[libc] Switch to using the generic `<gpuintrin.h>` implementations (#121810)
[llvm-project.git] / openmp / runtime / src / kmp_affinity.cpp
blobc3d5ecf1345e89aa7d12f00d38c852b36cb19083
1 /*
2 * kmp_affinity.cpp -- affinity management
3 */
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 #if KMP_USE_HWLOC
23 // Copied from hwloc
24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102
25 #define HWLOC_GROUP_KIND_INTEL_TILE 103
26 #define HWLOC_GROUP_KIND_INTEL_DIE 104
27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28 #endif
29 #include <ctype.h>
31 // The machine topology
32 kmp_topology_t *__kmp_topology = nullptr;
33 // KMP_HW_SUBSET environment variable
34 kmp_hw_subset_t *__kmp_hw_subset = nullptr;
36 // Store the real or imagined machine hierarchy here
37 static hierarchy_info machine_hierarchy;
39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
41 #if KMP_AFFINITY_SUPPORTED
42 // Helper class to see if place lists further restrict the fullMask
43 class kmp_full_mask_modifier_t {
44 kmp_affin_mask_t *mask;
46 public:
47 kmp_full_mask_modifier_t() {
48 KMP_CPU_ALLOC(mask);
49 KMP_CPU_ZERO(mask);
51 ~kmp_full_mask_modifier_t() {
52 KMP_CPU_FREE(mask);
53 mask = nullptr;
55 void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); }
56 // If the new full mask is different from the current full mask,
57 // then switch them. Returns true if full mask was affected, false otherwise.
58 bool restrict_to_mask() {
59 // See if the new mask further restricts or changes the full mask
60 if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask))
61 return false;
62 return __kmp_topology->restrict_to_mask(mask);
66 static inline const char *
67 __kmp_get_affinity_env_var(const kmp_affinity_t &affinity,
68 bool for_binding = false) {
69 if (affinity.flags.omp_places) {
70 if (for_binding)
71 return "OMP_PROC_BIND";
72 return "OMP_PLACES";
74 return affinity.env_var;
76 #endif // KMP_AFFINITY_SUPPORTED
78 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
79 kmp_uint32 depth;
80 // The test below is true if affinity is available, but set to "none". Need to
81 // init on first use of hierarchical barrier.
82 if (TCR_1(machine_hierarchy.uninitialized))
83 machine_hierarchy.init(nproc);
85 // Adjust the hierarchy in case num threads exceeds original
86 if (nproc > machine_hierarchy.base_num_threads)
87 machine_hierarchy.resize(nproc);
89 depth = machine_hierarchy.depth;
90 KMP_DEBUG_ASSERT(depth > 0);
92 thr_bar->depth = depth;
93 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
94 &(thr_bar->base_leaf_kids));
95 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
98 static int nCoresPerPkg, nPackages;
99 static int __kmp_nThreadsPerCore;
100 #ifndef KMP_DFLT_NTH_CORES
101 static int __kmp_ncores;
102 #endif
104 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
105 switch (type) {
106 case KMP_HW_SOCKET:
107 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
108 case KMP_HW_DIE:
109 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
110 case KMP_HW_MODULE:
111 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
112 case KMP_HW_TILE:
113 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
114 case KMP_HW_NUMA:
115 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
116 case KMP_HW_L3:
117 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
118 case KMP_HW_L2:
119 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
120 case KMP_HW_L1:
121 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
122 case KMP_HW_LLC:
123 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
124 case KMP_HW_CORE:
125 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
126 case KMP_HW_THREAD:
127 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
128 case KMP_HW_PROC_GROUP:
129 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
130 case KMP_HW_UNKNOWN:
131 case KMP_HW_LAST:
132 return KMP_I18N_STR(Unknown);
134 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
135 KMP_BUILTIN_UNREACHABLE;
138 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
139 switch (type) {
140 case KMP_HW_SOCKET:
141 return ((plural) ? "sockets" : "socket");
142 case KMP_HW_DIE:
143 return ((plural) ? "dice" : "die");
144 case KMP_HW_MODULE:
145 return ((plural) ? "modules" : "module");
146 case KMP_HW_TILE:
147 return ((plural) ? "tiles" : "tile");
148 case KMP_HW_NUMA:
149 return ((plural) ? "numa_domains" : "numa_domain");
150 case KMP_HW_L3:
151 return ((plural) ? "l3_caches" : "l3_cache");
152 case KMP_HW_L2:
153 return ((plural) ? "l2_caches" : "l2_cache");
154 case KMP_HW_L1:
155 return ((plural) ? "l1_caches" : "l1_cache");
156 case KMP_HW_LLC:
157 return ((plural) ? "ll_caches" : "ll_cache");
158 case KMP_HW_CORE:
159 return ((plural) ? "cores" : "core");
160 case KMP_HW_THREAD:
161 return ((plural) ? "threads" : "thread");
162 case KMP_HW_PROC_GROUP:
163 return ((plural) ? "proc_groups" : "proc_group");
164 case KMP_HW_UNKNOWN:
165 case KMP_HW_LAST:
166 return ((plural) ? "unknowns" : "unknown");
168 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
169 KMP_BUILTIN_UNREACHABLE;
172 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
173 switch (type) {
174 case KMP_HW_CORE_TYPE_UNKNOWN:
175 case KMP_HW_MAX_NUM_CORE_TYPES:
176 return "unknown";
177 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
178 case KMP_HW_CORE_TYPE_ATOM:
179 return "Intel Atom(R) processor";
180 case KMP_HW_CORE_TYPE_CORE:
181 return "Intel(R) Core(TM) processor";
182 #endif
184 KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration");
185 KMP_BUILTIN_UNREACHABLE;
188 #if KMP_AFFINITY_SUPPORTED
189 // If affinity is supported, check the affinity
190 // verbose and warning flags before printing warning
191 #define KMP_AFF_WARNING(s, ...) \
192 if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \
193 KMP_WARNING(__VA_ARGS__); \
195 #else
196 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__)
197 #endif
199 ////////////////////////////////////////////////////////////////////////////////
200 // kmp_hw_thread_t methods
201 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
202 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
203 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
204 int depth = __kmp_topology->get_depth();
205 for (int level = 0; level < depth; ++level) {
206 // Reverse sort (higher efficiencies earlier in list) cores by core
207 // efficiency if available.
208 if (__kmp_is_hybrid_cpu() &&
209 __kmp_topology->get_type(level) == KMP_HW_CORE &&
210 ahwthread->attrs.is_core_eff_valid() &&
211 bhwthread->attrs.is_core_eff_valid()) {
212 if (ahwthread->attrs.get_core_eff() < bhwthread->attrs.get_core_eff())
213 return 1;
214 if (ahwthread->attrs.get_core_eff() > bhwthread->attrs.get_core_eff())
215 return -1;
217 if (ahwthread->ids[level] == bhwthread->ids[level])
218 continue;
219 // If the hardware id is unknown for this level, then place hardware thread
220 // further down in the sorted list as it should take last priority
221 if (ahwthread->ids[level] == UNKNOWN_ID)
222 return 1;
223 else if (bhwthread->ids[level] == UNKNOWN_ID)
224 return -1;
225 else if (ahwthread->ids[level] < bhwthread->ids[level])
226 return -1;
227 else if (ahwthread->ids[level] > bhwthread->ids[level])
228 return 1;
230 if (ahwthread->os_id < bhwthread->os_id)
231 return -1;
232 else if (ahwthread->os_id > bhwthread->os_id)
233 return 1;
234 return 0;
237 #if KMP_AFFINITY_SUPPORTED
238 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
239 int i;
240 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
241 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
242 int depth = __kmp_topology->get_depth();
243 int compact = __kmp_topology->compact;
244 KMP_DEBUG_ASSERT(compact >= 0);
245 KMP_DEBUG_ASSERT(compact <= depth);
246 for (i = 0; i < compact; i++) {
247 int j = depth - i - 1;
248 if (aa->sub_ids[j] < bb->sub_ids[j])
249 return -1;
250 if (aa->sub_ids[j] > bb->sub_ids[j])
251 return 1;
253 for (; i < depth; i++) {
254 int j = i - compact;
255 if (aa->sub_ids[j] < bb->sub_ids[j])
256 return -1;
257 if (aa->sub_ids[j] > bb->sub_ids[j])
258 return 1;
260 return 0;
262 #endif
264 void kmp_hw_thread_t::print() const {
265 int depth = __kmp_topology->get_depth();
266 printf("%4d ", os_id);
267 for (int i = 0; i < depth; ++i) {
268 printf("%4d (%d) ", ids[i], sub_ids[i]);
270 if (attrs) {
271 if (attrs.is_core_type_valid())
272 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
273 if (attrs.is_core_eff_valid())
274 printf(" (eff=%d)", attrs.get_core_eff());
276 if (leader)
277 printf(" (leader)");
278 printf("\n");
281 ////////////////////////////////////////////////////////////////////////////////
282 // kmp_topology_t methods
284 // Add a layer to the topology based on the ids. Assume the topology
285 // is perfectly nested (i.e., so no object has more than one parent)
286 void kmp_topology_t::insert_layer(kmp_hw_t type, const int *ids) {
287 // Figure out where the layer should go by comparing the ids of the current
288 // layers with the new ids
289 int target_layer;
290 int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
291 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
293 // Start from the highest layer and work down to find target layer
294 // If new layer is equal to another layer then put the new layer above
295 for (target_layer = 0; target_layer < depth; ++target_layer) {
296 bool layers_equal = true;
297 bool strictly_above_target_layer = false;
298 for (int i = 0; i < num_hw_threads; ++i) {
299 int id = hw_threads[i].ids[target_layer];
300 int new_id = ids[i];
301 if (id != previous_id && new_id == previous_new_id) {
302 // Found the layer we are strictly above
303 strictly_above_target_layer = true;
304 layers_equal = false;
305 break;
306 } else if (id == previous_id && new_id != previous_new_id) {
307 // Found a layer we are below. Move to next layer and check.
308 layers_equal = false;
309 break;
311 previous_id = id;
312 previous_new_id = new_id;
314 if (strictly_above_target_layer || layers_equal)
315 break;
318 // Found the layer we are above. Now move everything to accommodate the new
319 // layer. And put the new ids and type into the topology.
320 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
321 types[j] = types[i];
322 types[target_layer] = type;
323 for (int k = 0; k < num_hw_threads; ++k) {
324 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
325 hw_threads[k].ids[j] = hw_threads[k].ids[i];
326 hw_threads[k].ids[target_layer] = ids[k];
328 equivalent[type] = type;
329 depth++;
332 #if KMP_GROUP_AFFINITY
333 // Insert the Windows Processor Group structure into the topology
334 void kmp_topology_t::_insert_windows_proc_groups() {
335 // Do not insert the processor group structure for a single group
336 if (__kmp_num_proc_groups == 1)
337 return;
338 kmp_affin_mask_t *mask;
339 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
340 KMP_CPU_ALLOC(mask);
341 for (int i = 0; i < num_hw_threads; ++i) {
342 KMP_CPU_ZERO(mask);
343 KMP_CPU_SET(hw_threads[i].os_id, mask);
344 ids[i] = __kmp_get_proc_group(mask);
346 KMP_CPU_FREE(mask);
347 insert_layer(KMP_HW_PROC_GROUP, ids);
348 __kmp_free(ids);
350 // sort topology after adding proc groups
351 __kmp_topology->sort_ids();
353 #endif
355 // Remove layers that don't add information to the topology.
