1 //===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This program is a utility that generates random .ll files to stress-test
10 // different components in LLVM.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/FileSystem.h"
39 #include "llvm/Support/InitLLVM.h"
40 #include "llvm/Support/ToolOutputFile.h"
41 #include "llvm/Support/WithColor.h"
42 #include "llvm/Support/raw_ostream.h"
49 #include <system_error>
54 static cl::OptionCategory
StressCategory("Stress Options");
56 static cl::opt
<unsigned> SeedCL("seed", cl::desc("Seed used for randomness"),
57 cl::init(0), cl::cat(StressCategory
));
59 static cl::opt
<unsigned> SizeCL(
61 cl::desc("The estimated size of the generated function (# of instrs)"),
62 cl::init(100), cl::cat(StressCategory
));
64 static cl::opt
<std::string
> OutputFilename("o",
65 cl::desc("Override output filename"),
66 cl::value_desc("filename"),
67 cl::cat(StressCategory
));
69 static cl::list
<StringRef
> AdditionalScalarTypes(
70 "types", cl::CommaSeparated
,
71 cl::desc("Additional IR scalar types "
72 "(always includes i1, i8, i16, i32, i64, float and double)"));
74 static cl::opt
<bool> EnableScalableVectors(
75 "enable-scalable-vectors",
76 cl::desc("Generate IR involving scalable vector types"),
77 cl::init(false), cl::cat(StressCategory
));
82 /// A utility class to provide a pseudo-random number generator which is
83 /// the same across all platforms. This is somewhat close to the libc
84 /// implementation. Note: This is not a cryptographically secure pseudorandom
89 Random(unsigned _seed
):Seed(_seed
) {}
91 /// Return a random integer, up to a
92 /// maximum of 2**19 - 1.
94 uint32_t Val
= Seed
+ 0x000b07a1;
95 Seed
= (Val
* 0x3c7c0ac1);
96 // Only lowest 19 bits are random-ish.
97 return Seed
& 0x7ffff;
100 /// Return a random 64 bit integer.
102 uint64_t Val
= Rand() & 0xffff;
103 Val
|= uint64_t(Rand() & 0xffff) << 16;
104 Val
|= uint64_t(Rand() & 0xffff) << 32;
105 Val
|= uint64_t(Rand() & 0xffff) << 48;
109 /// Rand operator for STL algorithms.
110 ptrdiff_t operator()(ptrdiff_t y
) {
114 /// Make this like a C++11 random device
115 using result_type
= uint32_t ;
117 static constexpr result_type
min() { return 0; }
118 static constexpr result_type
max() { return 0x7ffff; }
120 uint32_t operator()() {
121 uint32_t Val
= Rand();
122 assert(Val
<= max() && "Random value out of range");
130 /// Generate an empty function with a default argument list.
131 Function
*GenEmptyFunction(Module
*M
) {
132 // Define a few arguments
133 LLVMContext
&Context
= M
->getContext();
135 PointerType::get(Context
, 0),
136 PointerType::get(Context
, 0),
137 PointerType::get(Context
, 0),
138 Type::getInt32Ty(Context
),
139 Type::getInt64Ty(Context
),
140 Type::getInt8Ty(Context
)
143 auto *FuncTy
= FunctionType::get(Type::getVoidTy(Context
), ArgsTy
, false);
144 // Pick a unique name to describe the input parameters
145 Twine Name
= "autogen_SD" + Twine
{SeedCL
};
146 auto *Func
= Function::Create(FuncTy
, GlobalValue::ExternalLinkage
, Name
, M
);
147 Func
->setCallingConv(CallingConv::C
);
151 /// A base class, implementing utilities needed for
152 /// modifying and adding new random instructions.
154 /// Used to store the randomly generated values.
