[clang][NFC] simplify the unset check in `ParseLabeledStatement` (#117430)
[llvm-project.git] / llvm / tools / llvm-profdata / llvm-profdata.cpp
blob2acf1cc34b2d8ea0a7b6a560e86f70c15e659790
1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/Debuginfod/HTTPClient.h"
17 #include "llvm/IR/LLVMContext.h"
18 #include "llvm/Object/Binary.h"
19 #include "llvm/ProfileData/InstrProfCorrelator.h"
20 #include "llvm/ProfileData/InstrProfReader.h"
21 #include "llvm/ProfileData/InstrProfWriter.h"
22 #include "llvm/ProfileData/MemProf.h"
23 #include "llvm/ProfileData/MemProfReader.h"
24 #include "llvm/ProfileData/ProfileCommon.h"
25 #include "llvm/ProfileData/SampleProfReader.h"
26 #include "llvm/ProfileData/SampleProfWriter.h"
27 #include "llvm/Support/BalancedPartitioning.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Discriminator.h"
30 #include "llvm/Support/Errc.h"
31 #include "llvm/Support/FileSystem.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/FormattedStream.h"
34 #include "llvm/Support/LLVMDriver.h"
35 #include "llvm/Support/MD5.h"
36 #include "llvm/Support/MemoryBuffer.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Support/Regex.h"
39 #include "llvm/Support/ThreadPool.h"
40 #include "llvm/Support/Threading.h"
41 #include "llvm/Support/VirtualFileSystem.h"
42 #include "llvm/Support/WithColor.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cmath>
46 #include <optional>
47 #include <queue>
49 using namespace llvm;
50 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind;
52 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations
53 // on each subcommand.
54 cl::SubCommand ShowSubcommand(
55 "show",
56 "Takes a profile data file and displays the profiles. See detailed "
57 "documentation in "
58 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show");
59 cl::SubCommand OrderSubcommand(
60 "order",
61 "Reads temporal profiling traces from a profile and outputs a function "
62 "order that reduces the number of page faults for those traces. See "
63 "detailed documentation in "
64 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order");
65 cl::SubCommand OverlapSubcommand(
66 "overlap",
67 "Computes and displays the overlap between two profiles. See detailed "
68 "documentation in "
69 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap");
70 cl::SubCommand MergeSubcommand(
71 "merge",
72 "Takes several profiles and merge them together. See detailed "
73 "documentation in "
74 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge");
76 namespace {
77 enum ProfileKinds { instr, sample, memory };
78 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid };
80 enum ProfileFormat {
81 PF_None = 0,
82 PF_Text,
83 PF_Compact_Binary, // Deprecated
84 PF_Ext_Binary,
85 PF_GCC,
86 PF_Binary
89 enum class ShowFormat { Text, Json, Yaml };
90 } // namespace
92 // Common options.
93 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
94 cl::init("-"), cl::desc("Output file"),
95 cl::sub(ShowSubcommand),
96 cl::sub(OrderSubcommand),
97 cl::sub(OverlapSubcommand),
98 cl::sub(MergeSubcommand));
99 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub()
100 // will be used. llvm::cl::alias::done() method asserts this condition.
101 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
102 cl::aliasopt(OutputFilename));
104 // Options common to at least two commands.
105 cl::opt<ProfileKinds> ProfileKind(
106 cl::desc("Profile kind:"), cl::sub(MergeSubcommand),
107 cl::sub(OverlapSubcommand), cl::init(instr),
108 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
109 clEnumVal(sample, "Sample profile")));
110 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"),
111 cl::sub(ShowSubcommand),
112 cl::sub(OrderSubcommand));
113 cl::opt<unsigned> MaxDbgCorrelationWarnings(
114 "max-debug-info-correlation-warnings",
115 cl::desc("The maximum number of warnings to emit when correlating "
116 "profile from debug info (0 = no limit)"),
117 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5));
118 cl::opt<std::string> ProfiledBinary(
119 "profiled-binary", cl::init(""),
120 cl::desc("Path to binary from which the profile was collected."),
121 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand));
122 cl::opt<std::string> DebugInfoFilename(
123 "debug-info", cl::init(""),
124 cl::desc(
125 "For show, read and extract profile metadata from debug info and show "
126 "the functions it found. For merge, use the provided debug info to "
127 "correlate the raw profile."),
128 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand));
129 cl::opt<std::string>
130 BinaryFilename("binary-file", cl::init(""),
131 cl::desc("For merge, use the provided unstripped bianry to "
132 "correlate the raw profile."),
133 cl::sub(MergeSubcommand));
134 cl::list<std::string> DebugFileDirectory(
135 "debug-file-directory",
136 cl::desc("Directories to search for object files by build ID"));
137 cl::opt<bool> DebugInfod("debuginfod", cl::init(false), cl::Hidden,
138 cl::sub(MergeSubcommand),
139 cl::desc("Enable debuginfod"));
140 cl::opt<ProfCorrelatorKind> BIDFetcherProfileCorrelate(
141 "correlate",
142 cl::desc("Use debug-info or binary correlation to correlate profiles with "
143 "build id fetcher"),
144 cl::init(InstrProfCorrelator::NONE),
145 cl::values(clEnumValN(InstrProfCorrelator::NONE, "",
146 "No profile correlation"),
147 clEnumValN(InstrProfCorrelator::DEBUG_INFO, "debug-info",
148 "Use debug info to correlate"),
149 clEnumValN(InstrProfCorrelator::BINARY, "binary",
150 "Use binary to correlate")));
151 cl::opt<std::string> FuncNameFilter(
152 "function",
153 cl::desc("Only functions matching the filter are shown in the output. For "
154 "overlapping CSSPGO, this takes a function name with calling "
155 "context."),
156 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand),
157 cl::sub(MergeSubcommand));
159 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to
160 // factor out the common cl::sub in cl::opt constructor for subcommand-specific
161 // options.
163 // Options specific to merge subcommand.
164 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand),
165 cl::desc("<filename...>"));
166 cl::list<std::string> WeightedInputFilenames("weighted-input",
167 cl::sub(MergeSubcommand),
168 cl::desc("<weight>,<filename>"));
169 cl::opt<ProfileFormat> OutputFormat(
170 cl::desc("Format of output profile"), cl::sub(MergeSubcommand),
171 cl::init(PF_Ext_Binary),
172 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"),
173 clEnumValN(PF_Ext_Binary, "extbinary",
174 "Extensible binary encoding "
175 "(default)"),
176 clEnumValN(PF_Text, "text", "Text encoding"),
177 clEnumValN(PF_GCC, "gcc",
178 "GCC encoding (only meaningful for -sample)")));
179 cl::opt<std::string>
180 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand),
181 cl::desc("Path to file containing newline-separated "
182 "[<weight>,]<filename> entries"));
183 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
184 cl::aliasopt(InputFilenamesFile));
185 cl::opt<bool> DumpInputFileList(
186 "dump-input-file-list", cl::init(false), cl::Hidden,
187 cl::sub(MergeSubcommand),
188 cl::desc("Dump the list of input files and their weights, then exit"));
189 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
190 cl::sub(MergeSubcommand),
191 cl::desc("Symbol remapping file"));
192 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
193 cl::aliasopt(RemappingFile));
194 cl::opt<bool>
195 UseMD5("use-md5", cl::init(false), cl::Hidden,
196 cl::desc("Choose to use MD5 to represent string in name table (only "
197 "meaningful for -extbinary)"),
198 cl::sub(MergeSubcommand));
199 cl::opt<bool> CompressAllSections(
200 "compress-all-sections", cl::init(false), cl::Hidden,
201 cl::sub(MergeSubcommand),
202 cl::desc("Compress all sections when writing the profile (only "
203 "meaningful for -extbinary)"));
204 cl::opt<bool> SampleMergeColdContext(
205 "sample-merge-cold-context", cl::init(false), cl::Hidden,
206 cl::sub(MergeSubcommand),
207 cl::desc(
208 "Merge context sample profiles whose count is below cold threshold"));
209 cl::opt<bool> SampleTrimColdContext(
210 "sample-trim-cold-context", cl::init(false), cl::Hidden,
211 cl::sub(MergeSubcommand),
212 cl::desc(
213 "Trim context sample profiles whose count is below cold threshold"));
214 cl::opt<uint32_t> SampleColdContextFrameDepth(
215 "sample-frame-depth-for-cold-context", cl::init(1),
216 cl::sub(MergeSubcommand),
217 cl::desc("Keep the last K frames while merging cold profile. 1 means the "
218 "context-less base profile"));
219 cl::opt<size_t> OutputSizeLimit(
220 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand),
221 cl::desc("Trim cold functions until profile size is below specified "
222 "limit in bytes. This uses a heursitic and functions may be "
223 "excessively trimmed"));
224 cl::opt<bool> GenPartialProfile(
225 "gen-partial-profile", cl::init(false), cl::Hidden,
226 cl::sub(MergeSubcommand),
227 cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
228 cl::opt<bool> SplitLayout(
229 "split-layout", cl::init(false), cl::Hidden,
230 cl::sub(MergeSubcommand),
231 cl::desc("Split the profile to two sections with one containing sample "
232 "profiles with inlined functions and the other without (only "
233 "meaningful for -extbinary)"));
234 cl::opt<std::string> SupplInstrWithSample(
235 "supplement-instr-with-sample", cl::init(""), cl::Hidden,
236 cl::sub(MergeSubcommand),
237 cl::desc("Supplement an instr profile with sample profile, to correct "
238 "the profile unrepresentativeness issue. The sample "
239 "profile is the input of the flag. Output will be in instr "
240 "format (The flag only works with -instr)"));
241 cl::opt<float> ZeroCounterThreshold(
242 "zero-counter-threshold", cl::init(0.7), cl::Hidden,
243 cl::sub(MergeSubcommand),
244 cl::desc("For the function which is cold in instr profile but hot in "
245 "sample profile, if the ratio of the number of zero counters "
246 "divided by the total number of counters is above the "
247 "threshold, the profile of the function will be regarded as "
248 "being harmful for performance and will be dropped."));
249 cl::opt<unsigned> SupplMinSizeThreshold(
250 "suppl-min-size-threshold", cl::init(10), cl::Hidden,
251 cl::sub(MergeSubcommand),
252 cl::desc("If the size of a function is smaller than the threshold, "
253 "assume it can be inlined by PGO early inliner and it won't "
254 "be adjusted based on sample profile."));
255 cl::opt<unsigned> InstrProfColdThreshold(
256 "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
257 cl::sub(MergeSubcommand),
258 cl::desc("User specified cold threshold for instr profile which will "
259 "override the cold threshold got from profile summary. "));
260 // WARNING: This reservoir size value is propagated to any input indexed
261 // profiles for simplicity. Changing this value between invocations could
262 // result in sample bias.
263 cl::opt<uint64_t> TemporalProfTraceReservoirSize(
264 "temporal-profile-trace-reservoir-size", cl::init(100),
265 cl::sub(MergeSubcommand),
266 cl::desc("The maximum number of stored temporal profile traces (default: "
267 "100)"));
268 cl::opt<uint64_t> TemporalProfMaxTraceLength(
269 "temporal-profile-max-trace-length", cl::init(10000),
270 cl::sub(MergeSubcommand),
271 cl::desc("The maximum length of a single temporal profile trace "
272 "(default: 10000)"));
273 cl::opt<std::string> FuncNameNegativeFilter(
274 "no-function", cl::init(""),
275 cl::sub(MergeSubcommand),
276 cl::desc("Exclude functions matching the filter from the output."));
278 cl::opt<FailureMode>
279 FailMode("failure-mode", cl::init(failIfAnyAreInvalid),
280 cl::desc("Failure mode:"), cl::sub(MergeSubcommand),
281 cl::values(clEnumValN(warnOnly, "warn",
282 "Do not fail and just print warnings."),
283 clEnumValN(failIfAnyAreInvalid, "any",
284 "Fail if any profile is invalid."),
285 clEnumValN(failIfAllAreInvalid, "all",
286 "Fail only if all profiles are invalid.")));
288 cl::opt<bool> OutputSparse(
289 "sparse", cl::init(false), cl::sub(MergeSubcommand),
290 cl::desc("Generate a sparse profile (only meaningful for -instr)"));
291 cl::opt<unsigned> NumThreads(
292 "num-threads", cl::init(0), cl::sub(MergeSubcommand),
293 cl::desc("Number of merge threads to use (default: autodetect)"));
294 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
295 cl::aliasopt(NumThreads));
297 cl::opt<std::string> ProfileSymbolListFile(
298 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand),
299 cl::desc("Path to file containing the list of function symbols "
300 "used to populate profile symbol list"));
302 cl::opt<SampleProfileLayout> ProfileLayout(
303 "convert-sample-profile-layout",
304 cl::desc("Convert the generated profile to a profile with a new layout"),
305 cl::sub(MergeSubcommand), cl::init(SPL_None),
306 cl::values(
307 clEnumValN(SPL_Nest, "nest",
308 "Nested profile, the input should be CS flat profile"),
309 clEnumValN(SPL_Flat, "flat",
310 "Profile with nested inlinee flatten out")));
312 cl::opt<bool> DropProfileSymbolList(
313 "drop-profile-symbol-list", cl::init(false), cl::Hidden,
314 cl::sub(MergeSubcommand),
315 cl::desc("Drop the profile symbol list when merging AutoFDO profiles "
316 "(only meaningful for -sample)"));
318 cl::opt<bool> KeepVTableSymbols(
319 "keep-vtable-symbols", cl::init(false), cl::Hidden,
320 cl::sub(MergeSubcommand),
321 cl::desc("If true, keep the vtable symbols in indexed profiles"));
323 // Temporary support for writing the previous version of the format, to enable
324 // some forward compatibility.
325 // TODO: Consider enabling this with future version changes as well, to ease
326 // deployment of newer versions of llvm-profdata.
327 cl::opt<bool> DoWritePrevVersion(
328 "write-prev-version", cl::init(false), cl::Hidden,
329 cl::desc("Write the previous version of indexed format, to enable "
330 "some forward compatibility."));
332 cl::opt<memprof::IndexedVersion> MemProfVersionRequested(
333 "memprof-version", cl::Hidden, cl::sub(MergeSubcommand),
334 cl::desc("Specify the version of the memprof format to use"),
335 cl::init(memprof::Version3),
336 cl::values(clEnumValN(memprof::Version2, "2", "version 2"),
337 clEnumValN(memprof::Version3, "3", "version 3")));
339 cl::opt<bool> MemProfFullSchema(
340 "memprof-full-schema", cl::Hidden, cl::sub(MergeSubcommand),
341 cl::desc("Use the full schema for serialization"), cl::init(false));
343 static cl::opt<bool>
344 MemprofGenerateRandomHotness("memprof-random-hotness", cl::init(false),
345 cl::Hidden, cl::sub(MergeSubcommand),
346 cl::desc("Generate random hotness values"));
347 static cl::opt<unsigned> MemprofGenerateRandomHotnessSeed(
348 "memprof-random-hotness-seed", cl::init(0), cl::Hidden,
349 cl::sub(MergeSubcommand),
350 cl::desc("Random hotness seed to use (0 to generate new seed)"));
352 // Options specific to overlap subcommand.
