[HLSL] Implement RWBuffer::operator[] via __builtin_hlsl_resource_getpointer (#117017)
[llvm-project.git] / llvm / unittests / Analysis / ScalarEvolutionTest.cpp
blobc72cecbba3cb8c45cff34c4939d6e88a2ec8e6a7
1 //===- ScalarEvolutionsTest.cpp - ScalarEvolution unit tests --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/ADT/SmallVector.h"
10 #include "llvm/Analysis/AssumptionCache.h"
11 #include "llvm/Analysis/LoopInfo.h"
12 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
13 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
14 #include "llvm/Analysis/TargetLibraryInfo.h"
15 #include "llvm/AsmParser/Parser.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/IR/GlobalVariable.h"
19 #include "llvm/IR/IRBuilder.h"
20 #include "llvm/IR/InstIterator.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/Verifier.h"
24 #include "llvm/Support/SourceMgr.h"
25 #include "gtest/gtest.h"
27 namespace llvm {
29 // We use this fixture to ensure that we clean up ScalarEvolution before
30 // deleting the PassManager.
31 class ScalarEvolutionsTest : public testing::Test {
32 protected:
33 LLVMContext Context;
34 Module M;
35 TargetLibraryInfoImpl TLII;
36 TargetLibraryInfo TLI;
38 std::unique_ptr<AssumptionCache> AC;
39 std::unique_ptr<DominatorTree> DT;
40 std::unique_ptr<LoopInfo> LI;
42 ScalarEvolutionsTest() : M("", Context), TLII(), TLI(TLII) {}
44 ScalarEvolution buildSE(Function &F) {
45 AC.reset(new AssumptionCache(F));
46 DT.reset(new DominatorTree(F));
47 LI.reset(new LoopInfo(*DT));
48 return ScalarEvolution(F, TLI, *AC, *DT, *LI);
51 void runWithSE(
52 Module &M, StringRef FuncName,
53 function_ref<void(Function &F, LoopInfo &LI, ScalarEvolution &SE)> Test) {
54 auto *F = M.getFunction(FuncName);
55 ASSERT_NE(F, nullptr) << "Could not find " << FuncName;
56 ScalarEvolution SE = buildSE(*F);
57 Test(*F, *LI, SE);
60 static std::optional<APInt> computeConstantDifference(ScalarEvolution &SE,
61 const SCEV *LHS,
62 const SCEV *RHS) {
63 return SE.computeConstantDifference(LHS, RHS);
66 static bool matchURem(ScalarEvolution &SE, const SCEV *Expr, const SCEV *&LHS,
67 const SCEV *&RHS) {
68 return SE.matchURem(Expr, LHS, RHS);
71 static bool isImpliedCond(
72 ScalarEvolution &SE, ICmpInst::Predicate Pred, const SCEV *LHS,
73 const SCEV *RHS, ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
74 const SCEV *FoundRHS) {
75 return SE.isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
79 TEST_F(ScalarEvolutionsTest, SCEVUnknownRAUW) {
80 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context),
81 std::vector<Type *>(), false);
82 Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
83 BasicBlock *BB = BasicBlock::Create(Context, "entry", F);
84 ReturnInst::Create(Context, nullptr, BB);
86 Type *Ty = Type::getInt1Ty(Context);
87 Constant *Init = Constant::getNullValue(Ty);
88 Value *V0 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V0");
89 Value *V1 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V1");
90 Value *V2 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V2");
92 ScalarEvolution SE = buildSE(*F);
94 const SCEV *S0 = SE.getSCEV(V0);
95 const SCEV *S1 = SE.getSCEV(V1);
96 const SCEV *S2 = SE.getSCEV(V2);
98 const SCEV *P0 = SE.getAddExpr(S0, SE.getConstant(S0->getType(), 2));
99 const SCEV *P1 = SE.getAddExpr(S1, SE.getConstant(S0->getType(), 2));
100 const SCEV *P2 = SE.getAddExpr(S2, SE.getConstant(S0->getType(), 2));
102 auto *M0 = cast<SCEVAddExpr>(P0);
103 auto *M1 = cast<SCEVAddExpr>(P1);
104 auto *M2 = cast<SCEVAddExpr>(P2);
106 EXPECT_EQ(cast<SCEVConstant>(M0->getOperand(0))->getValue()->getZExtValue(),
107 2u);
108 EXPECT_EQ(cast<SCEVConstant>(M1->getOperand(0))->getValue()->getZExtValue(),
109 2u);
110 EXPECT_EQ(cast<SCEVConstant>(M2->getOperand(0))->getValue()->getZExtValue(),
111 2u);
113 // Before the RAUWs, these are all pointing to separate values.
114 EXPECT_EQ(cast<SCEVUnknown>(M0->getOperand(1))->getValue(), V0);
115 EXPECT_EQ(cast<SCEVUnknown>(M1->getOperand(1))->getValue(), V1);
116 EXPECT_EQ(cast<SCEVUnknown>(M2->getOperand(1))->getValue(), V2);
118 // Do some RAUWs.
119 V2->replaceAllUsesWith(V1);
120 V1->replaceAllUsesWith(V0);
122 // After the RAUWs, these should all be pointing to V0.
123 EXPECT_EQ(cast<SCEVUnknown>(M0->getOperand(1))->getValue(), V0);
124 EXPECT_EQ(cast<SCEVUnknown>(M1->getOperand(1))->getValue(), V0);
125 EXPECT_EQ(cast<SCEVUnknown>(M2->getOperand(1))->getValue(), V0);
128 TEST_F(ScalarEvolutionsTest, SimplifiedPHI) {
129 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context),
130 std::vector<Type *>(), false);
131 Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
132 BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
133 BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F);
134 BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F);
135 BranchInst::Create(LoopBB, EntryBB);
136 BranchInst::Create(LoopBB, ExitBB, PoisonValue::get(Type::getInt1Ty(Context)),
137 LoopBB);
138 ReturnInst::Create(Context, nullptr, ExitBB);
139 auto *Ty = Type::getInt32Ty(Context);
140 auto *PN = PHINode::Create(Ty, 2, "", LoopBB->begin());
141 PN->addIncoming(Constant::getNullValue(Ty), EntryBB);
142 PN->addIncoming(PoisonValue::get(Ty), LoopBB);
143 ScalarEvolution SE = buildSE(*F);
144 const SCEV *S1 = SE.getSCEV(PN);
145 const SCEV *S2 = SE.getSCEV(PN);
146 const SCEV *ZeroConst = SE.getConstant(Ty, 0);
148 // At some point, only the first call to getSCEV returned the simplified
149 // SCEVConstant and later calls just returned a SCEVUnknown referencing the
150 // PHI node.
151 EXPECT_EQ(S1, ZeroConst);
152 EXPECT_EQ(S1, S2);
156 static Instruction *getInstructionByName(Function &F, StringRef Name) {
157 for (auto &I : instructions(F))
158 if (I.getName() == Name)
159 return &I;
160 llvm_unreachable("Expected to find instruction!");
163 static Value *getArgByName(Function &F, StringRef Name) {
164 for (auto &Arg : F.args())
165 if (Arg.getName() == Name)
166 return &Arg;
167 llvm_unreachable("Expected to find instruction!");
169 TEST_F(ScalarEvolutionsTest, CommutativeExprOperandOrder) {
170 LLVMContext C;
171 SMDiagnostic Err;
172 std::unique_ptr<Module> M = parseAssemblyString(
173 "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" "
175 "@var_0 = external global i32, align 4"
176 "@var_1 = external global i32, align 4"
177 "@var_2 = external global i32, align 4"
179 "declare i32 @unknown(i32, i32, i32)"
181 "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) "
182 " local_unnamed_addr { "
183 "entry: "
184 " %entrycond = icmp sgt i32 %n, 0 "
185 " br i1 %entrycond, label %loop.ph, label %for.end "
187 "loop.ph: "
188 " %a = load i32, i32* %A, align 4 "
189 " %b = load i32, i32* %B, align 4 "
190 " %mul = mul nsw i32 %b, %a "
191 " %iv0.init = getelementptr inbounds i8, i8* %arr, i32 %mul "
192 " br label %loop "
194 "loop: "
195 " %iv0 = phi i8* [ %iv0.inc, %loop ], [ %iv0.init, %loop.ph ] "
196 " %iv1 = phi i32 [ %iv1.inc, %loop ], [ 0, %loop.ph ] "
197 " %conv = trunc i32 %iv1 to i8 "
198 " store i8 %conv, i8* %iv0, align 1 "
199 " %iv0.inc = getelementptr inbounds i8, i8* %iv0, i32 %b "
200 " %iv1.inc = add nuw nsw i32 %iv1, 1 "
201 " %exitcond = icmp eq i32 %iv1.inc, %n "
202 " br i1 %exitcond, label %for.end.loopexit, label %loop "
204 "for.end.loopexit: "
205 " br label %for.end "
207 "for.end: "
208 " ret void "
209 "} "
211 "define void @f_2(i32* %X, i32* %Y, i32* %Z) { "
212 " %x = load i32, i32* %X "
213 " %y = load i32, i32* %Y "
214 " %z = load i32, i32* %Z "
215 " ret void "
216 "} "
218 "define void @f_3() { "
219 " %x = load i32, i32* @var_0"
220 " %y = load i32, i32* @var_1"
221 " %z = load i32, i32* @var_2"
222 " ret void"
223 "} "
225 "define void @f_4(i32 %a, i32 %b, i32 %c) { "
226 " %x = call i32 @unknown(i32 %a, i32 %b, i32 %c)"