356 // This is done by having the layer take on the id = UNKNOWN_ID (-1)
357 void kmp_topology_t::_remove_radix1_layers() {
358 int preference[KMP_HW_LAST];
359 int top_index1, top_index2;
360 // Set up preference associative array
361 preference[KMP_HW_SOCKET] = 110;
362 preference[KMP_HW_PROC_GROUP] = 100;
363 preference[KMP_HW_CORE] = 95;
364 preference[KMP_HW_THREAD] = 90;
365 preference[KMP_HW_NUMA] = 85;
366 preference[KMP_HW_DIE] = 80;
367 preference[KMP_HW_TILE] = 75;
368 preference[KMP_HW_MODULE] = 73;
369 preference[KMP_HW_L3] = 70;
370 preference[KMP_HW_L2] = 65;
371 preference[KMP_HW_L1] = 60;
372 preference[KMP_HW_LLC] = 5;
373 top_index1 = 0;
374 top_index2 = 1;
375 while (top_index1 < depth - 1 && top_index2 < depth) {
376 kmp_hw_t type1 = types[top_index1];
377 kmp_hw_t type2 = types[top_index2];
378 KMP_ASSERT_VALID_HW_TYPE(type1);
379 KMP_ASSERT_VALID_HW_TYPE(type2);
380 // Do not allow the three main topology levels (sockets, cores, threads) to
381 // be compacted down
382 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
383 type1 == KMP_HW_SOCKET) &&
384 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
385 type2 == KMP_HW_SOCKET)) {
386 top_index1 = top_index2++;
387 continue;
389 bool radix1 = true;
390 bool all_same = true;
391 int id1 = hw_threads[0].ids[top_index1];
392 int id2 = hw_threads[0].ids[top_index2];
393 int pref1 = preference[type1];
394 int pref2 = preference[type2];
395 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
396 if (hw_threads[hwidx].ids[top_index1] == id1 &&
397 hw_threads[hwidx].ids[top_index2] != id2) {
398 radix1 = false;
399 break;
401 if (hw_threads[hwidx].ids[top_index2] != id2)
402 all_same = false;
403 id1 = hw_threads[hwidx].ids[top_index1];
404 id2 = hw_threads[hwidx].ids[top_index2];
406 if (radix1) {
407 // Select the layer to remove based on preference
408 kmp_hw_t remove_type, keep_type;
409 int remove_layer, remove_layer_ids;
410 if (pref1 > pref2) {
411 remove_type = type2;
412 remove_layer = remove_layer_ids = top_index2;
413 keep_type = type1;
414 } else {
415 remove_type = type1;
416 remove_layer = remove_layer_ids = top_index1;
417 keep_type = type2;
419 // If all the indexes for the second (deeper) layer are the same.
420 // e.g., all are zero, then make sure to keep the first layer's ids
421 if (all_same)
422 remove_layer_ids = top_index2;
423 // Remove radix one type by setting the equivalence, removing the id from
424 // the hw threads and removing the layer from types and depth
425 set_equivalent_type(remove_type, keep_type);
426 for (int idx = 0; idx < num_hw_threads; ++idx) {
427 kmp_hw_thread_t &hw_thread = hw_threads[idx];
428 for (int d = remove_layer_ids; d < depth - 1; ++d)
429 hw_thread.ids[d] = hw_thread.ids[d + 1];
431 for (int idx = remove_layer; idx < depth - 1; ++idx)
432 types[idx] = types[idx + 1];
433 depth--;
434 } else {
435 top_index1 = top_index2++;
438 KMP_ASSERT(depth > 0);
441 void kmp_topology_t::_set_last_level_cache() {
442 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
443 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
444 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
445 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
446 #if KMP_MIC_SUPPORTED
447 else if (__kmp_mic_type == mic3) {
448 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
449 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
450 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
451 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
452 // L2/Tile wasn't detected so just say L1
453 else
454 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
456 #endif
457 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
458 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
459 // Fallback is to set last level cache to socket or core
460 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
461 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
462 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
463 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
464 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
466 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
469 // Gather the count of each topology layer and the ratio
470 void kmp_topology_t::_gather_enumeration_information() {
471 int previous_id[KMP_HW_LAST];
472 int max[KMP_HW_LAST];
474 for (int i = 0; i < depth; ++i) {
475 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
476 max[i] = 0;
477 count[i] = 0;
478 ratio[i] = 0;
480 int core_level = get_level(KMP_HW_CORE);
481 for (int i = 0; i < num_hw_threads; ++i) {
482 kmp_hw_thread_t &hw_thread = hw_threads[i];
483 for (int layer = 0; layer < depth; ++layer) {
484 int id = hw_thread.ids[layer];
485 if (id != previous_id[layer]) {
486 // Add an additional increment to each count
487 for (int l = layer; l < depth; ++l) {
488 if (hw_thread.ids[l] != kmp_hw_thread_t::UNKNOWN_ID)
489 count[l]++;
491 // Keep track of topology layer ratio statistics
492 if (hw_thread.ids[layer] != kmp_hw_thread_t::UNKNOWN_ID)
493 max[layer]++;
494 for (int l = layer + 1; l < depth; ++l) {
495 if (max[l] > ratio[l])
496 ratio[l] = max[l];
497 max[l] = 1;
499 // Figure out the number of different core types
500 // and efficiencies for hybrid CPUs
501 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
502 if (hw_thread.attrs.is_core_eff_valid() &&
503 hw_thread.attrs.core_eff >= num_core_efficiencies) {
504 // Because efficiencies can range from 0 to max efficiency - 1,
505 // the number of efficiencies is max efficiency + 1
506 num_core_efficiencies = hw_thread.attrs.core_eff + 1;
508 if (hw_thread.attrs.is_core_type_valid()) {
509 bool found = false;
510 for (int j = 0; j < num_core_types; ++j) {
511 if (hw_thread.attrs.get_core_type() == core_types[j]) {
512 found = true;
513 break;
516 if (!found) {
517 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
518 core_types[num_core_types++] = hw_thread.attrs.get_core_type();
522 break;
525 for (int layer = 0; layer < depth; ++layer) {
526 previous_id[layer] = hw_thread.ids[layer];
529 for (int layer = 0; layer < depth; ++layer) {
530 if (max[layer] > ratio[layer])
531 ratio[layer] = max[layer];
535 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
536 int above_level,
537 bool find_all) const {
538 int current, current_max;
539 int previous_id[KMP_HW_LAST];
540 for (int i = 0; i < depth; ++i)
541 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
542 int core_level = get_level(KMP_HW_CORE);
543 if (find_all)
544 above_level = -1;
545 KMP_ASSERT(above_level < core_level);
546 current_max = 0;
547 current = 0;
548 for (int i = 0; i < num_hw_threads; ++i) {
549 kmp_hw_thread_t &hw_thread = hw_threads[i];
550 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
551 if (current > current_max)
552 current_max = current;
553 current = hw_thread.attrs.contains(attr);
554 } else {
555 for (int level = above_level + 1; level <= core_level; ++level) {
556 if (hw_thread.ids[level] != previous_id[level]) {
557 if (hw_thread.attrs.contains(attr))
558 current++;
559 break;
563 for (int level = 0; level < depth; ++level)
564 previous_id[level] = hw_thread.ids[level];
566 if (current > current_max)
567 current_max = current;
568 return current_max;
571 // Find out if the topology is uniform
572 void kmp_topology_t::_discover_uniformity() {
573 int num = 1;
574 for (int level = 0; level < depth; ++level)
575 num *= ratio[level];
576 flags.uniform = (num == count[depth - 1]);
579 // Set all the sub_ids for each hardware thread
580 void kmp_topology_t::_set_sub_ids() {
581 int previous_id[KMP_HW_LAST];
582 int sub_id[KMP_HW_LAST];
584 for (int i = 0; i < depth; ++i) {
585 previous_id[i] = -1;
586 sub_id[i] = -1;
588 for (int i = 0; i < num_hw_threads; ++i) {
589 kmp_hw_thread_t &hw_thread = hw_threads[i];
590 // Setup the sub_id
591 for (int j = 0; j < depth; ++j) {
592 if (hw_thread.ids[j] != previous_id[j]) {
593 sub_id[j]++;
594 for (int k = j + 1; k < depth; ++k) {
595 sub_id[k] = 0;
597 break;
600 // Set previous_id
601 for (int j = 0; j < depth; ++j) {
602 previous_id[j] = hw_thread.ids[j];
604 // Set the sub_ids field
605 for (int j = 0; j < depth; ++j) {
606 hw_thread.sub_ids[j] = sub_id[j];
611 void kmp_topology_t::_set_globals() {
612 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
613 int core_level, thread_level, package_level;
614 package_level = get_level(KMP_HW_SOCKET);
615 #if KMP_GROUP_AFFINITY
616 if (package_level == -1)
617 package_level = get_level(KMP_HW_PROC_GROUP);
618 #endif
619 core_level = get_level(KMP_HW_CORE);
620 thread_level = get_level(KMP_HW_THREAD);
622 KMP_ASSERT(core_level != -1);
623 KMP_ASSERT(thread_level != -1);
625 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
626 if (package_level != -1) {
627 nCoresPerPkg = calculate_ratio(core_level, package_level);
628 nPackages = get_count(package_level);
629 } else {
630 // assume one socket
631 nCoresPerPkg = get_count(core_level);
632 nPackages = 1;
634 #ifndef KMP_DFLT_NTH_CORES
635 __kmp_ncores = get_count(core_level);
636 #endif
639 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
640 const kmp_hw_t *types) {
641 kmp_topology_t *retval;
642 // Allocate all data in one large allocation
643 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
644 sizeof(int) * (size_t)KMP_HW_LAST * 3;
645 char *bytes = (char *)__kmp_allocate(size);
646 retval = (kmp_topology_t *)bytes;
647 if (nproc > 0) {
648 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
649 } else {
650 retval->hw_threads = nullptr;
652 retval->num_hw_threads = nproc;
653 retval->depth = ndepth;
654 int *arr =
655 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
656 retval->types = (kmp_hw_t *)arr;
657 retval->ratio = arr + (size_t)KMP_HW_LAST;
658 retval->count = arr + 2 * (size_t)KMP_HW_LAST;
659 retval->num_core_efficiencies = 0;
660 retval->num_core_types = 0;
661 retval->compact = 0;
662 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
663 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
664 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
665 for (int i = 0; i < ndepth; ++i) {
666 retval->types[i] = types[i];
667 retval->equivalent[types[i]] = types[i];
669 return retval;
672 void kmp_topology_t::deallocate(kmp_topology_t *topology) {
673 if (topology)
674 __kmp_free(topology);
677 bool kmp_topology_t::check_ids() const {
678 // Assume ids have been sorted
679 if (num_hw_threads == 0)
680 return true;
681 for (int i = 1; i < num_hw_threads; ++i) {
682 kmp_hw_thread_t &current_thread = hw_threads[i];
683 kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
684 bool unique = false;
685 for (int j = 0; j < depth; ++j) {
686 if (previous_thread.ids[j] != current_thread.ids[j]) {
687 unique = true;
688 break;
691 if (unique)
692 continue;
693 return false;
695 return true;
698 void kmp_topology_t::dump() const {
699 printf("***********************\n");
700 printf("*** __kmp_topology: ***\n");
701 printf("***********************\n");
702 printf("* depth: %d\n", depth);
704 printf("* types: ");
705 for (int i = 0; i < depth; ++i)
706 printf("%15s ", __kmp_hw_get_keyword(types[i]));
707 printf("\n");
709 printf("* ratio: ");
710 for (int i = 0; i < depth; ++i) {
711 printf("%15d ", ratio[i]);
713 printf("\n");
715 printf("* count: ");
716 for (int i = 0; i < depth; ++i) {
717 printf("%15d ", count[i]);
719 printf("\n");
721 printf("* num_core_eff: %d\n", num_core_efficiencies);
722 printf("* num_core_types: %d\n", num_core_types);
723 printf("* core_types: ");
724 for (int i = 0; i < num_core_types; ++i)
