[SLP]Reduce number of alternate instruction, where possible
[llvm-project.git] / mlir / lib / Conversion / SCFToOpenMP / SCFToOpenMP.cpp
blob233739e1d6d917e4d4120ed16b4a6a3c858bcce7
1 //===- SCFToOpenMP.cpp - Structured Control Flow to OpenMP conversion -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to convert scf.parallel operations into OpenMP
10 // parallel loops.
12 //===----------------------------------------------------------------------===//
14 #include "mlir/Conversion/SCFToOpenMP/SCFToOpenMP.h"
16 #include "mlir/Analysis/SliceAnalysis.h"
17 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
18 #include "mlir/Dialect/Arith/IR/Arith.h"
19 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
22 #include "mlir/Dialect/SCF/IR/SCF.h"
23 #include "mlir/IR/ImplicitLocOpBuilder.h"
24 #include "mlir/IR/SymbolTable.h"
25 #include "mlir/Pass/Pass.h"
26 #include "mlir/Transforms/DialectConversion.h"
28 namespace mlir {
29 #define GEN_PASS_DEF_CONVERTSCFTOOPENMPPASS
30 #include "mlir/Conversion/Passes.h.inc"
31 } // namespace mlir
33 using namespace mlir;
35 /// Matches a block containing a "simple" reduction. The expected shape of the
36 /// block is as follows.
37 ///
38 /// ^bb(%arg0, %arg1):
39 /// %0 = OpTy(%arg0, %arg1)
40 /// scf.reduce.return %0
41 template <typename... OpTy>
42 static bool matchSimpleReduction(Block &block) {
43 if (block.empty() || llvm::hasSingleElement(block) ||
44 std::next(block.begin(), 2) != block.end())
45 return false;
47 if (block.getNumArguments() != 2)
48 return false;
50 SmallVector<Operation *, 4> combinerOps;
51 Value reducedVal = matchReduction({block.getArguments()[1]},
52 /*redPos=*/0, combinerOps);
54 if (!reducedVal || !isa<BlockArgument>(reducedVal) || combinerOps.size() != 1)
55 return false;
57 return isa<OpTy...>(combinerOps[0]) &&
58 isa<scf::ReduceReturnOp>(block.back()) &&
59 block.front().getOperands() == block.getArguments();
62 /// Matches a block containing a select-based min/max reduction. The types of
63 /// select and compare operations are provided as template arguments. The
64 /// comparison predicates suitable for min and max are provided as function
65 /// arguments. If a reduction is matched, `ifMin` will be set if the reduction
66 /// compute the minimum and unset if it computes the maximum, otherwise it
67 /// remains unmodified. The expected shape of the block is as follows.
68 ///
69 /// ^bb(%arg0, %arg1):
70 /// %0 = CompareOpTy(<one-of-predicates>, %arg0, %arg1)
71 /// %1 = SelectOpTy(%0, %arg0, %arg1) // %arg0, %arg1 may be swapped here.
72 /// scf.reduce.return %1
73 template <
74 typename CompareOpTy, typename SelectOpTy,
75 typename Predicate = decltype(std::declval<CompareOpTy>().getPredicate())>
76 static bool
77 matchSelectReduction(Block &block, ArrayRef<Predicate> lessThanPredicates,
78 ArrayRef<Predicate> greaterThanPredicates, bool &isMin) {
79 static_assert(
80 llvm::is_one_of<SelectOpTy, arith::SelectOp, LLVM::SelectOp>::value,
81 "only arithmetic and llvm select ops are supported");
83 // Expect exactly three operations in the block.
84 if (block.empty() || llvm::hasSingleElement(block) ||
85 std::next(block.begin(), 2) == block.end() ||
86 std::next(block.begin(), 3) != block.end())
87 return false;
89 // Check op kinds.
90 auto compare = dyn_cast<CompareOpTy>(block.front());
91 auto select = dyn_cast<SelectOpTy>(block.front().getNextNode());
92 auto terminator = dyn_cast<scf::ReduceReturnOp>(block.back());
93 if (!compare || !select || !terminator)
94 return false;
96 // Block arguments must be compared.