227 " %y = call i32 @unknown(i32 %b, i32 %c, i32 %a)"
228 " %z = call i32 @unknown(i32 %c, i32 %a, i32 %b)"
229 " ret void"
230 "} "
232 Err, C);
234 assert(M && "Could not parse module?");
235 assert(!verifyModule(*M) && "Must have been well formed!");
237 runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
238 auto *IV0 = getInstructionByName(F, "iv0");
239 auto *IV0Inc = getInstructionByName(F, "iv0.inc");
241 const SCEV *FirstExprForIV0 = SE.getSCEV(IV0);
242 const SCEV *FirstExprForIV0Inc = SE.getSCEV(IV0Inc);
243 const SCEV *SecondExprForIV0 = SE.getSCEV(IV0);
245 EXPECT_TRUE(isa<SCEVAddRecExpr>(FirstExprForIV0));
246 EXPECT_TRUE(isa<SCEVAddRecExpr>(FirstExprForIV0Inc));
247 EXPECT_TRUE(isa<SCEVAddRecExpr>(SecondExprForIV0));
250 auto CheckCommutativeMulExprs = [&](ScalarEvolution &SE, const SCEV *A,
251 const SCEV *B, const SCEV *C) {
252 EXPECT_EQ(SE.getMulExpr(A, B), SE.getMulExpr(B, A));
253 EXPECT_EQ(SE.getMulExpr(B, C), SE.getMulExpr(C, B));
254 EXPECT_EQ(SE.getMulExpr(A, C), SE.getMulExpr(C, A));
256 SmallVector<const SCEV *, 3> Ops0 = {A, B, C};
257 SmallVector<const SCEV *, 3> Ops1 = {A, C, B};
258 SmallVector<const SCEV *, 3> Ops2 = {B, A, C};
259 SmallVector<const SCEV *, 3> Ops3 = {B, C, A};
260 SmallVector<const SCEV *, 3> Ops4 = {C, B, A};
261 SmallVector<const SCEV *, 3> Ops5 = {C, A, B};
263 const SCEV *Mul0 = SE.getMulExpr(Ops0);
264 const SCEV *Mul1 = SE.getMulExpr(Ops1);
265 const SCEV *Mul2 = SE.getMulExpr(Ops2);
266 const SCEV *Mul3 = SE.getMulExpr(Ops3);
267 const SCEV *Mul4 = SE.getMulExpr(Ops4);
268 const SCEV *Mul5 = SE.getMulExpr(Ops5);
270 EXPECT_EQ(Mul0, Mul1) << "Expected " << *Mul0 << " == " << *Mul1;
271 EXPECT_EQ(Mul1, Mul2) << "Expected " << *Mul1 << " == " << *Mul2;
272 EXPECT_EQ(Mul2, Mul3) << "Expected " << *Mul2 << " == " << *Mul3;
273 EXPECT_EQ(Mul3, Mul4) << "Expected " << *Mul3 << " == " << *Mul4;
274 EXPECT_EQ(Mul4, Mul5) << "Expected " << *Mul4 << " == " << *Mul5;
277 for (StringRef FuncName : {"f_2", "f_3", "f_4"})
278 runWithSE(
279 *M, FuncName, [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
280 CheckCommutativeMulExprs(SE, SE.getSCEV(getInstructionByName(F, "x")),
281 SE.getSCEV(getInstructionByName(F, "y")),
282 SE.getSCEV(getInstructionByName(F, "z")));
286 TEST_F(ScalarEvolutionsTest, CompareSCEVComplexity) {
287 FunctionType *FTy =
288 FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false);
289 Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
290 BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
291 BasicBlock *LoopBB = BasicBlock::Create(Context, "bb1", F);
292 BranchInst::Create(LoopBB, EntryBB);
294 auto *Ty = Type::getInt32Ty(Context);
295 SmallVector<Instruction*, 8> Muls(8), Acc(8), NextAcc(8);
297 Acc[0] = PHINode::Create(Ty, 2, "", LoopBB);
298 Acc[1] = PHINode::Create(Ty, 2, "", LoopBB);
299 Acc[2] = PHINode::Create(Ty, 2, "", LoopBB);
300 Acc[3] = PHINode::Create(Ty, 2, "", LoopBB);
301 Acc[4] = PHINode::Create(Ty, 2, "", LoopBB);
302 Acc[5] = PHINode::Create(Ty, 2, "", LoopBB);
303 Acc[6] = PHINode::Create(Ty, 2, "", LoopBB);
304 Acc[7] = PHINode::Create(Ty, 2, "", LoopBB);
306 for (int i = 0; i < 20; i++) {
307 Muls[0] = BinaryOperator::CreateMul(Acc[0], Acc[0], "", LoopBB);
308 NextAcc[0] = BinaryOperator::CreateAdd(Muls[0], Acc[4], "", LoopBB);
309 Muls[1] = BinaryOperator::CreateMul(Acc[1], Acc[1], "", LoopBB);
310 NextAcc[1] = BinaryOperator::CreateAdd(Muls[1], Acc[5], "", LoopBB);
311 Muls[2] = BinaryOperator::CreateMul(Acc[2], Acc[2], "", LoopBB);
312 NextAcc[2] = BinaryOperator::CreateAdd(Muls[2], Acc[6], "", LoopBB);
313 Muls[3] = BinaryOperator::CreateMul(Acc[3], Acc[3], "", LoopBB);
314 NextAcc[3] = BinaryOperator::CreateAdd(Muls[3], Acc[7], "", LoopBB);
316 Muls[4] = BinaryOperator::CreateMul(Acc[4], Acc[4], "", LoopBB);
317 NextAcc[4] = BinaryOperator::CreateAdd(Muls[4], Acc[0], "", LoopBB);
318 Muls[5] = BinaryOperator::CreateMul(Acc[5], Acc[5], "", LoopBB);
319 NextAcc[5] = BinaryOperator::CreateAdd(Muls[5], Acc[1], "", LoopBB);
320 Muls[6] = BinaryOperator::CreateMul(Acc[6], Acc[6], "", LoopBB);
321 NextAcc[6] = BinaryOperator::CreateAdd(Muls[6], Acc[2], "", LoopBB);
322 Muls[7] = BinaryOperator::CreateMul(Acc[7], Acc[7], "", LoopBB);
323 NextAcc[7] = BinaryOperator::CreateAdd(Muls[7], Acc[3], "", LoopBB);
324 Acc = NextAcc;
327 auto II = LoopBB->begin();
328 for (int i = 0; i < 8; i++) {
329 PHINode *Phi = cast<PHINode>(&*II++);
330 Phi->addIncoming(Acc[i], LoopBB);
331 Phi->addIncoming(PoisonValue::get(Ty), EntryBB);
334 BasicBlock *ExitBB = BasicBlock::Create(Context, "bb2", F);
335 BranchInst::Create(LoopBB, ExitBB, PoisonValue::get(Type::getInt1Ty(Context)),
336 LoopBB);
338 Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB);
339 Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB);
340 Acc[2] = BinaryOperator::CreateAdd(Acc[4], Acc[5], "", ExitBB);
341 Acc[3] = BinaryOperator::CreateAdd(Acc[6], Acc[7], "", ExitBB);
342 Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB);
343 Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB);
344 Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB);
346 ReturnInst::Create(Context, nullptr, ExitBB);
348 ScalarEvolution SE = buildSE(*F);
350 EXPECT_NE(nullptr, SE.getSCEV(Acc[0]));
353 TEST_F(ScalarEvolutionsTest, CompareValueComplexity) {
354 IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(Context);
355 PointerType *IntPtrPtrTy = PointerType::getUnqual(Context);
357 FunctionType *FTy =
358 FunctionType::get(Type::getVoidTy(Context), {IntPtrTy, IntPtrTy}, false);
359 Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
360 BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
362 Value *X = &*F->arg_begin();
363 Value *Y = &*std::next(F->arg_begin());
365 const int ValueDepth = 10;
366 for (int i = 0; i < ValueDepth; i++) {
367 X = new LoadInst(IntPtrTy, new IntToPtrInst(X, IntPtrPtrTy, "", EntryBB),
369 /*isVolatile*/ false, EntryBB);
370 Y = new LoadInst(IntPtrTy, new IntToPtrInst(Y, IntPtrPtrTy, "", EntryBB),
372 /*isVolatile*/ false, EntryBB);
375 auto *MulA = BinaryOperator::CreateMul(X, Y, "", EntryBB);
376 auto *MulB = BinaryOperator::CreateMul(Y, X, "", EntryBB);
377 ReturnInst::Create(Context, nullptr, EntryBB);
379 // This test isn't checking for correctness. Today making A and B resolve to
380 // the same SCEV would require deeper searching in CompareValueComplexity,
381 // which will slow down compilation. However, this test can fail (with LLVM's
382 // behavior still being correct) if we ever have a smarter
383 // CompareValueComplexity that is both fast and more accurate.
385 ScalarEvolution SE = buildSE(*F);
386 const SCEV *A = SE.getSCEV(MulA);
387 const SCEV *B = SE.getSCEV(MulB);
388 EXPECT_NE(A, B);
391 TEST_F(ScalarEvolutionsTest, SCEVAddExpr) {
392 Type *Ty32 = Type::getInt32Ty(Context);
393 Type *ArgTys[] = {Type::getInt64Ty(Context), Ty32, Ty32, Ty32, Ty32, Ty32};
395 FunctionType *FTy =
396 FunctionType::get(Type::getVoidTy(Context), ArgTys, false);
397 Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
399 Argument *A1 = &*F->arg_begin();
400 Argument *A2 = &*(std::next(F->arg_begin()));
401 BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
403 Instruction *Trunc = CastInst::CreateTruncOrBitCast(A1, Ty32, "", EntryBB);
404 Instruction *Mul1 = BinaryOperator::CreateMul(Trunc, A2, "", EntryBB);
405 Instruction *Add1 = BinaryOperator::CreateAdd(Mul1, Trunc, "", EntryBB);
406 Mul1 = BinaryOperator::CreateMul(Add1, Trunc, "", EntryBB);
407 Instruction *Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB);
408 // FIXME: The size of this is arbitrary and doesn't seem to change the
409 // result, but SCEV will do quadratic work for these so a large number here
410 // will be extremely slow. We should revisit what and how this is testing
411 // SCEV.
