[CodeGenPrepare] Drop nsw flags in `optimizeLoadExt` (#118180)
[llvm-project.git] / mlir / lib / Transforms / SROA.cpp
blobdb8be38a51443e09d280a2bc98c9f8818ff520f8
1 //===-- SROA.cpp - Scalar Replacement Of Aggregates -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "mlir/Transforms/SROA.h"
10 #include "mlir/Analysis/DataLayoutAnalysis.h"
11 #include "mlir/Analysis/SliceAnalysis.h"
12 #include "mlir/Analysis/TopologicalSortUtils.h"
13 #include "mlir/Interfaces/MemorySlotInterfaces.h"
14 #include "mlir/Transforms/Passes.h"
16 namespace mlir {
17 #define GEN_PASS_DEF_SROA
18 #include "mlir/Transforms/Passes.h.inc"
19 } // namespace mlir
21 #define DEBUG_TYPE "sroa"
23 using namespace mlir;
25 namespace {
27 /// Information computed by destructurable memory slot analysis used to perform
28 /// actual destructuring of the slot. This struct is only constructed if
29 /// destructuring is possible, and contains the necessary data to perform it.
30 struct MemorySlotDestructuringInfo {
31 /// Set of the indices that are actually used when accessing the subelements.
32 SmallPtrSet<Attribute, 8> usedIndices;
33 /// Blocking uses of a given user of the memory slot that must be eliminated.
34 DenseMap<Operation *, SmallPtrSet<OpOperand *, 4>> userToBlockingUses;
35 /// List of potentially indirect accessors of the memory slot that need
36 /// rewiring.
37 SmallVector<DestructurableAccessorOpInterface> accessors;
40 } // namespace
42 /// Computes information for slot destructuring. This will compute whether this
43 /// slot can be destructured and data to perform the destructuring. Returns
44 /// nothing if the slot cannot be destructured or if there is no useful work to
45 /// be done.
46 static std::optional<MemorySlotDestructuringInfo>
47 computeDestructuringInfo(DestructurableMemorySlot &slot,
48 const DataLayout &dataLayout) {
49 assert(isa<DestructurableTypeInterface>(slot.elemType));
51 if (slot.ptr.use_empty())
52 return {};
54 MemorySlotDestructuringInfo info;
56 SmallVector<MemorySlot> usedSafelyWorklist;
58 auto scheduleAsBlockingUse = [&](OpOperand &use) {
59 SmallPtrSetImpl<OpOperand *> &blockingUses =
60 info.userToBlockingUses[use.getOwner()];
61 blockingUses.insert(&use);
64 // Initialize the analysis with the immediate users of the slot.
65 for (OpOperand &use : slot.ptr.getUses()) {
66 if (auto accessor =
67 dyn_cast<DestructurableAccessorOpInterface>(use.getOwner())) {
68 if (accessor.canRewire(slot, info.usedIndices, usedSafelyWorklist,
69 dataLayout)) {
70 info.accessors.push_back(accessor);
71 continue;
75 // If it cannot be shown that the operation uses the slot safely, maybe it
76 // can be promoted out of using the slot?
77 scheduleAsBlockingUse(use);
80 SmallPtrSet<OpOperand *, 16> visited;
81 while (!usedSafelyWorklist.empty()) {
82 MemorySlot mustBeUsedSafely = usedSafelyWorklist.pop_back_val();
83 for (OpOperand &subslotUse : mustBeUsedSafely.ptr.getUses()) {
84 if (!visited.insert(&subslotUse).second)
85 continue;
86 Operation *subslotUser = subslotUse.getOwner();
88 if (auto memOp = dyn_cast<SafeMemorySlotAccessOpInterface>(subslotUser))
89 if (succeeded(memOp.ensureOnlySafeAccesses(
90 mustBeUsedSafely, usedSafelyWorklist, dataLayout)))
91 continue;
93 // If it cannot be shown that the operation uses the slot safely, maybe it
94 // can be promoted out of using the slot?
95 scheduleAsBlockingUse(subslotUse);
99 SetVector<Operation *> forwardSlice;
100 mlir::getForwardSlice(slot.ptr, &forwardSlice);
101 for (Operation *user : forwardSlice) {
102 // If the next operation has no blocking uses, everything is fine.
103 auto it = info.userToBlockingUses.find(user);
104 if (it == info.userToBlockingUses.end())
105 continue;
107 SmallPtrSet<OpOperand *, 4> &blockingUses = it->second;
108 auto promotable = dyn_cast<PromotableOpInterface>(user);
110 // An operation that has blocking uses must be promoted. If it is not
111 // promotable, destructuring must fail.
112 if (!promotable)
113 return {};
115 SmallVector<OpOperand *> newBlockingUses;
116 // If the operation decides it cannot deal with removing the blocking uses,
117 // destructuring must fail.
118 if (!promotable.canUsesBeRemoved(blockingUses, newBlockingUses, dataLayout))
119 return {};
121 // Then, register any new blocking uses for coming operations.
122 for (OpOperand *blockingUse : newBlockingUses) {
123 assert(llvm::is_contained(user->getResults(), blockingUse->get()));
125 SmallPtrSetImpl<OpOperand *> &newUserBlockingUseSet =
126 info.userToBlockingUses[blockingUse->getOwner()];
127 newUserBlockingUseSet.insert(blockingUse);
131 return info;
134 /// Performs the destructuring of a destructible slot given associated
135 /// destructuring information. The provided slot will be destructured in
136 /// subslots as specified by its allocator.