353 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
354 cl::desc("<base profile file>"),
355 cl::sub(OverlapSubcommand));
356 cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
357 cl::desc("<test profile file>"),
358 cl::sub(OverlapSubcommand));
360 cl::opt<unsigned long long> SimilarityCutoff(
361 "similarity-cutoff", cl::init(0),
362 cl::desc("For sample profiles, list function names (with calling context "
363 "for csspgo) for overlapped functions "
364 "with similarities below the cutoff (percentage times 10000)."),
365 cl::sub(OverlapSubcommand));
367 cl::opt<bool> IsCS(
368 "cs", cl::init(false),
369 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."),
370 cl::sub(OverlapSubcommand));
372 cl::opt<unsigned long long> OverlapValueCutoff(
373 "value-cutoff", cl::init(-1),
374 cl::desc(
375 "Function level overlap information for every function (with calling "
376 "context for csspgo) in test "
377 "profile with max count value greater than the parameter value"),
378 cl::sub(OverlapSubcommand));
380 // Options specific to show subcommand.
381 cl::opt<bool> ShowCounts("counts", cl::init(false),
382 cl::desc("Show counter values for shown functions"),
383 cl::sub(ShowSubcommand));
384 cl::opt<ShowFormat>
385 SFormat("show-format", cl::init(ShowFormat::Text),
386 cl::desc("Emit output in the selected format if supported"),
387 cl::sub(ShowSubcommand),
388 cl::values(clEnumValN(ShowFormat::Text, "text",
389 "emit normal text output (default)"),
390 clEnumValN(ShowFormat::Json, "json", "emit JSON"),
391 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML")));
392 // TODO: Consider replacing this with `--show-format=text-encoding`.
393 cl::opt<bool>
394 TextFormat("text", cl::init(false),
395 cl::desc("Show instr profile data in text dump format"),
396 cl::sub(ShowSubcommand));
397 cl::opt<bool>
398 JsonFormat("json",
399 cl::desc("Show sample profile data in the JSON format "
400 "(deprecated, please use --show-format=json)"),
401 cl::sub(ShowSubcommand));
402 cl::opt<bool> ShowIndirectCallTargets(
403 "ic-targets", cl::init(false),
404 cl::desc("Show indirect call site target values for shown functions"),
405 cl::sub(ShowSubcommand));
406 cl::opt<bool> ShowVTables("show-vtables", cl::init(false),
407 cl::desc("Show vtable names for shown functions"),
408 cl::sub(ShowSubcommand));
409 cl::opt<bool> ShowMemOPSizes(
410 "memop-sizes", cl::init(false),
411 cl::desc("Show the profiled sizes of the memory intrinsic calls "
412 "for shown functions"),
413 cl::sub(ShowSubcommand));
414 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
415 cl::desc("Show detailed profile summary"),
416 cl::sub(ShowSubcommand));
417 cl::list<uint32_t> DetailedSummaryCutoffs(
418 cl::CommaSeparated, "detailed-summary-cutoffs",
419 cl::desc(
420 "Cutoff percentages (times 10000) for generating detailed summary"),
421 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand));
422 cl::opt<bool>
423 ShowHotFuncList("hot-func-list", cl::init(false),
424 cl::desc("Show profile summary of a list of hot functions"),
425 cl::sub(ShowSubcommand));
426 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
427 cl::desc("Details for each and every function"),
428 cl::sub(ShowSubcommand));
429 cl::opt<bool> ShowCS("showcs", cl::init(false),
430 cl::desc("Show context sensitive counts"),
431 cl::sub(ShowSubcommand));
432 cl::opt<ProfileKinds> ShowProfileKind(
433 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand),
434 cl::init(instr),
435 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
436 clEnumVal(sample, "Sample profile"),
437 clEnumVal(memory, "MemProf memory access profile")));
438 cl::opt<uint32_t> TopNFunctions(
439 "topn", cl::init(0),
440 cl::desc("Show the list of functions with the largest internal counts"),
441 cl::sub(ShowSubcommand));
442 cl::opt<uint32_t> ShowValueCutoff(
443 "value-cutoff", cl::init(0),
444 cl::desc("Set the count value cutoff. Functions with the maximum count "
445 "less than this value will not be printed out. (Default is 0)"),
446 cl::sub(ShowSubcommand));
447 cl::opt<bool> OnlyListBelow(
448 "list-below-cutoff", cl::init(false),
449 cl::desc("Only output names of functions whose max count values are "
450 "below the cutoff value"),
451 cl::sub(ShowSubcommand));
452 cl::opt<bool> ShowProfileSymbolList(
453 "show-prof-sym-list", cl::init(false),
454 cl::desc("Show profile symbol list if it exists in the profile. "),
455 cl::sub(ShowSubcommand));
456 cl::opt<bool> ShowSectionInfoOnly(
457 "show-sec-info-only", cl::init(false),
458 cl::desc("Show the information of each section in the sample profile. "
459 "The flag is only usable when the sample profile is in "
460 "extbinary format"),
461 cl::sub(ShowSubcommand));
462 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
463 cl::desc("Show binary ids in the profile. "),
464 cl::sub(ShowSubcommand));
465 cl::opt<bool> ShowTemporalProfTraces(
466 "temporal-profile-traces",
467 cl::desc("Show temporal profile traces in the profile."),
468 cl::sub(ShowSubcommand));
470 cl::opt<bool>
471 ShowCovered("covered", cl::init(false),
472 cl::desc("Show only the functions that have been executed."),
473 cl::sub(ShowSubcommand));
475 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false),
476 cl::desc("Show profile version. "),
477 cl::sub(ShowSubcommand));
479 // Options specific to order subcommand.
480 cl::opt<unsigned>
481 NumTestTraces("num-test-traces", cl::init(0),
482 cl::desc("Keep aside the last <num-test-traces> traces in "
483 "the profile when computing the function order and "
484 "instead use them to evaluate that order"),
485 cl::sub(OrderSubcommand));
487 // We use this string to indicate that there are
488 // multiple static functions map to the same name.
489 const std::string DuplicateNameStr = "----";
491 static void warn(Twine Message, StringRef Whence = "", StringRef Hint = "") {
492 WithColor::warning();
493 if (!Whence.empty())
494 errs() << Whence << ": ";
495 errs() << Message << "\n";
496 if (!Hint.empty())
497 WithColor::note() << Hint << "\n";
500 static void warn(Error E, StringRef Whence = "") {
501 if (E.isA<InstrProfError>()) {
502 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
503 warn(IPE.message(), Whence);
508 static void exitWithError(Twine Message, StringRef Whence = "",
509 StringRef Hint = "") {
510 WithColor::error();
511 if (!Whence.empty())
512 errs() << Whence << ": ";
513 errs() << Message << "\n";
514 if (!Hint.empty())
515 WithColor::note() << Hint << "\n";
516 ::exit(1);
519 static void exitWithError(Error E, StringRef Whence = "") {
520 if (E.isA<InstrProfError>()) {
521 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
522 instrprof_error instrError = IPE.get();
523 StringRef Hint = "";
524 if (instrError == instrprof_error::unrecognized_format) {
525 // Hint in case user missed specifying the profile type.
526 Hint = "Perhaps you forgot to use the --sample or --memory option?";
528 exitWithError(IPE.message(), Whence, Hint);
530 return;
533 exitWithError(toString(std::move(E)), Whence);
536 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
537 exitWithError(EC.message(), Whence);
540 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
541 StringRef Whence = "") {
542 if (FailMode == failIfAnyAreInvalid)
543 exitWithErrorCode(EC, Whence);
544 else
545 warn(EC.message(), Whence);
548 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
549 StringRef WhenceFunction = "",
550 bool ShowHint = true) {
551 if (!WhenceFile.empty())
552 errs() << WhenceFile << ": ";
553 if (!WhenceFunction.empty())
554 errs() << WhenceFunction << ": ";
556 auto IPE = instrprof_error::success;
557 E = handleErrors(std::move(E),
558 [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
559 IPE = E->get();
560 return Error(std::move(E));
562 errs() << toString(std::move(E)) << "\n";
564 if (ShowHint) {
565 StringRef Hint = "";
566 if (IPE != instrprof_error::success) {
567 switch (IPE) {
568 case instrprof_error::hash_mismatch:
569 case instrprof_error::count_mismatch:
570 case instrprof_error::value_site_count_mismatch:
571 Hint = "Make sure that all profile data to be merged is generated "
572 "from the same binary.";
573 break;
574 default:
575 break;
579 if (!Hint.empty())
580 errs() << Hint << "\n";
584 namespace {
585 /// A remapper from original symbol names to new symbol names based on a file
586 /// containing a list of mappings from old name to new name.
587 class SymbolRemapper {
588 std::unique_ptr<MemoryBuffer> File;
589 DenseMap<StringRef, StringRef> RemappingTable;
591 public:
592 /// Build a SymbolRemapper from a file containing a list of old/new symbols.
593 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
594 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
595 if (!BufOrError)
596 exitWithErrorCode(BufOrError.getError(), InputFile);
598 auto Remapper = std::make_unique<SymbolRemapper>();
599 Remapper->File = std::move(BufOrError.get());
601 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
602 !LineIt.is_at_eof(); ++LineIt) {
603 std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
604 if (Parts.first.empty() || Parts.second.empty() ||
605 Parts.second.count(' ')) {
606 exitWithError("unexpected line in remapping file",
607 (InputFile + ":" + Twine(LineIt.line_number())).str(),
608 "expected 'old_symbol new_symbol'");
610 Remapper->RemappingTable.insert(Parts);
612 return Remapper;
615 /// Attempt to map the given old symbol into a new symbol.
617 /// \return The new symbol, or \p Name if no such symbol was found.
618 StringRef operator()(StringRef Name) {
619 StringRef New = RemappingTable.lookup(Name);
620 return New.empty() ? Name : New;
623 FunctionId operator()(FunctionId Name) {
624 // MD5 name cannot be remapped.
625 if (!Name.isStringRef())
626 return Name;
627 StringRef New = RemappingTable.lookup(Name.stringRef());
628 return New.empty() ? Name : FunctionId(New);
633 struct WeightedFile {
634 std::string Filename;
635 uint64_t Weight;
637 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
639 /// Keep track of merged data and reported errors.
640 struct WriterContext {
641 std::mutex Lock;
642 InstrProfWriter Writer;
643 std::vector<std::pair<Error, std::string>> Errors;
644 std::mutex &ErrLock;
645 SmallSet<instrprof_error, 4> &WriterErrorCodes;
647 WriterContext(bool IsSparse, std::mutex &ErrLock,
648 SmallSet<instrprof_error, 4> &WriterErrorCodes,
649 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0)
650 : Writer(IsSparse, ReservoirSize, MaxTraceLength, DoWritePrevVersion,
651 MemProfVersionRequested, MemProfFullSchema,
652 MemprofGenerateRandomHotness, MemprofGenerateRandomHotnessSeed),
653 ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {}
656 /// Computer the overlap b/w profile BaseFilename and TestFileName,
657 /// and store the program level result to Overlap.
658 static void overlapInput(const std::string &BaseFilename,
659 const std::string &TestFilename, WriterContext *WC,
660 OverlapStats &Overlap,
661 const OverlapFuncFilters &FuncFilter,
662 raw_fd_ostream &OS, bool IsCS) {
663 auto FS = vfs::getRealFileSystem();
664 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS);
665 if (Error E = ReaderOrErr.takeError()) {
666 // Skip the empty profiles by returning sliently.
667 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
668 if (ErrorCode != instrprof_error::empty_raw_profile)
669 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg),
670 TestFilename);
671 return;
674 auto Reader = std::move(ReaderOrErr.get());
675 for (auto &I : *Reader) {
676 OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
677 FuncOverlap.setFuncInfo(I.Name, I.Hash);
679 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
680 FuncOverlap.dump(OS);
684 /// Load an input into a writer context.
685 static void
686 loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
687 const InstrProfCorrelator *Correlator, const StringRef ProfiledBinary,
688 WriterContext *WC, const object::BuildIDFetcher *BIDFetcher = nullptr,
689 const ProfCorrelatorKind *BIDFetcherCorrelatorKind = nullptr) {
690 std::unique_lock<std::mutex> CtxGuard{WC->Lock};
692 // Copy the filename, because llvm::ThreadPool copied the input "const
693 // WeightedFile &" by value, making a reference to the filename within it
694 // invalid outside of this packaged task.
695 std::string Filename = Input.Filename;
697 using ::llvm::memprof::RawMemProfReader;
698 if (RawMemProfReader::hasFormat(Input.Filename)) {
699 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary);
700 if (!ReaderOrErr) {
701 exitWithError(ReaderOrErr.takeError(), Input.Filename);
703 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get());
704 // Check if the profile types can be merged, e.g. clang frontend profiles
705 // should not be merged with memprof profiles.
706 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
707 consumeError(std::move(E));
708 WC->Errors.emplace_back(
709 make_error<StringError>(
710 "Cannot merge MemProf profile with Clang generated profile.",
711 std::error_code()),
712 Filename);
713 return;
716 auto MemProfError = [&](Error E) {
717 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
718 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg),
719 Filename);
722 WC->Writer.addMemProfData(Reader->takeMemProfData(), MemProfError);
723 return;
726 auto FS = vfs::getRealFileSystem();
727 // TODO: This only saves the first non-fatal error from InstrProfReader, and
728 // then added to WriterContext::Errors. However, this is not extensible, if
729 // we have more non-fatal errors from InstrProfReader in the future. How
730 // should this interact with different -failure-mode?
731 std::optional<std::pair<Error, std::string>> ReaderWarning;
732 auto Warn = [&](Error E) {
733 if (ReaderWarning) {
734 consumeError(std::move(E));
735 return;
737 // Only show the first time an error occurs in this file.
738 auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
739 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename};
742 const ProfCorrelatorKind CorrelatorKind = BIDFetcherCorrelatorKind
743 ? *BIDFetcherCorrelatorKind
744 : ProfCorrelatorKind::NONE;
745 auto ReaderOrErr = InstrProfReader::create(Input.Filename, *FS, Correlator,
746 BIDFetcher, CorrelatorKind, Warn);
747 if (Error E = ReaderOrErr.takeError()) {
748 // Skip the empty profiles by returning silently.
749 auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
750 if (ErrCode != instrprof_error::empty_raw_profile)
751 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg),
752 Filename);
753 return;
756 auto Reader = std::move(ReaderOrErr.get());
757 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
758 consumeError(std::move(E));
759 WC->Errors.emplace_back(
760 make_error<StringError>(
761 "Merge IR generated profile with Clang generated profile.",
762 std::error_code()),
763 Filename);
764 return;
767 for (auto &I : *Reader) {
768 if (Remapper)
769 I.Name = (*Remapper)(I.Name);
770 const StringRef FuncName = I.Name;
771 bool Reported = false;
772 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
773 if (Reported) {
774 consumeError(std::move(E));
775 return;
777 Reported = true;
778 // Only show hint the first time an error occurs.
779 auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
780 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
781 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second;
782 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg),
783 Input.Filename, FuncName, firstTime);
787 if (KeepVTableSymbols) {
788 const InstrProfSymtab &symtab = Reader->getSymtab();
789 const auto &VTableNames = symtab.getVTableNames();
791 for (const auto &kv : VTableNames)
792 WC->Writer.addVTableName(kv.getKey());
795 if (Reader->hasTemporalProfile()) {
796 auto &Traces = Reader->getTemporalProfTraces(Input.Weight);
797 if (!Traces.empty())
798 WC->Writer.addTemporalProfileTraces(
799 Traces, Reader->getTemporalProfTraceStreamSize());
801 if (Reader->hasError()) {
802 if (Error E = Reader->getError()) {
803 WC->Errors.emplace_back(std::move(E), Filename);
804 return;
808 std::vector<llvm::object::BuildID> BinaryIds;
809 if (Error E = Reader->readBinaryIds(BinaryIds)) {
810 WC->Errors.emplace_back(std::move(E), Filename);
811 return;
813 WC->Writer.addBinaryIds(BinaryIds);
815 if (ReaderWarning) {
816 WC->Errors.emplace_back(std::move(ReaderWarning->first),
817 ReaderWarning->second);
821 /// Merge the \p Src writer context into \p Dst.