412 for (int i = 0; i < 10; i++) {
413 Mul1 = BinaryOperator::CreateMul(Add2, Add1, "", EntryBB);
414 Add1 = Add2;
415 Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB);
418 ReturnInst::Create(Context, nullptr, EntryBB);
419 ScalarEvolution SE = buildSE(*F);
420 EXPECT_NE(nullptr, SE.getSCEV(Mul1));
422 Argument *A3 = &*(std::next(F->arg_begin(), 2));
423 Argument *A4 = &*(std::next(F->arg_begin(), 3));
424 Argument *A5 = &*(std::next(F->arg_begin(), 4));
425 Argument *A6 = &*(std::next(F->arg_begin(), 5));
427 auto *AddWithNUW = cast<SCEVAddExpr>(SE.getAddExpr(
428 SE.getAddExpr(SE.getSCEV(A2), SE.getSCEV(A3), SCEV::FlagNUW),
429 SE.getConstant(APInt(/*numBits=*/32, 5)), SCEV::FlagNUW));
430 EXPECT_EQ(AddWithNUW->getNumOperands(), 3u);
431 EXPECT_EQ(AddWithNUW->getNoWrapFlags(), SCEV::FlagNUW);
433 const SCEV *AddWithAnyWrap =
434 SE.getAddExpr(SE.getSCEV(A3), SE.getSCEV(A4), SCEV::FlagAnyWrap);
435 auto *AddWithAnyWrapNUW = cast<SCEVAddExpr>(
436 SE.getAddExpr(AddWithAnyWrap, SE.getSCEV(A5), SCEV::FlagNUW));
437 EXPECT_EQ(AddWithAnyWrapNUW->getNumOperands(), 3u);
438 EXPECT_EQ(AddWithAnyWrapNUW->getNoWrapFlags(), SCEV::FlagAnyWrap);
440 const SCEV *AddWithNSW = SE.getAddExpr(
441 SE.getSCEV(A2), SE.getConstant(APInt(32, 99)), SCEV::FlagNSW);
442 auto *AddWithNSW_NUW = cast<SCEVAddExpr>(
443 SE.getAddExpr(AddWithNSW, SE.getSCEV(A5), SCEV::FlagNUW));
444 EXPECT_EQ(AddWithNSW_NUW->getNumOperands(), 3u);
445 EXPECT_EQ(AddWithNSW_NUW->getNoWrapFlags(), SCEV::FlagAnyWrap);
447 const SCEV *AddWithNSWNUW =
448 SE.getAddExpr(SE.getSCEV(A2), SE.getSCEV(A4),
449 ScalarEvolution::setFlags(SCEV::FlagNUW, SCEV::FlagNSW));
450 auto *AddWithNSWNUW_NUW = cast<SCEVAddExpr>(
451 SE.getAddExpr(AddWithNSWNUW, SE.getSCEV(A5), SCEV::FlagNUW));
452 EXPECT_EQ(AddWithNSWNUW_NUW->getNumOperands(), 3u);
453 EXPECT_EQ(AddWithNSWNUW_NUW->getNoWrapFlags(), SCEV::FlagNUW);
455 auto *AddWithNSW_NSWNUW = cast<SCEVAddExpr>(
456 SE.getAddExpr(AddWithNSW, SE.getSCEV(A6),
457 ScalarEvolution::setFlags(SCEV::FlagNUW, SCEV::FlagNSW)));
458 EXPECT_EQ(AddWithNSW_NSWNUW->getNumOperands(), 3u);
459 EXPECT_EQ(AddWithNSW_NSWNUW->getNoWrapFlags(), SCEV::FlagAnyWrap);
462 static Instruction &GetInstByName(Function &F, StringRef Name) {
463 for (auto &I : instructions(F))
464 if (I.getName() == Name)
465 return I;
466 llvm_unreachable("Could not find instructions!");
469 TEST_F(ScalarEvolutionsTest, SCEVNormalization) {
470 LLVMContext C;
471 SMDiagnostic Err;
472 std::unique_ptr<Module> M = parseAssemblyString(
473 "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" "
475 "@var_0 = external global i32, align 4"
476 "@var_1 = external global i32, align 4"
477 "@var_2 = external global i32, align 4"
479 "declare i32 @unknown(i32, i32, i32)"
481 "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) "
482 " local_unnamed_addr { "
483 "entry: "
484 " br label %loop.ph "
486 "loop.ph: "
487 " br label %loop "
489 "loop: "
490 " %iv0 = phi i32 [ %iv0.inc, %loop ], [ 0, %loop.ph ] "
491 " %iv1 = phi i32 [ %iv1.inc, %loop ], [ -2147483648, %loop.ph ] "
492 " %iv0.inc = add i32 %iv0, 1 "
493 " %iv1.inc = add i32 %iv1, 3 "
494 " br i1 poison, label %for.end.loopexit, label %loop "
496 "for.end.loopexit: "
497 " ret void "
498 "} "
500 "define void @f_2(i32 %a, i32 %b, i32 %c, i32 %d) "
501 " local_unnamed_addr { "
502 "entry: "
503 " br label %loop_0 "
505 "loop_0: "
506 " br i1 poison, label %loop_0, label %loop_1 "
508 "loop_1: "
509 " br i1 poison, label %loop_2, label %loop_1 "
512 "loop_2: "
513 " br i1 poison, label %end, label %loop_2 "
515 "end: "
516 " ret void "
517 "} ",
518 Err, C);
520 assert(M && "Could not parse module?");
521 assert(!verifyModule(*M) && "Must have been well formed!");
523 runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
524 auto &I0 = GetInstByName(F, "iv0");
525 auto &I1 = *I0.getNextNode();
527 auto *S0 = cast<SCEVAddRecExpr>(SE.getSCEV(&I0));
528 PostIncLoopSet Loops;
529 Loops.insert(S0->getLoop());
530 auto *N0 = normalizeForPostIncUse(S0, Loops, SE);
531 auto *D0 = denormalizeForPostIncUse(N0, Loops, SE);
532 EXPECT_EQ(S0, D0) << *S0 << " " << *D0;
534 auto *S1 = cast<SCEVAddRecExpr>(SE.getSCEV(&I1));
535 Loops.clear();
536 Loops.insert(S1->getLoop());
537 auto *N1 = normalizeForPostIncUse(S1, Loops, SE);
538 auto *D1 = denormalizeForPostIncUse(N1, Loops, SE);
539 EXPECT_EQ(S1, D1) << *S1 << " " << *D1;
542 runWithSE(*M, "f_2", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
543 auto *L2 = *LI.begin();
544 auto *L1 = *std::next(LI.begin());
545 auto *L0 = *std::next(LI.begin(), 2);
547 auto GetAddRec = [&SE](const Loop *L, std::initializer_list<const SCEV *> Ops) {
548 SmallVector<const SCEV *, 4> OpsCopy(Ops);
549 return SE.getAddRecExpr(OpsCopy, L, SCEV::FlagAnyWrap);
552 auto GetAdd = [&SE](std::initializer_list<const SCEV *> Ops) {
553 SmallVector<const SCEV *, 4> OpsCopy(Ops);
554 return SE.getAddExpr(OpsCopy, SCEV::FlagAnyWrap);
557 // We first populate the AddRecs vector with a few "interesting" SCEV
558 // expressions, and then we go through the list and assert that each
559 // expression in it has an invertible normalization.
561 std::vector<const SCEV *> Exprs;
563 const SCEV *V0 = SE.getSCEV(&*F.arg_begin());
564 const SCEV *V1 = SE.getSCEV(&*std::next(F.arg_begin(), 1));
565 const SCEV *V2 = SE.getSCEV(&*std::next(F.arg_begin(), 2));
566 const SCEV *V3 = SE.getSCEV(&*std::next(F.arg_begin(), 3));
568 Exprs.push_back(GetAddRec(L0, {V0})); // 0
569 Exprs.push_back(GetAddRec(L0, {V0, V1})); // 1
570 Exprs.push_back(GetAddRec(L0, {V0, V1, V2})); // 2
571 Exprs.push_back(GetAddRec(L0, {V0, V1, V2, V3})); // 3
573 Exprs.push_back(
574 GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[3], Exprs[0]})); // 4
575 Exprs.push_back(
576 GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[0], Exprs[3]})); // 5
577 Exprs.push_back(
578 GetAddRec(L1, {Exprs[1], Exprs[3], Exprs[3], Exprs[1]})); // 6
580 Exprs.push_back(GetAdd({Exprs[6], Exprs[3], V2})); // 7
582 Exprs.push_back(
583 GetAddRec(L2, {Exprs[4], Exprs[3], Exprs[3], Exprs[5]})); // 8
585 Exprs.push_back(
586 GetAddRec(L2, {Exprs[4], Exprs[6], Exprs[7], Exprs[3], V0})); // 9
589 std::vector<PostIncLoopSet> LoopSets;
590 for (int i = 0; i < 8; i++) {
591 LoopSets.emplace_back();
592 if (i & 1)
593 LoopSets.back().insert(L0);
594 if (i & 2)
595 LoopSets.back().insert(L1);
596 if (i & 4)
597 LoopSets.back().insert(L2);
600 for (const auto &LoopSet : LoopSets)
601 for (auto *S : Exprs) {
603 auto *N = llvm::normalizeForPostIncUse(S, LoopSet, SE);
604 auto *D = llvm::denormalizeForPostIncUse(N, LoopSet, SE);
606 // Normalization and then denormalizing better give us back the same
607 // value.
608 EXPECT_EQ(S, D) << "S = " << *S << " D = " << *D << " N = " << *N;
611 auto *D = llvm::denormalizeForPostIncUse(S, LoopSet, SE);
612 auto *N = llvm::normalizeForPostIncUse(D, LoopSet, SE);
614 // Denormalization and then normalizing better give us back the same
615 // value.
616 EXPECT_EQ(S, N) << "S = " << *S << " N = " << *N;
622 // Expect the call of getZeroExtendExpr will not cost exponential time.