725 printf("%3d ", core_types[i]);
726 printf("\n");
728 printf("* equivalent map:\n");
729 KMP_FOREACH_HW_TYPE(i) {
730 const char *key = __kmp_hw_get_keyword(i);
731 const char *value = __kmp_hw_get_keyword(equivalent[i]);
732 printf("%-15s -> %-15s\n", key, value);
735 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
737 printf("* num_hw_threads: %d\n", num_hw_threads);
738 printf("* hw_threads:\n");
739 for (int i = 0; i < num_hw_threads; ++i) {
740 hw_threads[i].print();
742 printf("***********************\n");
745 void kmp_topology_t::print(const char *env_var) const {
746 kmp_str_buf_t buf;
747 int print_types_depth;
748 __kmp_str_buf_init(&buf);
749 kmp_hw_t print_types[KMP_HW_LAST + 2];
751 // Num Available Threads
752 if (num_hw_threads) {
753 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
754 } else {
755 KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc);
758 // Uniform or not
759 if (is_uniform()) {
760 KMP_INFORM(Uniform, env_var);
761 } else {
762 KMP_INFORM(NonUniform, env_var);
765 // Equivalent types
766 KMP_FOREACH_HW_TYPE(type) {
767 kmp_hw_t eq_type = equivalent[type];
768 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
769 KMP_INFORM(AffEqualTopologyTypes, env_var,
770 __kmp_hw_get_catalog_string(type),
771 __kmp_hw_get_catalog_string(eq_type));
775 // Quick topology
776 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
777 // Create a print types array that always guarantees printing
778 // the core and thread level
779 print_types_depth = 0;
780 for (int level = 0; level < depth; ++level)
781 print_types[print_types_depth++] = types[level];
782 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
783 // Force in the core level for quick topology
784 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
785 // Force core before thread e.g., 1 socket X 2 threads/socket
786 // becomes 1 socket X 1 core/socket X 2 threads/socket
787 print_types[print_types_depth - 1] = KMP_HW_CORE;
788 print_types[print_types_depth++] = KMP_HW_THREAD;
789 } else {
790 print_types[print_types_depth++] = KMP_HW_CORE;
793 // Always put threads at very end of quick topology
794 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
795 print_types[print_types_depth++] = KMP_HW_THREAD;
797 __kmp_str_buf_clear(&buf);
798 kmp_hw_t numerator_type;
799 kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
800 int core_level = get_level(KMP_HW_CORE);
801 int ncores = get_count(core_level);
803 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
804 int c;
805 bool plural;
806 numerator_type = print_types[plevel];
807 KMP_ASSERT_VALID_HW_TYPE(numerator_type);
808 if (equivalent[numerator_type] != numerator_type)
809 c = 1;
810 else
811 c = get_ratio(level++);
812 plural = (c > 1);
813 if (plevel == 0) {
814 __kmp_str_buf_print(&buf, "%d %s", c,
815 __kmp_hw_get_catalog_string(numerator_type, plural));
816 } else {
817 __kmp_str_buf_print(&buf, " x %d %s/%s", c,
818 __kmp_hw_get_catalog_string(numerator_type, plural),
819 __kmp_hw_get_catalog_string(denominator_type));
821 denominator_type = numerator_type;
823 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
825 // Hybrid topology information
826 if (__kmp_is_hybrid_cpu()) {
827 for (int i = 0; i < num_core_types; ++i) {
828 kmp_hw_core_type_t core_type = core_types[i];
829 kmp_hw_attr_t attr;
830 attr.clear();
831 attr.set_core_type(core_type);
832 int ncores = get_ncores_with_attr(attr);
833 if (ncores > 0) {
834 KMP_INFORM(TopologyHybrid, env_var, ncores,
835 __kmp_hw_get_core_type_string(core_type));
836 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
837 for (int eff = 0; eff < num_core_efficiencies; ++eff) {
838 attr.set_core_eff(eff);
839 int ncores_with_eff = get_ncores_with_attr(attr);
840 if (ncores_with_eff > 0) {
841 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
848 if (num_hw_threads <= 0) {
849 __kmp_str_buf_free(&buf);
850 return;
853 // Full OS proc to hardware thread map
854 KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
855 for (int i = 0; i < num_hw_threads; i++) {
856 __kmp_str_buf_clear(&buf);
857 for (int level = 0; level < depth; ++level) {
858 if (hw_threads[i].ids[level] == kmp_hw_thread_t::UNKNOWN_ID)
859 continue;
860 kmp_hw_t type = types[level];
861 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
862 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
864 if (__kmp_is_hybrid_cpu())
865 __kmp_str_buf_print(
866 &buf, "(%s)",
867 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
868 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
871 __kmp_str_buf_free(&buf);
874 #if KMP_AFFINITY_SUPPORTED
875 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const {
876 const char *env_var = __kmp_get_affinity_env_var(affinity);
877 // If requested hybrid CPU attributes for granularity (either OMP_PLACES or
878 // KMP_AFFINITY), but none exist, then reset granularity and have below method
879 // select a granularity and warn user.
880 if (!__kmp_is_hybrid_cpu()) {
881 if (affinity.core_attr_gran.valid) {
882 // OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores
883 // instead
884 KMP_AFF_WARNING(
885 affinity, AffIgnoringNonHybrid, env_var,
886 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
887 affinity.gran = KMP_HW_CORE;
888 affinity.gran_levels = -1;
889 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
890 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
891 } else if (affinity.flags.core_types_gran ||
892 affinity.flags.core_effs_gran) {
893 // OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead
894 if (affinity.flags.omp_places) {
895 KMP_AFF_WARNING(
896 affinity, AffIgnoringNonHybrid, env_var,
897 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
898 } else {
899 // KMP_AFFINITY=granularity=core_type|core_eff,...
900 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
901 "Intel(R) Hybrid Technology core attribute",
902 __kmp_hw_get_catalog_string(KMP_HW_CORE));
904 affinity.gran = KMP_HW_CORE;
905 affinity.gran_levels = -1;
906 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
907 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
910 // Set the number of affinity granularity levels
911 if (affinity.gran_levels < 0) {
912 kmp_hw_t gran_type = get_equivalent_type(affinity.gran);
913 // Check if user's granularity request is valid
914 if (gran_type == KMP_HW_UNKNOWN) {
915 // First try core, then thread, then package
916 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
917 for (auto g : gran_types) {
918 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) {
919 gran_type = g;
920 break;
923 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
924 // Warn user what granularity setting will be used instead
925 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
926 __kmp_hw_get_catalog_string(affinity.gran),
927 __kmp_hw_get_catalog_string(gran_type));
928 affinity.gran = gran_type;
930 #if KMP_GROUP_AFFINITY
931 // If more than one processor group exists, and the level of
932 // granularity specified by the user is too coarse, then the
933 // granularity must be adjusted "down" to processor group affinity
934 // because threads can only exist within one processor group.
935 // For example, if a user sets granularity=socket and there are two
936 // processor groups that cover a socket, then the runtime must
937 // restrict the granularity down to the processor group level.
938 if (__kmp_num_proc_groups > 1) {
939 int gran_depth = get_level(gran_type);
940 int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
941 if (gran_depth >= 0 && proc_group_depth >= 0 &&
942 gran_depth < proc_group_depth) {
943 KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,
944 __kmp_hw_get_catalog_string(affinity.gran));
945 affinity.gran = gran_type = KMP_HW_PROC_GROUP;
948 #endif
949 affinity.gran_levels = 0;
950 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
951 affinity.gran_levels++;
954 #endif
956 void kmp_topology_t::canonicalize() {
957 #if KMP_GROUP_AFFINITY
958 _insert_windows_proc_groups();
959 #endif
960 _remove_radix1_layers();
961 _gather_enumeration_information();
962 _discover_uniformity();
963 _set_sub_ids();
964 _set_globals();
965 _set_last_level_cache();
967 #if KMP_MIC_SUPPORTED
968 // Manually Add L2 = Tile equivalence
969 if (__kmp_mic_type == mic3) {
970 if (get_level(KMP_HW_L2) != -1)
971 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
972 else if (get_level(KMP_HW_TILE) != -1)
973 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
975 #endif
977 // Perform post canonicalization checking
978 KMP_ASSERT(depth > 0);
979 for (int level = 0; level < depth; ++level) {
980 // All counts, ratios, and types must be valid
981 KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
982 KMP_ASSERT_VALID_HW_TYPE(types[level]);
983 // Detected types must point to themselves
984 KMP_ASSERT(equivalent[types[level]] == types[level]);
988 // Canonicalize an explicit packages X cores/pkg X threads/core topology
989 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
990 int nthreads_per_core, int ncores) {
991 int ndepth = 3;
992 depth = ndepth;
993 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
994 for (int level = 0; level < depth; ++level) {
995 count[level] = 0;
996 ratio[level] = 0;
998 count[0] = npackages;
999 count[1] = ncores;
1000 count[2] = __kmp_xproc;
1001 ratio[0] = npackages;
1002 ratio[1] = ncores_per_pkg;
1003 ratio[2] = nthreads_per_core;
1004 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
1005 equivalent[KMP_HW_CORE] = KMP_HW_CORE;
1006 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
1007 types[0] = KMP_HW_SOCKET;
1008 types[1] = KMP_HW_CORE;
1009 types[2] = KMP_HW_THREAD;
1010 //__kmp_avail_proc = __kmp_xproc;
1011 _discover_uniformity();
1014 #if KMP_AFFINITY_SUPPORTED
1015 static kmp_str_buf_t *
1016 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
1017 bool plural) {
1018 __kmp_str_buf_init(buf);
1019 if (attr.is_core_type_valid())
1020 __kmp_str_buf_print(buf, "%s %s",
1021 __kmp_hw_get_core_type_string(attr.get_core_type()),
1022 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
1023 else
1024 __kmp_str_buf_print(buf, "%s eff=%d",
1025 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
1026 attr.get_core_eff());
1027 return buf;
1030 bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) {
1031 // Apply the filter
1032 bool affected;
1033 int new_index = 0;
1034 for (int i = 0; i < num_hw_threads; ++i) {
1035 int os_id = hw_threads[i].os_id;
1036 if (KMP_CPU_ISSET(os_id, mask)) {
1037 if (i != new_index)
1038 hw_threads[new_index] = hw_threads[i];
1039 new_index++;
1040 } else {
1041 KMP_CPU_CLR(os_id, __kmp_affin_fullMask);
1042 __kmp_avail_proc--;
1046 KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
1047 affected = (num_hw_threads != new_index);
1048 num_hw_threads = new_index;
1050 // Post hardware subset canonicalization
1051 if (affected) {
1052 _gather_enumeration_information();
1053 _discover_uniformity();
1054 _set_globals();
1055 _set_last_level_cache();
1056 #if KMP_OS_WINDOWS
1057 // Copy filtered full mask if topology has single processor group
1058 if (__kmp_num_proc_groups <= 1)
1059 #endif
1060 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
1062 return affected;
1065 // Apply the KMP_HW_SUBSET envirable to the topology
1066 // Returns true if KMP_HW_SUBSET filtered any processors
1067 // otherwise, returns false
1068 bool kmp_topology_t::filter_hw_subset() {
1069 // If KMP_HW_SUBSET wasn't requested, then do nothing.