155 using PieceTable
= std::vector
<Value
*>;
159 Modifier(BasicBlock
*Block
, PieceTable
*PT
, Random
*R
)
160 : BB(Block
), PT(PT
), Ran(R
), Context(BB
->getContext()) {
161 ScalarTypes
.assign({Type::getInt1Ty(Context
), Type::getInt8Ty(Context
),
162 Type::getInt16Ty(Context
), Type::getInt32Ty(Context
),
163 Type::getInt64Ty(Context
), Type::getFloatTy(Context
),
164 Type::getDoubleTy(Context
)});
166 for (auto &Arg
: AdditionalScalarTypes
) {
169 Ty
= Type::getHalfTy(Context
);
170 else if (Arg
== "fp128")
171 Ty
= Type::getFP128Ty(Context
);
172 else if (Arg
== "x86_fp80")
173 Ty
= Type::getX86_FP80Ty(Context
);
174 else if (Arg
== "ppc_fp128")
175 Ty
= Type::getPPC_FP128Ty(Context
);
176 else if (Arg
.starts_with("i")) {
178 Arg
.drop_front().getAsInteger(10, N
);
180 Ty
= Type::getIntNTy(Context
, N
);
183 errs() << "Invalid IR scalar type: '" << Arg
<< "'!\n";
187 ScalarTypes
.push_back(Ty
);
191 /// virtual D'tor to silence warnings.
192 virtual ~Modifier() = default;
194 /// Add a new instruction.
195 virtual void Act() = 0;
197 /// Add N new instructions,
198 virtual void ActN(unsigned n
) {
199 for (unsigned i
=0; i
<n
; ++i
)
204 /// Return a random integer.
205 uint32_t getRandom() {
209 /// Return a random value from the list of known values.
210 Value
*getRandomVal() {
212 return PT
->at(getRandom() % PT
->size());
215 Constant
*getRandomConstant(Type
*Tp
) {
216 if (Tp
->isIntegerTy()) {
218 return ConstantInt::getAllOnesValue(Tp
);
219 return ConstantInt::getNullValue(Tp
);
220 } else if (Tp
->isFloatingPointTy()) {
222 return ConstantFP::getAllOnesValue(Tp
);
223 return ConstantFP::getZero(Tp
);
225 return UndefValue::get(Tp
);
228 /// Return a random value with a known type.
229 Value
*getRandomValue(Type
*Tp
) {
230 unsigned index
= getRandom();
231 for (unsigned i
=0; i
<PT
->size(); ++i
) {
232 Value
*V
= PT
->at((index
+ i
) % PT
->size());
233 if (V
->getType() == Tp
)
237 // If the requested type was not found, generate a constant value.
238 if (Tp
->isIntegerTy()) {
240 return ConstantInt::getAllOnesValue(Tp
);
241 return ConstantInt::getNullValue(Tp
);
242 } else if (Tp
->isFloatingPointTy()) {
244 return ConstantFP::getAllOnesValue(Tp
);
245 return ConstantFP::getZero(Tp
);
246 } else if (auto *VTp
= dyn_cast
<FixedVectorType
>(Tp
)) {
247 std::vector
<Constant
*> TempValues
;
248 TempValues
.reserve(VTp
->getNumElements());
249 for (unsigned i
= 0; i
< VTp
->getNumElements(); ++i
)
250 TempValues
.push_back(getRandomConstant(VTp
->getScalarType()));
252 ArrayRef
<Constant
*> VectorValue(TempValues
);
253 return ConstantVector::get(VectorValue
);
256 return UndefValue::get(Tp
);
259 /// Return a random value of any pointer type.
260 Value
*getRandomPointerValue() {
261 unsigned index
= getRandom();
262 for (unsigned i
=0; i
<PT
->size(); ++i
) {
263 Value
*V
= PT
->at((index
+ i
) % PT
->size());
264 if (V
->getType()->isPointerTy())
267 return UndefValue::get(pickPointerType());
270 /// Return a random value of any vector type.
271 Value
*getRandomVectorValue() {
272 unsigned index
= getRandom();
273 for (unsigned i
=0; i
<PT
->size(); ++i
) {
274 Value
*V
= PT
->at((index
+ i
) % PT
->size());
275 if (V
->getType()->isVectorTy())
278 return UndefValue::get(pickVectorType());
281 /// Pick a random type.
283 return (getRandom() & 1) ? pickVectorType() : pickScalarType();
286 /// Pick a random pointer type.
287 Type
*pickPointerType() {
288 Type
*Ty
= pickType();
289 return PointerType::get(Ty
, 0);
292 /// Pick a random vector type.
293 Type
*pickVectorType(VectorType
*VTy
= nullptr) {
295 Type
*Ty
= pickScalarType();
298 return VectorType::get(Ty
, VTy
->getElementCount());
300 // Select either fixed length or scalable vectors with 50% probability
301 // (only if scalable vectors are enabled)
302 bool Scalable
= EnableScalableVectors
&& getRandom() & 1;
304 // Pick a random vector width in the range 2**0 to 2**4.