623 TEST_F(ScalarEvolutionsTest, SCEVZeroExtendExpr) {
624 LLVMContext C;
625 SMDiagnostic Err;
627 // Generate a function like below:
628 // define void @foo() {
629 // entry:
630 // br label %for.cond
632 // for.cond:
633 // %0 = phi i64 [ 100, %entry ], [ %dec, %for.inc ]
634 // %cmp = icmp sgt i64 %0, 90
635 // br i1 %cmp, label %for.inc, label %for.cond1
637 // for.inc:
638 // %dec = add nsw i64 %0, -1
639 // br label %for.cond
641 // for.cond1:
642 // %1 = phi i64 [ 100, %for.cond ], [ %dec5, %for.inc2 ]
643 // %cmp3 = icmp sgt i64 %1, 90
644 // br i1 %cmp3, label %for.inc2, label %for.cond4
646 // for.inc2:
647 // %dec5 = add nsw i64 %1, -1
648 // br label %for.cond1
650 // ......
652 // for.cond89:
653 // %19 = phi i64 [ 100, %for.cond84 ], [ %dec94, %for.inc92 ]
654 // %cmp93 = icmp sgt i64 %19, 90
655 // br i1 %cmp93, label %for.inc92, label %for.end
657 // for.inc92:
658 // %dec94 = add nsw i64 %19, -1
659 // br label %for.cond89
661 // for.end:
662 // %gep = getelementptr i8, i8* null, i64 %dec
663 // %gep6 = getelementptr i8, i8* %gep, i64 %dec5
664 // ......
665 // %gep95 = getelementptr i8, i8* %gep91, i64 %dec94
666 // ret void
667 // }
668 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {}, false);
669 Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", M);
671 BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
672 BasicBlock *CondBB = BasicBlock::Create(Context, "for.cond", F);
673 BasicBlock *EndBB = BasicBlock::Create(Context, "for.end", F);
674 BranchInst::Create(CondBB, EntryBB);
675 BasicBlock *PrevBB = EntryBB;
677 Type *I64Ty = Type::getInt64Ty(Context);
678 Type *I8Ty = Type::getInt8Ty(Context);
679 Type *I8PtrTy = PointerType::getUnqual(Context);
680 Value *Accum = Constant::getNullValue(I8PtrTy);
681 int Iters = 20;
682 for (int i = 0; i < Iters; i++) {
683 BasicBlock *IncBB = BasicBlock::Create(Context, "for.inc", F, EndBB);
684 auto *PN = PHINode::Create(I64Ty, 2, "", CondBB);
685 PN->addIncoming(ConstantInt::get(Context, APInt(64, 100)), PrevBB);
686 auto *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_SGT, PN,
687 ConstantInt::get(Context, APInt(64, 90)), "cmp",
688 CondBB);
689 BasicBlock *NextBB;
690 if (i != Iters - 1)
691 NextBB = BasicBlock::Create(Context, "for.cond", F, EndBB);
692 else
693 NextBB = EndBB;
694 BranchInst::Create(IncBB, NextBB, Cmp, CondBB);
695 auto *Dec = BinaryOperator::CreateNSWAdd(
696 PN, ConstantInt::get(Context, APInt(64, -1)), "dec", IncBB);
697 PN->addIncoming(Dec, IncBB);
698 BranchInst::Create(CondBB, IncBB);
700 Accum = GetElementPtrInst::Create(I8Ty, Accum, PN, "gep", EndBB);
702 PrevBB = CondBB;
703 CondBB = NextBB;
705 ReturnInst::Create(Context, nullptr, EndBB);
706 ScalarEvolution SE = buildSE(*F);
707 const SCEV *S = SE.getSCEV(Accum);
708 S = SE.getLosslessPtrToIntExpr(S);
709 Type *I128Ty = Type::getInt128Ty(Context);
710 SE.getZeroExtendExpr(S, I128Ty);
713 // Make sure that SCEV invalidates exit limits after invalidating the values it
714 // depends on when we forget a loop.
715 TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetLoop) {
717 * Create the following code:
718 * func(i64 addrspace(10)* %arg)
719 * top:
720 * br label %L.ph
721 * L.ph:
722 * br label %L
723 * L:
724 * %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ]
725 * %add = add i64 %phi2, 1
726 * %cond = icmp slt i64 %add, 1000; then becomes 2000.
727 * br i1 %cond, label %post, label %L2
728 * post:
729 * ret void
733 // Create a module with non-integral pointers in it's datalayout
734 Module NIM("nonintegral", Context);
735 std::string DataLayout = M.getDataLayoutStr();
736 if (!DataLayout.empty())
737 DataLayout += "-";
738 DataLayout += "ni:10";
739 NIM.setDataLayout(DataLayout);
741 Type *T_int64 = Type::getInt64Ty(Context);
742 Type *T_pint64 = PointerType::get(Context, 10);
744 FunctionType *FTy =
745 FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false);
746 Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM);
748 BasicBlock *Top = BasicBlock::Create(Context, "top", F);
749 BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F);
750 BasicBlock *L = BasicBlock::Create(Context, "L", F);
751 BasicBlock *Post = BasicBlock::Create(Context, "post", F);
753 IRBuilder<> Builder(Top);
754 Builder.CreateBr(LPh);
756 Builder.SetInsertPoint(LPh);
757 Builder.CreateBr(L);
759 Builder.SetInsertPoint(L);
760 PHINode *Phi = Builder.CreatePHI(T_int64, 2);
761 auto *Add = cast<Instruction>(
762 Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add"));
763 auto *Limit = ConstantInt::get(T_int64, 1000);
764 auto *Cond = cast<Instruction>(
765 Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Limit, "cond"));
766 auto *Br = cast<Instruction>(Builder.CreateCondBr(Cond, L, Post));
767 Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh);
768 Phi->addIncoming(Add, L);
770 Builder.SetInsertPoint(Post);
771 Builder.CreateRetVoid();
773 ScalarEvolution SE = buildSE(*F);
774 auto *Loop = LI->getLoopFor(L);
775 const SCEV *EC = SE.getBackedgeTakenCount(Loop);
776 EXPECT_FALSE(isa<SCEVCouldNotCompute>(EC));
777 EXPECT_TRUE(isa<SCEVConstant>(EC));
778 EXPECT_EQ(cast<SCEVConstant>(EC)->getAPInt().getLimitedValue(), 999u);
780 // The add recurrence {5,+,1} does not correspond to any PHI in the IR, and
781 // that is relevant to this test.
782 const SCEV *Five = SE.getConstant(APInt(/*numBits=*/64, 5));
783 const SCEV *AR =
784 SE.getAddRecExpr(Five, SE.getOne(T_int64), Loop, SCEV::FlagAnyWrap);
785 const SCEV *ARAtLoopExit = SE.getSCEVAtScope(AR, nullptr);
786 EXPECT_FALSE(isa<SCEVCouldNotCompute>(ARAtLoopExit));
787 EXPECT_TRUE(isa<SCEVConstant>(ARAtLoopExit));
788 EXPECT_EQ(cast<SCEVConstant>(ARAtLoopExit)->getAPInt().getLimitedValue(),
789 1004u);
791 SE.forgetLoop(Loop);
792 Br->eraseFromParent();
793 Cond->eraseFromParent();
795 Builder.SetInsertPoint(L);
796 auto *NewCond = Builder.CreateICmp(
797 ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond");
798 Builder.CreateCondBr(NewCond, L, Post);
799 const SCEV *NewEC = SE.getBackedgeTakenCount(Loop);
800 EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewEC));
801 EXPECT_TRUE(isa<SCEVConstant>(NewEC));
802 EXPECT_EQ(cast<SCEVConstant>(NewEC)->getAPInt().getLimitedValue(), 1999u);
803 const SCEV *NewARAtLoopExit = SE.getSCEVAtScope(AR, nullptr);
804 EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewARAtLoopExit));
805 EXPECT_TRUE(isa<SCEVConstant>(NewARAtLoopExit));
806 EXPECT_EQ(cast<SCEVConstant>(NewARAtLoopExit)->getAPInt().getLimitedValue(),
807 2004u);
810 // Make sure that SCEV invalidates exit limits after invalidating the values it
811 // depends on when we forget a value.
812 TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetValue) {
814 * Create the following code:
815 * func(i64 addrspace(10)* %arg)
816 * top:
817 * br label %L.ph
818 * L.ph:
819 * %load = load i64 addrspace(10)* %arg
820 * br label %L
821 * L:
822 * %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ]
823 * %add = add i64 %phi2, 1
824 * %cond = icmp slt i64 %add, %load ; then becomes 2000.