1070 if (!__kmp_hw_subset)
1071 return false;
1073 // First, sort the KMP_HW_SUBSET items by the machine topology
1074 __kmp_hw_subset->sort();
1076 __kmp_hw_subset->canonicalize(__kmp_topology);
1078 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
1079 bool using_core_types = false;
1080 bool using_core_effs = false;
1081 bool is_absolute = __kmp_hw_subset->is_absolute();
1082 int hw_subset_depth = __kmp_hw_subset->get_depth();
1083 kmp_hw_t specified[KMP_HW_LAST];
1084 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
1085 KMP_ASSERT(hw_subset_depth > 0);
1086 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
1087 int core_level = get_level(KMP_HW_CORE);
1088 for (int i = 0; i < hw_subset_depth; ++i) {
1089 int max_count;
1090 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
1091 int num = item.num[0];
1092 int offset = item.offset[0];
1093 kmp_hw_t type = item.type;
1094 kmp_hw_t equivalent_type = equivalent[type];
1095 int level = get_level(type);
1096 topology_levels[i] = level;
1098 // Check to see if current layer is in detected machine topology
1099 if (equivalent_type != KMP_HW_UNKNOWN) {
1100 __kmp_hw_subset->at(i).type = equivalent_type;
1101 } else {
1102 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,
1103 __kmp_hw_get_catalog_string(type));
1104 return false;
1107 // Check to see if current layer has already been
1108 // specified either directly or through an equivalent type
1109 if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
1110 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,
1111 __kmp_hw_get_catalog_string(type),
1112 __kmp_hw_get_catalog_string(specified[equivalent_type]));
1113 return false;
1115 specified[equivalent_type] = type;
1117 // Check to see if each layer's num & offset parameters are valid
1118 max_count = get_ratio(level);
1119 if (!is_absolute) {
1120 if (max_count < 0 ||
1121 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1122 bool plural = (num > 1);
1123 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,
1124 __kmp_hw_get_catalog_string(type, plural));
1125 return false;
1129 // Check to see if core attributes are consistent
1130 if (core_level == level) {
1131 // Determine which core attributes are specified
1132 for (int j = 0; j < item.num_attrs; ++j) {
1133 if (item.attr[j].is_core_type_valid())
1134 using_core_types = true;
1135 if (item.attr[j].is_core_eff_valid())
1136 using_core_effs = true;
1139 // Check if using a single core attribute on non-hybrid arch.
1140 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1142 // Check if using multiple core attributes on non-hyrbid arch.
1143 // Ignore all of KMP_HW_SUBSET if this is the case.
1144 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1145 if (item.num_attrs == 1) {
1146 if (using_core_effs) {
1147 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1148 "efficiency");
1149 } else {
1150 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1151 "core_type");
1153 using_core_effs = false;
1154 using_core_types = false;
1155 } else {
1156 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid);
1157 return false;
1161 // Check if using both core types and core efficiencies together
1162 if (using_core_types && using_core_effs) {
1163 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",
1164 "efficiency");
1165 return false;
1168 // Check that core efficiency values are valid
1169 if (using_core_effs) {
1170 for (int j = 0; j < item.num_attrs; ++j) {
1171 if (item.attr[j].is_core_eff_valid()) {
1172 int core_eff = item.attr[j].get_core_eff();
1173 if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1174 kmp_str_buf_t buf;
1175 __kmp_str_buf_init(&buf);
1176 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
1177 __kmp_msg(kmp_ms_warning,
1178 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
1179 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
1180 __kmp_msg_null);
1181 __kmp_str_buf_free(&buf);
1182 return false;
1188 // Check that the number of requested cores with attributes is valid
1189 if ((using_core_types || using_core_effs) && !is_absolute) {
1190 for (int j = 0; j < item.num_attrs; ++j) {
1191 int num = item.num[j];
1192 int offset = item.offset[j];
1193 int level_above = core_level - 1;
1194 if (level_above >= 0) {
1195 max_count = get_ncores_with_attr_per(item.attr[j], level_above);
1196 if (max_count <= 0 ||
1197 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1198 kmp_str_buf_t buf;
1199 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
1200 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str);
1201 __kmp_str_buf_free(&buf);
1202 return false;
1208 if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1209 for (int j = 0; j < item.num_attrs; ++j) {
1210 // Ambiguous use of specific core attribute + generic core
1211 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1212 if (!item.attr[j]) {
1213 kmp_hw_attr_t other_attr;
1214 for (int k = 0; k < item.num_attrs; ++k) {
1215 if (item.attr[k] != item.attr[j]) {
1216 other_attr = item.attr[k];
1217 break;
1220 kmp_str_buf_t buf;
1221 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
1222 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,
1223 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
1224 __kmp_str_buf_free(&buf);
1225 return false;
1227 // Allow specifying a specific core type or core eff exactly once
1228 for (int k = 0; k < j; ++k) {
1229 if (!item.attr[j] || !item.attr[k])
1230 continue;
1231 if (item.attr[k] == item.attr[j]) {
1232 kmp_str_buf_t buf;
1233 __kmp_hw_get_catalog_core_string(item.attr[j], &buf,
1234 item.num[j] > 0);
1235 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str);
1236 __kmp_str_buf_free(&buf);
1237 return false;
1245 // For keeping track of sub_ids for an absolute KMP_HW_SUBSET
1246 // or core attributes (core type or efficiency)
1247 int prev_sub_ids[KMP_HW_LAST];
1248 int abs_sub_ids[KMP_HW_LAST];
1249 int core_eff_sub_ids[KMP_HW_MAX_NUM_CORE_EFFS];
1250 int core_type_sub_ids[KMP_HW_MAX_NUM_CORE_TYPES];
1251 for (size_t i = 0; i < KMP_HW_LAST; ++i) {
1252 abs_sub_ids[i] = -1;
1253 prev_sub_ids[i] = -1;
1255 for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_EFFS; ++i)
1256 core_eff_sub_ids[i] = -1;
1257 for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
1258 core_type_sub_ids[i] = -1;
1260 // Determine which hardware threads should be filtered.
1262 // Helpful to determine if a topology layer is targeted by an absolute subset
1263 auto is_targeted = [&](int level) {
1264 if (is_absolute) {
1265 for (int i = 0; i < hw_subset_depth; ++i)
1266 if (topology_levels[i] == level)
1267 return true;
1268 return false;
1270 // If not absolute KMP_HW_SUBSET, then every layer is seen as targeted
1271 return true;
1274 // Helpful to index into core type sub Ids array
1275 auto get_core_type_index = [](const kmp_hw_thread_t &t) {
1276 switch (t.attrs.get_core_type()) {
1277 case KMP_HW_CORE_TYPE_UNKNOWN:
1278 case KMP_HW_MAX_NUM_CORE_TYPES:
1279 return 0;
1280 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1281 case KMP_HW_CORE_TYPE_ATOM:
1282 return 1;
1283 case KMP_HW_CORE_TYPE_CORE:
1284 return 2;
1285 #endif
1287 KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration");
1288 KMP_BUILTIN_UNREACHABLE;
1291 // Helpful to index into core efficiencies sub Ids array
1292 auto get_core_eff_index = [](const kmp_hw_thread_t &t) {
1293 return t.attrs.get_core_eff();
1296 int num_filtered = 0;
1297 kmp_affin_mask_t *filtered_mask;
1298 KMP_CPU_ALLOC(filtered_mask);
1299 KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask);
1300 for (int i = 0; i < num_hw_threads; ++i) {
1301 kmp_hw_thread_t &hw_thread = hw_threads[i];
1303 // Figure out the absolute sub ids and core eff/type sub ids
1304 if (is_absolute || using_core_effs || using_core_types) {
1305 for (int level = 0; level < get_depth(); ++level) {
1306 if (hw_thread.sub_ids[level] != prev_sub_ids[level]) {
1307 bool found_targeted = false;
1308 for (int j = level; j < get_depth(); ++j) {
1309 bool targeted = is_targeted(j);
1310 if (!found_targeted && targeted) {
1311 found_targeted = true;
1312 abs_sub_ids[j]++;
1313 if (j == core_level && using_core_effs)
1314 core_eff_sub_ids[get_core_eff_index(hw_thread)]++;
1315 if (j == core_level && using_core_types)
1316 core_type_sub_ids[get_core_type_index(hw_thread)]++;
1317 } else if (targeted) {
1318 abs_sub_ids[j] = 0;
1319 if (j == core_level && using_core_effs)
1320 core_eff_sub_ids[get_core_eff_index(hw_thread)] = 0;
1321 if (j == core_level && using_core_types)
1322 core_type_sub_ids[get_core_type_index(hw_thread)] = 0;
1325 break;
1328 for (int level = 0; level < get_depth(); ++level)
1329 prev_sub_ids[level] = hw_thread.sub_ids[level];
1332 // Check to see if this hardware thread should be filtered
1333 bool should_be_filtered = false;
1334 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1335 ++hw_subset_index) {
1336 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
1337 int level = topology_levels[hw_subset_index];
1338 if (level == -1)
1339 continue;
1340 if ((using_core_effs || using_core_types) && level == core_level) {
1341 // Look for the core attribute in KMP_HW_SUBSET which corresponds
1342 // to this hardware thread's core attribute. Use this num,offset plus
1343 // the running sub_id for the particular core attribute of this hardware
1344 // thread to determine if the hardware thread should be filtered or not.