822 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
823 for (auto &ErrorPair : Src->Errors)
824 Dst->Errors.push_back(std::move(ErrorPair));
825 Src->Errors.clear();
827 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind()))
828 exitWithError(std::move(E));
830 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
831 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
832 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
833 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second;
834 if (firstTime)
835 warn(toString(make_error<InstrProfError>(ErrorCode, Msg)));
839 static StringRef
840 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) {
841 return Val.first();
844 static std::string
845 getFuncName(const SampleProfileMap::value_type &Val) {
846 return Val.second.getContext().toString();
849 template <typename T>
850 static void filterFunctions(T &ProfileMap) {
851 bool hasFilter = !FuncNameFilter.empty();
852 bool hasNegativeFilter = !FuncNameNegativeFilter.empty();
853 if (!hasFilter && !hasNegativeFilter)
854 return;
856 // If filter starts with '?' it is MSVC mangled name, not a regex.
857 llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+");
858 if (hasFilter && FuncNameFilter[0] == '?' &&
859 ProbablyMSVCMangledName.match(FuncNameFilter))
860 FuncNameFilter = llvm::Regex::escape(FuncNameFilter);
861 if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' &&
862 ProbablyMSVCMangledName.match(FuncNameNegativeFilter))
863 FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter);
865 size_t Count = ProfileMap.size();
866 llvm::Regex Pattern(FuncNameFilter);
867 llvm::Regex NegativePattern(FuncNameNegativeFilter);
868 std::string Error;
869 if (hasFilter && !Pattern.isValid(Error))
870 exitWithError(Error);
871 if (hasNegativeFilter && !NegativePattern.isValid(Error))
872 exitWithError(Error);
874 // Handle MD5 profile, so it is still able to match using the original name.
875 std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter));
876 std::string NegativeMD5Name =
877 std::to_string(llvm::MD5Hash(FuncNameNegativeFilter));
879 for (auto I = ProfileMap.begin(); I != ProfileMap.end();) {
880 auto Tmp = I++;
881 const auto &FuncName = getFuncName(*Tmp);
882 // Negative filter has higher precedence than positive filter.
883 if ((hasNegativeFilter &&
884 (NegativePattern.match(FuncName) ||
885 (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) ||
886 (hasFilter && !(Pattern.match(FuncName) ||
887 (FunctionSamples::UseMD5 && MD5Name == FuncName))))
888 ProfileMap.erase(Tmp);
891 llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions "
892 << "in the original profile are filtered.\n";
895 static void writeInstrProfile(StringRef OutputFilename,
896 ProfileFormat OutputFormat,
897 InstrProfWriter &Writer) {
898 std::error_code EC;
899 raw_fd_ostream Output(OutputFilename.data(), EC,
900 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
901 : sys::fs::OF_None);
902 if (EC)
903 exitWithErrorCode(EC, OutputFilename);
905 if (OutputFormat == PF_Text) {
906 if (Error E = Writer.writeText(Output))
907 warn(std::move(E));
908 } else {
909 if (Output.is_displayed())
910 exitWithError("cannot write a non-text format profile to the terminal");
911 if (Error E = Writer.write(Output))
912 warn(std::move(E));
916 static void mergeInstrProfile(const WeightedFileVector &Inputs,
917 SymbolRemapper *Remapper,
918 int MaxDbgCorrelationWarnings,
919 const StringRef ProfiledBinary) {
920 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue();
921 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue();
922 if (OutputFormat == PF_Compact_Binary)
923 exitWithError("Compact Binary is deprecated");
924 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary &&
925 OutputFormat != PF_Text)
926 exitWithError("unknown format is specified");
928 // TODO: Maybe we should support correlation with mixture of different
929 // correlation modes(w/wo debug-info/object correlation).
930 if (DebugInfoFilename.empty()) {
931 if (!BinaryFilename.empty() && (DebugInfod || !DebugFileDirectory.empty()))
932 exitWithError("Expected only one of -binary-file, -debuginfod or "
933 "-debug-file-directory");
934 } else if (!BinaryFilename.empty() || DebugInfod ||
935 !DebugFileDirectory.empty()) {
936 exitWithError("Expected only one of -debug-info, -binary-file, -debuginfod "
937 "or -debug-file-directory");
939 std::string CorrelateFilename;
940 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE;
941 if (!DebugInfoFilename.empty()) {
942 CorrelateFilename = DebugInfoFilename;
943 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO;
944 } else if (!BinaryFilename.empty()) {
945 CorrelateFilename = BinaryFilename;
946 CorrelateKind = ProfCorrelatorKind::BINARY;
949 std::unique_ptr<InstrProfCorrelator> Correlator;
950 if (CorrelateKind != InstrProfCorrelator::NONE) {
951 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind)
952 .moveInto(Correlator))
953 exitWithError(std::move(Err), CorrelateFilename);
954 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings))
955 exitWithError(std::move(Err), CorrelateFilename);
958 ProfCorrelatorKind BIDFetcherCorrelateKind = ProfCorrelatorKind::NONE;
959 std::unique_ptr<object::BuildIDFetcher> BIDFetcher;
960 if (DebugInfod) {
961 llvm::HTTPClient::initialize();
962 BIDFetcher = std::make_unique<DebuginfodFetcher>(DebugFileDirectory);
963 if (!BIDFetcherProfileCorrelate)
964 exitWithError("Expected --correlate when --debuginfod is provided");
965 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate;
966 } else if (!DebugFileDirectory.empty()) {
967 BIDFetcher = std::make_unique<object::BuildIDFetcher>(DebugFileDirectory);
968 if (!BIDFetcherProfileCorrelate)
969 exitWithError("Expected --correlate when --debug-file-directory "
970 "is provided");
971 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate;
972 } else if (BIDFetcherProfileCorrelate) {
973 exitWithError("Expected --debuginfod or --debug-file-directory when "
974 "--correlate is provided");
977 std::mutex ErrorLock;
978 SmallSet<instrprof_error, 4> WriterErrorCodes;
980 // If NumThreads is not specified, auto-detect a good default.
981 if (NumThreads == 0)
982 NumThreads = std::min(hardware_concurrency().compute_thread_count(),
983 unsigned((Inputs.size() + 1) / 2));
985 // Initialize the writer contexts.
986 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
987 for (unsigned I = 0; I < NumThreads; ++I)
988 Contexts.emplace_back(std::make_unique<WriterContext>(
989 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize,
990 MaxTraceLength));
992 if (NumThreads == 1) {
993 for (const auto &Input : Inputs)
994 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary,
995 Contexts[0].get(), BIDFetcher.get(), &BIDFetcherCorrelateKind);
996 } else {
997 DefaultThreadPool Pool(hardware_concurrency(NumThreads));
999 // Load the inputs in parallel (N/NumThreads serial steps).
1000 unsigned Ctx = 0;
1001 for (const auto &Input : Inputs) {
1002 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary,
1003 Contexts[Ctx].get(), BIDFetcher.get(),
1004 &BIDFetcherCorrelateKind);
1005 Ctx = (Ctx + 1) % NumThreads;
1007 Pool.wait();
1009 // Merge the writer contexts together (~ lg(NumThreads) serial steps).
1010 unsigned Mid = Contexts.size() / 2;
1011 unsigned End = Contexts.size();
1012 assert(Mid > 0 && "Expected more than one context");
1013 do {
1014 for (unsigned I = 0; I < Mid; ++I)
1015 Pool.async(mergeWriterContexts, Contexts[I].get(),
1016 Contexts[I + Mid].get());
1017 Pool.wait();
1018 if (End & 1) {
1019 Pool.async(mergeWriterContexts, Contexts[0].get(),
1020 Contexts[End - 1].get());
1021 Pool.wait();
1023 End = Mid;
1024 Mid /= 2;
1025 } while (Mid > 0);
1028 // Handle deferred errors encountered during merging. If the number of errors
1029 // is equal to the number of inputs the merge failed.
1030 unsigned NumErrors = 0;
1031 for (std::unique_ptr<WriterContext> &WC : Contexts) {
1032 for (auto &ErrorPair : WC->Errors) {
1033 ++NumErrors;
1034 warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
1037 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) ||
1038 (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
1039 exitWithError("no profile can be merged");
1041 filterFunctions(Contexts[0]->Writer.getProfileData());
1043 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
1046 /// The profile entry for a function in instrumentation profile.
1047 struct InstrProfileEntry {
1048 uint64_t MaxCount = 0;
1049 uint64_t NumEdgeCounters = 0;
1050 float ZeroCounterRatio = 0.0;
1051 InstrProfRecord *ProfRecord;
1052 InstrProfileEntry(InstrProfRecord *Record);
1053 InstrProfileEntry() = default;
1056 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
1057 ProfRecord = Record;
1058 uint64_t CntNum = Record->Counts.size();
1059 uint64_t ZeroCntNum = 0;
1060 for (size_t I = 0; I < CntNum; ++I) {
1061 MaxCount = std::max(MaxCount, Record->Counts[I]);
1062 ZeroCntNum += !Record->Counts[I];
1064 ZeroCounterRatio = (float)ZeroCntNum / CntNum;
1065 NumEdgeCounters = CntNum;
1068 /// Either set all the counters in the instr profile entry \p IFE to
1069 /// -1 / -2 /in order to drop the profile or scale up the
1070 /// counters in \p IFP to be above hot / cold threshold. We use
1071 /// the ratio of zero counters in the profile of a function to
1072 /// decide the profile is helpful or harmful for performance,
1073 /// and to choose whether to scale up or drop it.
1074 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot,
1075 uint64_t HotInstrThreshold,
1076 uint64_t ColdInstrThreshold,
1077 float ZeroCounterThreshold) {
1078 InstrProfRecord *ProfRecord = IFE.ProfRecord;
1079 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
1080 // If all or most of the counters of the function are zero, the
1081 // profile is unaccountable and should be dropped. Reset all the
1082 // counters to be -1 / -2 and PGO profile-use will drop the profile.
1083 // All counters being -1 also implies that the function is hot so
1084 // PGO profile-use will also set the entry count metadata to be
1085 // above hot threshold.
1086 // All counters being -2 implies that the function is warm so
1087 // PGO profile-use will also set the entry count metadata to be
1088 // above cold threshold.
1089 auto Kind =
1090 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm);
1091 ProfRecord->setPseudoCount(Kind);
1092 return;
1095 // Scale up the MaxCount to be multiple times above hot / cold threshold.
1096 const unsigned MultiplyFactor = 3;
1097 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold);
1098 uint64_t Numerator = Threshold * MultiplyFactor;
1100 // Make sure Threshold for warm counters is below the HotInstrThreshold.
1101 if (!SetToHot && Threshold >= HotInstrThreshold) {
1102 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2;
1105 uint64_t Denominator = IFE.MaxCount;
1106 if (Numerator <= Denominator)
1107 return;
1108 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
1109 warn(toString(make_error<InstrProfError>(E)));
1113 const uint64_t ColdPercentileIdx = 15;
1114 const uint64_t HotPercentileIdx = 11;
1116 using sampleprof::FSDiscriminatorPass;
1118 // Internal options to set FSDiscriminatorPass. Used in merge and show
1119 // commands.
1120 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
1121 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
1122 cl::desc("Zero out the discriminator bits for the FS discrimiantor "
1123 "pass beyond this value. The enum values are defined in "
1124 "Support/Discriminator.h"),
1125 cl::values(clEnumVal(Base, "Use base discriminators only"),
1126 clEnumVal(Pass1, "Use base and pass 1 discriminators"),
1127 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
1128 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
1129 clEnumVal(PassLast, "Use all discriminator bits (default)")));
1131 static unsigned getDiscriminatorMask() {
1132 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
1135 /// Adjust the instr profile in \p WC based on the sample profile in
1136 /// \p Reader.
1137 static void
1138 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
1139 std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
1140 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
1141 unsigned InstrProfColdThreshold) {
1142 // Function to its entry in instr profile.
1143 StringMap<InstrProfileEntry> InstrProfileMap;
1144 StringMap<StringRef> StaticFuncMap;
1145 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
1147 auto checkSampleProfileHasFUnique = [&Reader]() {
1148 for (const auto &PD : Reader->getProfiles()) {
1149 auto &FContext = PD.second.getContext();
1150 if (FContext.toString().find(FunctionSamples::UniqSuffix) !=
1151 std::string::npos) {
1152 return true;
1155 return false;
1158 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique();
1160 auto buildStaticFuncMap = [&StaticFuncMap,
1161 SampleProfileHasFUnique](const StringRef Name) {
1162 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"};
1163 size_t PrefixPos = StringRef::npos;
1164 for (auto &FilePrefix : FilePrefixes) {
1165 std::string NamePrefix = FilePrefix + GlobalIdentifierDelimiter;
1166 PrefixPos = Name.find_insensitive(NamePrefix);
1167 if (PrefixPos == StringRef::npos)
1168 continue;
1169 PrefixPos += NamePrefix.size();
1170 break;
1173 if (PrefixPos == StringRef::npos) {
1174 return;
1177 StringRef NewName = Name.drop_front(PrefixPos);
1178 StringRef FName = Name.substr(0, PrefixPos - 1);
1179 if (NewName.size() == 0) {
1180 return;
1183 // This name should have a static linkage.
1184 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix);
1185 bool ProfileHasFUnique = (PostfixPos != StringRef::npos);
1187 // If sample profile and instrumented profile do not agree on symbol
1188 // uniqification.
1189 if (SampleProfileHasFUnique != ProfileHasFUnique) {
1190 // If instrumented profile uses -funique-internal-linkage-symbols,
1191 // we need to trim the name.
1192 if (ProfileHasFUnique) {
1193 NewName = NewName.substr(0, PostfixPos);
1194 } else {
1195 // If sample profile uses -funique-internal-linkage-symbols,
1196 // we build the map.
1197 std::string NStr =
1198 NewName.str() + getUniqueInternalLinkagePostfix(FName);
1199 NewName = StringRef(NStr);
1200 StaticFuncMap[NewName] = Name;
1201 return;
1205 auto [It, Inserted] = StaticFuncMap.try_emplace(NewName, Name);
1206 if (!Inserted)
1207 It->second = DuplicateNameStr;
1210 // We need to flatten the SampleFDO profile as the InstrFDO
1211 // profile does not have inlined callsite profiles.
1212 // One caveat is the pre-inlined function -- their samples
1213 // should be collapsed into the caller function.
1214 // Here we do a DFS traversal to get the flatten profile
1215 // info: the sum of entrycount and the max of maxcount.
1216 // Here is the algorithm:
1217 // recursive (FS, root_name) {
1218 // name = FS->getName();
1219 // get samples for FS;
1220 // if (InstrProf.find(name) {
1221 // root_name = name;
1222 // } else {
1223 // if (name is in static_func map) {
1224 // root_name = static_name;
1225 // }
1226 // }
1227 // update the Map entry for root_name;
1228 // for (subfs: FS) {
1229 // recursive(subfs, root_name);
1230 // }
1231 // }
1233 // Here is an example.