137 static void destructureSlot(
138 DestructurableMemorySlot &slot,
139 DestructurableAllocationOpInterface allocator, OpBuilder &builder,
140 const DataLayout &dataLayout, MemorySlotDestructuringInfo &info,
141 SmallVectorImpl<DestructurableAllocationOpInterface> &newAllocators,
142 const SROAStatistics &statistics) {
143 OpBuilder::InsertionGuard guard(builder);
145 builder.setInsertionPointToStart(slot.ptr.getParentBlock());
146 DenseMap<Attribute, MemorySlot> subslots =
147 allocator.destructure(slot, info.usedIndices, builder, newAllocators);
149 if (statistics.slotsWithMemoryBenefit &&
150 slot.subelementTypes.size() != info.usedIndices.size())
151 (*statistics.slotsWithMemoryBenefit)++;
153 if (statistics.maxSubelementAmount)
154 statistics.maxSubelementAmount->updateMax(slot.subelementTypes.size());
156 SetVector<Operation *> usersToRewire;
157 for (Operation *user : llvm::make_first_range(info.userToBlockingUses))
158 usersToRewire.insert(user);
159 for (DestructurableAccessorOpInterface accessor : info.accessors)
160 usersToRewire.insert(accessor);
161 usersToRewire = mlir::topologicalSort(usersToRewire);
163 llvm::SmallVector<Operation *> toErase;
164 for (Operation *toRewire : llvm::reverse(usersToRewire)) {
165 builder.setInsertionPointAfter(toRewire);
166 if (auto accessor = dyn_cast<DestructurableAccessorOpInterface>(toRewire)) {
167 if (accessor.rewire(slot, subslots, builder, dataLayout) ==
168 DeletionKind::Delete)
169 toErase.push_back(accessor);
170 continue;
173 auto promotable = cast<PromotableOpInterface>(toRewire);
174 if (promotable.removeBlockingUses(info.userToBlockingUses[promotable],
175 builder) == DeletionKind::Delete)
176 toErase.push_back(promotable);
179 for (Operation *toEraseOp : toErase)
180 toEraseOp->erase();
182 assert(slot.ptr.use_empty() && "after destructuring, the original slot "
183 "pointer should no longer be used");
185 LLVM_DEBUG(llvm::dbgs() << "[sroa] Destructured memory slot: " << slot.ptr
186 << "\n");
188 if (statistics.destructuredAmount)
189 (*statistics.destructuredAmount)++;
191 std::optional<DestructurableAllocationOpInterface> newAllocator =
192 allocator.handleDestructuringComplete(slot, builder);
193 // Add newly created allocators to the worklist for further processing.
194 if (newAllocator)
195 newAllocators.push_back(*newAllocator);
198 LogicalResult mlir::tryToDestructureMemorySlots(
199 ArrayRef<DestructurableAllocationOpInterface> allocators,
200 OpBuilder &builder, const DataLayout &dataLayout,
201 SROAStatistics statistics) {
202 bool destructuredAny = false;
204 SmallVector<DestructurableAllocationOpInterface> workList(allocators);
205 SmallVector<DestructurableAllocationOpInterface> newWorkList;
206 newWorkList.reserve(allocators.size());
207 // Destructuring a slot can allow for further destructuring of other
208 // slots, destructuring is tried until no destructuring succeeds.
209 while (true) {
210 bool changesInThisRound = false;
212 for (DestructurableAllocationOpInterface allocator : workList) {
213 bool destructuredAnySlot = false;
214 for (DestructurableMemorySlot slot : allocator.getDestructurableSlots()) {
215 std::optional<MemorySlotDestructuringInfo> info =
216 computeDestructuringInfo(slot, dataLayout);
217 if (!info)
218 continue;
220 destructureSlot(slot, allocator, builder, dataLayout, *info,
221 newWorkList, statistics);
222 destructuredAnySlot = true;
224 // A break is required, since destructuring a slot may invalidate the
225 // remaning slots of an allocator.
226 break;
228 if (!destructuredAnySlot)
229 newWorkList.push_back(allocator);
230 changesInThisRound |= destructuredAnySlot;
233 if (!changesInThisRound)
234 break;
235 destructuredAny |= changesInThisRound;
237 // Swap the vector's backing memory and clear the entries in newWorkList
238 // afterwards. This ensures that additional heap allocations can be avoided.
239 workList.swap(newWorkList);
240 newWorkList.clear();
243 return success(destructuredAny);
246 namespace {
248 struct SROA : public impl::SROABase<SROA> {
249 using impl::SROABase<SROA>::SROABase;
251 void runOnOperation() override {
252 Operation *scopeOp = getOperation();
254 SROAStatistics statistics{&destructuredAmount, &slotsWithMemoryBenefit,
255 &maxSubelementAmount};
257 auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
258 const DataLayout &dataLayout = dataLayoutAnalysis.getAtOrAbove(scopeOp);
259 bool changed = false;
261 for (Region &region : scopeOp->getRegions()) {
262 if (region.getBlocks().empty())
263 continue;
265 OpBuilder builder(&region.front(), region.front().begin());
267 SmallVector<DestructurableAllocationOpInterface> allocators;
268 // Build a list of allocators to attempt to destructure the slots of.
269 region.walk([&](DestructurableAllocationOpInterface allocator) {
270 allocators.emplace_back(allocator);
273 // Attempt to destructure as many slots as possible.
274 if (succeeded(tryToDestructureMemorySlots(allocators, builder, dataLayout,
275 statistics)))
276 changed = true;
278 if (!changed)
279 markAllAnalysesPreserved();
283 } // namespace