1345 int attr_idx;
1346 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1347 int core_eff = hw_thread.attrs.get_core_eff();
1348 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1349 if (using_core_types &&
1350 hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1351 break;
1352 if (using_core_effs &&
1353 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1354 break;
1356 // This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1357 if (attr_idx == hw_subset_item.num_attrs) {
1358 should_be_filtered = true;
1359 break;
1361 int sub_id;
1362 int num = hw_subset_item.num[attr_idx];
1363 int offset = hw_subset_item.offset[attr_idx];
1364 if (using_core_types)
1365 sub_id = core_type_sub_ids[get_core_type_index(hw_thread)];
1366 else
1367 sub_id = core_eff_sub_ids[get_core_eff_index(hw_thread)];
1368 if (sub_id < offset ||
1369 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1370 should_be_filtered = true;
1371 break;
1373 } else {
1374 int sub_id;
1375 int num = hw_subset_item.num[0];
1376 int offset = hw_subset_item.offset[0];
1377 if (is_absolute)
1378 sub_id = abs_sub_ids[level];
1379 else
1380 sub_id = hw_thread.sub_ids[level];
1381 if (hw_thread.ids[level] == kmp_hw_thread_t::UNKNOWN_ID ||
1382 sub_id < offset ||
1383 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1384 should_be_filtered = true;
1385 break;
1389 // Collect filtering information
1390 if (should_be_filtered) {
1391 KMP_CPU_CLR(hw_thread.os_id, filtered_mask);
1392 num_filtered++;
1396 // One last check that we shouldn't allow filtering entire machine
1397 if (num_filtered == num_hw_threads) {
1398 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered);
1399 return false;
1402 // Apply the filter
1403 restrict_to_mask(filtered_mask);
1404 return true;
1407 bool kmp_topology_t::is_close(int hwt1, int hwt2,
1408 const kmp_affinity_t &stgs) const {
1409 int hw_level = stgs.gran_levels;
1410 if (hw_level >= depth)
1411 return true;
1412 bool retval = true;
1413 const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1414 const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1415 if (stgs.flags.core_types_gran)
1416 return t1.attrs.get_core_type() == t2.attrs.get_core_type();
1417 if (stgs.flags.core_effs_gran)
1418 return t1.attrs.get_core_eff() == t2.attrs.get_core_eff();
1419 for (int i = 0; i < (depth - hw_level); ++i) {
1420 if (t1.ids[i] != t2.ids[i])
1421 return false;
1423 return retval;
1426 ////////////////////////////////////////////////////////////////////////////////
1428 bool KMPAffinity::picked_api = false;
1430 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
1431 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
1432 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
1433 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
1434 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
1435 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
1437 void KMPAffinity::pick_api() {
1438 KMPAffinity *affinity_dispatch;
1439 if (picked_api)
1440 return;
1441 #if KMP_USE_HWLOC
1442 // Only use Hwloc if affinity isn't explicitly disabled and
1443 // user requests Hwloc topology method
1444 if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1445 __kmp_affinity.type != affinity_disabled) {
1446 affinity_dispatch = new KMPHwlocAffinity();
1447 } else
1448 #endif
1450 affinity_dispatch = new KMPNativeAffinity();
1452 __kmp_affinity_dispatch = affinity_dispatch;
1453 picked_api = true;
1456 void KMPAffinity::destroy_api() {
1457 if (__kmp_affinity_dispatch != NULL) {
1458 delete __kmp_affinity_dispatch;
1459 __kmp_affinity_dispatch = NULL;
1460 picked_api = false;
1464 #define KMP_ADVANCE_SCAN(scan) \
1465 while (*scan != '\0') { \
1466 scan++; \
1469 // Print the affinity mask to the character array in a pretty format.
1470 // The format is a comma separated list of non-negative integers or integer
1471 // ranges: e.g., 1,2,3-5,7,9-15
1472 // The format can also be the string "{<empty>}" if no bits are set in mask
1473 char *__kmp_affinity_print_mask(char *buf, int buf_len,
1474 kmp_affin_mask_t *mask) {
1475 int start = 0, finish = 0, previous = 0;
1476 bool first_range;
1477 KMP_ASSERT(buf);
1478 KMP_ASSERT(buf_len >= 40);
1479 KMP_ASSERT(mask);
1480 char *scan = buf;
1481 char *end = buf + buf_len - 1;
1483 // Check for empty set.
1484 if (mask->begin() == mask->end()) {
1485 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
1486 KMP_ADVANCE_SCAN(scan);
1487 KMP_ASSERT(scan <= end);
1488 return buf;
1491 first_range = true;
1492 start = mask->begin();
1493 while (1) {
1494 // Find next range
1495 // [start, previous] is inclusive range of contiguous bits in mask
1496 for (finish = mask->next(start), previous = start;
1497 finish == previous + 1 && finish != mask->end();
1498 finish = mask->next(finish)) {
1499 previous = finish;
1502 // The first range does not need a comma printed before it, but the rest
1503 // of the ranges do need a comma beforehand
1504 if (!first_range) {
1505 KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
1506 KMP_ADVANCE_SCAN(scan);
1507 } else {
1508 first_range = false;
1510 // Range with three or more contiguous bits in the affinity mask
1511 if (previous - start > 1) {
1512 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
1513 } else {
1514 // Range with one or two contiguous bits in the affinity mask
1515 KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
1516 KMP_ADVANCE_SCAN(scan);
1517 if (previous - start > 0) {
1518 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
1521 KMP_ADVANCE_SCAN(scan);
1522 // Start over with new start point
1523 start = finish;
1524 if (start == mask->end())
1525 break;
1526 // Check for overflow
1527 if (end - scan < 2)
1528 break;
1531 // Check for overflow
1532 KMP_ASSERT(scan <= end);
1533 return buf;
1535 #undef KMP_ADVANCE_SCAN
1537 // Print the affinity mask to the string buffer object in a pretty format
1538 // The format is a comma separated list of non-negative integers or integer
1539 // ranges: e.g., 1,2,3-5,7,9-15
1540 // The format can also be the string "{<empty>}" if no bits are set in mask
1541 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1542 kmp_affin_mask_t *mask) {
1543 int start = 0, finish = 0, previous = 0;
1544 bool first_range;
1545 KMP_ASSERT(buf);
1546 KMP_ASSERT(mask);
1548 __kmp_str_buf_clear(buf);
1550 // Check for empty set.
1551 if (mask->begin() == mask->end()) {
1552 __kmp_str_buf_print(buf, "%s", "{<empty>}");
1553 return buf;
1556 first_range = true;
1557 start = mask->begin();
1558 while (1) {
1559 // Find next range
1560 // [start, previous] is inclusive range of contiguous bits in mask
1561 for (finish = mask->next(start), previous = start;
1562 finish == previous + 1 && finish != mask->end();
1563 finish = mask->next(finish)) {
1564 previous = finish;
1567 // The first range does not need a comma printed before it, but the rest
1568 // of the ranges do need a comma beforehand
1569 if (!first_range) {
1570 __kmp_str_buf_print(buf, "%s", ",");
1571 } else {
1572 first_range = false;
1574 // Range with three or more contiguous bits in the affinity mask
1575 if (previous - start > 1) {
1576 __kmp_str_buf_print(buf, "%u-%u", start, previous);
1577 } else {
1578 // Range with one or two contiguous bits in the affinity mask
1579 __kmp_str_buf_print(buf, "%u", start);
1580 if (previous - start > 0) {
1581 __kmp_str_buf_print(buf, ",%u", previous);
1584 // Start over with new start point
1585 start = finish;
1586 if (start == mask->end())
1587 break;
1589 return buf;
1592 static kmp_affin_mask_t *__kmp_parse_cpu_list(const char *path) {
1593 kmp_affin_mask_t *mask;
1594 KMP_CPU_ALLOC(mask);
1595 KMP_CPU_ZERO(mask);
1596 #if KMP_OS_LINUX
1597 int n, begin_cpu, end_cpu;
1598 kmp_safe_raii_file_t file;
1599 auto skip_ws = [](FILE *f) {
1600 int c;
1601 do {
1602 c = fgetc(f);
1603 } while (isspace(c));
1604 if (c != EOF)
1605 ungetc(c, f);
1607 // File contains CSV of integer ranges representing the CPUs
1608 // e.g., 1,2,4-7,9,11-15
1609 int status = file.try_open(path, "r");
1610 if (status != 0)
1611 return mask;
1612 while (!feof(file)) {
1613 skip_ws(file);
1614 n = fscanf(file, "%d", &begin_cpu);
1615 if (n != 1)
1616 break;
1617 skip_ws(file);
1618 int c = fgetc(file);
1619 if (c == EOF || c == ',') {
1620 // Just single CPU
1621 end_cpu = begin_cpu;
1622 } else if (c == '-') {
1623 // Range of CPUs
1624 skip_ws(file);
1625 n = fscanf(file, "%d", &end_cpu);
1626 if (n != 1)
1627 break;
1628 skip_ws(file);
1629 c = fgetc(file); // skip ','
1630 } else {
1631 // Syntax problem
1632 break;
1634 // Ensure a valid range of CPUs
1635 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1636 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1637 continue;
1639 // Insert [begin_cpu, end_cpu] into mask
1640 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1641 KMP_CPU_SET(cpu, mask);
1644 #endif
1645 return mask;
1648 // Return (possibly empty) affinity mask representing the offline CPUs
1649 // Caller must free the mask
1650 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1651 return __kmp_parse_cpu_list("/sys/devices/system/cpu/offline");
1654 // Return the number of available procs
1655 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1656 int avail_proc = 0;
1657 KMP_CPU_ZERO(mask);
1659 #if KMP_GROUP_AFFINITY
1661 if (__kmp_num_proc_groups > 1) {
1662 int group;
1663 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
1664 for (group = 0; group < __kmp_num_proc_groups; group++) {
1665 int i;
1666 int num = __kmp_GetActiveProcessorCount(group);
1667 for (i = 0; i < num; i++) {
1668 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1669 avail_proc++;
1672 } else
1674 #endif /* KMP_GROUP_AFFINITY */
1677 int proc;
1678 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1679 for (proc = 0; proc < __kmp_xproc; proc++) {
1680 // Skip offline CPUs
1681 if (KMP_CPU_ISSET(proc, offline_cpus))
1682 continue;
1683 KMP_CPU_SET(proc, mask);
1684 avail_proc++;
1686 KMP_CPU_FREE(offline_cpus);
1689 return avail_proc;
1692 // All of the __kmp_affinity_create_*_map() routines should allocate the
1693 // internal topology object and set the layer ids for it. Each routine
1694 // returns a boolean on whether it was successful at doing so.
1695 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1696 // Original mask is a subset of full mask in multiple processor groups topology
1697 kmp_affin_mask_t *__kmp_affin_origMask = NULL;
1699 #if KMP_USE_HWLOC
1700 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1701 #if HWLOC_API_VERSION >= 0x00020000
1702 return hwloc_obj_type_is_cache(obj->type);
1703 #else
1704 return obj->type == HWLOC_OBJ_CACHE;
1705 #endif
1708 // Returns KMP_HW_* type derived from HWLOC_* type
1709 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1711 if (__kmp_hwloc_is_cache_type(obj)) {
1712 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1713 return KMP_HW_UNKNOWN;
1714 switch (obj->attr->cache.depth) {
1715 case 1:
1716 return KMP_HW_L1;
1717 case 2:
1718 #if KMP_MIC_SUPPORTED
1719 if (__kmp_mic_type == mic3) {
1720 return KMP_HW_TILE;
1722 #endif
1723 return KMP_HW_L2;
1724 case 3:
1725 return KMP_HW_L3;
1727 return KMP_HW_UNKNOWN;
1730 switch (obj->type) {
1731 case HWLOC_OBJ_PACKAGE:
1732 return KMP_HW_SOCKET;
1733 case HWLOC_OBJ_NUMANODE:
1734 return KMP_HW_NUMA;
1735 case HWLOC_OBJ_CORE:
1736 return KMP_HW_CORE;
1737 case HWLOC_OBJ_PU:
1738 return KMP_HW_THREAD;
1739 case HWLOC_OBJ_GROUP:
1740 #if HWLOC_API_VERSION >= 0x00020000
1741 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1742 return KMP_HW_DIE;
1743 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1744 return KMP_HW_TILE;
1745 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1746 return KMP_HW_MODULE;
1747 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1748 return KMP_HW_PROC_GROUP;
1749 #endif
1750 return KMP_HW_UNKNOWN;
1751 #if HWLOC_API_VERSION >= 0x00020100
1752 case HWLOC_OBJ_DIE:
1753 return KMP_HW_DIE;
1754 #endif
1756 return KMP_HW_UNKNOWN;
1759 // Returns the number of objects of type 'type' below 'obj' within the topology
1760 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1761 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1762 // object.