1235 // SampleProfile:
1236 // foo:12345:1000
1237 // 1: 1000
1238 // 2.1: 1000
1239 // 15: 5000
1240 // 4: bar:1000
1241 // 1: 1000
1242 // 2: goo:3000
1243 // 1: 3000
1244 // 8: bar:40000
1245 // 1: 10000
1246 // 2: goo:30000
1247 // 1: 30000
1249 // InstrProfile has two entries:
1250 // foo
1251 // bar.cc;bar
1253 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap:
1254 // {"foo", {1000, 5000}}
1255 // {"bar.cc;bar", {11000, 30000}}
1257 // foo's has an entry count of 1000, and max body count of 5000.
1258 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and
1259 // 10000), and max count of 30000 (from the callsite in line 8).
1261 // Note that goo's count will remain in bar.cc;bar() as it does not have an
1262 // entry in InstrProfile.
1263 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap;
1264 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap,
1265 &InstrProfileMap](const FunctionSamples &FS,
1266 const StringRef &RootName) {
1267 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS,
1268 const StringRef &RootName,
1269 auto &BuildImpl) -> void {
1270 std::string NameStr = FS.getFunction().str();
1271 const StringRef Name = NameStr;
1272 const StringRef *NewRootName = &RootName;
1273 uint64_t EntrySample = FS.getHeadSamplesEstimate();
1274 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true);
1276 auto It = InstrProfileMap.find(Name);
1277 if (It != InstrProfileMap.end()) {
1278 NewRootName = &Name;
1279 } else {
1280 auto NewName = StaticFuncMap.find(Name);
1281 if (NewName != StaticFuncMap.end()) {
1282 It = InstrProfileMap.find(NewName->second);
1283 if (NewName->second != DuplicateNameStr) {
1284 NewRootName = &NewName->second;
1286 } else {
1287 // Here the EntrySample is of an inlined function, so we should not
1288 // update the EntrySample in the map.
1289 EntrySample = 0;
1292 EntrySample += FlattenSampleMap[*NewRootName].first;
1293 MaxBodySample =
1294 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample);
1295 FlattenSampleMap[*NewRootName] =
1296 std::make_pair(EntrySample, MaxBodySample);
1298 for (const auto &C : FS.getCallsiteSamples())
1299 for (const auto &F : C.second)
1300 BuildImpl(F.second, *NewRootName, BuildImpl);
1302 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl);
1305 for (auto &PD : WC->Writer.getProfileData()) {
1306 // Populate IPBuilder.
1307 for (const auto &PDV : PD.getValue()) {
1308 InstrProfRecord Record = PDV.second;
1309 IPBuilder.addRecord(Record);
1312 // If a function has multiple entries in instr profile, skip it.
1313 if (PD.getValue().size() != 1)
1314 continue;
1316 // Initialize InstrProfileMap.
1317 InstrProfRecord *R = &PD.getValue().begin()->second;
1318 StringRef FullName = PD.getKey();
1319 InstrProfileMap[FullName] = InstrProfileEntry(R);
1320 buildStaticFuncMap(FullName);
1323 for (auto &PD : Reader->getProfiles()) {
1324 sampleprof::FunctionSamples &FS = PD.second;
1325 std::string Name = FS.getFunction().str();
1326 BuildMaxSampleMap(FS, Name);
1329 ProfileSummary InstrPS = *IPBuilder.getSummary();
1330 ProfileSummary SamplePS = Reader->getSummary();
1332 // Compute cold thresholds for instr profile and sample profile.
1333 uint64_t HotSampleThreshold =
1334 ProfileSummaryBuilder::getEntryForPercentile(
1335 SamplePS.getDetailedSummary(),
1336 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
1337 .MinCount;
1338 uint64_t ColdSampleThreshold =
1339 ProfileSummaryBuilder::getEntryForPercentile(
1340 SamplePS.getDetailedSummary(),
1341 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
1342 .MinCount;
1343 uint64_t HotInstrThreshold =
1344 ProfileSummaryBuilder::getEntryForPercentile(
1345 InstrPS.getDetailedSummary(),
1346 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
1347 .MinCount;
1348 uint64_t ColdInstrThreshold =
1349 InstrProfColdThreshold
1350 ? InstrProfColdThreshold
1351 : ProfileSummaryBuilder::getEntryForPercentile(
1352 InstrPS.getDetailedSummary(),
1353 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
1354 .MinCount;
1356 // Find hot/warm functions in sample profile which is cold in instr profile
1357 // and adjust the profiles of those functions in the instr profile.
1358 for (const auto &E : FlattenSampleMap) {
1359 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second);
1360 if (SampleMaxCount < ColdSampleThreshold)
1361 continue;
1362 StringRef Name = E.first();
1363 auto It = InstrProfileMap.find(Name);
1364 if (It == InstrProfileMap.end()) {
1365 auto NewName = StaticFuncMap.find(Name);
1366 if (NewName != StaticFuncMap.end()) {
1367 It = InstrProfileMap.find(NewName->second);
1368 if (NewName->second == DuplicateNameStr) {
1369 WithColor::warning()
1370 << "Static function " << Name
1371 << " has multiple promoted names, cannot adjust profile.\n";
1375 if (It == InstrProfileMap.end() ||
1376 It->second.MaxCount > ColdInstrThreshold ||
1377 It->second.NumEdgeCounters < SupplMinSizeThreshold)
1378 continue;
1379 bool SetToHot = SampleMaxCount >= HotSampleThreshold;
1380 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold,
1381 ColdInstrThreshold, ZeroCounterThreshold);
1385 /// The main function to supplement instr profile with sample profile.
1386 /// \Inputs contains the instr profile. \p SampleFilename specifies the
1387 /// sample profile. \p OutputFilename specifies the output profile name.
1388 /// \p OutputFormat specifies the output profile format. \p OutputSparse
1389 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
1390 /// specifies the minimal size for the functions whose profile will be
1391 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
1392 /// a function contains too many zero counters and whether its profile
1393 /// should be dropped. \p InstrProfColdThreshold is the user specified
1394 /// cold threshold which will override the cold threshold got from the
1395 /// instr profile summary.
1396 static void supplementInstrProfile(const WeightedFileVector &Inputs,
1397 StringRef SampleFilename, bool OutputSparse,
1398 unsigned SupplMinSizeThreshold,
1399 float ZeroCounterThreshold,
1400 unsigned InstrProfColdThreshold) {
1401 if (OutputFilename == "-")
1402 exitWithError("cannot write indexed profdata format to stdout");
1403 if (Inputs.size() != 1)
1404 exitWithError("expect one input to be an instr profile");
1405 if (Inputs[0].Weight != 1)
1406 exitWithError("expect instr profile doesn't have weight");
1408 StringRef InstrFilename = Inputs[0].Filename;
1410 // Read sample profile.
1411 LLVMContext Context;
1412 auto FS = vfs::getRealFileSystem();
1413 auto ReaderOrErr = sampleprof::SampleProfileReader::create(
1414 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption);
1415 if (std::error_code EC = ReaderOrErr.getError())
1416 exitWithErrorCode(EC, SampleFilename);
1417 auto Reader = std::move(ReaderOrErr.get());
1418 if (std::error_code EC = Reader->read())
1419 exitWithErrorCode(EC, SampleFilename);
1421 // Read instr profile.
1422 std::mutex ErrorLock;
1423 SmallSet<instrprof_error, 4> WriterErrorCodes;
1424 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
1425 WriterErrorCodes);
1426 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get());
1427 if (WC->Errors.size() > 0)
1428 exitWithError(std::move(WC->Errors[0].first), InstrFilename);
1430 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
1431 InstrProfColdThreshold);
1432 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
1435 /// Make a copy of the given function samples with all symbol names remapped
1436 /// by the provided symbol remapper.
1437 static sampleprof::FunctionSamples
1438 remapSamples(const sampleprof::FunctionSamples &Samples,
1439 SymbolRemapper &Remapper, sampleprof_error &Error) {
1440 sampleprof::FunctionSamples Result;
1441 Result.setFunction(Remapper(Samples.getFunction()));
1442 Result.addTotalSamples(Samples.getTotalSamples());
1443 Result.addHeadSamples(Samples.getHeadSamples());
1444 for (const auto &BodySample : Samples.getBodySamples()) {
1445 uint32_t MaskedDiscriminator =
1446 BodySample.first.Discriminator & getDiscriminatorMask();
1447 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
1448 BodySample.second.getSamples());
1449 for (const auto &Target : BodySample.second.getCallTargets()) {
1450 Result.addCalledTargetSamples(BodySample.first.LineOffset,
1451 MaskedDiscriminator,
1452 Remapper(Target.first), Target.second);
1455 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
1456 sampleprof::FunctionSamplesMap &Target =
1457 Result.functionSamplesAt(CallsiteSamples.first);
1458 for (const auto &Callsite : CallsiteSamples.second) {
1459 sampleprof::FunctionSamples Remapped =
1460 remapSamples(Callsite.second, Remapper, Error);
1461 mergeSampleProfErrors(Error,
1462 Target[Remapped.getFunction()].merge(Remapped));
1465 return Result;
1468 static sampleprof::SampleProfileFormat FormatMap[] = {
1469 sampleprof::SPF_None,
1470 sampleprof::SPF_Text,
1471 sampleprof::SPF_None,
1472 sampleprof::SPF_Ext_Binary,
1473 sampleprof::SPF_GCC,
1474 sampleprof::SPF_Binary};
1476 static std::unique_ptr<MemoryBuffer>
1477 getInputFileBuf(const StringRef &InputFile) {
1478 if (InputFile == "")
1479 return {};
1481 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
1482 if (!BufOrError)
1483 exitWithErrorCode(BufOrError.getError(), InputFile);
1485 return std::move(*BufOrError);
1488 static void populateProfileSymbolList(MemoryBuffer *Buffer,
1489 sampleprof::ProfileSymbolList &PSL) {
1490 if (!Buffer)
1491 return;
1493 SmallVector<StringRef, 32> SymbolVec;
1494 StringRef Data = Buffer->getBuffer();
1495 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
1497 for (StringRef SymbolStr : SymbolVec)
1498 PSL.add(SymbolStr.trim());
1501 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
1502 ProfileFormat OutputFormat,
1503 MemoryBuffer *Buffer,
1504 sampleprof::ProfileSymbolList &WriterList,
1505 bool CompressAllSections, bool UseMD5,
1506 bool GenPartialProfile) {
1507 if (SplitLayout) {
1508 if (OutputFormat == PF_Binary)
1509 warn("-split-layout is ignored. Specify -extbinary to enable it");
1510 else
1511 Writer.setUseCtxSplitLayout();
1514 populateProfileSymbolList(Buffer, WriterList);
1515 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
1516 warn("Profile Symbol list is not empty but the output format is not "
1517 "ExtBinary format. The list will be lost in the output. ");
1519 Writer.setProfileSymbolList(&WriterList);
1521 if (CompressAllSections) {
1522 if (OutputFormat != PF_Ext_Binary)
1523 warn("-compress-all-section is ignored. Specify -extbinary to enable it");
1524 else
1525 Writer.setToCompressAllSections();
1527 if (UseMD5) {
1528 if (OutputFormat != PF_Ext_Binary)
1529 warn("-use-md5 is ignored. Specify -extbinary to enable it");
1530 else
1531 Writer.setUseMD5();
1533 if (GenPartialProfile) {
1534 if (OutputFormat != PF_Ext_Binary)
1535 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
1536 else
1537 Writer.setPartialProfile();
1541 static void mergeSampleProfile(const WeightedFileVector &Inputs,
1542 SymbolRemapper *Remapper,
1543 StringRef ProfileSymbolListFile,
1544 size_t OutputSizeLimit) {
1545 using namespace sampleprof;
1546 SampleProfileMap ProfileMap;
1547 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
1548 LLVMContext Context;
1549 sampleprof::ProfileSymbolList WriterList;
1550 std::optional<bool> ProfileIsProbeBased;
1551 std::optional<bool> ProfileIsCS;
1552 for (const auto &Input : Inputs) {
1553 auto FS = vfs::getRealFileSystem();
1554 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS,
1555 FSDiscriminatorPassOption);
1556 if (std::error_code EC = ReaderOrErr.getError()) {
1557 warnOrExitGivenError(FailMode, EC, Input.Filename);
1558 continue;
1561 // We need to keep the readers around until after all the files are
1562 // read so that we do not lose the function names stored in each
1563 // reader's memory. The function names are needed to write out the
1564 // merged profile map.
1565 Readers.push_back(std::move(ReaderOrErr.get()));
1566 const auto Reader = Readers.back().get();
1567 if (std::error_code EC = Reader->read()) {
1568 warnOrExitGivenError(FailMode, EC, Input.Filename);
1569 Readers.pop_back();
1570 continue;
1573 SampleProfileMap &Profiles = Reader->getProfiles();
1574 if (ProfileIsProbeBased &&
1575 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
1576 exitWithError(
1577 "cannot merge probe-based profile with non-probe-based profile");
1578 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
1579 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS)
1580 exitWithError("cannot merge CS profile with non-CS profile");
1581 ProfileIsCS = FunctionSamples::ProfileIsCS;
1582 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
1583 I != E; ++I) {
1584 sampleprof_error Result = sampleprof_error::success;
1585 FunctionSamples Remapped =
1586 Remapper ? remapSamples(I->second, *Remapper, Result)
1587 : FunctionSamples();
1588 FunctionSamples &Samples = Remapper ? Remapped : I->second;
1589 SampleContext FContext = Samples.getContext();
1590 mergeSampleProfErrors(Result,
1591 ProfileMap[FContext].merge(Samples, Input.Weight));
1592 if (Result != sampleprof_error::success) {
1593 std::error_code EC = make_error_code(Result);
1594 handleMergeWriterError(errorCodeToError(EC), Input.Filename,
1595 FContext.toString());
1599 if (!DropProfileSymbolList) {
1600 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
1601 Reader->getProfileSymbolList();
1602 if (ReaderList)
1603 WriterList.merge(*ReaderList);
1607 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) {
1608 // Use threshold calculated from profile summary unless specified.
1609 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
1610 auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
1611 uint64_t SampleProfColdThreshold =
1612 ProfileSummaryBuilder::getColdCountThreshold(
1613 (Summary->getDetailedSummary()));
1615 // Trim and merge cold context profile using cold threshold above;
1616 SampleContextTrimmer(ProfileMap)
1617 .trimAndMergeColdContextProfiles(
1618 SampleProfColdThreshold, SampleTrimColdContext,
1619 SampleMergeColdContext, SampleColdContextFrameDepth, false);
1622 if (ProfileLayout == llvm::sampleprof::SPL_Flat) {
1623 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS);
1624 ProfileIsCS = FunctionSamples::ProfileIsCS = false;
1625 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) {
1626 ProfileConverter CSConverter(ProfileMap);
1627 CSConverter.convertCSProfiles();
1628 ProfileIsCS = FunctionSamples::ProfileIsCS = false;
1631 filterFunctions(ProfileMap);
1633 auto WriterOrErr =
1634 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
1635 if (std::error_code EC = WriterOrErr.getError())
1636 exitWithErrorCode(EC, OutputFilename);
1638 auto Writer = std::move(WriterOrErr.get());
1639 // WriterList will have StringRef refering to string in Buffer.
1640 // Make sure Buffer lives as long as WriterList.