305 // by adding two randoms we are generating a normal-like distribution
307 unsigned width
= 1<<((getRandom() % 3) + (getRandom() % 3));
308 return VectorType::get(Ty
, width
, Scalable
);
311 /// Pick a random scalar type.
312 Type
*pickScalarType() {
313 return ScalarTypes
[getRandom() % ScalarTypes
.size()];
316 /// Basic block to populate
322 /// Random number generator
326 LLVMContext
&Context
;
328 std::vector
<Type
*> ScalarTypes
;
331 struct LoadModifier
: public Modifier
{
332 LoadModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
333 : Modifier(BB
, PT
, R
) {}
335 void Act() override
{
336 // Try to use predefined pointers. If non-exist, use undef pointer value;
337 Value
*Ptr
= getRandomPointerValue();
338 Type
*Ty
= pickType();
339 Value
*V
= new LoadInst(Ty
, Ptr
, "L", BB
->getTerminator()->getIterator());
344 struct StoreModifier
: public Modifier
{
345 StoreModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
346 : Modifier(BB
, PT
, R
) {}
348 void Act() override
{
349 // Try to use predefined pointers. If non-exist, use undef pointer value;
350 Value
*Ptr
= getRandomPointerValue();
351 Type
*ValTy
= pickType();
353 // Do not store vectors of i1s because they are unsupported
355 if (ValTy
->isVectorTy() && ValTy
->getScalarSizeInBits() == 1)
358 Value
*Val
= getRandomValue(ValTy
);
359 new StoreInst(Val
, Ptr
, BB
->getTerminator()->getIterator());
363 struct BinModifier
: public Modifier
{
364 BinModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
365 : Modifier(BB
, PT
, R
) {}
367 void Act() override
{
368 Value
*Val0
= getRandomVal();
369 Value
*Val1
= getRandomValue(Val0
->getType());
371 // Don't handle pointer types.
372 if (Val0
->getType()->isPointerTy() ||
373 Val1
->getType()->isPointerTy())
376 // Don't handle i1 types.
377 if (Val0
->getType()->getScalarSizeInBits() == 1)
380 bool isFloat
= Val0
->getType()->getScalarType()->isFloatingPointTy();
381 Instruction
* Term
= BB
->getTerminator();
382 unsigned R
= getRandom() % (isFloat
? 7 : 13);
383 Instruction::BinaryOps Op
;
386 default: llvm_unreachable("Invalid BinOp");
387 case 0:{Op
= (isFloat
?Instruction::FAdd
: Instruction::Add
); break; }
388 case 1:{Op
= (isFloat
?Instruction::FSub
: Instruction::Sub
); break; }
389 case 2:{Op
= (isFloat
?Instruction::FMul
: Instruction::Mul
); break; }
390 case 3:{Op
= (isFloat
?Instruction::FDiv
: Instruction::SDiv
); break; }
391 case 4:{Op
= (isFloat
?Instruction::FDiv
: Instruction::UDiv
); break; }
392 case 5:{Op
= (isFloat
?Instruction::FRem
: Instruction::SRem
); break; }
393 case 6:{Op
= (isFloat
?Instruction::FRem
: Instruction::URem
); break; }
394 case 7: {Op
= Instruction::Shl
; break; }
395 case 8: {Op
= Instruction::LShr
; break; }
396 case 9: {Op
= Instruction::AShr
; break; }
397 case 10:{Op
= Instruction::And
; break; }
398 case 11:{Op
= Instruction::Or
; break; }
399 case 12:{Op
= Instruction::Xor
; break; }
403 BinaryOperator::Create(Op
, Val0
, Val1
, "B", Term
->getIterator()));
407 /// Generate constant values.
408 struct ConstModifier
: public Modifier
{
409 ConstModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
410 : Modifier(BB
, PT
, R
) {}
412 void Act() override
{
413 Type
*Ty
= pickType();
415 if (Ty
->isVectorTy()) {
416 switch (getRandom() % 2) {
417 case 0: if (Ty
->isIntOrIntVectorTy())
418 return PT
->push_back(ConstantVector::getAllOnesValue(Ty
));
420 case 1: if (Ty
->isIntOrIntVectorTy())
421 return PT
->push_back(ConstantVector::getNullValue(Ty
));
425 if (Ty
->isFloatingPointTy()) {
426 // Generate 128 random bits, the size of the (currently)
427 // largest floating-point types.