1763 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1764 hwloc_obj_type_t type) {
1765 int retval = 0;
1766 hwloc_obj_t first;
1767 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1768 obj->logical_index, type, 0);
1769 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1770 obj->type, first) == obj;
1771 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1772 first)) {
1773 ++retval;
1775 return retval;
1778 // This gets the sub_id for a lower object under a higher object in the
1779 // topology tree
1780 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1781 hwloc_obj_t lower) {
1782 hwloc_obj_t obj;
1783 hwloc_obj_type_t ltype = lower->type;
1784 int lindex = lower->logical_index - 1;
1785 int sub_id = 0;
1786 // Get the previous lower object
1787 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1788 while (obj && lindex >= 0 &&
1789 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1790 if (obj->userdata) {
1791 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1792 break;
1794 sub_id++;
1795 lindex--;
1796 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1798 // store sub_id + 1 so that 0 is differed from NULL
1799 lower->userdata = RCAST(void *, sub_id + 1);
1800 return sub_id;
1803 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1804 kmp_hw_t type;
1805 int hw_thread_index, sub_id;
1806 int depth;
1807 hwloc_obj_t pu, obj, root, prev;
1808 kmp_hw_t types[KMP_HW_LAST];
1809 hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1811 hwloc_topology_t tp = __kmp_hwloc_topology;
1812 *msg_id = kmp_i18n_null;
1813 if (__kmp_affinity.flags.verbose) {
1814 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1817 if (!KMP_AFFINITY_CAPABLE()) {
1818 // Hack to try and infer the machine topology using only the data
1819 // available from hwloc on the current thread, and __kmp_xproc.
1820 KMP_ASSERT(__kmp_affinity.type == affinity_none);
1821 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1822 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1823 if (o != NULL)
1824 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1825 else
1826 nCoresPerPkg = 1; // no PACKAGE found
1827 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1828 if (o != NULL)
1829 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1830 else
1831 __kmp_nThreadsPerCore = 1; // no CORE found
1832 if (__kmp_nThreadsPerCore == 0)
1833 __kmp_nThreadsPerCore = 1;
1834 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1835 if (nCoresPerPkg == 0)
1836 nCoresPerPkg = 1; // to prevent possible division by 0
1837 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1838 return true;
1841 #if HWLOC_API_VERSION >= 0x00020400
1842 // Handle multiple types of cores if they exist on the system
1843 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1845 typedef struct kmp_hwloc_cpukinds_info_t {
1846 int efficiency;
1847 kmp_hw_core_type_t core_type;
1848 hwloc_bitmap_t mask;
1849 } kmp_hwloc_cpukinds_info_t;
1850 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1852 if (nr_cpu_kinds > 0) {
1853 unsigned nr_infos;
1854 struct hwloc_info_s *infos;
1855 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
1856 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
1857 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1858 cpukinds[idx].efficiency = -1;
1859 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1860 cpukinds[idx].mask = hwloc_bitmap_alloc();
1861 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1862 &cpukinds[idx].efficiency, &nr_infos, &infos,
1863 0) == 0) {
1864 for (unsigned i = 0; i < nr_infos; ++i) {
1865 if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1866 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1867 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1868 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1869 break;
1870 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1871 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1872 break;
1874 #endif
1880 #endif
1882 root = hwloc_get_root_obj(tp);
1884 // Figure out the depth and types in the topology
1885 depth = 0;
1886 obj = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1887 while (obj && obj != root) {
1888 #if HWLOC_API_VERSION >= 0x00020000
1889 if (obj->memory_arity) {
1890 hwloc_obj_t memory;
1891 for (memory = obj->memory_first_child; memory;
1892 memory = hwloc_get_next_child(tp, obj, memory)) {
1893 if (memory->type == HWLOC_OBJ_NUMANODE)
1894 break;
1896 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1897 types[depth] = KMP_HW_NUMA;
1898 hwloc_types[depth] = memory->type;
1899 depth++;
1902 #endif
1903 type = __kmp_hwloc_type_2_topology_type(obj);
1904 if (type != KMP_HW_UNKNOWN) {
1905 types[depth] = type;
1906 hwloc_types[depth] = obj->type;
1907 depth++;
1909 obj = obj->parent;
1911 KMP_ASSERT(depth > 0);
1913 // Get the order for the types correct
1914 for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1915 hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1916 kmp_hw_t temp = types[i];
1917 types[i] = types[j];
1918 types[j] = temp;
1919 hwloc_types[i] = hwloc_types[j];
1920 hwloc_types[j] = hwloc_temp;
1923 // Allocate the data structure to be returned.
1924 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1926 hw_thread_index = 0;
1927 pu = NULL;
1928 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
1929 int index = depth - 1;
1930 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1931 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1932 if (included) {
1933 hw_thread.clear();
1934 hw_thread.ids[index] = pu->logical_index;
1935 hw_thread.os_id = pu->os_index;
1936 hw_thread.original_idx = hw_thread_index;
1937 // If multiple core types, then set that attribute for the hardware thread
1938 #if HWLOC_API_VERSION >= 0x00020400
1939 if (cpukinds) {
1940 int cpukind_index = -1;
1941 for (int i = 0; i < nr_cpu_kinds; ++i) {
1942 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1943 cpukind_index = i;
1944 break;
1947 if (cpukind_index >= 0) {
1948 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1949 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1952 #endif
1953 index--;
1955 obj = pu;
1956 prev = obj;
1957 while (obj != root && obj != NULL) {
1958 obj = obj->parent;
1959 #if HWLOC_API_VERSION >= 0x00020000
1960 // NUMA Nodes are handled differently since they are not within the
1961 // parent/child structure anymore. They are separate children
1962 // of obj (memory_first_child points to first memory child)
1963 if (obj->memory_arity) {
1964 hwloc_obj_t memory;
1965 for (memory = obj->memory_first_child; memory;
1966 memory = hwloc_get_next_child(tp, obj, memory)) {
1967 if (memory->type == HWLOC_OBJ_NUMANODE)
1968 break;
1970 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1971 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1972 if (included) {
1973 hw_thread.ids[index] = memory->logical_index;
1974 hw_thread.ids[index + 1] = sub_id;
1975 index--;
1978 prev = obj;
1980 #endif
1981 type = __kmp_hwloc_type_2_topology_type(obj);
1982 if (type != KMP_HW_UNKNOWN) {
1983 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1984 if (included) {
1985 hw_thread.ids[index] = obj->logical_index;
1986 hw_thread.ids[index + 1] = sub_id;
1987 index--;
1989 prev = obj;
1992 if (included)
1993 hw_thread_index++;
1996 #if HWLOC_API_VERSION >= 0x00020400
1997 // Free the core types information
1998 if (cpukinds) {
1999 for (int idx = 0; idx < nr_cpu_kinds; ++idx)
2000 hwloc_bitmap_free(cpukinds[idx].mask);
2001 __kmp_free(cpukinds);
2003 #endif
2004 __kmp_topology->sort_ids();
2005 return true;
2007 #endif // KMP_USE_HWLOC
2009 // If we don't know how to retrieve the machine's processor topology, or
2010 // encounter an error in doing so, this routine is called to form a "flat"
2011 // mapping of os thread id's <-> processor id's.
2012 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
2013 *msg_id = kmp_i18n_null;
2014 int depth = 3;
2015 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
2017 if (__kmp_affinity.flags.verbose) {
2018 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
2021 // Even if __kmp_affinity.type == affinity_none, this routine might still
2022 // be called to set __kmp_ncores, as well as
2023 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2024 if (!KMP_AFFINITY_CAPABLE()) {
2025 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2026 __kmp_ncores = nPackages = __kmp_xproc;
2027 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
2028 return true;
2031 // When affinity is off, this routine will still be called to set
2032 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2033 // Make sure all these vars are set correctly, and return now if affinity is
2034 // not enabled.
2035 __kmp_ncores = nPackages = __kmp_avail_proc;
2036 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
2038 // Construct the data structure to be returned.
2039 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
2040 int avail_ct = 0;
2041 int i;
2042 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2043 // Skip this proc if it is not included in the machine model.
2044 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2045 continue;
2047 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
2048 hw_thread.clear();
2049 hw_thread.os_id = i;
2050 hw_thread.original_idx = avail_ct;
2051 hw_thread.ids[0] = i;
2052 hw_thread.ids[1] = 0;
2053 hw_thread.ids[2] = 0;
2054 avail_ct++;
2056 if (__kmp_affinity.flags.verbose) {
2057 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
2059 return true;
2062 #if KMP_GROUP_AFFINITY
2063 // If multiple Windows* OS processor groups exist, we can create a 2-level
2064 // topology map with the groups at level 0 and the individual procs at level 1.
2065 // This facilitates letting the threads float among all procs in a group,
2066 // if granularity=group (the default when there are multiple groups).
2067 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
2068 *msg_id = kmp_i18n_null;
2069 int depth = 3;
2070 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
2071 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
2073 if (__kmp_affinity.flags.verbose) {
2074 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
2077 // If we aren't affinity capable, then use flat topology
2078 if (!KMP_AFFINITY_CAPABLE()) {
2079 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2080 nPackages = __kmp_num_proc_groups;
2081 __kmp_nThreadsPerCore = 1;
2082 __kmp_ncores = __kmp_xproc;
2083 nCoresPerPkg = nPackages / __kmp_ncores;
2084 return true;
2087 // Construct the data structure to be returned.
2088 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
2089 int avail_ct = 0;
2090 int i;
2091 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2092 // Skip this proc if it is not included in the machine model.