1641 auto Buffer = getInputFileBuf(ProfileSymbolListFile);
1642 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
1643 CompressAllSections, UseMD5, GenPartialProfile);
1645 // If OutputSizeLimit is 0 (default), it is the same as write().
1646 if (std::error_code EC =
1647 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit))
1648 exitWithErrorCode(EC);
1651 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
1652 StringRef WeightStr, FileName;
1653 std::tie(WeightStr, FileName) = WeightedFilename.split(',');
1655 uint64_t Weight;
1656 if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
1657 exitWithError("input weight must be a positive integer");
1659 return {std::string(FileName), Weight};
1662 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
1663 StringRef Filename = WF.Filename;
1664 uint64_t Weight = WF.Weight;
1666 // If it's STDIN just pass it on.
1667 if (Filename == "-") {
1668 WNI.push_back({std::string(Filename), Weight});
1669 return;
1672 llvm::sys::fs::file_status Status;
1673 llvm::sys::fs::status(Filename, Status);
1674 if (!llvm::sys::fs::exists(Status))
1675 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
1676 Filename);
1677 // If it's a source file, collect it.
1678 if (llvm::sys::fs::is_regular_file(Status)) {
1679 WNI.push_back({std::string(Filename), Weight});
1680 return;
1683 if (llvm::sys::fs::is_directory(Status)) {
1684 std::error_code EC;
1685 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
1686 F != E && !EC; F.increment(EC)) {
1687 if (llvm::sys::fs::is_regular_file(F->path())) {
1688 addWeightedInput(WNI, {F->path(), Weight});
1691 if (EC)
1692 exitWithErrorCode(EC, Filename);
1696 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
1697 WeightedFileVector &WFV) {
1698 if (!Buffer)
1699 return;
1701 SmallVector<StringRef, 8> Entries;
1702 StringRef Data = Buffer->getBuffer();
1703 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
1704 for (const StringRef &FileWeightEntry : Entries) {
1705 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
1706 // Skip comments.
1707 if (SanitizedEntry.starts_with("#"))
1708 continue;
1709 // If there's no comma, it's an unweighted profile.
1710 else if (!SanitizedEntry.contains(','))
1711 addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
1712 else
1713 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
1717 static int merge_main(StringRef ProgName) {
1718 WeightedFileVector WeightedInputs;
1719 for (StringRef Filename : InputFilenames)
1720 addWeightedInput(WeightedInputs, {std::string(Filename), 1});
1721 for (StringRef WeightedFilename : WeightedInputFilenames)
1722 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
1724 // Make sure that the file buffer stays alive for the duration of the
1725 // weighted input vector's lifetime.
1726 auto Buffer = getInputFileBuf(InputFilenamesFile);
1727 parseInputFilenamesFile(Buffer.get(), WeightedInputs);
1729 if (WeightedInputs.empty())
1730 exitWithError("no input files specified. See " + ProgName + " merge -help");
1732 if (DumpInputFileList) {
1733 for (auto &WF : WeightedInputs)
1734 outs() << WF.Weight << "," << WF.Filename << "\n";
1735 return 0;
1738 std::unique_ptr<SymbolRemapper> Remapper;
1739 if (!RemappingFile.empty())
1740 Remapper = SymbolRemapper::create(RemappingFile);
1742 if (!SupplInstrWithSample.empty()) {
1743 if (ProfileKind != instr)
1744 exitWithError(
1745 "-supplement-instr-with-sample can only work with -instr. ");
1747 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse,
1748 SupplMinSizeThreshold, ZeroCounterThreshold,
1749 InstrProfColdThreshold);
1750 return 0;
1753 if (ProfileKind == instr)
1754 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings,
1755 ProfiledBinary);
1756 else
1757 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile,
1758 OutputSizeLimit);
1759 return 0;
1762 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
1763 static void overlapInstrProfile(const std::string &BaseFilename,
1764 const std::string &TestFilename,
1765 const OverlapFuncFilters &FuncFilter,
1766 raw_fd_ostream &OS, bool IsCS) {
1767 std::mutex ErrorLock;
1768 SmallSet<instrprof_error, 4> WriterErrorCodes;
1769 WriterContext Context(false, ErrorLock, WriterErrorCodes);
1770 WeightedFile WeightedInput{BaseFilename, 1};
1771 OverlapStats Overlap;
1772 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1773 if (E)
1774 exitWithError(std::move(E), "error in getting profile count sums");
1775 if (Overlap.Base.CountSum < 1.0f) {
1776 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1777 exit(0);
1779 if (Overlap.Test.CountSum < 1.0f) {
1780 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1781 exit(0);
1783 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context);
1784 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1785 IsCS);
1786 Overlap.dump(OS);
1789 namespace {
1790 struct SampleOverlapStats {
1791 SampleContext BaseName;
1792 SampleContext TestName;
1793 // Number of overlap units
1794 uint64_t OverlapCount = 0;
1795 // Total samples of overlap units
1796 uint64_t OverlapSample = 0;
1797 // Number of and total samples of units that only present in base or test
1798 // profile
1799 uint64_t BaseUniqueCount = 0;
1800 uint64_t BaseUniqueSample = 0;
1801 uint64_t TestUniqueCount = 0;
1802 uint64_t TestUniqueSample = 0;
1803 // Number of units and total samples in base or test profile
1804 uint64_t BaseCount = 0;
1805 uint64_t BaseSample = 0;
1806 uint64_t TestCount = 0;
1807 uint64_t TestSample = 0;
1808 // Number of and total samples of units that present in at least one profile
1809 uint64_t UnionCount = 0;
1810 uint64_t UnionSample = 0;
1811 // Weighted similarity
1812 double Similarity = 0.0;
1813 // For SampleOverlapStats instances representing functions, weights of the
1814 // function in base and test profiles
1815 double BaseWeight = 0.0;
1816 double TestWeight = 0.0;
1818 SampleOverlapStats() = default;
1820 } // end anonymous namespace
1822 namespace {
1823 struct FuncSampleStats {
1824 uint64_t SampleSum = 0;
1825 uint64_t MaxSample = 0;
1826 uint64_t HotBlockCount = 0;
1827 FuncSampleStats() = default;
1828 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1829 uint64_t HotBlockCount)
1830 : SampleSum(SampleSum), MaxSample(MaxSample),
1831 HotBlockCount(HotBlockCount) {}
1833 } // end anonymous namespace
1835 namespace {
1836 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1838 // Class for updating merging steps for two sorted maps. The class should be
1839 // instantiated with a map iterator type.
1840 template <class T> class MatchStep {
1841 public:
1842 MatchStep() = delete;
1844 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1845 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1846 SecondEnd(SecondEnd), Status(MS_None) {}
1848 bool areBothFinished() const {
1849 return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1852 bool isFirstFinished() const { return FirstIter == FirstEnd; }
1854 bool isSecondFinished() const { return SecondIter == SecondEnd; }
1856 /// Advance one step based on the previous match status unless the previous
1857 /// status is MS_None. Then update Status based on the comparison between two
1858 /// container iterators at the current step. If the previous status is
1859 /// MS_None, it means two iterators are at the beginning and no comparison has
1860 /// been made, so we simply update Status without advancing the iterators.
1861 void updateOneStep();
1863 T getFirstIter() const { return FirstIter; }
1865 T getSecondIter() const { return SecondIter; }
1867 MatchStatus getMatchStatus() const { return Status; }
1869 private:
1870 // Current iterator and end iterator of the first container.
1871 T FirstIter;
1872 T FirstEnd;
1873 // Current iterator and end iterator of the second container.
1874 T SecondIter;
1875 T SecondEnd;
1876 // Match status of the current step.
1877 MatchStatus Status;
1879 } // end anonymous namespace
1881 template <class T> void MatchStep<T>::updateOneStep() {
1882 switch (Status) {
1883 case MS_Match:
1884 ++FirstIter;
1885 ++SecondIter;
1886 break;
1887 case MS_FirstUnique:
1888 ++FirstIter;
1889 break;
1890 case MS_SecondUnique:
1891 ++SecondIter;
1892 break;
1893 case MS_None:
1894 break;
1897 // Update Status according to iterators at the current step.
1898 if (areBothFinished())
1899 return;
1900 if (FirstIter != FirstEnd &&
1901 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1902 Status = MS_FirstUnique;
1903 else if (SecondIter != SecondEnd &&
1904 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1905 Status = MS_SecondUnique;
1906 else
1907 Status = MS_Match;
1910 // Return the sum of line/block samples, the max line/block sample, and the
1911 // number of line/block samples above the given threshold in a function
1912 // including its inlinees.
1913 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1914 FuncSampleStats &FuncStats,
1915 uint64_t HotThreshold) {
1916 for (const auto &L : Func.getBodySamples()) {
1917 uint64_t Sample = L.second.getSamples();
1918 FuncStats.SampleSum += Sample;
1919 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1920 if (Sample >= HotThreshold)
1921 ++FuncStats.HotBlockCount;
1924 for (const auto &C : Func.getCallsiteSamples()) {
1925 for (const auto &F : C.second)
1926 getFuncSampleStats(F.second, FuncStats, HotThreshold);
1930 /// Predicate that determines if a function is hot with a given threshold. We
1931 /// keep it separate from its callsites for possible extension in the future.
1932 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1933 uint64_t HotThreshold) {
1934 // We intentionally compare the maximum sample count in a function with the
1935 // HotThreshold to get an approximate determination on hot functions.
1936 return (FuncStats.MaxSample >= HotThreshold);
1939 namespace {
1940 class SampleOverlapAggregator {
1941 public:
1942 SampleOverlapAggregator(const std::string &BaseFilename,
1943 const std::string &TestFilename,
1944 double LowSimilarityThreshold, double Epsilon,
1945 const OverlapFuncFilters &FuncFilter)
1946 : BaseFilename(BaseFilename), TestFilename(TestFilename),
1947 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1948 FuncFilter(FuncFilter) {}
1950 /// Detect 0-sample input profile and report to output stream. This interface
1951 /// should be called after loadProfiles().
1952 bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1954 /// Write out function-level similarity statistics for functions specified by
1955 /// options --function, --value-cutoff, and --similarity-cutoff.
1956 void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1958 /// Write out program-level similarity and overlap statistics.
1959 void dumpProgramSummary(raw_fd_ostream &OS) const;
1961 /// Write out hot-function and hot-block statistics for base_profile,
1962 /// test_profile, and their overlap. For both cases, the overlap HO is
1963 /// calculated as follows:
1964 /// Given the number of functions (or blocks) that are hot in both profiles
1965 /// HCommon and the number of functions (or blocks) that are hot in at
1966 /// least one profile HUnion, HO = HCommon / HUnion.
1967 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1969 /// This function tries matching functions in base and test profiles. For each
1970 /// pair of matched functions, it aggregates the function-level
1971 /// similarity into a profile-level similarity. It also dump function-level
1972 /// similarity information of functions specified by --function,
1973 /// --value-cutoff, and --similarity-cutoff options. The program-level
1974 /// similarity PS is computed as follows:
1975 /// Given function-level similarity FS(A) for all function A, the
1976 /// weight of function A in base profile WB(A), and the weight of function
1977 /// A in test profile WT(A), compute PS(base_profile, test_profile) =
1978 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1979 /// meaning no-overlap.
1980 void computeSampleProfileOverlap(raw_fd_ostream &OS);
1982 /// Initialize ProfOverlap with the sum of samples in base and test
1983 /// profiles. This function also computes and keeps the sum of samples and
1984 /// max sample counts of each function in BaseStats and TestStats for later
1985 /// use to avoid re-computations.
1986 void initializeSampleProfileOverlap();
1988 /// Load profiles specified by BaseFilename and TestFilename.
1989 std::error_code loadProfiles();
1991 using FuncSampleStatsMap =
1992 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
1994 private:
1995 SampleOverlapStats ProfOverlap;
1996 SampleOverlapStats HotFuncOverlap;
1997 SampleOverlapStats HotBlockOverlap;
1998 std::string BaseFilename;
1999 std::string TestFilename;
2000 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
2001 std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
2002 // BaseStats and TestStats hold FuncSampleStats for each function, with
2003 // function name as the key.
2004 FuncSampleStatsMap BaseStats;
2005 FuncSampleStatsMap TestStats;
2006 // Low similarity threshold in floating point number
2007 double LowSimilarityThreshold;
2008 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
2009 // for tracking hot blocks.
2010 uint64_t BaseHotThreshold;
2011 uint64_t TestHotThreshold;
2012 // A small threshold used to round the results of floating point accumulations
2013 // to resolve imprecision.
2014 const double Epsilon;
2015 std::multimap<double, SampleOverlapStats, std::greater<double>>
2016 FuncSimilarityDump;
2017 // FuncFilter carries specifications in options --value-cutoff and
2018 // --function.
2019 OverlapFuncFilters FuncFilter;
2020 // Column offsets for printing the function-level details table.
2021 static const unsigned int TestWeightCol = 15;
2022 static const unsigned int SimilarityCol = 30;
2023 static const unsigned int OverlapCol = 43;
2024 static const unsigned int BaseUniqueCol = 53;
2025 static const unsigned int TestUniqueCol = 67;
2026 static const unsigned int BaseSampleCol = 81;
2027 static const unsigned int TestSampleCol = 96;
2028 static const unsigned int FuncNameCol = 111;
2030 /// Return a similarity of two line/block sample counters in the same
2031 /// function in base and test profiles. The line/block-similarity BS(i) is
2032 /// computed as follows:
2033 /// For an offsets i, given the sample count at i in base profile BB(i),
2034 /// the sample count at i in test profile BT(i), the sum of sample counts
2035 /// in this function in base profile SB, and the sum of sample counts in
2036 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
2037 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
2038 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
2039 const SampleOverlapStats &FuncOverlap) const;
2041 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
2042 uint64_t HotBlockCount);
2044 void getHotFunctions(const FuncSampleStatsMap &ProfStats,
2045 FuncSampleStatsMap &HotFunc,
2046 uint64_t HotThreshold) const;
2048 void computeHotFuncOverlap();
2050 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
2051 /// Difference for two sample units in a matched function according to the
2052 /// given match status.
2053 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
2054 uint64_t HotBlockCount,
2055 SampleOverlapStats &FuncOverlap,
2056 double &Difference, MatchStatus Status);
2058 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
2059 /// Difference for unmatched callees that only present in one profile in a
2060 /// matched caller function.
2061 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
2062 SampleOverlapStats &FuncOverlap,
2063 double &Difference, MatchStatus Status);
2065 /// This function updates sample overlap statistics of an overlap function in
2066 /// base and test profile. It also calculates a function-internal similarity
2067 /// FIS as follows:
2068 /// For offsets i that have samples in at least one profile in this
2069 /// function A, given BS(i) returned by computeBlockSimilarity(), compute
2070 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
2071 /// 0.0 meaning no overlap.
2072 double computeSampleFunctionInternalOverlap(
2073 const sampleprof::FunctionSamples &BaseFunc,
2074 const sampleprof::FunctionSamples &TestFunc,
2075 SampleOverlapStats &FuncOverlap);
2077 /// Function-level similarity (FS) is a weighted value over function internal
2078 /// similarity (FIS). This function computes a function's FS from its FIS by
2079 /// applying the weight.