825 * br i1 %cond, label %post, label %L2
826 * post:
827 * ret void
831 // Create a module with non-integral pointers in it's datalayout
832 Module NIM("nonintegral", Context);
833 std::string DataLayout = M.getDataLayoutStr();
834 if (!DataLayout.empty())
835 DataLayout += "-";
836 DataLayout += "ni:10";
837 NIM.setDataLayout(DataLayout);
839 Type *T_int64 = Type::getInt64Ty(Context);
840 Type *T_pint64 = PointerType::get(Context, 10);
842 FunctionType *FTy =
843 FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false);
844 Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM);
846 Argument *Arg = &*F->arg_begin();
848 BasicBlock *Top = BasicBlock::Create(Context, "top", F);
849 BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F);
850 BasicBlock *L = BasicBlock::Create(Context, "L", F);
851 BasicBlock *Post = BasicBlock::Create(Context, "post", F);
853 IRBuilder<> Builder(Top);
854 Builder.CreateBr(LPh);
856 Builder.SetInsertPoint(LPh);
857 auto *Load = cast<Instruction>(Builder.CreateLoad(T_int64, Arg, "load"));
858 Builder.CreateBr(L);
860 Builder.SetInsertPoint(L);
861 PHINode *Phi = Builder.CreatePHI(T_int64, 2);
862 auto *Add = cast<Instruction>(
863 Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add"));
864 auto *Cond = cast<Instruction>(
865 Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Load, "cond"));
866 auto *Br = cast<Instruction>(Builder.CreateCondBr(Cond, L, Post));
867 Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh);
868 Phi->addIncoming(Add, L);
870 Builder.SetInsertPoint(Post);
871 Builder.CreateRetVoid();
873 ScalarEvolution SE = buildSE(*F);
874 auto *Loop = LI->getLoopFor(L);
875 const SCEV *EC = SE.getBackedgeTakenCount(Loop);
876 EXPECT_FALSE(isa<SCEVCouldNotCompute>(EC));
877 EXPECT_FALSE(isa<SCEVConstant>(EC));
879 SE.forgetValue(Load);
880 Br->eraseFromParent();
881 Cond->eraseFromParent();
882 Load->eraseFromParent();
884 Builder.SetInsertPoint(L);
885 auto *NewCond = Builder.CreateICmp(
886 ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond");
887 Builder.CreateCondBr(NewCond, L, Post);
888 const SCEV *NewEC = SE.getBackedgeTakenCount(Loop);
889 EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewEC));
890 EXPECT_TRUE(isa<SCEVConstant>(NewEC));
891 EXPECT_EQ(cast<SCEVConstant>(NewEC)->getAPInt().getLimitedValue(), 1999u);
894 TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstants) {
895 // Reference: https://reviews.llvm.org/D37265
896 // Make sure that SCEV does not blow up when constructing an AddRec
897 // with predicates for a phi with the update pattern:
898 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
899 // when either the initial value of the Phi or the InvariantAccum are
900 // constants that are too large to fit in an ix but are zero when truncated to
901 // ix.
902 FunctionType *FTy =
903 FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false);
904 Function *F =
905 Function::Create(FTy, Function::ExternalLinkage, "addrecphitest", M);
908 Create IR:
909 entry:
910 br label %loop
911 loop:
912 %0 = phi i64 [-9223372036854775808, %entry], [%3, %loop]
913 %1 = shl i64 %0, 32
914 %2 = ashr exact i64 %1, 32
915 %3 = add i64 %2, -9223372036854775808
916 br i1 poison, label %exit, label %loop
917 exit:
918 ret void
920 BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
921 BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F);
922 BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F);
924 // entry:
925 BranchInst::Create(LoopBB, EntryBB);
926 // loop:
927 auto *MinInt64 =
928 ConstantInt::get(Context, APInt(64, 0x8000000000000000U, true));
929 auto *Int64_32 = ConstantInt::get(Context, APInt(64, 32));
930 auto *Br = BranchInst::Create(
931 LoopBB, ExitBB, PoisonValue::get(Type::getInt1Ty(Context)), LoopBB);
932 auto *Phi =
933 PHINode::Create(Type::getInt64Ty(Context), 2, "", Br->getIterator());
934 auto *Shl = BinaryOperator::CreateShl(Phi, Int64_32, "", Br->getIterator());
935 auto *AShr =
936 BinaryOperator::CreateExactAShr(Shl, Int64_32, "", Br->getIterator());
937 auto *Add = BinaryOperator::CreateAdd(AShr, MinInt64, "", Br->getIterator());
938 Phi->addIncoming(MinInt64, EntryBB);
939 Phi->addIncoming(Add, LoopBB);
940 // exit:
941 ReturnInst::Create(Context, nullptr, ExitBB);
943 // Make sure that SCEV doesn't blow up
944 ScalarEvolution SE = buildSE(*F);
945 const SCEV *Expr = SE.getSCEV(Phi);
946 EXPECT_NE(nullptr, Expr);
947 EXPECT_TRUE(isa<SCEVUnknown>(Expr));
948 auto Result = SE.createAddRecFromPHIWithCasts(cast<SCEVUnknown>(Expr));
951 TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstantAccum) {
952 // Make sure that SCEV does not blow up when constructing an AddRec
953 // with predicates for a phi with the update pattern:
954 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
955 // when the InvariantAccum is a constant that is too large to fit in an
956 // ix but are zero when truncated to ix, and the initial value of the
957 // phi is not a constant.
958 Type *Int32Ty = Type::getInt32Ty(Context);
959 SmallVector<Type *, 1> Types;
960 Types.push_back(Int32Ty);
961 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false);
962 Function *F =
963 Function::Create(FTy, Function::ExternalLinkage, "addrecphitest", M);
966 Create IR:
967 define @addrecphitest(i32)
968 entry:
969 br label %loop
970 loop:
971 %1 = phi i32 [%0, %entry], [%4, %loop]
972 %2 = shl i32 %1, 16
973 %3 = ashr exact i32 %2, 16
974 %4 = add i32 %3, -2147483648
975 br i1 poison, label %exit, label %loop
976 exit:
977 ret void
979 BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
980 BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F);
981 BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F);
983 // entry:
984 BranchInst::Create(LoopBB, EntryBB);
985 // loop:
986 auto *MinInt32 = ConstantInt::get(Context, APInt(32, 0x80000000U));
987 auto *Int32_16 = ConstantInt::get(Context, APInt(32, 16));
988 auto *Br = BranchInst::Create(
989 LoopBB, ExitBB, PoisonValue::get(Type::getInt1Ty(Context)), LoopBB);
990 auto *Phi = PHINode::Create(Int32Ty, 2, "", Br->getIterator());
991 auto *Shl = BinaryOperator::CreateShl(Phi, Int32_16, "", Br->getIterator());
992 auto *AShr =
993 BinaryOperator::CreateExactAShr(Shl, Int32_16, "", Br->getIterator());
994 auto *Add = BinaryOperator::CreateAdd(AShr, MinInt32, "", Br->getIterator());
995 auto *Arg = &*(F->arg_begin());
996 Phi->addIncoming(Arg, EntryBB);
997 Phi->addIncoming(Add, LoopBB);
998 // exit:
999 ReturnInst::Create(Context, nullptr, ExitBB);
1001 // Make sure that SCEV doesn't blow up
1002 ScalarEvolution SE = buildSE(*F);
1003 const SCEV *Expr = SE.getSCEV(Phi);
1004 EXPECT_NE(nullptr, Expr);
1005 EXPECT_TRUE(isa<SCEVUnknown>(Expr));
1006 auto Result = SE.createAddRecFromPHIWithCasts(cast<SCEVUnknown>(Expr));
1009 TEST_F(ScalarEvolutionsTest, SCEVFoldSumOfTruncs) {
1010 // Verify that the following SCEV gets folded to a zero:
1011 // (-1 * (trunc i64 (-1 * %0) to i32)) + (-1 * (trunc i64 %0 to i32)
1012 Type *ArgTy = Type::getInt64Ty(Context);
1013 Type *Int32Ty = Type::getInt32Ty(Context);
1014 SmallVector<Type *, 1> Types;
1015 Types.push_back(ArgTy);
1016 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false);
1017 Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
1018 BasicBlock *BB = BasicBlock::Create(Context, "entry", F);
1019 ReturnInst::Create(Context, nullptr, BB);
1021 ScalarEvolution SE = buildSE(*F);
1023 auto *Arg = &*(F->arg_begin());
1024 const SCEV *ArgSCEV = SE.getSCEV(Arg);
1026 // Build the SCEV
1027 const SCEV *A0 = SE.getNegativeSCEV(ArgSCEV);
1028 const SCEV *A1 = SE.getTruncateExpr(A0, Int32Ty);
1029 const SCEV *A = SE.getNegativeSCEV(A1);
1031 const SCEV *B0 = SE.getTruncateExpr(ArgSCEV, Int32Ty);
1032 const SCEV *B = SE.getNegativeSCEV(B0);
1034 const SCEV *Expr = SE.getAddExpr(A, B);
1035 // Verify that the SCEV was folded to 0
1036 const SCEV *ZeroConst = SE.getConstant(Int32Ty, 0);
1037 EXPECT_EQ(Expr, ZeroConst);
1040 // Check logic of SCEV expression size computation.
1041 TEST_F(ScalarEvolutionsTest, SCEVComputeExpressionSize) {
1043 * Create the following code:
1044 * void func(i64 %a, i64 %b)
1045 * entry:
1046 * %s1 = add i64 %a, 1
1047 * %s2 = udiv i64 %s1, %b
1048 * br label %exit
1049 * exit:
1050 * ret
1053 // Create a module.
1054 Module M("SCEVComputeExpressionSize", Context);
1056 Type *T_int64 = Type::getInt64Ty(Context);
1058 FunctionType *FTy =
1059 FunctionType::get(Type::getVoidTy(Context), { T_int64, T_int64 }, false);
1060 Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M);
1061 Argument *A = &*F->arg_begin();
1062 Argument *B = &*std::next(F->arg_begin());
1063 ConstantInt *C = ConstantInt::get(Context, APInt(64, 1));
1065 BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
1066 BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
1068 IRBuilder<> Builder(Entry);
1069 auto *S1 = cast<Instruction>(Builder.CreateAdd(A, C, "s1"));
1070 auto *S2 = cast<Instruction>(Builder.CreateUDiv(S1, B, "s2"));
1071 Builder.CreateBr(Exit);
1073 Builder.SetInsertPoint(Exit);
1074 Builder.CreateRetVoid();
1076 ScalarEvolution SE = buildSE(*F);
1077 // Get S2 first to move it to cache.