428 uint64_t RandomBits
[2];
429 for (unsigned i
= 0; i
< 2; ++i
)
430 RandomBits
[i
] = Ran
->Rand64();
432 APInt
RandomInt(Ty
->getPrimitiveSizeInBits(), ArrayRef(RandomBits
));
433 APFloat
RandomFloat(Ty
->getFltSemantics(), RandomInt
);
436 return PT
->push_back(ConstantFP::getZero(Ty
));
437 return PT
->push_back(ConstantFP::get(Ty
->getContext(), RandomFloat
));
440 if (Ty
->isIntegerTy()) {
441 switch (getRandom() % 7) {
443 return PT
->push_back(ConstantInt::get(
444 Ty
, APInt::getAllOnes(Ty
->getPrimitiveSizeInBits())));
446 return PT
->push_back(
447 ConstantInt::get(Ty
, APInt::getZero(Ty
->getPrimitiveSizeInBits())));
453 PT
->push_back(ConstantInt::get(Ty
, getRandom()));
459 struct AllocaModifier
: public Modifier
{
460 AllocaModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
461 : Modifier(BB
, PT
, R
) {}
463 void Act() override
{
464 Type
*Tp
= pickType();
465 const DataLayout
&DL
= BB
->getDataLayout();
466 PT
->push_back(new AllocaInst(Tp
, DL
.getAllocaAddrSpace(), "A",
467 BB
->getFirstNonPHIIt()));
471 struct ExtractElementModifier
: public Modifier
{
472 ExtractElementModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
473 : Modifier(BB
, PT
, R
) {}
475 void Act() override
{
476 Value
*Val0
= getRandomVectorValue();
477 Value
*V
= ExtractElementInst::Create(
478 Val0
, getRandomValue(Type::getInt32Ty(BB
->getContext())), "E",
479 BB
->getTerminator()->getIterator());
480 return PT
->push_back(V
);
484 struct ShuffModifier
: public Modifier
{
485 ShuffModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
486 : Modifier(BB
, PT
, R
) {}
488 void Act() override
{
489 Value
*Val0
= getRandomVectorValue();
490 Value
*Val1
= getRandomValue(Val0
->getType());
492 // Can't express arbitrary shufflevectors for scalable vectors
493 if (isa
<ScalableVectorType
>(Val0
->getType()))
496 unsigned Width
= cast
<FixedVectorType
>(Val0
->getType())->getNumElements();
497 std::vector
<Constant
*> Idxs
;
499 Type
*I32
= Type::getInt32Ty(BB
->getContext());
500 for (unsigned i
=0; i
<Width
; ++i
) {
501 Constant
*CI
= ConstantInt::get(I32
, getRandom() % (Width
*2));
502 // Pick some undef values.
503 if (!(getRandom() % 5))
504 CI
= UndefValue::get(I32
);
508 Constant
*Mask
= ConstantVector::get(Idxs
);
510 Value
*V
= new ShuffleVectorInst(Val0
, Val1
, Mask
, "Shuff",
511 BB
->getTerminator()->getIterator());
516 struct InsertElementModifier
: public Modifier
{
517 InsertElementModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
518 : Modifier(BB
, PT
, R
) {}
520 void Act() override
{
521 Value
*Val0
= getRandomVectorValue();
522 Value
*Val1
= getRandomValue(Val0
->getType()->getScalarType());
524 Value
*V
= InsertElementInst::Create(
525 Val0
, Val1
, getRandomValue(Type::getInt32Ty(BB
->getContext())), "I",
526 BB
->getTerminator()->getIterator());
527 return PT
->push_back(V
);
531 struct CastModifier
: public Modifier
{
532 CastModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
533 : Modifier(BB
, PT
, R
) {}
535 void Act() override
{
536 Value
*V
= getRandomVal();
537 Type
*VTy
= V
->getType();
538 Type
*DestTy
= pickScalarType();
540 // Handle vector casts vectors.
541 if (VTy
->isVectorTy())
542 DestTy
= pickVectorType(cast
<VectorType
>(VTy
));
545 if (VTy
== DestTy
) return;
548 if (VTy
->isPointerTy()) {
549 if (!DestTy
->isPointerTy())
550 DestTy
= PointerType::get(DestTy
, 0);
551 return PT
->push_back(
552 new BitCastInst(V
, DestTy
, "PC", BB
->getTerminator()->getIterator()));
555 unsigned VSize
= VTy
->getScalarType()->getPrimitiveSizeInBits();
556 unsigned DestSize
= DestTy
->getScalarType()->getPrimitiveSizeInBits();
558 // Generate lots of bitcasts.