2080 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
2081 uint64_t TestFuncSample) const;
2083 /// The function-level similarity FS(A) for a function A is computed as
2084 /// follows:
2085 /// Compute a function-internal similarity FIS(A) by
2086 /// computeSampleFunctionInternalOverlap(). Then, with the weight of
2087 /// function A in base profile WB(A), and the weight of function A in test
2088 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
2089 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
2090 double
2091 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
2092 const sampleprof::FunctionSamples *TestFunc,
2093 SampleOverlapStats *FuncOverlap,
2094 uint64_t BaseFuncSample,
2095 uint64_t TestFuncSample);
2097 /// Profile-level similarity (PS) is a weighted aggregate over function-level
2098 /// similarities (FS). This method weights the FS value by the function
2099 /// weights in the base and test profiles for the aggregation.
2100 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
2101 uint64_t TestFuncSample) const;
2103 } // end anonymous namespace
2105 bool SampleOverlapAggregator::detectZeroSampleProfile(
2106 raw_fd_ostream &OS) const {
2107 bool HaveZeroSample = false;
2108 if (ProfOverlap.BaseSample == 0) {
2109 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
2110 HaveZeroSample = true;
2112 if (ProfOverlap.TestSample == 0) {
2113 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
2114 HaveZeroSample = true;
2116 return HaveZeroSample;
2119 double SampleOverlapAggregator::computeBlockSimilarity(
2120 uint64_t BaseSample, uint64_t TestSample,
2121 const SampleOverlapStats &FuncOverlap) const {
2122 double BaseFrac = 0.0;
2123 double TestFrac = 0.0;
2124 if (FuncOverlap.BaseSample > 0)
2125 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
2126 if (FuncOverlap.TestSample > 0)
2127 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
2128 return 1.0 - std::fabs(BaseFrac - TestFrac);
2131 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
2132 uint64_t TestSample,
2133 uint64_t HotBlockCount) {
2134 bool IsBaseHot = (BaseSample >= BaseHotThreshold);
2135 bool IsTestHot = (TestSample >= TestHotThreshold);
2136 if (!IsBaseHot && !IsTestHot)
2137 return;
2139 HotBlockOverlap.UnionCount += HotBlockCount;
2140 if (IsBaseHot)
2141 HotBlockOverlap.BaseCount += HotBlockCount;
2142 if (IsTestHot)
2143 HotBlockOverlap.TestCount += HotBlockCount;
2144 if (IsBaseHot && IsTestHot)
2145 HotBlockOverlap.OverlapCount += HotBlockCount;
2148 void SampleOverlapAggregator::getHotFunctions(
2149 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
2150 uint64_t HotThreshold) const {
2151 for (const auto &F : ProfStats) {
2152 if (isFunctionHot(F.second, HotThreshold))
2153 HotFunc.emplace(F.first, F.second);
2157 void SampleOverlapAggregator::computeHotFuncOverlap() {
2158 FuncSampleStatsMap BaseHotFunc;
2159 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
2160 HotFuncOverlap.BaseCount = BaseHotFunc.size();
2162 FuncSampleStatsMap TestHotFunc;
2163 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
2164 HotFuncOverlap.TestCount = TestHotFunc.size();
2165 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
2167 for (const auto &F : BaseHotFunc) {
2168 if (TestHotFunc.count(F.first))
2169 ++HotFuncOverlap.OverlapCount;
2170 else
2171 ++HotFuncOverlap.UnionCount;
2175 void SampleOverlapAggregator::updateOverlapStatsForFunction(
2176 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
2177 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
2178 assert(Status != MS_None &&
2179 "Match status should be updated before updating overlap statistics");
2180 if (Status == MS_FirstUnique) {
2181 TestSample = 0;
2182 FuncOverlap.BaseUniqueSample += BaseSample;
2183 } else if (Status == MS_SecondUnique) {
2184 BaseSample = 0;
2185 FuncOverlap.TestUniqueSample += TestSample;
2186 } else {
2187 ++FuncOverlap.OverlapCount;
2190 FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
2191 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
2192 Difference +=
2193 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
2194 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
2197 void SampleOverlapAggregator::updateForUnmatchedCallee(
2198 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
2199 double &Difference, MatchStatus Status) {
2200 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
2201 "Status must be either of the two unmatched cases");
2202 FuncSampleStats FuncStats;
2203 if (Status == MS_FirstUnique) {
2204 getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
2205 updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
2206 FuncStats.HotBlockCount, FuncOverlap,
2207 Difference, Status);
2208 } else {
2209 getFuncSampleStats(Func, FuncStats, TestHotThreshold);
2210 updateOverlapStatsForFunction(0, FuncStats.SampleSum,
2211 FuncStats.HotBlockCount, FuncOverlap,
2212 Difference, Status);
2216 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
2217 const sampleprof::FunctionSamples &BaseFunc,
2218 const sampleprof::FunctionSamples &TestFunc,
2219 SampleOverlapStats &FuncOverlap) {
2221 using namespace sampleprof;
2223 double Difference = 0;
2225 // Accumulate Difference for regular line/block samples in the function.
2226 // We match them through sort-merge join algorithm because
2227 // FunctionSamples::getBodySamples() returns a map of sample counters ordered
2228 // by their offsets.
2229 MatchStep<BodySampleMap::const_iterator> BlockIterStep(
2230 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
2231 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
2232 BlockIterStep.updateOneStep();
2233 while (!BlockIterStep.areBothFinished()) {
2234 uint64_t BaseSample =
2235 BlockIterStep.isFirstFinished()
2237 : BlockIterStep.getFirstIter()->second.getSamples();
2238 uint64_t TestSample =
2239 BlockIterStep.isSecondFinished()
2241 : BlockIterStep.getSecondIter()->second.getSamples();
2242 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
2243 Difference, BlockIterStep.getMatchStatus());
2245 BlockIterStep.updateOneStep();
2248 // Accumulate Difference for callsite lines in the function. We match
2249 // them through sort-merge algorithm because
2250 // FunctionSamples::getCallsiteSamples() returns a map of callsite records
2251 // ordered by their offsets.
2252 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
2253 BaseFunc.getCallsiteSamples().cbegin(),
2254 BaseFunc.getCallsiteSamples().cend(),
2255 TestFunc.getCallsiteSamples().cbegin(),
2256 TestFunc.getCallsiteSamples().cend());
2257 CallsiteIterStep.updateOneStep();
2258 while (!CallsiteIterStep.areBothFinished()) {
2259 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
2260 assert(CallsiteStepStatus != MS_None &&
2261 "Match status should be updated before entering loop body");
2263 if (CallsiteStepStatus != MS_Match) {
2264 auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
2265 ? CallsiteIterStep.getFirstIter()
2266 : CallsiteIterStep.getSecondIter();
2267 for (const auto &F : Callsite->second)
2268 updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
2269 CallsiteStepStatus);
2270 } else {
2271 // There may be multiple inlinees at the same offset, so we need to try
2272 // matching all of them. This match is implemented through sort-merge
2273 // algorithm because callsite records at the same offset are ordered by
2274 // function names.
2275 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
2276 CallsiteIterStep.getFirstIter()->second.cbegin(),
2277 CallsiteIterStep.getFirstIter()->second.cend(),
2278 CallsiteIterStep.getSecondIter()->second.cbegin(),
2279 CallsiteIterStep.getSecondIter()->second.cend());
2280 CalleeIterStep.updateOneStep();
2281 while (!CalleeIterStep.areBothFinished()) {
2282 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
2283 if (CalleeStepStatus != MS_Match) {
2284 auto Callee = (CalleeStepStatus == MS_FirstUnique)
2285 ? CalleeIterStep.getFirstIter()
2286 : CalleeIterStep.getSecondIter();
2287 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
2288 CalleeStepStatus);
2289 } else {
2290 // An inlined function can contain other inlinees inside, so compute
2291 // the Difference recursively.
2292 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
2293 CalleeIterStep.getFirstIter()->second,
2294 CalleeIterStep.getSecondIter()->second,
2295 FuncOverlap);
2297 CalleeIterStep.updateOneStep();
2300 CallsiteIterStep.updateOneStep();
2303 // Difference reflects the total differences of line/block samples in this
2304 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
2305 // reflect the similarity between function profiles in [0.0f to 1.0f].
2306 return (2.0 - Difference) / 2;
2309 double SampleOverlapAggregator::weightForFuncSimilarity(
2310 double FuncInternalSimilarity, uint64_t BaseFuncSample,
2311 uint64_t TestFuncSample) const {
2312 // Compute the weight as the distance between the function weights in two
2313 // profiles.
2314 double BaseFrac = 0.0;
2315 double TestFrac = 0.0;
2316 assert(ProfOverlap.BaseSample > 0 &&
2317 "Total samples in base profile should be greater than 0");
2318 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
2319 assert(ProfOverlap.TestSample > 0 &&
2320 "Total samples in test profile should be greater than 0");
2321 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
2322 double WeightDistance = std::fabs(BaseFrac - TestFrac);
2324 // Take WeightDistance into the similarity.
2325 return FuncInternalSimilarity * (1 - WeightDistance);
2328 double
2329 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
2330 uint64_t BaseFuncSample,
2331 uint64_t TestFuncSample) const {
2333 double BaseFrac = 0.0;
2334 double TestFrac = 0.0;
2335 assert(ProfOverlap.BaseSample > 0 &&
2336 "Total samples in base profile should be greater than 0");
2337 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
2338 assert(ProfOverlap.TestSample > 0 &&
2339 "Total samples in test profile should be greater than 0");
2340 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
2341 return FuncSimilarity * (BaseFrac + TestFrac);
2344 double SampleOverlapAggregator::computeSampleFunctionOverlap(
2345 const sampleprof::FunctionSamples *BaseFunc,
2346 const sampleprof::FunctionSamples *TestFunc,
2347 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
2348 uint64_t TestFuncSample) {
2349 // Default function internal similarity before weighted, meaning two functions
2350 // has no overlap.
2351 const double DefaultFuncInternalSimilarity = 0;
2352 double FuncSimilarity;
2353 double FuncInternalSimilarity;
2355 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
2356 // In this case, we use DefaultFuncInternalSimilarity as the function internal
2357 // similarity.
2358 if (!BaseFunc || !TestFunc) {
2359 FuncInternalSimilarity = DefaultFuncInternalSimilarity;
2360 } else {
2361 assert(FuncOverlap != nullptr &&
2362 "FuncOverlap should be provided in this case");
2363 FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
2364 *BaseFunc, *TestFunc, *FuncOverlap);
2365 // Now, FuncInternalSimilarity may be a little less than 0 due to
2366 // imprecision of floating point accumulations. Make it zero if the
2367 // difference is below Epsilon.
2368 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
2370 : FuncInternalSimilarity;
2372 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
2373 BaseFuncSample, TestFuncSample);
2374 return FuncSimilarity;
2377 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
2378 using namespace sampleprof;
2380 std::unordered_map<SampleContext, const FunctionSamples *,
2381 SampleContext::Hash>
2382 BaseFuncProf;
2383 const auto &BaseProfiles = BaseReader->getProfiles();
2384 for (const auto &BaseFunc : BaseProfiles) {
2385 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
2387 ProfOverlap.UnionCount = BaseFuncProf.size();
2389 const auto &TestProfiles = TestReader->getProfiles();
2390 for (const auto &TestFunc : TestProfiles) {
2391 SampleOverlapStats FuncOverlap;
2392 FuncOverlap.TestName = TestFunc.second.getContext();
2393 assert(TestStats.count(FuncOverlap.TestName) &&
2394 "TestStats should have records for all functions in test profile "
2395 "except inlinees");
2396 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
2398 bool Matched = false;
2399 const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
2400 if (Match == BaseFuncProf.end()) {
2401 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
2402 ++ProfOverlap.TestUniqueCount;
2403 ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
2404 FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
2406 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
2408 double FuncSimilarity = computeSampleFunctionOverlap(
2409 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
2410 ProfOverlap.Similarity +=
2411 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
2413 ++ProfOverlap.UnionCount;
2414 ProfOverlap.UnionSample += FuncStats.SampleSum;
2415 } else {
2416 ++ProfOverlap.OverlapCount;
2418 // Two functions match with each other. Compute function-level overlap and
2419 // aggregate them into profile-level overlap.
2420 FuncOverlap.BaseName = Match->second->getContext();
2421 assert(BaseStats.count(FuncOverlap.BaseName) &&
2422 "BaseStats should have records for all functions in base profile "
2423 "except inlinees");
2424 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
2426 FuncOverlap.Similarity = computeSampleFunctionOverlap(
2427 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
2428 FuncOverlap.TestSample);
2429 ProfOverlap.Similarity +=
2430 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
2431 FuncOverlap.TestSample);
2432 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
2433 ProfOverlap.UnionSample += FuncOverlap.UnionSample;
2435 // Accumulate the percentage of base unique and test unique samples into
2436 // ProfOverlap.
2437 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
2438 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
2440 // Remove matched base functions for later reporting functions not found
2441 // in test profile.
2442 BaseFuncProf.erase(Match);
2443 Matched = true;
2446 // Print function-level similarity information if specified by options.
2447 assert(TestStats.count(FuncOverlap.TestName) &&
2448 "TestStats should have records for all functions in test profile "
2449 "except inlinees");
2450 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
2451 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
2452 (Matched && !FuncFilter.NameFilter.empty() &&
2453 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
2454 std::string::npos)) {
2455 assert(ProfOverlap.BaseSample > 0 &&
2456 "Total samples in base profile should be greater than 0");
2457 FuncOverlap.BaseWeight =
2458 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
2459 assert(ProfOverlap.TestSample > 0 &&
2460 "Total samples in test profile should be greater than 0");
2461 FuncOverlap.TestWeight =
2462 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
2463 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
2467 // Traverse through functions in base profile but not in test profile.
2468 for (const auto &F : BaseFuncProf) {
2469 assert(BaseStats.count(F.second->getContext()) &&
2470 "BaseStats should have records for all functions in base profile "
2471 "except inlinees");
2472 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
2473 ++ProfOverlap.BaseUniqueCount;
2474 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
2476 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
2478 double FuncSimilarity = computeSampleFunctionOverlap(
2479 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
2480 ProfOverlap.Similarity +=
2481 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
2483 ProfOverlap.UnionSample += FuncStats.SampleSum;
2486 // Now, ProfSimilarity may be a little greater than 1 due to imprecision
2487 // of floating point accumulations. Make it 1.0 if the difference is below
2488 // Epsilon.
