1 // RUN: mlir-opt -transform-interpreter -cse -split-input-file %s | FileCheck %s
3 func.func @gemm_gemm_fusion_yield_both(%lhs0 : tensor<?x?xf32>, %rhs0 : tensor<?x?xf32>, %rhs1 : tensor<?x?xf32>,
4 %init0 : tensor<?x?xf32>, %init1 : tensor<?x?xf32>)
5 -> (tensor<?x?xf32>, tensor<?x?xf32>) {
6 %c0 = arith.constant 0 : index
7 %c1 = arith.constant 1 : index
8 %cst = arith.constant 0.0 : f32
9 %d0 = tensor.dim %lhs0, %c0 : tensor<?x?xf32>
10 %d1 = tensor.dim %rhs0, %c1 : tensor<?x?xf32>
11 %fill0 = linalg.fill ins(%cst : f32) outs(%init0 : tensor<?x?xf32>) -> tensor<?x?xf32>
12 %gemm0 = linalg.matmul
13 ins(%lhs0, %rhs0 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%fill0 : tensor<?x?xf32>) -> tensor<?x?xf32>
14 %d2 = tensor.dim %rhs1, %c1 : tensor<?x?xf32>
15 %fill1 = linalg.fill ins(%cst : f32) outs(%init1 : tensor<?x?xf32>) -> tensor<?x?xf32>
16 %gemm1 = linalg.matmul
17 ins(%gemm0, %rhs1 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%fill1 : tensor<?x?xf32>) -> tensor<?x?xf32>
18 return %gemm0, %gemm1 : tensor<?x?xf32>, tensor<?x?xf32>
21 module attributes {transform.with_named_sequence} {
22 transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
23 %matmuls = transform.structured.match ops{["linalg.matmul"]} in %arg1
24 : (!transform.any_op) -> !transform.any_op
25 %mm1, %mm2 = transform.split_handle %matmuls
26 : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
27 %a, %b = transform.test.fuse_and_yield %mm2 [10]
28 : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
32 // CHECK: func.func @gemm_gemm_fusion_yield_both(
33 // CHECK-SAME: %[[LHS0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
34 // CHECK-SAME: %[[RHS0:[a-zA-Z0-9]+]]: tensor<?x?xf32>,
35 // CHECK-SAME: %[[RHS1:[a-zA-Z0-9]+]]: tensor<?x?xf32>,
36 // CHECK-SAME: %[[INIT0:[a-zA-Z0-9]+]]: tensor<?x?xf32>,
37 // CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<?x?xf32>)
38 // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
39 // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
40 // CHECK: %[[RESULT:.+]]:2 = scf.for %[[IV:[a-zA-Z0-9]+]] =
41 // CHECK-SAME: iter_args(%[[ITERARG0:[a-zA-Z0-9]+]] = %[[INIT1]], %[[ITERARG1:[a-zA-Z0-9]+]] = %[[INIT0]])
42 // CHECK-DAG: %[[LHS0_TILE:.+]] = tensor.extract_slice %[[LHS0]][%[[IV]], 0]
43 // CHECK-DAG: %[[RHS0_TILE:.+]] = tensor.extract_slice %[[RHS0]][0, 0]
44 // CHECK-DAG: %[[INIT0_TILE:.+]] = tensor.extract_slice %[[ITERARG1]][%[[IV]], 0]
45 // CHECK: %[[FILL0_TILE:.+]] = linalg.fill
46 // CHECK-SAME: outs(%[[INIT0_TILE]] :
47 // CHECK: %[[GEMM0_TILE:.+]] = linalg.matmul
48 // CHECK-SAME: ins(%[[LHS0_TILE]], %[[RHS0_TILE]] :
49 // CHECK-SAME: outs(%[[FILL0_TILE]] :
50 // CHECK-DAG: %[[RHS1_TILE:.+]] = tensor.extract_slice %[[RHS1]][0, 0]
51 // CHECK-DAG: %[[INIT1_TILE:.+]] = tensor.extract_slice %[[ITERARG0]][%[[IV]], 0]
52 // CHECK: %[[FILL1_TILE:.+]] = linalg.fill
53 // CHECK-SAME: outs(%[[INIT1_TILE]] :
54 // CHECK: %[[GEMM1_TILE:.+]] = linalg.matmul
55 // CHECK-SAME: ins(%[[GEMM0_TILE]], %[[RHS1_TILE]] :
56 // CHECK-SAME: outs(%[[FILL1_TILE]] :
57 // CHECK: %[[INSERT0:.+]] = tensor.insert_slice %[[GEMM1_TILE]] into %[[ITERARG0]][%[[IV]], 0]
58 // CHECK: %[[INSERT1:.+]] = tensor.insert_slice %[[GEMM0_TILE]] into %[[ITERARG1]][%[[IV]], 0]
59 // CHECK: scf.yield %[[INSERT0]], %[[INSERT1]]
60 // CHECK: return %[[RESULT]]#1, %[[RESULT]]#0