559 if ((getRandom() & 1) && VSize
== DestSize
) {
560 return PT
->push_back(
561 new BitCastInst(V
, DestTy
, "BC", BB
->getTerminator()->getIterator()));
564 // Both types are integers:
565 if (VTy
->isIntOrIntVectorTy() && DestTy
->isIntOrIntVectorTy()) {
566 if (VSize
> DestSize
) {
567 return PT
->push_back(
568 new TruncInst(V
, DestTy
, "Tr", BB
->getTerminator()->getIterator()));
570 assert(VSize
< DestSize
&& "Different int types with the same size?");
572 return PT
->push_back(new ZExtInst(
573 V
, DestTy
, "ZE", BB
->getTerminator()->getIterator()));
574 return PT
->push_back(
575 new SExtInst(V
, DestTy
, "Se", BB
->getTerminator()->getIterator()));
580 if (VTy
->isFPOrFPVectorTy() && DestTy
->isIntOrIntVectorTy()) {
582 return PT
->push_back(new FPToSIInst(
583 V
, DestTy
, "FC", BB
->getTerminator()->getIterator()));
584 return PT
->push_back(
585 new FPToUIInst(V
, DestTy
, "FC", BB
->getTerminator()->getIterator()));
589 if (VTy
->isIntOrIntVectorTy() && DestTy
->isFPOrFPVectorTy()) {
591 return PT
->push_back(new SIToFPInst(
592 V
, DestTy
, "FC", BB
->getTerminator()->getIterator()));
593 return PT
->push_back(
594 new UIToFPInst(V
, DestTy
, "FC", BB
->getTerminator()->getIterator()));
598 if (VTy
->isFPOrFPVectorTy() && DestTy
->isFPOrFPVectorTy()) {
599 if (VSize
> DestSize
) {
600 return PT
->push_back(new FPTruncInst(
601 V
, DestTy
, "Tr", BB
->getTerminator()->getIterator()));
602 } else if (VSize
< DestSize
) {
603 return PT
->push_back(
604 new FPExtInst(V
, DestTy
, "ZE", BB
->getTerminator()->getIterator()));
606 // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
607 // for which there is no defined conversion. So do nothing.
612 struct SelectModifier
: public Modifier
{
613 SelectModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
614 : Modifier(BB
, PT
, R
) {}
616 void Act() override
{
617 // Try a bunch of different select configuration until a valid one is found.
618 Value
*Val0
= getRandomVal();
619 Value
*Val1
= getRandomValue(Val0
->getType());
621 Type
*CondTy
= Type::getInt1Ty(Context
);
623 // If the value type is a vector, and we allow vector select, then in 50%
624 // of the cases generate a vector select.
625 if (auto *VTy
= dyn_cast
<VectorType
>(Val0
->getType()))
627 CondTy
= VectorType::get(CondTy
, VTy
->getElementCount());
629 Value
*Cond
= getRandomValue(CondTy
);
630 Value
*V
= SelectInst::Create(Cond
, Val0
, Val1
, "Sl",
631 BB
->getTerminator()->getIterator());
632 return PT
->push_back(V
);
636 struct CmpModifier
: public Modifier
{
637 CmpModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
638 : Modifier(BB
, PT
, R
) {}
640 void Act() override
{
641 Value
*Val0
= getRandomVal();
642 Value
*Val1
= getRandomValue(Val0
->getType());
644 if (Val0
->getType()->isPointerTy()) return;
645 bool fp
= Val0
->getType()->getScalarType()->isFloatingPointTy();
650 (CmpInst::LAST_FCMP_PREDICATE
- CmpInst::FIRST_FCMP_PREDICATE
) +
651 CmpInst::FIRST_FCMP_PREDICATE
;
654 (CmpInst::LAST_ICMP_PREDICATE
- CmpInst::FIRST_ICMP_PREDICATE
) +
655 CmpInst::FIRST_ICMP_PREDICATE
;
658 Value
*V
= CmpInst::Create(fp
? Instruction::FCmp
: Instruction::ICmp
,
659 (CmpInst::Predicate
)op
, Val0
, Val1
, "Cmp",
660 BB
->getTerminator()->getIterator());
661 return PT
->push_back(V
);
665 } // end anonymous namespace
667 static void FillFunction(Function
*F
, Random
&R
) {
668 // Create a legal entry block.