2489 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
2491 : ProfOverlap.Similarity;
2493 computeHotFuncOverlap();
2496 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
2497 const auto &BaseProf = BaseReader->getProfiles();
2498 for (const auto &I : BaseProf) {
2499 ++ProfOverlap.BaseCount;
2500 FuncSampleStats FuncStats;
2501 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
2502 ProfOverlap.BaseSample += FuncStats.SampleSum;
2503 BaseStats.emplace(I.second.getContext(), FuncStats);
2506 const auto &TestProf = TestReader->getProfiles();
2507 for (const auto &I : TestProf) {
2508 ++ProfOverlap.TestCount;
2509 FuncSampleStats FuncStats;
2510 getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
2511 ProfOverlap.TestSample += FuncStats.SampleSum;
2512 TestStats.emplace(I.second.getContext(), FuncStats);
2515 ProfOverlap.BaseName = StringRef(BaseFilename);
2516 ProfOverlap.TestName = StringRef(TestFilename);
2519 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
2520 using namespace sampleprof;
2522 if (FuncSimilarityDump.empty())
2523 return;
2525 formatted_raw_ostream FOS(OS);
2526 FOS << "Function-level details:\n";
2527 FOS << "Base weight";
2528 FOS.PadToColumn(TestWeightCol);
2529 FOS << "Test weight";
2530 FOS.PadToColumn(SimilarityCol);
2531 FOS << "Similarity";
2532 FOS.PadToColumn(OverlapCol);
2533 FOS << "Overlap";
2534 FOS.PadToColumn(BaseUniqueCol);
2535 FOS << "Base unique";
2536 FOS.PadToColumn(TestUniqueCol);
2537 FOS << "Test unique";
2538 FOS.PadToColumn(BaseSampleCol);
2539 FOS << "Base samples";
2540 FOS.PadToColumn(TestSampleCol);
2541 FOS << "Test samples";
2542 FOS.PadToColumn(FuncNameCol);
2543 FOS << "Function name\n";
2544 for (const auto &F : FuncSimilarityDump) {
2545 double OverlapPercent =
2546 F.second.UnionSample > 0
2547 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
2548 : 0;
2549 double BaseUniquePercent =
2550 F.second.BaseSample > 0
2551 ? static_cast<double>(F.second.BaseUniqueSample) /
2552 F.second.BaseSample
2553 : 0;
2554 double TestUniquePercent =
2555 F.second.TestSample > 0
2556 ? static_cast<double>(F.second.TestUniqueSample) /
2557 F.second.TestSample
2558 : 0;
2560 FOS << format("%.2f%%", F.second.BaseWeight * 100);
2561 FOS.PadToColumn(TestWeightCol);
2562 FOS << format("%.2f%%", F.second.TestWeight * 100);
2563 FOS.PadToColumn(SimilarityCol);
2564 FOS << format("%.2f%%", F.second.Similarity * 100);
2565 FOS.PadToColumn(OverlapCol);
2566 FOS << format("%.2f%%", OverlapPercent * 100);
2567 FOS.PadToColumn(BaseUniqueCol);
2568 FOS << format("%.2f%%", BaseUniquePercent * 100);
2569 FOS.PadToColumn(TestUniqueCol);
2570 FOS << format("%.2f%%", TestUniquePercent * 100);
2571 FOS.PadToColumn(BaseSampleCol);
2572 FOS << F.second.BaseSample;
2573 FOS.PadToColumn(TestSampleCol);
2574 FOS << F.second.TestSample;
2575 FOS.PadToColumn(FuncNameCol);
2576 FOS << F.second.TestName.toString() << "\n";
2580 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
2581 OS << "Profile overlap infomation for base_profile: "
2582 << ProfOverlap.BaseName.toString()
2583 << " and test_profile: " << ProfOverlap.TestName.toString()
2584 << "\nProgram level:\n";
2586 OS << " Whole program profile similarity: "
2587 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
2589 assert(ProfOverlap.UnionSample > 0 &&
2590 "Total samples in two profile should be greater than 0");
2591 double OverlapPercent =
2592 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
2593 assert(ProfOverlap.BaseSample > 0 &&
2594 "Total samples in base profile should be greater than 0");
2595 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
2596 ProfOverlap.BaseSample;
2597 assert(ProfOverlap.TestSample > 0 &&
2598 "Total samples in test profile should be greater than 0");
2599 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
2600 ProfOverlap.TestSample;
2602 OS << " Whole program sample overlap: "
2603 << format("%.3f%%", OverlapPercent * 100) << "\n";
2604 OS << " percentage of samples unique in base profile: "
2605 << format("%.3f%%", BaseUniquePercent * 100) << "\n";
2606 OS << " percentage of samples unique in test profile: "
2607 << format("%.3f%%", TestUniquePercent * 100) << "\n";
2608 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n"
2609 << " total samples in test profile: " << ProfOverlap.TestSample << "\n";
2611 assert(ProfOverlap.UnionCount > 0 &&
2612 "There should be at least one function in two input profiles");
2613 double FuncOverlapPercent =
2614 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
2615 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
2616 << "\n";
2617 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n";
2618 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount
2619 << "\n";
2620 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount
2621 << "\n";
2624 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
2625 raw_fd_ostream &OS) const {
2626 assert(HotFuncOverlap.UnionCount > 0 &&
2627 "There should be at least one hot function in two input profiles");
2628 OS << " Hot-function overlap: "
2629 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
2630 HotFuncOverlap.UnionCount * 100)
2631 << "\n";
2632 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
2633 OS << " hot functions unique in base profile: "
2634 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
2635 OS << " hot functions unique in test profile: "
2636 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
2638 assert(HotBlockOverlap.UnionCount > 0 &&
2639 "There should be at least one hot block in two input profiles");
2640 OS << " Hot-block overlap: "
2641 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
2642 HotBlockOverlap.UnionCount * 100)
2643 << "\n";
2644 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
2645 OS << " hot blocks unique in base profile: "
2646 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
2647 OS << " hot blocks unique in test profile: "
2648 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
2651 std::error_code SampleOverlapAggregator::loadProfiles() {
2652 using namespace sampleprof;
2654 LLVMContext Context;
2655 auto FS = vfs::getRealFileSystem();
2656 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS,
2657 FSDiscriminatorPassOption);
2658 if (std::error_code EC = BaseReaderOrErr.getError())
2659 exitWithErrorCode(EC, BaseFilename);
2661 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS,
2662 FSDiscriminatorPassOption);
2663 if (std::error_code EC = TestReaderOrErr.getError())
2664 exitWithErrorCode(EC, TestFilename);
2666 BaseReader = std::move(BaseReaderOrErr.get());
2667 TestReader = std::move(TestReaderOrErr.get());
2669 if (std::error_code EC = BaseReader->read())
2670 exitWithErrorCode(EC, BaseFilename);
2671 if (std::error_code EC = TestReader->read())
2672 exitWithErrorCode(EC, TestFilename);
2673 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
2674 exitWithError(
2675 "cannot compare probe-based profile with non-probe-based profile");
2676 if (BaseReader->profileIsCS() != TestReader->profileIsCS())
2677 exitWithError("cannot compare CS profile with non-CS profile");
2679 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
2680 // profile summary.
2681 ProfileSummary &BasePS = BaseReader->getSummary();
2682 ProfileSummary &TestPS = TestReader->getSummary();
2683 BaseHotThreshold =
2684 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
2685 TestHotThreshold =
2686 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
2688 return std::error_code();
2691 void overlapSampleProfile(const std::string &BaseFilename,
2692 const std::string &TestFilename,
2693 const OverlapFuncFilters &FuncFilter,
2694 uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
2695 using namespace sampleprof;
2697 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
2698 // report 2--3 places after decimal point in percentage numbers.
2699 SampleOverlapAggregator OverlapAggr(
2700 BaseFilename, TestFilename,
2701 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
2702 if (std::error_code EC = OverlapAggr.loadProfiles())
2703 exitWithErrorCode(EC);
2705 OverlapAggr.initializeSampleProfileOverlap();
2706 if (OverlapAggr.detectZeroSampleProfile(OS))
2707 return;
2709 OverlapAggr.computeSampleProfileOverlap(OS);
2711 OverlapAggr.dumpProgramSummary(OS);
2712 OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
2713 OverlapAggr.dumpFuncSimilarity(OS);
2716 static int overlap_main() {
2717 std::error_code EC;
2718 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2719 if (EC)
2720 exitWithErrorCode(EC, OutputFilename);
2722 if (ProfileKind == instr)
2723 overlapInstrProfile(BaseFilename, TestFilename,
2724 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter},
2725 OS, IsCS);
2726 else
2727 overlapSampleProfile(BaseFilename, TestFilename,
2728 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter},
2729 SimilarityCutoff, OS);
2731 return 0;
2734 namespace {
2735 struct ValueSitesStats {
2736 ValueSitesStats() = default;
2737 uint64_t TotalNumValueSites = 0;
2738 uint64_t TotalNumValueSitesWithValueProfile = 0;
2739 uint64_t TotalNumValues = 0;
2740 std::vector<unsigned> ValueSitesHistogram;
2742 } // namespace
2744 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2745 ValueSitesStats &Stats, raw_fd_ostream &OS,
2746 InstrProfSymtab *Symtab) {
2747 uint32_t NS = Func.getNumValueSites(VK);
2748 Stats.TotalNumValueSites += NS;
2749 for (size_t I = 0; I < NS; ++I) {
2750 auto VD = Func.getValueArrayForSite(VK, I);
2751 uint32_t NV = VD.size();
2752 if (NV == 0)
2753 continue;
2754 Stats.TotalNumValues += NV;
2755 Stats.TotalNumValueSitesWithValueProfile++;
2756 if (NV > Stats.ValueSitesHistogram.size())
2757 Stats.ValueSitesHistogram.resize(NV, 0);
2758 Stats.ValueSitesHistogram[NV - 1]++;
2760 uint64_t SiteSum = 0;
2761 for (const auto &V : VD)
2762 SiteSum += V.Count;
2763 if (SiteSum == 0)
2764 SiteSum = 1;
2766 for (const auto &V : VD) {
2767 OS << "\t[ " << format("%2u", I) << ", ";
2768 if (Symtab == nullptr)
2769 OS << format("%4" PRIu64, V.Value);
2770 else
2771 OS << Symtab->getFuncOrVarName(V.Value);
2772 OS << ", " << format("%10" PRId64, V.Count) << " ] ("
2773 << format("%.2f%%", (V.Count * 100.0 / SiteSum)) << ")\n";
2778 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2779 ValueSitesStats &Stats) {
2780 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n";
2781 OS << " Total number of sites with values: "
2782 << Stats.TotalNumValueSitesWithValueProfile << "\n";
2783 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n";
2785 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n";
2786 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2787 if (Stats.ValueSitesHistogram[I] > 0)
2788 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2792 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
2793 if (SFormat == ShowFormat::Json)
2794 exitWithError("JSON output is not supported for instr profiles");
2795 if (SFormat == ShowFormat::Yaml)
2796 exitWithError("YAML output is not supported for instr profiles");
2797 auto FS = vfs::getRealFileSystem();
2798 auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
2799 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2800 if (ShowDetailedSummary && Cutoffs.empty()) {
2801 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs;
2803 InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2804 if (Error E = ReaderOrErr.takeError())
2805 exitWithError(std::move(E), Filename);
2807 auto Reader = std::move(ReaderOrErr.get());
2808 bool IsIRInstr = Reader->isIRLevelProfile();
2809 size_t ShownFunctions = 0;
2810 size_t BelowCutoffFunctions = 0;
2811 int NumVPKind = IPVK_Last - IPVK_First + 1;
2812 std::vector<ValueSitesStats> VPStats(NumVPKind);
2814 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2815 const std::pair<std::string, uint64_t> &v2) {
2816 return v1.second > v2.second;
2819 std::priority_queue<std::pair<std::string, uint64_t>,
2820 std::vector<std::pair<std::string, uint64_t>>,
2821 decltype(MinCmp)>
2822 HottestFuncs(MinCmp);
2824 if (!TextFormat && OnlyListBelow) {
2825 OS << "The list of functions with the maximum counter less than "
2826 << ShowValueCutoff << ":\n";
2829 // Add marker so that IR-level instrumentation round-trips properly.
2830 if (TextFormat && IsIRInstr)
2831 OS << ":ir\n";
2833 for (const auto &Func : *Reader) {
2834 if (Reader->isIRLevelProfile()) {
2835 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2836 if (FuncIsCS != ShowCS)
2837 continue;
2839 bool Show = ShowAllFunctions ||
2840 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter));
2842 bool doTextFormatDump = (Show && TextFormat);
2844 if (doTextFormatDump) {
2845 InstrProfSymtab &Symtab = Reader->getSymtab();
2846 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2847 OS);
2848 continue;
2851 assert(Func.Counts.size() > 0 && "function missing entry counter");
2852 Builder.addRecord(Func);
2854 if (ShowCovered) {
2855 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; }))
2856 OS << Func.Name << "\n";
2857 continue;
2860 uint64_t FuncMax = 0;
2861 uint64_t FuncSum = 0;
2863 auto PseudoKind = Func.getCountPseudoKind();
2864 if (PseudoKind != InstrProfRecord::NotPseudo) {
2865 if (Show) {
2866 if (!ShownFunctions)
2867 OS << "Counters:\n";
2868 ++ShownFunctions;
2869 OS << " " << Func.Name << ":\n"
2870 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2871 << " Counters: " << Func.Counts.size();
2872 if (PseudoKind == InstrProfRecord::PseudoHot)
2873 OS << " <PseudoHot>\n";
2874 else if (PseudoKind == InstrProfRecord::PseudoWarm)
2875 OS << " <PseudoWarm>\n";
2876 else
2877 llvm_unreachable("Unknown PseudoKind");
2879 continue;
2882 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2883 FuncMax = std::max(FuncMax, Func.Counts[I]);
2884 FuncSum += Func.Counts[I];
2887 if (FuncMax < ShowValueCutoff) {
2888 ++BelowCutoffFunctions;
2889 if (OnlyListBelow) {
2890 OS << " " << Func.Name << ": (Max = " << FuncMax
2891 << " Sum = " << FuncSum << ")\n";
2893 continue;
2894 } else if (OnlyListBelow)
2895 continue;
2897 if (TopNFunctions) {
2898 if (HottestFuncs.size() == TopNFunctions) {
2899 if (HottestFuncs.top().second < FuncMax) {
2900 HottestFuncs.pop();
2901 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2903 } else
2904 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2907 if (Show) {
2908 if (!ShownFunctions)
2909 OS << "Counters:\n";
2911 ++ShownFunctions;
2913 OS << " " << Func.Name << ":\n"
2914 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2915 << " Counters: " << Func.Counts.size() << "\n";
2916 if (!IsIRInstr)
2917 OS << " Function count: " << Func.Counts[0] << "\n";
2919 if (ShowIndirectCallTargets)
2920 OS << " Indirect Call Site Count: "
2921 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2923 if (ShowVTables)
2924 OS << " Number of instrumented vtables: "
2925 << Func.getNumValueSites(IPVK_VTableTarget) << "\n";
2927 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2928 if (ShowMemOPSizes && NumMemOPCalls > 0)
2929 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls
2930 << "\n";
2932 if (ShowCounts) {
2933 OS << " Block counts: [";
2934 size_t Start = (IsIRInstr ? 0 : 1);
2935 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2936 OS << (I == Start ? "" : ", ") << Func.Counts[I];
2938 OS << "]\n";
2941 if (ShowIndirectCallTargets) {
2942 OS << " Indirect Target Results:\n";
2943 traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2944 VPStats[IPVK_IndirectCallTarget], OS,
2945 &(Reader->getSymtab()));
2948 if (ShowVTables) {
2949 OS << " VTable Results:\n";
2950 traverseAllValueSites(Func, IPVK_VTableTarget,
2951 VPStats[IPVK_VTableTarget], OS,
2952 &(Reader->getSymtab()));
2955 if (ShowMemOPSizes && NumMemOPCalls > 0) {
2956 OS << " Memory Intrinsic Size Results:\n";
2957 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2958 nullptr);
2962 if (Reader->hasError())
2963 exitWithError(Reader->getError(), Filename);
2965 if (TextFormat || ShowCovered)
2966 return 0;
2967 std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2968 bool IsIR = Reader->isIRLevelProfile();
2969 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2970 if (IsIR)
2971 OS << " entry_first = " << Reader->instrEntryBBEnabled();
2972 OS << "\n";
2973 if (ShowAllFunctions || !FuncNameFilter.empty())
2974 OS << "Functions shown: " << ShownFunctions << "\n";
2975 OS << "Total functions: " << PS->getNumFunctions() << "\n";
2976 if (ShowValueCutoff > 0) {
2977 OS << "Number of functions with maximum count (< " << ShowValueCutoff
2978 << "): " << BelowCutoffFunctions << "\n";
2979 OS << "Number of functions with maximum count (>= " << ShowValueCutoff
2980 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2982 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2983 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2985 if (TopNFunctions) {
2986 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2987 while (!HottestFuncs.empty()) {
2988 SortedHottestFuncs.emplace_back(HottestFuncs.top());
2989 HottestFuncs.pop();
2991 OS << "Top " << TopNFunctions
2992 << " functions with the largest internal block counts: \n";
2993 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2994 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2997 if (ShownFunctions && ShowIndirectCallTargets) {
2998 OS << "Statistics for indirect call sites profile:\n";
2999 showValueSitesStats(OS, IPVK_IndirectCallTarget,
3000 VPStats[IPVK_IndirectCallTarget]);
3003 if (ShownFunctions && ShowVTables) {
3004 OS << "Statistics for vtable profile:\n";
3005 showValueSitesStats(OS, IPVK_VTableTarget, VPStats[IPVK_VTableTarget]);
3008 if (ShownFunctions && ShowMemOPSizes) {
3009 OS << "Statistics for memory intrinsic calls sizes profile:\n";
3010 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
3013 if (ShowDetailedSummary) {
3014 OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
3015 OS << "Total count: " << PS->getTotalCount() << "\n";
3016 PS->printDetailedSummary(OS);
3019 if (ShowBinaryIds)
3020 if (Error E = Reader->printBinaryIds(OS))
3021 exitWithError(std::move(E), Filename);
3023 if (ShowProfileVersion)
3024 OS << "Profile version: " << Reader->getVersion() << "\n";
3026 if (ShowTemporalProfTraces) {
3027 auto &Traces = Reader->getTemporalProfTraces();
3028 OS << "Temporal Profile Traces (samples=" << Traces.size()
3029 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n";
3030 for (unsigned i = 0; i < Traces.size(); i++) {
3031 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight
3032 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n";
3033 for (auto &NameRef : Traces[i].FunctionNameRefs)
3034 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n";
3038 return 0;
3041 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
3042 raw_fd_ostream &OS) {
3043 if (!Reader->dumpSectionInfo(OS)) {
3044 WithColor::warning() << "-show-sec-info-only is only supported for "
3045 << "sample profile in extbinary format and is "
3046 << "ignored for other formats.\n";
3047 return;
3051 namespace {
3052 struct HotFuncInfo {
3053 std::string FuncName;
3054 uint64_t TotalCount = 0;
3055 double TotalCountPercent = 0.0f;
3056 uint64_t MaxCount = 0;
3057 uint64_t EntryCount = 0;
3059 HotFuncInfo() = default;
3061 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
3062 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
3063 MaxCount(MS), EntryCount(ES) {}
3065 } // namespace
3067 // Print out detailed information about hot functions in PrintValues vector.