97 if (compare->getOperands() != block.getArguments())
98 return false;
100 // Detect whether the comparison is less-than or greater-than, otherwise bail.
101 bool isLess;
102 if (llvm::is_contained(lessThanPredicates, compare.getPredicate())) {
103 isLess = true;
104 } else if (llvm::is_contained(greaterThanPredicates,
105 compare.getPredicate())) {
106 isLess = false;
107 } else {
108 return false;
111 if (select.getCondition() != compare.getResult())
112 return false;
114 // Detect if the operands are swapped between cmpf and select. Match the
115 // comparison type with the requested type or with the opposite of the
116 // requested type if the operands are swapped. Use generic accessors because
117 // std and LLVM versions of select have different operand names but identical
118 // positions.
119 constexpr unsigned kTrueValue = 1;
120 constexpr unsigned kFalseValue = 2;
121 bool sameOperands = select.getOperand(kTrueValue) == compare.getLhs() &&
122 select.getOperand(kFalseValue) == compare.getRhs();
123 bool swappedOperands = select.getOperand(kTrueValue) == compare.getRhs() &&
124 select.getOperand(kFalseValue) == compare.getLhs();
125 if (!sameOperands && !swappedOperands)
126 return false;
128 if (select.getResult() != terminator.getResult())
129 return false;
131 // The reduction is a min if it uses less-than predicates with same operands
132 // or greather-than predicates with swapped operands. Similarly for max.
133 isMin = (isLess && sameOperands) || (!isLess && swappedOperands);
134 return isMin || (isLess & swappedOperands) || (!isLess && sameOperands);
137 /// Returns the float semantics for the given float type.
138 static const llvm::fltSemantics &fltSemanticsForType(FloatType type) {
139 if (type.isF16())
140 return llvm::APFloat::IEEEhalf();
141 if (type.isF32())
142 return llvm::APFloat::IEEEsingle();
143 if (type.isF64())
144 return llvm::APFloat::IEEEdouble();
145 if (type.isF128())
146 return llvm::APFloat::IEEEquad();
147 if (type.isBF16())
148 return llvm::APFloat::BFloat();
149 if (type.isF80())
150 return llvm::APFloat::x87DoubleExtended();
151 llvm_unreachable("unknown float type");
154 /// Returns an attribute with the minimum (if `min` is set) or the maximum value
155 /// (otherwise) for the given float type.
156 static Attribute minMaxValueForFloat(Type type, bool min) {
157 auto fltType = cast<FloatType>(type);
158 return FloatAttr::get(
159 type, llvm::APFloat::getLargest(fltSemanticsForType(fltType), min));
162 /// Returns an attribute with the signed integer minimum (if `min` is set) or
163 /// the maximum value (otherwise) for the given integer type, regardless of its
164 /// signedness semantics (only the width is considered).
165 static Attribute minMaxValueForSignedInt(Type type, bool min) {
166 auto intType = cast<IntegerType>(type);
167 unsigned bitwidth = intType.getWidth();
168 return IntegerAttr::get(type, min ? llvm::APInt::getSignedMinValue(bitwidth)
169 : llvm::APInt::getSignedMaxValue(bitwidth));
172 /// Returns an attribute with the unsigned integer minimum (if `min` is set) or
173 /// the maximum value (otherwise) for the given integer type, regardless of its
174 /// signedness semantics (only the width is considered).
175 static Attribute minMaxValueForUnsignedInt(Type type, bool min) {
176 auto intType = cast<IntegerType>(type);
177 unsigned bitwidth = intType.getWidth();
178 return IntegerAttr::get(type, min ? llvm::APInt::getZero(bitwidth)
179 : llvm::APInt::getAllOnes(bitwidth));
182 /// Creates an OpenMP reduction declaration and inserts it into the provided
183 /// symbol table. The declaration has a constant initializer with the neutral
184 /// value `initValue`, and the `reductionIndex`-th reduction combiner carried
185 /// over from `reduce`.
