[gn build] Port 0e80f9a1b51e
[llvm-project.git] / mlir / test / mlir-cpu-runner / sgemm-naive-codegen.mlir
blobc82e78b4c6a1874f3b88838f721ce5b9e77b3efb
1 // RUN: mlir-opt -pass-pipeline="builtin.module(func.func(convert-linalg-to-loops,lower-affine,convert-scf-to-cf,convert-arith-to-llvm),convert-vector-to-llvm,finalize-memref-to-llvm,convert-func-to-llvm,reconcile-unrealized-casts)" %s | mlir-cpu-runner -O3 -e main -entry-point-result=void -shared-libs=%mlir_c_runner_utils | FileCheck %s
3 func.func @main() {
4   %A = memref.alloc() : memref<16x16xf32>
5   %B = memref.alloc() : memref<16x16xf32>
6   %C = memref.alloc() : memref<16x16xf32>
8   %cf1 = arith.constant 1.00000e+00 : f32
10   linalg.fill ins(%cf1 : f32) outs(%A : memref<16x16xf32>)
11   linalg.fill ins(%cf1 : f32) outs(%B : memref<16x16xf32>)
13   %num_reps = arith.constant 5 : index
15   %t_start = call @rtclock() : () -> f64
16   affine.for %arg0 = 0 to %num_reps {
17     linalg.fill ins(%cf1 : f32) outs(%C : memref<16x16xf32>)
18     func.call @sgemm_naive(%A, %B, %C) : (memref<16x16xf32>, memref<16x16xf32>, memref<16x16xf32>) -> ()
19   }
20   %t_end = call @rtclock() : () -> f64
21   %t = arith.subf %t_end, %t_start : f64
23   %res = affine.load %C[0, 0]: memref<16x16xf32>
24   vector.print %res: f32
26   %c0 = arith.constant 0 : index
27   %c1 = arith.constant 1 : index
28   %c2 = arith.constant 2 : index
30   %M = memref.dim %C, %c0 : memref<16x16xf32>
31   %N = memref.dim %C, %c1 : memref<16x16xf32>
32   %K = memref.dim %A, %c1 : memref<16x16xf32>
34   // num_flops_per_iter = 2*M*N*K
35   %f1 = arith.muli %M, %N : index
36   %f2 = arith.muli %f1, %K : index
37   %num_flops_per_iter = arith.muli %c2, %f2 : index
39   // num_flops_total = num_flops_per_iter * num_reps
40   %num_flops_total = arith.muli %num_flops_per_iter, %num_reps: index
42   // Print the number of flops per second
43   %num_flops_total_i = arith.index_cast %num_flops_total : index to i16
44   %num_flops_total_f = arith.uitofp %num_flops_total_i : i16 to f64
45   %flops_per_s = arith.divf %num_flops_total_f, %t : f64
46   call @printFlops(%flops_per_s) : (f64) -> ()
48   memref.dealloc %A : memref<16x16xf32>
49   memref.dealloc %B : memref<16x16xf32>
50   memref.dealloc %C : memref<16x16xf32>
51   return
53 // CHECK: 17
55 func.func @sgemm_naive(%arg0: memref<16x16xf32>, %arg1: memref<16x16xf32>, %arg2: memref<16x16xf32>) {
56   %c0 = arith.constant 0 : index
57   affine.for %arg3 = 0 to 16 {
58     affine.for %arg4 = 0 to 16 {
59       %m = memref.alloc() : memref<1xf32>
60       %v = affine.load %arg2[%arg3, %arg4] : memref<16x16xf32>
61       affine.store %v, %m[%c0] : memref<1xf32>
62       affine.for %arg5 = 0 to 16 {
63         %3 = affine.load %arg0[%arg3, %arg5] : memref<16x16xf32>
64         %4 = affine.load %arg1[%arg5, %arg4] : memref<16x16xf32>
65         %5 = affine.load %m[0] : memref<1xf32>
66         %6 = arith.mulf %3, %4 : f32
67         %7 = arith.addf %6, %5 : f32
68         affine.store %7, %m[0] : memref<1xf32>
69       }
70       %s = affine.load %m[%c0] : memref<1xf32>
71       affine.store %s, %arg2[%arg3, %arg4] : memref<16x16xf32>
72       memref.dealloc %m : memref<1xf32>
73     }
74   }
75   return
78 func.func private @printFlops(f64)
79 func.func private @rtclock() -> f64