64 func.func @multiple_outputs_fusion_yield_all(%lhs0: tensor<32x32xf32>,
65 %rhs0: tensor<32x32xf32>, %init0: tensor<32x32xf32>, %init1: tensor<32x32xf32>,
66 %rhs1: tensor<32x32xf32>, %init2: tensor<32x32xf32>)
67 -> (tensor<32x32xf32>, tensor<32x32xf32>, tensor<32x32xf32>) {
68 %out0, %out1 = linalg.generic {
69 indexing_maps = [affine_map<(i, j) -> (i, j)>,
70 affine_map<(i, j) -> (i, j)>,
71 affine_map<(i, j) -> (i, j)>,
72 affine_map<(i, j) -> (j, i)>],
73 iterator_types = ["parallel", "parallel"]
75 ins(%lhs0, %rhs0: tensor<32x32xf32>, tensor<32x32xf32>)
76 outs(%init0, %init1: tensor<32x32xf32>, tensor<32x32xf32>) {
77 ^bb0(%0: f32, %1: f32, %2: f32, %3: f32):
78 %4 = arith.mulf %0, %1 : f32
79 %5 = arith.addf %0, %1 : f32
80 linalg.yield %4, %5: f32, f32
81 } -> (tensor<32x32xf32>, tensor<32x32xf32>)
83 %out3 = linalg.add ins(%out0, %rhs1: tensor<32x32xf32>, tensor<32x32xf32>) outs(%init2: tensor<32x32xf32>) -> tensor<32x32xf32>
85 return %out0, %out1, %out3 : tensor<32x32xf32>, tensor<32x32xf32>, tensor<32x32xf32>
88 module attributes {transform.with_named_sequence} {
89 transform.named_sequence @__transform_main(%arg0 : !transform.any_op {transform.readonly}) {
90 %add = transform.structured.match ops{["linalg.add"]} in %arg0
91 : (!transform.any_op) -> !transform.any_op
92 %a, %b = transform.test.fuse_and_yield %add [16]
93 : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
97 // CHECK: func.func @multiple_outputs_fusion_yield_all(
98 // CHECK-SAME: %[[LHS0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
99 // CHECK-SAME: %[[RHS0:[a-zA-Z0-9]+]]: tensor<32x32xf32>,
100 // CHECK-SAME: %[[INIT0:[a-zA-Z0-9]+]]: tensor<32x32xf32>,
101 // CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<32x32xf32>,
102 // CHECK-SAME: %[[RHS1:[a-zA-Z0-9]+]]: tensor<32x32xf32>,
103 // CHECK-SAME: %[[INIT2:[a-zA-Z0-9]+]]: tensor<32x32xf32>)
104 // CHECK: %[[RESULT:.+]]:3 = scf.for %[[IV:[a-zA-Z0-9]+]] =
105 // CHECK-SAME: iter_args(%[[ITERARG0:[a-zA-Z0-9]+]] = %[[INIT2]], %[[ITERARG1:[a-zA-Z0-9]+]] = %[[INIT0]], %[[ITERARG2:[a-zA-Z0-9]+]] = %[[INIT1]])
106 // CHECK-DAG: %[[LHS0_TILE:.+]] = tensor.extract_slice %[[LHS0]][%[[IV]], 0]
107 // CHECK-DAG: %[[RHS0_TILE:.+]] = tensor.extract_slice %[[RHS0]][%[[IV]], 0]
108 // CHECK-DAG: %[[INIT0_TILE:.+]] = tensor.extract_slice %[[ITERARG1]][%[[IV]], 0]
109 // CHECK-DAG: %[[INIT1_TILE:.+]] = tensor.extract_slice %[[ITERARG2]][0, %[[IV]]]
110 // CHECK: %[[GENERIC_TILE:.+]]:2 = linalg.generic
111 // CHECK-SAME: ins(%[[LHS0_TILE]], %[[RHS0_TILE]] :
112 // CHECK-SAME: outs(%[[INIT0_TILE]], %[[INIT1_TILE]] :
113 // CHECK-DAG: %[[RHS1_TILE:.+]] = tensor.extract_slice %[[RHS1]][%[[IV]], 0]
114 // CHECK-DAG: %[[INIT2_TILE:.+]] = tensor.extract_slice %[[ITERARG0]][%[[IV]], 0]
115 // CHECK: %[[ADD_TILE:.+]] = linalg.add
116 // CHECK-SAME: ins(%[[GENERIC_TILE]]#0, %[[RHS1_TILE]] :
117 // CHECK-SAME: outs(%[[INIT2_TILE]] :
118 // CHECK: %[[INSERT0:.+]] = tensor.insert_slice %[[ADD_TILE]] into %[[ITERARG0]][%[[IV]], 0]
119 // CHECK: %[[INSERT1:.+]] = tensor.insert_slice %[[GENERIC_TILE]]#0 into %[[ITERARG1]][%[[IV]], 0]
120 // CHECK: %[[INSERT2:.+]] = tensor.insert_slice %[[GENERIC_TILE]]#1 into %[[ITERARG2]][0, %[[IV]]]
121 // CHECK: scf.yield %[[INSERT0]], %[[INSERT1]], %[[INSERT2]]
122 // CHECK: return %[[RESULT]]#1, %[[RESULT]]#2, %[[RESULT]]#0