186 static omp::DeclareReductionOp
187 createDecl(PatternRewriter &builder, SymbolTable &symbolTable,
188 scf::ReduceOp reduce, int64_t reductionIndex, Attribute initValue) {
189 OpBuilder::InsertionGuard guard(builder);
190 Type type = reduce.getOperands()[reductionIndex].getType();
191 auto decl = builder.create<omp::DeclareReductionOp>(reduce.getLoc(),
192 "__scf_reduction", type);
193 symbolTable.insert(decl);
195 builder.createBlock(&decl.getInitializerRegion(),
196 decl.getInitializerRegion().end(), {type},
197 {reduce.getOperands()[reductionIndex].getLoc()});
198 builder.setInsertionPointToEnd(&decl.getInitializerRegion().back());
199 Value init =
200 builder.create<LLVM::ConstantOp>(reduce.getLoc(), type, initValue);
201 builder.create<omp::YieldOp>(reduce.getLoc(), init);
203 Operation *terminator =
204 &reduce.getReductions()[reductionIndex].front().back();
205 assert(isa<scf::ReduceReturnOp>(terminator) &&
206 "expected reduce op to be terminated by redure return");
207 builder.setInsertionPoint(terminator);
208 builder.replaceOpWithNewOp<omp::YieldOp>(terminator,
209 terminator->getOperands());
210 builder.inlineRegionBefore(reduce.getReductions()[reductionIndex],
211 decl.getReductionRegion(),
212 decl.getReductionRegion().end());
213 return decl;
216 /// Adds an atomic reduction combiner to the given OpenMP reduction declaration
217 /// using llvm.atomicrmw of the given kind.
218 static omp::DeclareReductionOp addAtomicRMW(OpBuilder &builder,
219 LLVM::AtomicBinOp atomicKind,
220 omp::DeclareReductionOp decl,
221 scf::ReduceOp reduce,
222 int64_t reductionIndex) {
223 OpBuilder::InsertionGuard guard(builder);
224 auto ptrType = LLVM::LLVMPointerType::get(builder.getContext());
225 Location reduceOperandLoc = reduce.getOperands()[reductionIndex].getLoc();
226 builder.createBlock(&decl.getAtomicReductionRegion(),
227 decl.getAtomicReductionRegion().end(), {ptrType, ptrType},
228 {reduceOperandLoc, reduceOperandLoc});
229 Block *atomicBlock = &decl.getAtomicReductionRegion().back();
230 builder.setInsertionPointToEnd(atomicBlock);
231 Value loaded = builder.create<LLVM::LoadOp>(reduce.getLoc(), decl.getType(),
232 atomicBlock->getArgument(1));
233 builder.create<LLVM::AtomicRMWOp>(reduce.getLoc(), atomicKind,
234 atomicBlock->getArgument(0), loaded,
235 LLVM::AtomicOrdering::monotonic);
236 builder.create<omp::YieldOp>(reduce.getLoc(), ArrayRef<Value>());
237 return decl;
240 /// Creates an OpenMP reduction declaration that corresponds to the given SCF
241 /// reduction and returns it. Recognizes common reductions in order to identify
242 /// the neutral value, necessary for the OpenMP declaration. If the reduction
243 /// cannot be recognized, returns null.
244 static omp::DeclareReductionOp declareReduction(PatternRewriter &builder,
245 scf::ReduceOp reduce,
246 int64_t reductionIndex) {
247 Operation *container = SymbolTable::getNearestSymbolTable(reduce);
248 SymbolTable symbolTable(container);
250 // Insert reduction declarations in the symbol-table ancestor before the
251 // ancestor of the current insertion point.
252 Operation *insertionPoint = reduce;
253 while (insertionPoint->getParentOp() != container)
254 insertionPoint = insertionPoint->getParentOp();
255 OpBuilder::InsertionGuard guard(builder);
256 builder.setInsertionPoint(insertionPoint);
258 assert(llvm::hasSingleElement(reduce.getReductions()[reductionIndex]) &&
259 "expected reduction region to have a single element");
261 // Match simple binary reductions that can be expressed with atomicrmw.