2093 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2094 continue;
2096 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
2097 hw_thread.clear();
2098 hw_thread.os_id = i;
2099 hw_thread.original_idx = avail_ct;
2100 hw_thread.ids[0] = i / BITS_PER_GROUP;
2101 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
2102 avail_ct++;
2104 return true;
2106 #endif /* KMP_GROUP_AFFINITY */
2108 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2110 template <kmp_uint32 LSB, kmp_uint32 MSB>
2111 static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
2112 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
2113 const kmp_uint32 SHIFT_RIGHT = LSB;
2114 kmp_uint32 retval = v;
2115 retval <<= SHIFT_LEFT;
2116 retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
2117 return retval;
2120 static int __kmp_cpuid_mask_width(int count) {
2121 int r = 0;
2123 while ((1 << r) < count)
2124 ++r;
2125 return r;
2128 class apicThreadInfo {
2129 public:
2130 unsigned osId; // param to __kmp_affinity_bind_thread
2131 unsigned apicId; // from cpuid after binding
2132 unsigned maxCoresPerPkg; // ""
2133 unsigned maxThreadsPerPkg; // ""
2134 unsigned pkgId; // inferred from above values
2135 unsigned coreId; // ""
2136 unsigned threadId; // ""
2139 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
2140 const void *b) {
2141 const apicThreadInfo *aa = (const apicThreadInfo *)a;
2142 const apicThreadInfo *bb = (const apicThreadInfo *)b;
2143 if (aa->pkgId < bb->pkgId)
2144 return -1;
2145 if (aa->pkgId > bb->pkgId)
2146 return 1;
2147 if (aa->coreId < bb->coreId)
2148 return -1;
2149 if (aa->coreId > bb->coreId)
2150 return 1;
2151 if (aa->threadId < bb->threadId)
2152 return -1;
2153 if (aa->threadId > bb->threadId)
2154 return 1;
2155 return 0;
2158 class cpuid_cache_info_t {
2159 public:
2160 struct info_t {
2161 unsigned level = 0;
2162 unsigned mask = 0;
2163 bool operator==(const info_t &rhs) const {
2164 return level == rhs.level && mask == rhs.mask;
2166 bool operator!=(const info_t &rhs) const { return !operator==(rhs); }
2168 cpuid_cache_info_t() : depth(0) {
2169 table[MAX_CACHE_LEVEL].level = 0;
2170 table[MAX_CACHE_LEVEL].mask = 0;
2172 size_t get_depth() const { return depth; }
2173 info_t &operator[](size_t index) { return table[index]; }
2174 const info_t &operator[](size_t index) const { return table[index]; }
2175 bool operator==(const cpuid_cache_info_t &rhs) const {
2176 if (rhs.depth != depth)
2177 return false;
2178 for (size_t i = 0; i < depth; ++i)
2179 if (table[i] != rhs.table[i])
2180 return false;
2181 return true;
2183 bool operator!=(const cpuid_cache_info_t &rhs) const {
2184 return !operator==(rhs);
2186 // Get cache information assocaited with L1, L2, L3 cache, etc.
2187 // If level does not exist, then return the "NULL" level (level 0)
2188 const info_t &get_level(unsigned level) const {
2189 for (size_t i = 0; i < depth; ++i) {
2190 if (table[i].level == level)
2191 return table[i];
2193 return table[MAX_CACHE_LEVEL];
2196 static kmp_hw_t get_topology_type(unsigned level) {
2197 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
2198 switch (level) {
2199 case 1:
2200 return KMP_HW_L1;
2201 case 2:
2202 return KMP_HW_L2;
2203 case 3:
2204 return KMP_HW_L3;
2206 return KMP_HW_UNKNOWN;
2208 void get_leaf4_levels() {
2209 unsigned level = 0;
2210 while (depth < MAX_CACHE_LEVEL) {
2211 unsigned cache_type, max_threads_sharing;
2212 unsigned cache_level, cache_mask_width;
2213 kmp_cpuid buf2;
2214 __kmp_x86_cpuid(4, level, &buf2);
2215 cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
2216 if (!cache_type)
2217 break;
2218 // Skip instruction caches
2219 if (cache_type == 2) {
2220 level++;
2221 continue;
2223 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
2224 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
2225 cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
2226 table[depth].level = cache_level;
2227 table[depth].mask = ((-1) << cache_mask_width);
2228 depth++;
2229 level++;
2232 static const int MAX_CACHE_LEVEL = 3;
2234 private:
2235 size_t depth;
2236 info_t table[MAX_CACHE_LEVEL + 1];
2239 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2240 // an algorithm which cycles through the available os threads, setting
2241 // the current thread's affinity mask to that thread, and then retrieves
2242 // the Apic Id for each thread context using the cpuid instruction.
2243 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2244 kmp_cpuid buf;
2245 *msg_id = kmp_i18n_null;
2247 if (__kmp_affinity.flags.verbose) {
2248 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
2251 // Check if cpuid leaf 4 is supported.
2252 __kmp_x86_cpuid(0, 0, &buf);
2253 if (buf.eax < 4) {
2254 *msg_id = kmp_i18n_str_NoLeaf4Support;
2255 return false;
2258 // The algorithm used starts by setting the affinity to each available thread
2259 // and retrieving info from the cpuid instruction, so if we are not capable of
2260 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2261 // need to do something else - use the defaults that we calculated from
2262 // issuing cpuid without binding to each proc.
2263 if (!KMP_AFFINITY_CAPABLE()) {
2264 // Hack to try and infer the machine topology using only the data
2265 // available from cpuid on the current thread, and __kmp_xproc.
2266 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2268 // Get an upper bound on the number of threads per package using cpuid(1).
2269 // On some OS/chps combinations where HT is supported by the chip but is
2270 // disabled, this value will be 2 on a single core chip. Usually, it will be
2271 // 2 if HT is enabled and 1 if HT is disabled.
2272 __kmp_x86_cpuid(1, 0, &buf);
2273 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2274 if (maxThreadsPerPkg == 0) {
2275 maxThreadsPerPkg = 1;
2278 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2279 // value.
2281 // The author of cpu_count.cpp treated this only an upper bound on the
2282 // number of cores, but I haven't seen any cases where it was greater than
2283 // the actual number of cores, so we will treat it as exact in this block of
2284 // code.
2286 // First, we need to check if cpuid(4) is supported on this chip. To see if
2287 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2288 // greater.
2289 __kmp_x86_cpuid(0, 0, &buf);
2290 if (buf.eax >= 4) {
2291 __kmp_x86_cpuid(4, 0, &buf);
2292 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2293 } else {
2294 nCoresPerPkg = 1;
2297 // There is no way to reliably tell if HT is enabled without issuing the
2298 // cpuid instruction from every thread, can correlating the cpuid info, so
2299 // if the machine is not affinity capable, we assume that HT is off. We have
2300 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2301 // does not support HT.
2303 // - Older OSes are usually found on machines with older chips, which do not
2304 // support HT.
2305 // - The performance penalty for mistakenly identifying a machine as HT when
2306 // it isn't (which results in blocktime being incorrectly set to 0) is
2307 // greater than the penalty when for mistakenly identifying a machine as
2308 // being 1 thread/core when it is really HT enabled (which results in
2309 // blocktime being incorrectly set to a positive value).
2310 __kmp_ncores = __kmp_xproc;
2311 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2312 __kmp_nThreadsPerCore = 1;
2313 return true;
2316 // From here on, we can assume that it is safe to call
2317 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2318 // __kmp_affinity.type = affinity_none.
2320 // Save the affinity mask for the current thread.
2321 kmp_affinity_raii_t previous_affinity;
2323 // Run through each of the available contexts, binding the current thread
2324 // to it, and obtaining the pertinent information using the cpuid instr.
2326 // The relevant information is:
2327 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2328 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2329 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2330 // of this field determines the width of the core# + thread# fields in the
2331 // Apic Id. It is also an upper bound on the number of threads per
2332 // package, but it has been verified that situations happen were it is not
2333 // exact. In particular, on certain OS/chip combinations where Intel(R)
2334 // Hyper-Threading Technology is supported by the chip but has been
2335 // disabled, the value of this field will be 2 (for a single core chip).
2336 // On other OS/chip combinations supporting Intel(R) Hyper-Threading
2337 // Technology, the value of this field will be 1 when Intel(R)
2338 // Hyper-Threading Technology is disabled and 2 when it is enabled.
2339 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
2340 // of this field (+1) determines the width of the core# field in the Apic
2341 // Id. The comments in "cpucount.cpp" say that this value is an upper
2342 // bound, but the IA-32 architecture manual says that it is exactly the
2343 // number of cores per package, and I haven't seen any case where it
2344 // wasn't.
2346 // From this information, deduce the package Id, core Id, and thread Id,
2347 // and set the corresponding fields in the apicThreadInfo struct.
2348 unsigned i;
2349 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
2350 __kmp_avail_proc * sizeof(apicThreadInfo));
2351 unsigned nApics = 0;
2352 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2353 // Skip this proc if it is not included in the machine model.
2354 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2355 continue;
2357 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
2359 __kmp_affinity_dispatch->bind_thread(i);
2360 threadInfo[nApics].osId = i;
2362 // The apic id and max threads per pkg come from cpuid(1).
2363 __kmp_x86_cpuid(1, 0, &buf);
2364 if (((buf.edx >> 9) & 1) == 0) {
2365 __kmp_free(threadInfo);
2366 *msg_id = kmp_i18n_str_ApicNotPresent;
2367 return false;
2369 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2370 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2371 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2372 threadInfo[nApics].maxThreadsPerPkg = 1;
2375 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2376 // value.
2378 // First, we need to check if cpuid(4) is supported on this chip. To see if
2379 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2380 // or greater.
2381 __kmp_x86_cpuid(0, 0, &buf);
2382 if (buf.eax >= 4) {
2383 __kmp_x86_cpuid(4, 0, &buf);
2384 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2385 } else {
2386 threadInfo[nApics].maxCoresPerPkg = 1;
2389 // Infer the pkgId / coreId / threadId using only the info obtained locally.
2390 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
2391 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2393 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
2394 int widthT = widthCT - widthC;
2395 if (widthT < 0) {
2396 // I've never seen this one happen, but I suppose it could, if the cpuid
2397 // instruction on a chip was really screwed up. Make sure to restore the
2398 // affinity mask before the tail call.
2399 __kmp_free(threadInfo);
2400 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2401 return false;
2404 int maskC = (1 << widthC) - 1;
2405 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2407 int maskT = (1 << widthT) - 1;
2408 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2410 nApics++;
2413 // We've collected all the info we need.
2414 // Restore the old affinity mask for this thread.
2415 previous_affinity.restore();
2417 // Sort the threadInfo table by physical Id.
2418 qsort(threadInfo, nApics, sizeof(*threadInfo),
2419 __kmp_affinity_cmp_apicThreadInfo_phys_id);
2421 // The table is now sorted by pkgId / coreId / threadId, but we really don't
2422 // know the radix of any of the fields. pkgId's may be sparsely assigned among
2423 // the chips on a system. Although coreId's are usually assigned
2424 // [0 .. coresPerPkg-1] and threadId's are usually assigned
2425 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2427 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2428 // total # packages) are at this point - we want to determine that now. We
2429 // only have an upper bound on the first two figures.
