycleDispatched >= 0 && "Invalid TimelineViewEntry!");
226 unsigned CycleDispatched = static_cast<unsigned>(Entry.CycleDispatched);
227 for (unsigned I = 0, E = CycleDispatched; I < E; ++I)
228 OS << ((I % 5 == 0) ? '.' : ' ');
229 OS << TimelineView::DisplayChar::Dispatched;
230 if (CycleDispatched != Entry.CycleExecuted) {
231 // Zero latency instructions have the same value for CycleDispatched,
232 // CycleIssued and CycleExecuted.
233 for (unsigned I = CycleDispatched + 1, E = Entry.CycleIssued; I < E; ++I)
234 OS << TimelineView::DisplayChar::Waiting;
235 if (Entry.CycleIssued == Entry.CycleExecuted)
236 OS << TimelineView::DisplayChar::DisplayChar::Executed;
237 else {
238 if (CycleDispatched != Entry.CycleIssued)
239 OS << TimelineView::DisplayChar::Executing;
240 for (unsigned I = Entry.CycleIssued + 1, E = Entry.CycleExecuted; I < E;
241 ++I)
242 OS << TimelineView::DisplayChar::Executing;
243 OS << TimelineView::DisplayChar::Executed;
247 for (unsigned I = Entry.CycleExecuted + 1, E = Entry.CycleRetired; I < E; ++I)
248 OS << TimelineView::DisplayChar::RetireLag;
249 if (Entry.CycleExecuted < Entry.CycleRetired)
250 OS << TimelineView::DisplayChar::Retired;
252 // Skip other columns.
253 for (unsigned I = Entry.CycleRetired + 1, E = LastCycle; I <= E; ++I)
254 OS << ((I % 5 == 0 || I == LastCycle) ? '.' : ' ');
257 static void printTimelineHeader(formatted_raw_ostream &OS, unsigned Cycles) {
258 OS << "\n\nTimeline view:\n";
259 if (Cycles >= 10) {
260 OS.PadToColumn(10);
261 for (unsigned I = 0; I <= Cycles; ++I) {
262 if (((I / 10) & 1) == 0)
263 OS << ' ';
264 else
265 OS << I % 10;
267 OS << '\n';
270 OS << "Index";
271 OS.PadToColumn(10);
272 for (unsigned I = 0; I <= Cycles; ++I) {
273 if (((I / 10) & 1) == 0)
274 OS << I % 10;
275 else
276 OS << ' ';
278 OS << '\n';
281 void TimelineView::printTimeline(raw_ostream &OS) const {
282 formatted_raw_ostream FOS(OS);
283 printTimelineHeader(FOS, LastCycle);
284 FOS.flush();
286 unsigned IID = 0;
287 ArrayRef<llvm::MCInst> Source = getSource();
288 const unsigned Iterations = Timeline.size() / Source.size();
289 for (unsigned Iteration = 0; Iteration < Iterations; ++Iteration) {
290 for (const MCInst &Inst : Source) {
291 const TimelineViewEntry &Entry = Timeline[IID];
292 // When an instruction is retired after timeline-max-cycles,
293 // its CycleRetired is left at 0. However, it's possible for
294 // a 0 latency instruction to be retired during cycle 0 and we
295 // don't want to early exit in that case. The CycleExecuted
296 // attribute is set correctly whether or not it is greater
297 // than timeline-max-cycles so we can use that to ensure
298 // we don't early exit because of a 0 latency instruction.
299 if (Entry.CycleRetired == 0 && Entry.CycleExecuted != 0) {
300 FOS << "Truncated display due to cycle limit\n";
301 return;
304 unsigned SourceIndex = IID % Source.size();
305 printTimelineViewEntry(FOS, Entry, Iteration, SourceIndex);
306 FOS << " " << printInstructionString(Inst) << '\n';
307 FOS.flush();
309 ++IID;
314 json::Value TimelineView::toJSON() const {
315 json::Array TimelineInfo;
317 for (const TimelineViewEntry &TLE : Timeline) {
318 // Check if the timeline-max-cycles has been reached.
319 if (!TLE.CycleRetired && TLE.CycleExecuted)
320 break;
322 TimelineInfo.push_back(
323 json::Object({{"CycleDispatched", TLE.CycleDispatched},
324 {"CycleReady", TLE.CycleReady},
325 {"CycleIssued", TLE.CycleIssued},
326 {"CycleExecuted", TLE.CycleExecuted},
327 {"CycleRetired", TLE.CycleRetired}}));
329 return json::Object({{"TimelineInfo", std::move(TimelineInfo)}});
331 } // namespace mca
332 } // namespace llvm