262 Type type = reduce.getOperands()[reductionIndex].getType();
263 Block &reduction = reduce.getReductions()[reductionIndex].front();
264 if (matchSimpleReduction<arith::AddFOp, LLVM::FAddOp>(reduction)) {
265 omp::DeclareReductionOp decl =
266 createDecl(builder, symbolTable, reduce, reductionIndex,
267 builder.getFloatAttr(type, 0.0));
268 return addAtomicRMW(builder, LLVM::AtomicBinOp::fadd, decl, reduce,
269 reductionIndex);
271 if (matchSimpleReduction<arith::AddIOp, LLVM::AddOp>(reduction)) {
272 omp::DeclareReductionOp decl =
273 createDecl(builder, symbolTable, reduce, reductionIndex,
274 builder.getIntegerAttr(type, 0));
275 return addAtomicRMW(builder, LLVM::AtomicBinOp::add, decl, reduce,
276 reductionIndex);
278 if (matchSimpleReduction<arith::OrIOp, LLVM::OrOp>(reduction)) {
279 omp::DeclareReductionOp decl =
280 createDecl(builder, symbolTable, reduce, reductionIndex,
281 builder.getIntegerAttr(type, 0));
282 return addAtomicRMW(builder, LLVM::AtomicBinOp::_or, decl, reduce,
283 reductionIndex);
285 if (matchSimpleReduction<arith::XOrIOp, LLVM::XOrOp>(reduction)) {
286 omp::DeclareReductionOp decl =
287 createDecl(builder, symbolTable, reduce, reductionIndex,
288 builder.getIntegerAttr(type, 0));
289 return addAtomicRMW(builder, LLVM::AtomicBinOp::_xor, decl, reduce,
290 reductionIndex);
292 if (matchSimpleReduction<arith::AndIOp, LLVM::AndOp>(reduction)) {
293 omp::DeclareReductionOp decl = createDecl(
294 builder, symbolTable, reduce, reductionIndex,
295 builder.getIntegerAttr(
296 type, llvm::APInt::getAllOnes(type.getIntOrFloatBitWidth())));
297 return addAtomicRMW(builder, LLVM::AtomicBinOp::_and, decl, reduce,
298 reductionIndex);
301 // Match simple binary reductions that cannot be expressed with atomicrmw.
302 // TODO: add atomic region using cmpxchg (which needs atomic load to be
303 // available as an op).
304 if (matchSimpleReduction<arith::MulFOp, LLVM::FMulOp>(reduction)) {
305 return createDecl(builder, symbolTable, reduce, reductionIndex,
306 builder.getFloatAttr(type, 1.0));
308 if (matchSimpleReduction<arith::MulIOp, LLVM::MulOp>(reduction)) {
309 return createDecl(builder, symbolTable, reduce, reductionIndex,
310 builder.getIntegerAttr(type, 1));
313 // Match select-based min/max reductions.