1078 const SCEV *AS = SE.getSCEV(A);
1079 const SCEV *BS = SE.getSCEV(B);
1080 const SCEV *CS = SE.getSCEV(C);
1081 const SCEV *S1S = SE.getSCEV(S1);
1082 const SCEV *S2S = SE.getSCEV(S2);
1083 EXPECT_EQ(AS->getExpressionSize(), 1u);
1084 EXPECT_EQ(BS->getExpressionSize(), 1u);
1085 EXPECT_EQ(CS->getExpressionSize(), 1u);
1086 EXPECT_EQ(S1S->getExpressionSize(), 3u);
1087 EXPECT_EQ(S2S->getExpressionSize(), 5u);
1090 TEST_F(ScalarEvolutionsTest, SCEVLoopDecIntrinsic) {
1091 LLVMContext C;
1092 SMDiagnostic Err;
1093 std::unique_ptr<Module> M = parseAssemblyString(
1094 "define void @foo(i32 %N) { "
1095 "entry: "
1096 " %cmp3 = icmp sgt i32 %N, 0 "
1097 " br i1 %cmp3, label %for.body, label %for.cond.cleanup "
1098 "for.cond.cleanup: "
1099 " ret void "
1100 "for.body: "
1101 " %i.04 = phi i32 [ %inc, %for.body ], [ 100, %entry ] "
1102 " %inc = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 %i.04, i32 1) "
1103 " %exitcond = icmp ne i32 %inc, 0 "
1104 " br i1 %exitcond, label %for.cond.cleanup, label %for.body "
1105 "} "
1106 "declare i32 @llvm.loop.decrement.reg.i32.i32.i32(i32, i32) ",
1107 Err, C);
1109 ASSERT_TRUE(M && "Could not parse module?");
1110 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1112 runWithSE(*M, "foo", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1113 const SCEV *ScevInc = SE.getSCEV(getInstructionByName(F, "inc"));
1114 EXPECT_TRUE(isa<SCEVAddRecExpr>(ScevInc));
1118 TEST_F(ScalarEvolutionsTest, SCEVComputeConstantDifference) {
1119 LLVMContext C;
1120 SMDiagnostic Err;
1121 std::unique_ptr<Module> M = parseAssemblyString(
1122 R"(define void @foo(ptr %ptr, i32 %sz, i32 %pp, i32 %x) {
1123 entry:
1124 %v0 = add i32 %pp, 0
1125 %v3 = add i32 %pp, 3
1126 %vx = add i32 %pp, %x
1127 %vx3 = add i32 %vx, 3
1128 br label %loop.body
1129 loop.body:
1130 %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ]
1131 %xa = add nsw i32 %iv, %v0
1132 %yy = add nsw i32 %iv, %v3
1133 %xb = sub nsw i32 %yy, 3
1134 %iv.next = add nsw i32 %iv, 1
1135 %cmp = icmp sle i32 %iv.next, %sz
1136 br i1 %cmp, label %loop.body, label %loop2.body
1137 loop2.body:
1138 %iv2 = phi i32 [ %iv2.next, %loop2.body ], [ %iv, %loop.body ]
1139 %iv2.next = add nsw i32 %iv2, 1
1140 %iv2p3 = add i32 %iv2, 3
1141 %var = load i32, ptr %ptr
1142 %iv2pvar = add i32 %iv2, %var
1143 %iv2pvarp3 = add i32 %iv2pvar, 3
1144 %iv2pvarm3 = mul i32 %iv2pvar, 3
1145 %iv2pvarp3m3 = mul i32 %iv2pvarp3, 3
1146 %cmp2 = icmp sle i32 %iv2.next, %sz
1147 br i1 %cmp2, label %loop2.body, label %exit
1148 exit:
1149 ret void
1150 })",
1151 Err, C);
1153 if (!M) {
1154 Err.print("ScalarEvolutionTest", errs());
1155 ASSERT_TRUE(M && "Could not parse module?");
1157 ASSERT_TRUE(!verifyModule(*M, &errs()) && "Must have been well formed!");
1159 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1160 const SCEV *ScevV0 = SE.getSCEV(getInstructionByName(F, "v0")); // %pp
1161 const SCEV *ScevV3 = SE.getSCEV(getInstructionByName(F, "v3")); // (3 + %pp)
1162 const SCEV *ScevVX =
1163 SE.getSCEV(getInstructionByName(F, "vx")); // (%pp + %x)
1164 // (%pp + %x + 3)
1165 const SCEV *ScevVX3 = SE.getSCEV(getInstructionByName(F, "vx3"));
1166 const SCEV *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1}
1167 const SCEV *ScevXA = SE.getSCEV(getInstructionByName(F, "xa")); // {%pp,+,1}
1168 const SCEV *ScevYY =
1169 SE.getSCEV(getInstructionByName(F, "yy")); // {(3 + %pp),+,1}
1170 const SCEV *ScevXB = SE.getSCEV(getInstructionByName(F, "xb")); // {%pp,+,1}
1171 const SCEV *ScevIVNext =
1172 SE.getSCEV(getInstructionByName(F, "iv.next")); // {1,+,1}
1173 // {{0,+,1},+,1}
1174 const SCEV *ScevIV2 = SE.getSCEV(getInstructionByName(F, "iv2"));
1175 // {{3,+,1},+,1}
1176 const SCEV *ScevIV2P3 = SE.getSCEV(getInstructionByName(F, "iv2p3"));
1177 // %var + {{0,+,1},+,1}
1178 const SCEV *ScevIV2PVar = SE.getSCEV(getInstructionByName(F, "iv2pvar"));
1179 // %var + {{3,+,1},+,1}
1180 const SCEV *ScevIV2PVarP3 =
1181 SE.getSCEV(getInstructionByName(F, "iv2pvarp3"));
1182 // 3 * (%var + {{0,+,1},+,1})
1183 const SCEV *ScevIV2PVarM3 =
1184 SE.getSCEV(getInstructionByName(F, "iv2pvarm3"));
1185 // 3 * (%var + {{3,+,1},+,1})
1186 const SCEV *ScevIV2PVarP3M3 =
1187 SE.getSCEV(getInstructionByName(F, "iv2pvarp3m3"));
1189 auto diff = [&SE](const SCEV *LHS, const SCEV *RHS) -> std::optional<int> {
1190 auto ConstantDiffOrNone = computeConstantDifference(SE, LHS, RHS);
1191 if (!ConstantDiffOrNone)
1192 return std::nullopt;
1194 auto ExtDiff = ConstantDiffOrNone->getSExtValue();
1195 int Diff = ExtDiff;
1196 assert(Diff == ExtDiff && "Integer overflow");
1197 return Diff;
1200 EXPECT_EQ(diff(ScevV3, ScevV0), 3);
1201 EXPECT_EQ(diff(ScevV0, ScevV3), -3);
1202 EXPECT_EQ(diff(ScevV0, ScevV0), 0);
1203 EXPECT_EQ(diff(ScevV3, ScevV3), 0);
1204 EXPECT_EQ(diff(ScevVX3, ScevVX), 3);
1205 EXPECT_EQ(diff(ScevIV, ScevIV), 0);
1206 EXPECT_EQ(diff(ScevXA, ScevXB), 0);
1207 EXPECT_EQ(diff(ScevXA, ScevYY), -3);
1208 EXPECT_EQ(diff(ScevYY, ScevXB), 3);
1209 EXPECT_EQ(diff(ScevIV, ScevIVNext), -1);
1210 EXPECT_EQ(diff(ScevIVNext, ScevIV), 1);
1211 EXPECT_EQ(diff(ScevIVNext, ScevIVNext), 0);
1212 EXPECT_EQ(diff(ScevIV2P3, ScevIV2), 3);
1213 EXPECT_EQ(diff(ScevIV2PVar, ScevIV2PVarP3), -3);
1214 EXPECT_EQ(diff(ScevIV2PVarP3M3, ScevIV2PVarM3), 9);
1215 EXPECT_EQ(diff(ScevV0, ScevIV), std::nullopt);
1216 EXPECT_EQ(diff(ScevIVNext, ScevV3), std::nullopt);
1217 EXPECT_EQ(diff(ScevYY, ScevV3), std::nullopt);
1221 TEST_F(ScalarEvolutionsTest, SCEVrewriteUnknowns) {
1222 LLVMContext C;
1223 SMDiagnostic Err;
1224 std::unique_ptr<Module> M = parseAssemblyString(
1225 "define void @foo(i32 %i) { "
1226 "entry: "
1227 " %cmp3 = icmp ult i32 %i, 16 "
1228 " br i1 %cmp3, label %loop.body, label %exit "
1229 "loop.body: "
1230 " %iv = phi i32 [ %iv.next, %loop.body ], [ %i, %entry ] "
1231 " %iv.next = add nsw i32 %iv, 1 "
1232 " %cmp = icmp eq i32 %iv.next, 16 "
1233 " br i1 %cmp, label %exit, label %loop.body "
1234 "exit: "
1235 " ret void "
1236 "} ",
1237 Err, C);
1239 ASSERT_TRUE(M && "Could not parse module?");
1240 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1242 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1243 const SCEV *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1}
1244 const SCEV *ScevI = SE.getSCEV(getArgByName(F, "i")); // {0,+,1}
1246 ValueToSCEVMapTy RewriteMap;
1247 RewriteMap[cast<SCEVUnknown>(ScevI)->getValue()] =
1248 SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17));
1249 const SCEV *WithUMin =
1250 SCEVParameterRewriter::rewrite(ScevIV, SE, RewriteMap);
1252 EXPECT_NE(WithUMin, ScevIV);
1253 const auto *AR = dyn_cast<SCEVAddRecExpr>(WithUMin);
1254 EXPECT_TRUE(AR);
1255 EXPECT_EQ(AR->getStart(),
1256 SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17)));