669 BasicBlock
*BB
= BasicBlock::Create(F
->getContext(), "BB", F
);
670 ReturnInst::Create(F
->getContext(), BB
);
672 // Create the value table.
673 Modifier::PieceTable PT
;
675 // Consider arguments as legal values.
676 for (auto &arg
: F
->args())
679 // List of modifiers which add new random instructions.
680 std::vector
<std::unique_ptr
<Modifier
>> Modifiers
;
681 Modifiers
.emplace_back(new LoadModifier(BB
, &PT
, &R
));
682 Modifiers
.emplace_back(new StoreModifier(BB
, &PT
, &R
));
683 auto SM
= Modifiers
.back().get();
684 Modifiers
.emplace_back(new ExtractElementModifier(BB
, &PT
, &R
));
685 Modifiers
.emplace_back(new ShuffModifier(BB
, &PT
, &R
));
686 Modifiers
.emplace_back(new InsertElementModifier(BB
, &PT
, &R
));
687 Modifiers
.emplace_back(new BinModifier(BB
, &PT
, &R
));
688 Modifiers
.emplace_back(new CastModifier(BB
, &PT
, &R
));
689 Modifiers
.emplace_back(new SelectModifier(BB
, &PT
, &R
));
690 Modifiers
.emplace_back(new CmpModifier(BB
, &PT
, &R
));
692 // Generate the random instructions
693 AllocaModifier
{BB
, &PT
, &R
}.ActN(5); // Throw in a few allocas
694 ConstModifier
{BB
, &PT
, &R
}.ActN(40); // Throw in a few constants
696 for (unsigned i
= 0; i
< SizeCL
/ Modifiers
.size(); ++i
)
697 for (auto &Mod
: Modifiers
)
700 SM
->ActN(5); // Throw in a few stores.
703 static void IntroduceControlFlow(Function
*F
, Random
&R
) {
704 std::vector
<Instruction
*> BoolInst
;
705 for (auto &Instr
: F
->front()) {
706 if (Instr
.getType() == IntegerType::getInt1Ty(F
->getContext()))
707 BoolInst
.push_back(&Instr
);
710 llvm::shuffle(BoolInst
.begin(), BoolInst
.end(), R
);
712 for (auto *Instr
: BoolInst
) {
713 BasicBlock
*Curr
= Instr
->getParent();
714 BasicBlock::iterator Loc
= Instr
->getIterator();
715 BasicBlock
*Next
= Curr
->splitBasicBlock(Loc
, "CF");
716 Instr
->moveBefore(Curr
->getTerminator());
717 if (Curr
!= &F
->getEntryBlock()) {
718 BranchInst::Create(Curr
, Next
, Instr
,
719 Curr
->getTerminator()->getIterator());
720 Curr
->getTerminator()->eraseFromParent();
725 } // end namespace llvm
727 int main(int argc
, char **argv
) {
728 using namespace llvm
;
730 InitLLVM
X(argc
, argv
);
731 cl::HideUnrelatedOptions({&StressCategory
, &getColorCategory()});
732 cl::ParseCommandLineOptions(argc
, argv
, "llvm codegen stress-tester\n");
735 auto M
= std::make_unique
<Module
>("/tmp/autogen.bc", Context
);
736 Function
*F
= GenEmptyFunction(M
.get());
738 // Pick an initial seed value
740 // Generate lots of random instructions inside a single basic block.
742 // Break the basic block into many loops.
743 IntroduceControlFlow(F
, R
);
745 // Figure out what stream we are supposed to write to...
746 std::unique_ptr
<ToolOutputFile
> Out
;
747 // Default to standard output.
748 if (OutputFilename
.empty())
749 OutputFilename
= "-";
752 Out
.reset(new ToolOutputFile(OutputFilename
, EC
, sys::fs::OF_None
));
754 errs() << EC
.message() << '\n';
758 // Check that the generated module is accepted by the verifier.
759 if (verifyModule(*M
.get(), &Out
->os()))
760 report_fatal_error("Broken module found, compilation aborted!");
762 // Output textual IR.
763 M
->print(Out
->os(), nullptr);