314 bool isMin;
315 if (matchSelectReduction<arith::CmpFOp, arith::SelectOp>(
316 reduction, {arith::CmpFPredicate::OLT, arith::CmpFPredicate::OLE},
317 {arith::CmpFPredicate::OGT, arith::CmpFPredicate::OGE}, isMin) ||
318 matchSelectReduction<LLVM::FCmpOp, LLVM::SelectOp>(
319 reduction, {LLVM::FCmpPredicate::olt, LLVM::FCmpPredicate::ole},
320 {LLVM::FCmpPredicate::ogt, LLVM::FCmpPredicate::oge}, isMin)) {
321 return createDecl(builder, symbolTable, reduce, reductionIndex,
322 minMaxValueForFloat(type, !isMin));
324 if (matchSelectReduction<arith::CmpIOp, arith::SelectOp>(
325 reduction, {arith::CmpIPredicate::slt, arith::CmpIPredicate::sle},
326 {arith::CmpIPredicate::sgt, arith::CmpIPredicate::sge}, isMin) ||
327 matchSelectReduction<LLVM::ICmpOp, LLVM::SelectOp>(
328 reduction, {LLVM::ICmpPredicate::slt, LLVM::ICmpPredicate::sle},
329 {LLVM::ICmpPredicate::sgt, LLVM::ICmpPredicate::sge}, isMin)) {
330 omp::DeclareReductionOp decl =
331 createDecl(builder, symbolTable, reduce, reductionIndex,
332 minMaxValueForSignedInt(type, !isMin));
333 return addAtomicRMW(builder,
334 isMin ? LLVM::AtomicBinOp::min : LLVM::AtomicBinOp::max,
335 decl, reduce, reductionIndex);
337 if (matchSelectReduction<arith::CmpIOp, arith::SelectOp>(
338 reduction, {arith::CmpIPredicate::ult, arith::CmpIPredicate::ule},
339 {arith::CmpIPredicate::ugt, arith::CmpIPredicate::uge}, isMin) ||
340 matchSelectReduction<LLVM::ICmpOp, LLVM::SelectOp>(
341 reduction, {LLVM::ICmpPredicate::ugt, LLVM::ICmpPredicate::ule},
342 {LLVM::ICmpPredicate::ugt, LLVM::ICmpPredicate::uge}, isMin)) {
343 omp::DeclareReductionOp decl =
344 createDecl(builder, symbolTable, reduce, reductionIndex,
345 minMaxValueForUnsignedInt(type, !isMin));
346 return addAtomicRMW(
347 builder, isMin ? LLVM::AtomicBinOp::umin : LLVM::AtomicBinOp::umax,
348 decl, reduce, reductionIndex);
351 return nullptr;
354 namespace {
356 struct ParallelOpLowering : public OpRewritePattern<scf::ParallelOp> {
357 static constexpr unsigned kUseOpenMPDefaultNumThreads = 0;
358 unsigned numThreads;
360 ParallelOpLowering(MLIRContext *context,
361 unsigned numThreads = kUseOpenMPDefaultNumThreads)
362 : OpRewritePattern<scf::ParallelOp>(context), numThreads(numThreads) {}
364 LogicalResult matchAndRewrite(scf::ParallelOp parallelOp,
365 PatternRewriter &rewriter) const override {
366 // Declare reductions.
367 // TODO: consider checking it here is already a compatible reduction
368 // declaration and use it instead of redeclaring.
369 SmallVector<Attribute> reductionSyms;
370 SmallVector<omp::DeclareReductionOp> ompReductionDecls;
371 auto reduce = cast<scf::ReduceOp>(parallelOp.getBody()->getTerminator());
372 for (int64_t i = 0, e = parallelOp.getNumReductions(); i < e; ++i) {
373 omp::DeclareReductionOp decl = declareReduction(rewriter, reduce, i);
374 ompReductionDecls.push_back(decl);
375 if (!decl)
376 return failure();
377 reductionSyms.push_back(
378 SymbolRefAttr::get(rewriter.getContext(), decl.getSymName()));
381 // Allocate reduction variables. Make sure the we don't overflow the stack
382 // with local `alloca`s by saving and restoring the stack pointer.
383 Location loc = parallelOp.getLoc();
384 Value one = rewriter.create<LLVM::ConstantOp>(
385 loc, rewriter.getIntegerType(64), rewriter.getI64IntegerAttr(1));
386 SmallVector<Value> reductionVariables;
387 reductionVariables.reserve(parallelOp.getNumReductions());
388 auto ptrType = LLVM::LLVMPointerType::get(parallelOp.getContext());
389 for (Value init : parallelOp.getInitVals()) {
390 assert((LLVM::isCompatibleType(init.getType()) ||
391 isa<LLVM::PointerElementTypeInterface>(init.getType())) &&
392 "cannot create a reduction variable if the type is not an LLVM "
393 "pointer element");
394 Value storage =
395 rewriter.create<LLVM::AllocaOp>(loc, ptrType, init.getType(), one, 0);
396 rewriter.create<LLVM::StoreOp>(loc, init, storage);
397 reductionVariables.push_back(storage);
400 // Replace the reduction operations contained in this loop. Must be done
401 // here rather than in a separate pattern to have access to the list of
402 // reduction variables.