1257 EXPECT_EQ(AR->getStepRecurrence(SE),
1258 cast<SCEVAddRecExpr>(ScevIV)->getStepRecurrence(SE));
1262 TEST_F(ScalarEvolutionsTest, SCEVAddNUW) {
1263 LLVMContext C;
1264 SMDiagnostic Err;
1265 std::unique_ptr<Module> M = parseAssemblyString("define void @foo(i32 %x) { "
1266 " ret void "
1267 "} ",
1268 Err, C);
1270 ASSERT_TRUE(M && "Could not parse module?");
1271 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1273 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1274 const SCEV *X = SE.getSCEV(getArgByName(F, "x"));
1275 const SCEV *One = SE.getOne(X->getType());
1276 const SCEV *Sum = SE.getAddExpr(X, One, SCEV::FlagNUW);
1277 EXPECT_TRUE(SE.isKnownPredicate(ICmpInst::ICMP_UGE, Sum, X));
1278 EXPECT_TRUE(SE.isKnownPredicate(ICmpInst::ICMP_UGT, Sum, X));
1282 TEST_F(ScalarEvolutionsTest, SCEVgetRanges) {
1283 LLVMContext C;
1284 SMDiagnostic Err;
1285 std::unique_ptr<Module> M = parseAssemblyString(
1286 "define void @foo(i32 %i) { "
1287 "entry: "
1288 " br label %loop.body "
1289 "loop.body: "
1290 " %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] "
1291 " %iv.next = add nsw i32 %iv, 1 "
1292 " %cmp = icmp eq i32 %iv.next, 16 "
1293 " br i1 %cmp, label %exit, label %loop.body "
1294 "exit: "
1295 " ret void "
1296 "} ",
1297 Err, C);
1299 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1300 const SCEV *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1}
1301 const SCEV *ScevI = SE.getSCEV(getArgByName(F, "i"));
1302 EXPECT_EQ(SE.getUnsignedRange(ScevIV).getLower(), 0);
1303 EXPECT_EQ(SE.getUnsignedRange(ScevIV).getUpper(), 16);
1305 const SCEV *Add = SE.getAddExpr(ScevI, ScevIV);
1306 ValueToSCEVMapTy RewriteMap;
1307 RewriteMap[cast<SCEVUnknown>(ScevI)->getValue()] =
1308 SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17));
1309 const SCEV *AddWithUMin =
1310 SCEVParameterRewriter::rewrite(Add, SE, RewriteMap);
1311 EXPECT_EQ(SE.getUnsignedRange(AddWithUMin).getLower(), 0);
1312 EXPECT_EQ(SE.getUnsignedRange(AddWithUMin).getUpper(), 33);
1316 TEST_F(ScalarEvolutionsTest, SCEVgetExitLimitForGuardedLoop) {
1317 LLVMContext C;
1318 SMDiagnostic Err;
1319 std::unique_ptr<Module> M = parseAssemblyString(
1320 "define void @foo(i32 %i) { "
1321 "entry: "
1322 " %cmp3 = icmp ult i32 %i, 16 "
1323 " br i1 %cmp3, label %loop.body, label %exit "
1324 "loop.body: "
1325 " %iv = phi i32 [ %iv.next, %loop.body ], [ %i, %entry ] "
1326 " %iv.next = add nsw i32 %iv, 1 "
1327 " %cmp = icmp eq i32 %iv.next, 16 "
1328 " br i1 %cmp, label %exit, label %loop.body "
1329 "exit: "
1330 " ret void "
1331 "} ",
1332 Err, C);
1334 ASSERT_TRUE(M && "Could not parse module?");
1335 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1337 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1338 const SCEV *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1}
1339 const Loop *L = cast<SCEVAddRecExpr>(ScevIV)->getLoop();
1341 const SCEV *BTC = SE.getBackedgeTakenCount(L);
1342 EXPECT_FALSE(isa<SCEVConstant>(BTC));
1343 const SCEV *MaxBTC = SE.getConstantMaxBackedgeTakenCount(L);
1344 EXPECT_EQ(cast<SCEVConstant>(MaxBTC)->getAPInt(), 15);
1348 TEST_F(ScalarEvolutionsTest, ImpliedViaAddRecStart) {
1349 LLVMContext C;
1350 SMDiagnostic Err;
1351 std::unique_ptr<Module> M = parseAssemblyString(
1352 "define void @foo(i32* %p) { "
1353 "entry: "
1354 " %x = load i32, i32* %p, !range !0 "
1355 " br label %loop "
1356 "loop: "
1357 " %iv = phi i32 [ %x, %entry], [%iv.next, %backedge] "
1358 " %ne.check = icmp ne i32 %iv, 0 "
1359 " br i1 %ne.check, label %backedge, label %exit "
1360 "backedge: "
1361 " %iv.next = add i32 %iv, -1 "
1362 " br label %loop "
1363 "exit:"
1364 " ret void "
1365 "} "
1366 "!0 = !{i32 0, i32 2147483647}",
1367 Err, C);
1369 ASSERT_TRUE(M && "Could not parse module?");
1370 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1372 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1373 const SCEV *X = SE.getSCEV(getInstructionByName(F, "x"));
1374 auto *Context = getInstructionByName(F, "iv.next");
1375 EXPECT_TRUE(SE.isKnownPredicateAt(ICmpInst::ICMP_NE, X,
1376 SE.getZero(X->getType()), Context));
1380 TEST_F(ScalarEvolutionsTest, UnsignedIsImpliedViaOperations) {
1381 LLVMContext C;
1382 SMDiagnostic Err;
1383 std::unique_ptr<Module> M =
1384 parseAssemblyString("define void @foo(i32* %p1, i32* %p2) { "
1385 "entry: "
1386 " %x = load i32, i32* %p1, !range !0 "
1387 " %cond = icmp ne i32 %x, 0 "
1388 " br i1 %cond, label %guarded, label %exit "
1389 "guarded: "
1390 " %y = add i32 %x, -1 "
1391 " ret void "
1392 "exit: "
1393 " ret void "
1394 "} "
1395 "!0 = !{i32 0, i32 2147483647}",
1396 Err, C);
1398 ASSERT_TRUE(M && "Could not parse module?");
1399 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1401 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1402 const SCEV *X = SE.getSCEV(getInstructionByName(F, "x"));
1403 const SCEV *Y = SE.getSCEV(getInstructionByName(F, "y"));
1404 auto *Guarded = getInstructionByName(F, "y")->getParent();
1405 ASSERT_TRUE(Guarded);
1406 EXPECT_TRUE(
1407 SE.isBasicBlockEntryGuardedByCond(Guarded, ICmpInst::ICMP_ULT, Y, X));
1408 EXPECT_TRUE(
1409 SE.isBasicBlockEntryGuardedByCond(Guarded, ICmpInst::ICMP_UGT, X, Y));
1413 TEST_F(ScalarEvolutionsTest, ProveImplicationViaNarrowing) {
1414 LLVMContext C;
1415 SMDiagnostic Err;
1416 std::unique_ptr<Module> M = parseAssemblyString(
1417 "define i32 @foo(i32 %start, i32* %q) { "
1418 "entry: "
1419 " %wide.start = zext i32 %start to i64 "
1420 " br label %loop "
1421 "loop: "
1422 " %wide.iv = phi i64 [%wide.start, %entry], [%wide.iv.next, %backedge] "
1423 " %iv = phi i32 [%start, %entry], [%iv.next, %backedge] "
1424 " %cond = icmp eq i64 %wide.iv, 0 "
1425 " br i1 %cond, label %exit, label %backedge "
1426 "backedge: "
1427 " %iv.next = add i32 %iv, -1 "
1428 " %index = zext i32 %iv.next to i64 "
1429 " %load.addr = getelementptr i32, i32* %q, i64 %index "
1430 " %stop = load i32, i32* %load.addr "
1431 " %loop.cond = icmp eq i32 %stop, 0 "
1432 " %wide.iv.next = add nsw i64 %wide.iv, -1 "
1433 " br i1 %loop.cond, label %loop, label %failure "
1434 "exit: "
1435 " ret i32 0 "
1436 "failure: "
1437 " unreachable "
1438 "} ",
1439 Err, C);
1441 ASSERT_TRUE(M && "Could not parse module?");
1442 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1444 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1445 const SCEV *IV = SE.getSCEV(getInstructionByName(F, "iv"));
1446 const SCEV *Zero = SE.getZero(IV->getType());
1447 auto *Backedge = getInstructionByName(F, "iv.next")->getParent();
1448 ASSERT_TRUE(Backedge);
1449 (void)IV;
1450 (void)Zero;
1451 // FIXME: This can only be proved with turned on option
1452 // scalar-evolution-use-expensive-range-sharpening which is currently off.
1453 // Enable the check once it's switched true by default.