3068 // Users specify titles and offset of every columns through ColumnTitle and
3069 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
3070 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
3071 // print out or let it be an empty string.
3072 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
3073 const std::vector<int> &ColumnOffset,
3074 const std::vector<HotFuncInfo> &PrintValues,
3075 uint64_t HotFuncCount, uint64_t TotalFuncCount,
3076 uint64_t HotProfCount, uint64_t TotalProfCount,
3077 const std::string &HotFuncMetric,
3078 uint32_t TopNFunctions, raw_fd_ostream &OS) {
3079 assert(ColumnOffset.size() == ColumnTitle.size() &&
3080 "ColumnOffset and ColumnTitle should have the same size");
3081 assert(ColumnTitle.size() >= 4 &&
3082 "ColumnTitle should have at least 4 elements");
3083 assert(TotalFuncCount > 0 &&
3084 "There should be at least one function in the profile");
3085 double TotalProfPercent = 0;
3086 if (TotalProfCount > 0)
3087 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
3089 formatted_raw_ostream FOS(OS);
3090 FOS << HotFuncCount << " out of " << TotalFuncCount
3091 << " functions with profile ("
3092 << format("%.2f%%",
3093 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
3094 << ") are considered hot functions";
3095 if (!HotFuncMetric.empty())
3096 FOS << " (" << HotFuncMetric << ")";
3097 FOS << ".\n";
3098 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
3099 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
3101 for (size_t I = 0; I < ColumnTitle.size(); ++I) {
3102 FOS.PadToColumn(ColumnOffset[I]);
3103 FOS << ColumnTitle[I];
3105 FOS << "\n";
3107 uint32_t Count = 0;
3108 for (const auto &R : PrintValues) {
3109 if (TopNFunctions && (Count++ == TopNFunctions))
3110 break;
3111 FOS.PadToColumn(ColumnOffset[0]);
3112 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
3113 FOS.PadToColumn(ColumnOffset[1]);
3114 FOS << R.MaxCount;
3115 FOS.PadToColumn(ColumnOffset[2]);
3116 FOS << R.EntryCount;
3117 FOS.PadToColumn(ColumnOffset[3]);
3118 FOS << R.FuncName << "\n";
3122 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
3123 ProfileSummary &PS, uint32_t TopN,
3124 raw_fd_ostream &OS) {
3125 using namespace sampleprof;
3127 const uint32_t HotFuncCutoff = 990000;
3128 auto &SummaryVector = PS.getDetailedSummary();
3129 uint64_t MinCountThreshold = 0;
3130 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
3131 if (SummaryEntry.Cutoff == HotFuncCutoff) {
3132 MinCountThreshold = SummaryEntry.MinCount;
3133 break;
3137 // Traverse all functions in the profile and keep only hot functions.
3138 // The following loop also calculates the sum of total samples of all
3139 // functions.
3140 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
3141 std::greater<uint64_t>>
3142 HotFunc;
3143 uint64_t ProfileTotalSample = 0;
3144 uint64_t HotFuncSample = 0;
3145 uint64_t HotFuncCount = 0;
3147 for (const auto &I : Profiles) {
3148 FuncSampleStats FuncStats;
3149 const FunctionSamples &FuncProf = I.second;
3150 ProfileTotalSample += FuncProf.getTotalSamples();
3151 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
3153 if (isFunctionHot(FuncStats, MinCountThreshold)) {
3154 HotFunc.emplace(FuncProf.getTotalSamples(),
3155 std::make_pair(&(I.second), FuncStats.MaxSample));
3156 HotFuncSample += FuncProf.getTotalSamples();
3157 ++HotFuncCount;
3161 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
3162 "Entry sample", "Function name"};
3163 std::vector<int> ColumnOffset{0, 24, 42, 58};
3164 std::string Metric =
3165 std::string("max sample >= ") + std::to_string(MinCountThreshold);
3166 std::vector<HotFuncInfo> PrintValues;
3167 for (const auto &FuncPair : HotFunc) {
3168 const FunctionSamples &Func = *FuncPair.second.first;
3169 double TotalSamplePercent =
3170 (ProfileTotalSample > 0)
3171 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
3172 : 0;
3173 PrintValues.emplace_back(
3174 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(),
3175 TotalSamplePercent, FuncPair.second.second,
3176 Func.getHeadSamplesEstimate()));
3178 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
3179 Profiles.size(), HotFuncSample, ProfileTotalSample,
3180 Metric, TopN, OS);
3182 return 0;
3185 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
3186 if (SFormat == ShowFormat::Yaml)
3187 exitWithError("YAML output is not supported for sample profiles");
3188 using namespace sampleprof;
3189 LLVMContext Context;
3190 auto FS = vfs::getRealFileSystem();
3191 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS,
3192 FSDiscriminatorPassOption);
3193 if (std::error_code EC = ReaderOrErr.getError())
3194 exitWithErrorCode(EC, Filename);
3196 auto Reader = std::move(ReaderOrErr.get());
3197 if (ShowSectionInfoOnly) {
3198 showSectionInfo(Reader.get(), OS);
3199 return 0;
3202 if (std::error_code EC = Reader->read())
3203 exitWithErrorCode(EC, Filename);
3205 if (ShowAllFunctions || FuncNameFilter.empty()) {
3206 if (SFormat == ShowFormat::Json)
3207 Reader->dumpJson(OS);
3208 else
3209 Reader->dump(OS);
3210 } else {
3211 if (SFormat == ShowFormat::Json)
3212 exitWithError(
3213 "the JSON format is supported only when all functions are to "
3214 "be printed");
3216 // TODO: parse context string to support filtering by contexts.
3217 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter));
3218 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS);
3221 if (ShowProfileSymbolList) {
3222 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
3223 Reader->getProfileSymbolList();
3224 ReaderList->dump(OS);
3227 if (ShowDetailedSummary) {
3228 auto &PS = Reader->getSummary();
3229 PS.printSummary(OS);
3230 PS.printDetailedSummary(OS);
3233 if (ShowHotFuncList || TopNFunctions)
3234 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(),
3235 TopNFunctions, OS);
3237 return 0;
3240 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
3241 if (SFormat == ShowFormat::Json)
3242 exitWithError("JSON output is not supported for MemProf");
3243 auto ReaderOr = llvm::memprof::RawMemProfReader::create(
3244 Filename, ProfiledBinary, /*KeepNames=*/true);
3245 if (Error E = ReaderOr.takeError())
3246 // Since the error can be related to the profile or the binary we do not
3247 // pass whence. Instead additional context is provided where necessary in
3248 // the error message.
3249 exitWithError(std::move(E), /*Whence*/ "");
3251 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
3252 ReaderOr.get().release());
3254 Reader->printYAML(OS);
3255 return 0;
3258 static int showDebugInfoCorrelation(const std::string &Filename,
3259 ShowFormat SFormat, raw_fd_ostream &OS) {
3260 if (SFormat == ShowFormat::Json)
3261 exitWithError("JSON output is not supported for debug info correlation");
3262 std::unique_ptr<InstrProfCorrelator> Correlator;
3263 if (auto Err =
3264 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO)
3265 .moveInto(Correlator))
3266 exitWithError(std::move(Err), Filename);
3267 if (SFormat == ShowFormat::Yaml) {
3268 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS))
3269 exitWithError(std::move(Err), Filename);
3270 return 0;
3273 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings))
3274 exitWithError(std::move(Err), Filename);
3276 InstrProfSymtab Symtab;
3277 if (auto Err = Symtab.create(
3278 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
3279 exitWithError(std::move(Err), Filename);
3281 if (ShowProfileSymbolList)
3282 Symtab.dumpNames(OS);
3283 // TODO: Read "Profile Data Type" from debug info to compute and show how many
3284 // counters the section holds.
3285 if (ShowDetailedSummary)
3286 OS << "Counters section size: 0x"
3287 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
3288 OS << "Found " << Correlator->getDataSize() << " functions\n";
3290 return 0;
3293 static int show_main(StringRef ProgName) {
3294 if (Filename.empty() && DebugInfoFilename.empty())
3295 exitWithError(
3296 "the positional argument '<profdata-file>' is required unless '--" +
3297 DebugInfoFilename.ArgStr + "' is provided");
3299 if (Filename == OutputFilename) {
3300 errs() << ProgName
3301 << " show: Input file name cannot be the same as the output file "
3302 "name!\n";
3303 return 1;
3305 if (JsonFormat)
3306 SFormat = ShowFormat::Json;
3308 std::error_code EC;
3309 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
3310 if (EC)
3311 exitWithErrorCode(EC, OutputFilename);
3313 if (ShowAllFunctions && !FuncNameFilter.empty())
3314 WithColor::warning() << "-function argument ignored: showing all functions\n";
3316 if (!DebugInfoFilename.empty())
3317 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS);
3319 if (ShowProfileKind == instr)
3320 return showInstrProfile(SFormat, OS);
3321 if (ShowProfileKind == sample)
3322 return showSampleProfile(SFormat, OS);
3323 return showMemProfProfile(SFormat, OS);
3326 static int order_main() {
3327 std::error_code EC;
3328 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
3329 if (EC)
3330 exitWithErrorCode(EC, OutputFilename);
3331 auto FS = vfs::getRealFileSystem();
3332 auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
3333 if (Error E = ReaderOrErr.takeError())
3334 exitWithError(std::move(E), Filename);
3336 auto Reader = std::move(ReaderOrErr.get());
3337 for (auto &I : *Reader) {
3338 // Read all entries
3339 (void)I;
3341 ArrayRef Traces = Reader->getTemporalProfTraces();
3342 if (NumTestTraces && NumTestTraces >= Traces.size())
3343 exitWithError(
3344 "--" + NumTestTraces.ArgStr +
3345 " must be smaller than the total number of traces: expected: < " +
3346 Twine(Traces.size()) + ", actual: " + Twine(NumTestTraces));
3347 ArrayRef TestTraces = Traces.take_back(NumTestTraces);
3348 Traces = Traces.drop_back(NumTestTraces);
3350 std::vector<BPFunctionNode> Nodes;
3351 TemporalProfTraceTy::createBPFunctionNodes(Traces, Nodes);
3352 BalancedPartitioningConfig Config;
3353 BalancedPartitioning BP(Config);
3354 BP.run(Nodes);
3356 OS << "# Ordered " << Nodes.size() << " functions\n";
3357 if (!TestTraces.empty()) {
3358 // Since we don't know the symbol sizes, we assume 32 functions per page.
3359 DenseMap<BPFunctionNode::IDT, unsigned> IdToPageNumber;
3360 for (auto &Node : Nodes)
3361 IdToPageNumber[Node.Id] = IdToPageNumber.size() / 32;
3363 SmallSet<unsigned, 0> TouchedPages;
3364 unsigned Area = 0;
3365 for (auto &Trace : TestTraces) {
3366 for (auto Id : Trace.FunctionNameRefs) {
3367 auto It = IdToPageNumber.find(Id);
3368 if (It == IdToPageNumber.end())
3369 continue;
3370 TouchedPages.insert(It->getSecond());
3371 Area += TouchedPages.size();
3373 TouchedPages.clear();
3375 OS << "# Total area under the page fault curve: " << (float)Area << "\n";
3377 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the "
3378 "linkage and this output does not take that into account. Some "
3379 "post-processing may be required before passing to the linker via "
3380 "-order_file.\n";
3381 for (auto &N : Nodes) {
3382 auto [Filename, ParsedFuncName] =
3383 getParsedIRPGOName(Reader->getSymtab().getFuncOrVarName(N.Id));
3384 if (!Filename.empty())
3385 OS << "# " << Filename << "\n";
3386 OS << ParsedFuncName << "\n";
3388 return 0;
3391 int llvm_profdata_main(int argc, char **argvNonConst,
3392 const llvm::ToolContext &) {
3393 const char **argv = const_cast<const char **>(argvNonConst);
3395 StringRef ProgName(sys::path::filename(argv[0]));
3397 if (argc < 2) {
3398 errs()
3399 << ProgName
3400 << ": No subcommand specified! Run llvm-profdata --help for usage.\n";
3401 return 1;
3404 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n");
3406 if (ShowSubcommand)
3407 return show_main(ProgName);
3409 if (OrderSubcommand)
3410 return order_main();
3412 if (OverlapSubcommand)
3413 return overlap_main();
3415 if (MergeSubcommand)
3416 return merge_main(ProgName);
3418 errs() << ProgName
3419 << ": Unknown command. Run llvm-profdata --help for usage.\n";
3420 return 1;