403 for (auto [x, y, rD] : llvm::zip_equal(
404 reductionVariables, reduce.getOperands(), ompReductionDecls)) {
405 OpBuilder::InsertionGuard guard(rewriter);
406 rewriter.setInsertionPoint(reduce);
407 Region &redRegion = rD.getReductionRegion();
408 // The SCF dialect by definition contains only structured operations
409 // and hence the SCF reduction region will contain a single block.
410 // The ompReductionDecls region is a copy of the SCF reduction region
411 // and hence has the same property.
412 assert(redRegion.hasOneBlock() &&
413 "expect reduction region to have one block");
414 Value pvtRedVar = parallelOp.getRegion().addArgument(x.getType(), loc);
415 Value pvtRedVal = rewriter.create<LLVM::LoadOp>(reduce.getLoc(),
416 rD.getType(), pvtRedVar);
417 // Make a copy of the reduction combiner region in the body
418 mlir::OpBuilder builder(rewriter.getContext());
419 builder.setInsertionPoint(reduce);
420 mlir::IRMapping mapper;
421 assert(redRegion.getNumArguments() == 2 &&
422 "expect reduction region to have two arguments");
423 mapper.map(redRegion.getArgument(0), pvtRedVal);
424 mapper.map(redRegion.getArgument(1), y);
425 for (auto &op : redRegion.getOps()) {
426 Operation *cloneOp = builder.clone(op, mapper);
427 if (auto yieldOp = dyn_cast<omp::YieldOp>(*cloneOp)) {
428 assert(yieldOp && yieldOp.getResults().size() == 1 &&
429 "expect YieldOp in reduction region to return one result");
430 Value redVal = yieldOp.getResults()[0];
431 rewriter.create<LLVM::StoreOp>(loc, redVal, pvtRedVar);
432 rewriter.eraseOp(yieldOp);
433 break;
437 rewriter.eraseOp(reduce);
439 Value numThreadsVar;
440 if (numThreads > 0) {
441 numThreadsVar = rewriter.create<LLVM::ConstantOp>(
442 loc, rewriter.getI32IntegerAttr(numThreads));
444 // Create the parallel wrapper.
445 auto ompParallel = rewriter.create<omp::ParallelOp>(
446 loc,
447 /* allocate_vars = */ llvm::SmallVector<Value>{},
448 /* allocator_vars = */ llvm::SmallVector<Value>{},
449 /* if_expr = */ Value{},
450 /* num_threads = */ numThreadsVar,
451 /* private_vars = */ ValueRange(),
452 /* private_syms = */ nullptr,
453 /* proc_bind_kind = */ omp::ClauseProcBindKindAttr{},
454 /* reduction_mod = */ nullptr,
455 /* reduction_vars = */ llvm::SmallVector<Value>{},
456 /* reduction_byref = */ DenseBoolArrayAttr{},
457 /* reduction_syms = */ ArrayAttr{});
460 OpBuilder::InsertionGuard guard(rewriter);
461 rewriter.createBlock(&ompParallel.getRegion());
463 // Replace the loop.
465 OpBuilder::InsertionGuard allocaGuard(rewriter);
466 // Create worksharing loop wrapper.
467 auto wsloopOp = rewriter.create<omp::WsloopOp>(parallelOp.getLoc());
468 if (!reductionVariables.empty()) {
469 wsloopOp.setReductionSymsAttr(
470 ArrayAttr::get(rewriter.getContext(), reductionSyms));
471 wsloopOp.getReductionVarsMutable().append(reductionVariables);
472 llvm::SmallVector<bool> reductionByRef;
473 // false because these reductions always reduce scalars and so do
474 // not need to pass by reference
475 reductionByRef.resize(reductionVariables.size(), false);
476 wsloopOp.setReductionByref(
477 DenseBoolArrayAttr::get(rewriter.getContext(), reductionByRef));
479 rewriter.create<omp::TerminatorOp>(loc); // omp.parallel terminator.