1454 // EXPECT_TRUE(SE.isBasicBlockEntryGuardedByCond(Backedge,
1455 // ICmpInst::ICMP_UGT,
1456 // IV, Zero));
1460 TEST_F(ScalarEvolutionsTest, ImpliedCond) {
1461 LLVMContext C;
1462 SMDiagnostic Err;
1463 std::unique_ptr<Module> M = parseAssemblyString(
1464 "define void @foo(i32 %len) { "
1465 "entry: "
1466 " br label %loop "
1467 "loop: "
1468 " %iv = phi i32 [ 0, %entry], [%iv.next, %loop] "
1469 " %iv.next = add nsw i32 %iv, 1 "
1470 " %cmp = icmp slt i32 %iv, %len "
1471 " br i1 %cmp, label %loop, label %exit "
1472 "exit:"
1473 " ret void "
1474 "}",
1475 Err, C);
1477 ASSERT_TRUE(M && "Could not parse module?");
1478 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1480 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1481 Instruction *IV = getInstructionByName(F, "iv");
1482 Type *Ty = IV->getType();
1483 const SCEV *Zero = SE.getZero(Ty);
1484 const SCEV *MinusOne = SE.getMinusOne(Ty);
1485 // {0,+,1}<nuw><nsw>
1486 const SCEV *AddRec_0_1 = SE.getSCEV(IV);
1487 // {0,+,-1}<nw>
1488 const SCEV *AddRec_0_N1 = SE.getNegativeSCEV(AddRec_0_1);
1490 // {0,+,1}<nuw><nsw> > 0 -> {0,+,-1}<nw> < 0
1491 EXPECT_TRUE(isImpliedCond(SE, ICmpInst::ICMP_SLT, AddRec_0_N1, Zero,
1492 ICmpInst::ICMP_SGT, AddRec_0_1, Zero));
1493 // {0,+,-1}<nw> < -1 -> {0,+,1}<nuw><nsw> > 0
1494 EXPECT_TRUE(isImpliedCond(SE, ICmpInst::ICMP_SGT, AddRec_0_1, Zero,
1495 ICmpInst::ICMP_SLT, AddRec_0_N1, MinusOne));
1499 TEST_F(ScalarEvolutionsTest, MatchURem) {
1500 LLVMContext C;
1501 SMDiagnostic Err;
1502 std::unique_ptr<Module> M = parseAssemblyString(
1503 "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" "
1505 "define void @test(i32 %a, i32 %b, i16 %c, i64 %d) {"
1506 "entry: "
1507 " %rem1 = urem i32 %a, 2"
1508 " %rem2 = urem i32 %a, 5"
1509 " %rem3 = urem i32 %a, %b"
1510 " %c.ext = zext i16 %c to i32"
1511 " %rem4 = urem i32 %c.ext, 2"
1512 " %ext = zext i32 %rem4 to i64"
1513 " %rem5 = urem i64 %d, 17179869184"
1514 " ret void "
1515 "} ",
1516 Err, C);
1518 assert(M && "Could not parse module?");
1519 assert(!verifyModule(*M) && "Must have been well formed!");
1521 runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1522 for (auto *N : {"rem1", "rem2", "rem3", "rem5"}) {
1523 auto *URemI = getInstructionByName(F, N);
1524 auto *S = SE.getSCEV(URemI);
1525 const SCEV *LHS, *RHS;
1526 EXPECT_TRUE(matchURem(SE, S, LHS, RHS));
1527 EXPECT_EQ(LHS, SE.getSCEV(URemI->getOperand(0)));
1528 EXPECT_EQ(RHS, SE.getSCEV(URemI->getOperand(1)));
1529 EXPECT_EQ(LHS->getType(), S->getType());
1530 EXPECT_EQ(RHS->getType(), S->getType());
1533 // Check the case where the urem operand is zero-extended. Make sure the
1534 // match results are extended to the size of the input expression.
1535 auto *Ext = getInstructionByName(F, "ext");
1536 auto *URem1 = getInstructionByName(F, "rem4");
1537 auto *S = SE.getSCEV(Ext);
1538 const SCEV *LHS, *RHS;
1539 EXPECT_TRUE(matchURem(SE, S, LHS, RHS));
1540 EXPECT_NE(LHS, SE.getSCEV(URem1->getOperand(0)));
1541 // RHS and URem1->getOperand(1) have different widths, so compare the
1542 // integer values.
1543 EXPECT_EQ(cast<SCEVConstant>(RHS)->getValue()->getZExtValue(),
1544 cast<SCEVConstant>(SE.getSCEV(URem1->getOperand(1)))
1545 ->getValue()
1546 ->getZExtValue());
1547 EXPECT_EQ(LHS->getType(), S->getType());
1548 EXPECT_EQ(RHS->getType(), S->getType());
1552 TEST_F(ScalarEvolutionsTest, SCEVUDivFloorCeiling) {
1553 LLVMContext C;
1554 SMDiagnostic Err;
1555 std::unique_ptr<Module> M = parseAssemblyString("define void @foo() { "
1556 " ret void "
1557 "} ",
1558 Err, C);
1560 ASSERT_TRUE(M && "Could not parse module?");
1561 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1563 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1564 // Check that SCEV's udiv and uceil handling produce the correct results
1565 // for all 8 bit options. Div-by-zero is deliberately excluded.
1566 for (unsigned N = 0; N < 256; N++)
1567 for (unsigned D = 1; D < 256; D++) {
1568 APInt NInt(8, N);
1569 APInt DInt(8, D);
1570 using namespace llvm::APIntOps;
1571 APInt FloorInt = RoundingUDiv(NInt, DInt, APInt::Rounding::DOWN);
1572 APInt CeilingInt = RoundingUDiv(NInt, DInt, APInt::Rounding::UP);
1573 const SCEV *NS = SE.getConstant(NInt);
1574 const SCEV *DS = SE.getConstant(DInt);
1575 auto *FloorS = cast<SCEVConstant>(SE.getUDivExpr(NS, DS));
1576 auto *CeilingS = cast<SCEVConstant>(SE.getUDivCeilSCEV(NS, DS));
1577 ASSERT_TRUE(FloorS->getAPInt() == FloorInt);
1578 ASSERT_TRUE(CeilingS->getAPInt() == CeilingInt);
1583 TEST_F(ScalarEvolutionsTest, CheckGetPowerOfTwo) {
1584 Module M("CheckGetPowerOfTwo", Context);
1585 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {}, false);
1586 Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", M);
1587 BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
1588 IRBuilder<> Builder(Entry);
1589 Builder.CreateRetVoid();
1590 ScalarEvolution SE = buildSE(*F);
1592 for (unsigned short i = 0; i < 64; ++i)
1593 EXPECT_TRUE(
1594 dyn_cast<SCEVConstant>(SE.getPowerOfTwo(Type::getInt64Ty(Context), i))
1595 ->getValue()
1596 ->equalsInt(1ULL << i));
1599 TEST_F(ScalarEvolutionsTest, ApplyLoopGuards) {
1600 LLVMContext C;
1601 SMDiagnostic Err;
1602 std::unique_ptr<Module> M = parseAssemblyString(
1603 "declare void @llvm.assume(i1)\n"
1604 "define void @test(i32 %num) {\n"
1605 "entry:\n"
1606 " %u = urem i32 %num, 4\n"
1607 " %cmp = icmp eq i32 %u, 0\n"
1608 " tail call void @llvm.assume(i1 %cmp)\n"
1609 " %cmp.1 = icmp ugt i32 %num, 0\n"
1610 " tail call void @llvm.assume(i1 %cmp.1)\n"
1611 " br label %for.body\n"
1612 "for.body:\n"
1613 " %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ]\n"
1614 " %inc = add nuw nsw i32 %i.010, 1\n"
1615 " %cmp2 = icmp ult i32 %inc, %num\n"
1616 " br i1 %cmp2, label %for.body, label %exit\n"
1617 "exit:\n"
1618 " ret void\n"
1619 "}\n",
1620 Err, C);
1622 ASSERT_TRUE(M && "Could not parse module?");
1623 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1625 runWithSE(*M, "test", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1626 const SCEV *TCScev = SE.getSCEV(getArgByName(F, "num"));
1627 const SCEV *ApplyLoopGuardsTC = SE.applyLoopGuards(TCScev, *LI.begin());
1628 // Assert that the new TC is (4 * ((4 umax %num) /u 4))
1629 APInt Four(32, 4);
1630 const SCEV *Constant4 = SE.getConstant(Four);
1631 const SCEV *Max = SE.getUMaxExpr(TCScev, Constant4);
1632 const SCEV *Mul = SE.getMulExpr(SE.getUDivExpr(Max, Constant4), Constant4);
1633 ASSERT_TRUE(Mul == ApplyLoopGuardsTC);
1637 TEST_F(ScalarEvolutionsTest, ForgetValueWithOverflowInst) {
1638 LLVMContext C;
1639 SMDiagnostic Err;
1640 std::unique_ptr<Module> M = parseAssemblyString(
1641 "declare { i32, i1 } @llvm.smul.with.overflow.i32(i32, i32) "
1642 "define void @foo(i32 %i) { "
1643 "entry: "
1644 " br label %loop.body "
1645 "loop.body: "
1646 " %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] "
1647 " %iv.next = add nsw i32 %iv, 1 "
1648 " %call = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %iv, i32 -2) "
1649 " %extractvalue = extractvalue {i32, i1} %call, 0 "
1650 " %cmp = icmp eq i32 %iv.next, 16 "
1651 " br i1 %cmp, label %exit, label %loop.body "
1652 "exit: "
1653 " ret void "
1654 "} ",
1655 Err, C);
1657 ASSERT_TRUE(M && "Could not parse module?");
1658 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1660 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1661 auto *ExtractValue = getInstructionByName(F, "extractvalue");
1662 auto *IV = getInstructionByName(F, "iv");
1664 auto *ExtractValueScev = SE.getSCEV(ExtractValue);
1665 EXPECT_NE(ExtractValueScev, nullptr);
1667 SE.forgetValue(IV);
1668 auto *ExtractValueScevForgotten = SE.getExistingSCEV(ExtractValue);
1669 EXPECT_EQ(ExtractValueScevForgotten, nullptr);
1673 TEST_F(ScalarEvolutionsTest, ComplexityComparatorIsStrictWeakOrdering) {
1674 // Regression test for a case where caching of equivalent values caused the
1675 // comparator to get inconsistent.
1676 LLVMContext C;
1677 SMDiagnostic Err;
1678 std::unique_ptr<Module> M = parseAssemblyString(R"(
1679 define i32 @foo(i32 %arg0) {
1680 %1 = add i32 %arg0, 1
1681 %2 = add i32 %arg0, 1
1682 %3 = xor i32 %2, %1
1683 %4 = add i32 %3, %2
1684 %5 = add i32 %arg0, 1
1685 %6 = xor i32 %5, %arg0
1686 %7 = add i32 %arg0, %6
1687 %8 = add i32 %5, %7
1688 %9 = xor i32 %8, %7
1689 %10 = add i32 %9, %8
1690 %11 = xor i32 %10, %9
1691 %12 = add i32 %11, %10
1692 %13 = xor i32 %12, %11
1693 %14 = add i32 %12, %13
1694 %15 = add i32 %14, %4
1695 ret i32 %15
1696 })",
1697 Err, C);
1699 ASSERT_TRUE(M && "Could not parse module?");
1700 ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1702 runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1703 // When _LIBCPP_HARDENING_MODE == _LIBCPP_HARDENING_MODE_DEBUG, this will
1704 // crash if the comparator has the specific caching bug.
1705 SE.getSCEV(F.getEntryBlock().getTerminator()->getOperand(0));
1709 } // end namespace llvm