481 // The wrapper's entry block arguments will define the reduction
482 // variables.
483 llvm::SmallVector<mlir::Type> reductionTypes;
484 reductionTypes.reserve(reductionVariables.size());
485 llvm::transform(reductionVariables, std::back_inserter(reductionTypes),
486 [](mlir::Value v) { return v.getType(); });
487 rewriter.createBlock(
488 &wsloopOp.getRegion(), {}, reductionTypes,
489 llvm::SmallVector<mlir::Location>(reductionVariables.size(),
490 parallelOp.getLoc()));
492 // Create loop nest and populate region with contents of scf.parallel.
493 auto loopOp = rewriter.create<omp::LoopNestOp>(
494 parallelOp.getLoc(), parallelOp.getLowerBound(),
495 parallelOp.getUpperBound(), parallelOp.getStep());
497 rewriter.inlineRegionBefore(parallelOp.getRegion(), loopOp.getRegion(),
498 loopOp.getRegion().begin());
500 // Remove reduction-related block arguments from omp.loop_nest and
501 // redirect uses to the corresponding omp.wsloop block argument.
502 mlir::Block &loopOpEntryBlock = loopOp.getRegion().front();
503 unsigned numLoops = parallelOp.getNumLoops();
504 rewriter.replaceAllUsesWith(
505 loopOpEntryBlock.getArguments().drop_front(numLoops),
506 wsloopOp.getRegion().getArguments());
507 loopOpEntryBlock.eraseArguments(
508 numLoops, loopOpEntryBlock.getNumArguments() - numLoops);
510 Block *ops =
511 rewriter.splitBlock(&loopOpEntryBlock, loopOpEntryBlock.begin());
512 rewriter.setInsertionPointToStart(&loopOpEntryBlock);
514 auto scope = rewriter.create<memref::AllocaScopeOp>(parallelOp.getLoc(),
515 TypeRange());
516 rewriter.create<omp::YieldOp>(loc, ValueRange());
517 Block *scopeBlock = rewriter.createBlock(&scope.getBodyRegion());
518 rewriter.mergeBlocks(ops, scopeBlock);
519 rewriter.setInsertionPointToEnd(&*scope.getBodyRegion().begin());
520 rewriter.create<memref::AllocaScopeReturnOp>(loc, ValueRange());
524 // Load loop results.
525 SmallVector<Value> results;
526 results.reserve(reductionVariables.size());
527 for (auto [variable, type] :
528 llvm::zip(reductionVariables, parallelOp.getResultTypes())) {
529 Value res = rewriter.create<LLVM::LoadOp>(loc, type, variable);
530 results.push_back(res);
532 rewriter.replaceOp(parallelOp, results);
534 return success();
538 /// Applies the conversion patterns in the given function.
539 static LogicalResult applyPatterns(ModuleOp module, unsigned numThreads) {
540 ConversionTarget target(*module.getContext());
541 target.addIllegalOp<scf::ReduceOp, scf::ReduceReturnOp, scf::ParallelOp>();
542 target.addLegalDialect<omp::OpenMPDialect, LLVM::LLVMDialect,
543 memref::MemRefDialect>();
545 RewritePatternSet patterns(module.getContext());
546 patterns.add<ParallelOpLowering>(module.getContext(), numThreads);
547 FrozenRewritePatternSet frozen(std::move(patterns));
548 return applyPartialConversion(module, target, frozen);
551 /// A pass converting SCF operations to OpenMP operations.
552 struct SCFToOpenMPPass
553 : public impl::ConvertSCFToOpenMPPassBase<SCFToOpenMPPass> {
555 using Base::Base;
557 /// Pass entry point.
558 void runOnOperation() override {
559 if (failed(applyPatterns(getOperation(), numThreads)))
560 signalPassFailure();
564 } // namespace