2431 // We also perform a consistency check at this point: the values returned by
2432 // the cpuid instruction for any thread bound to a given package had better
2433 // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2434 nPackages = 1;
2435 nCoresPerPkg = 1;
2436 __kmp_nThreadsPerCore = 1;
2437 unsigned nCores = 1;
2439 unsigned pkgCt = 1; // to determine radii
2440 unsigned lastPkgId = threadInfo[0].pkgId;
2441 unsigned coreCt = 1;
2442 unsigned lastCoreId = threadInfo[0].coreId;
2443 unsigned threadCt = 1;
2444 unsigned lastThreadId = threadInfo[0].threadId;
2446 // intra-pkg consist checks
2447 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2448 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2450 for (i = 1; i < nApics; i++) {
2451 if (threadInfo[i].pkgId != lastPkgId) {
2452 nCores++;
2453 pkgCt++;
2454 lastPkgId = threadInfo[i].pkgId;
2455 if ((int)coreCt > nCoresPerPkg)
2456 nCoresPerPkg = coreCt;
2457 coreCt = 1;
2458 lastCoreId = threadInfo[i].coreId;
2459 if ((int)threadCt > __kmp_nThreadsPerCore)
2460 __kmp_nThreadsPerCore = threadCt;
2461 threadCt = 1;
2462 lastThreadId = threadInfo[i].threadId;
2464 // This is a different package, so go on to the next iteration without
2465 // doing any consistency checks. Reset the consistency check vars, though.
2466 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2467 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2468 continue;
2471 if (threadInfo[i].coreId != lastCoreId) {
2472 nCores++;
2473 coreCt++;
2474 lastCoreId = threadInfo[i].coreId;
2475 if ((int)threadCt > __kmp_nThreadsPerCore)
2476 __kmp_nThreadsPerCore = threadCt;
2477 threadCt = 1;
2478 lastThreadId = threadInfo[i].threadId;
2479 } else if (threadInfo[i].threadId != lastThreadId) {
2480 threadCt++;
2481 lastThreadId = threadInfo[i].threadId;
2482 } else {
2483 __kmp_free(threadInfo);
2484 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2485 return false;
2488 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2489 // fields agree between all the threads bounds to a given package.
2490 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2491 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2492 __kmp_free(threadInfo);
2493 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2494 return false;
2497 // When affinity is off, this routine will still be called to set
2498 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2499 // Make sure all these vars are set correctly
2500 nPackages = pkgCt;
2501 if ((int)coreCt > nCoresPerPkg)
2502 nCoresPerPkg = coreCt;
2503 if ((int)threadCt > __kmp_nThreadsPerCore)
2504 __kmp_nThreadsPerCore = threadCt;
2505 __kmp_ncores = nCores;
2506 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
2508 // Now that we've determined the number of packages, the number of cores per
2509 // package, and the number of threads per core, we can construct the data
2510 // structure that is to be returned.
2511 int idx = 0;
2512 int pkgLevel = 0;
2513 int coreLevel = 1;
2514 int threadLevel = 2;
2515 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2516 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2517 kmp_hw_t types[3];
2518 if (pkgLevel >= 0)
2519 types[idx++] = KMP_HW_SOCKET;
2520 if (coreLevel >= 0)
2521 types[idx++] = KMP_HW_CORE;
2522 if (threadLevel >= 0)
2523 types[idx++] = KMP_HW_THREAD;
2525 KMP_ASSERT(depth > 0);
2526 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
2528 for (i = 0; i < nApics; ++i) {
2529 idx = 0;
2530 unsigned os = threadInfo[i].osId;
2531 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2532 hw_thread.clear();
2534 if (pkgLevel >= 0) {
2535 hw_thread.ids[idx++] = threadInfo[i].pkgId;
2537 if (coreLevel >= 0) {
2538 hw_thread.ids[idx++] = threadInfo[i].coreId;
2540 if (threadLevel >= 0) {
2541 hw_thread.ids[idx++] = threadInfo[i].threadId;
2543 hw_thread.os_id = os;
2544 hw_thread.original_idx = i;
2547 __kmp_free(threadInfo);
2548 __kmp_topology->sort_ids();
2549 if (!__kmp_topology->check_ids()) {
2550 kmp_topology_t::deallocate(__kmp_topology);
2551 __kmp_topology = nullptr;
2552 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2553 return false;
2555 return true;
2558 // Hybrid cpu detection using CPUID.1A
2559 // Thread should be pinned to processor already
2560 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2561 unsigned *native_model_id) {
2562 kmp_cpuid buf;
2563 __kmp_x86_cpuid(0x1a, 0, &buf);
2564 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
2565 switch (*type) {
2566 case KMP_HW_CORE_TYPE_ATOM:
2567 *efficiency = 0;
2568 break;
2569 case KMP_HW_CORE_TYPE_CORE:
2570 *efficiency = 1;
2571 break;
2572 default:
2573 *efficiency = 0;
2575 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
2578 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
2579 // architectures support a newer interface for specifying the x2APIC Ids,
2580 // based on CPUID.B or CPUID.1F
2582 * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2583 Bits Bits Bits Bits
2584 31-16 15-8 7-4 4-0
2585 ---+-----------+--------------+-------------+-----------------+
2586 EAX| reserved | reserved | reserved | Bits to Shift |
2587 ---+-----------|--------------+-------------+-----------------|
2588 EBX| reserved | Num logical processors at level (16 bits) |
2589 ---+-----------|--------------+-------------------------------|
2590 ECX| reserved | Level Type | Level Number (8 bits) |
2591 ---+-----------+--------------+-------------------------------|
2592 EDX| X2APIC ID (32 bits) |
2593 ---+----------------------------------------------------------+
2596 enum {
2597 INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2598 INTEL_LEVEL_TYPE_SMT = 1,
2599 INTEL_LEVEL_TYPE_CORE = 2,
2600 INTEL_LEVEL_TYPE_MODULE = 3,
2601 INTEL_LEVEL_TYPE_TILE = 4,
2602 INTEL_LEVEL_TYPE_DIE = 5,
2603 INTEL_LEVEL_TYPE_LAST = 6,
2605 KMP_BUILD_ASSERT(INTEL_LEVEL_TYPE_LAST < sizeof(unsigned) * CHAR_BIT);
2606 #define KMP_LEAF_1F_KNOWN_LEVELS ((1u << INTEL_LEVEL_TYPE_LAST) - 1u)
2608 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2609 switch (intel_type) {
2610 case INTEL_LEVEL_TYPE_INVALID:
2611 return KMP_HW_SOCKET;
2612 case INTEL_LEVEL_TYPE_SMT:
2613 return KMP_HW_THREAD;
2614 case INTEL_LEVEL_TYPE_CORE:
2615 return KMP_HW_CORE;
2616 case INTEL_LEVEL_TYPE_TILE:
2617 return KMP_HW_TILE;
2618 case INTEL_LEVEL_TYPE_MODULE:
2619 return KMP_HW_MODULE;
2620 case INTEL_LEVEL_TYPE_DIE:
2621 return KMP_HW_DIE;
2623 return KMP_HW_UNKNOWN;
2626 static int __kmp_topology_type_2_intel_type(kmp_hw_t type) {
2627 switch (type) {
2628 case KMP_HW_SOCKET:
2629 return INTEL_LEVEL_TYPE_INVALID;
2630 case KMP_HW_THREAD:
2631 return INTEL_LEVEL_TYPE_SMT;
2632 case KMP_HW_CORE:
2633 return INTEL_LEVEL_TYPE_CORE;
2634 case KMP_HW_TILE:
2635 return INTEL_LEVEL_TYPE_TILE;
2636 case KMP_HW_MODULE:
2637 return INTEL_LEVEL_TYPE_MODULE;
2638 case KMP_HW_DIE:
2639 return INTEL_LEVEL_TYPE_DIE;
2640 default:
2641 return INTEL_LEVEL_TYPE_INVALID;
2645 struct cpuid_level_info_t {
2646 unsigned level_type, mask, mask_width, nitems, cache_mask;
2649 class cpuid_topo_desc_t {
2650 unsigned desc = 0;
2652 public:
2653 void clear() { desc = 0; }
2654 bool contains(int intel_type) const {
2655 KMP_DEBUG_ASSERT(intel_type >= 0 && intel_type < INTEL_LEVEL_TYPE_LAST);
2656 if ((1u << intel_type) & desc)
2657 return true;
2658 return false;
2660 bool contains_topology_type(kmp_hw_t type) const {
2661 KMP_DEBUG_ASSERT(type >= 0 && type < KMP_HW_LAST);
2662 int intel_type = __kmp_topology_type_2_intel_type(type);
2663 return contains(intel_type);
2665 bool contains(cpuid_topo_desc_t rhs) const {
2666 return ((desc | rhs.desc) == desc);
2668 void add(int intel_type) { desc |= (1u << intel_type); }
2669 void add(cpuid_topo_desc_t rhs) { desc |= rhs.desc; }
2672 struct cpuid_proc_info_t {
2673 // Topology info
2674 int os_id;
2675 unsigned apic_id;
2676 unsigned depth;
2677 // Hybrid info
2678 unsigned native_model_id;
2679 int efficiency;
2680 kmp_hw_core_type_t type;
2681 cpuid_topo_desc_t description;
2683 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2686 // This function takes the topology leaf, an info pointer to store the levels
2687 // detected, and writable descriptors for the total topology.
2688 // Returns whether total types, depth, or description were modified.
2689 static bool __kmp_x2apicid_get_levels(int leaf, cpuid_proc_info_t *info,
2690 kmp_hw_t total_types[KMP_HW_LAST],
2691 int *total_depth,
2692 cpuid_topo_desc_t *total_description) {
2693 unsigned level, levels_index;
2694 unsigned level_type, mask_width, nitems;
2695 kmp_cpuid buf;
2696 cpuid_level_info_t(&levels)[INTEL_LEVEL_TYPE_LAST] = info->levels;
2697 bool retval = false;
2699 // New algorithm has known topology layers act as highest unknown topology
2700 // layers when unknown topology layers exist.
2701 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2702 // are unknown topology layers, Then SMT will take the characteristics of
2703 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2704 // This eliminates unknown portions of the topology while still keeping the
2705 // correct structure.
2706 level = levels_index = 0;
2707 do {
2708 __kmp_x86_cpuid(leaf, level, &buf);
2709 level_type = __kmp_extract_bits<8, 15>(buf.ecx);
2710 mask_width = __kmp_extract_bits<0, 4>(buf.eax);
2711 nitems = __kmp_extract_bits<0, 15>(buf.ebx);
2712 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) {
2713 info->depth = 0;
2714 return retval;
2717 if (KMP_LEAF_1F_KNOWN_LEVELS & (1u << level_type)) {
2718 // Add a new level to the topology
2719 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
2720 levels[levels_index].level_type = level_type;
2721 levels[levels_index].mask_width = mask_width;
2722 levels[levels_index].nitems = nitems;
2723 levels_index++;
2724 } else {
2725 // If it is an unknown level, then logically move the previous layer up
2726 if (levels_index > 0) {
2727 levels[levels_index - 1].mask_width = mask_width;
2728 levels[levels_index - 1].nitems = nitems;
2731 level++;
2732 } while (level_type != INTEL_LEVEL_TYPE_INVALID);
2733 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
2734 info->description.clear();
2735 info->depth = levels_index;
2737 // If types, depth, and total_description are uninitialized,
2738 // then initialize them now
2739 if (*total_depth == 0) {
2740 *total_depth = info->depth;
2741 total_description->clear();
2742 for (int i = *total_depth - 1, j = 0; i >= 0; --i, ++j) {
2743 total_types[j] =
2744 __kmp_intel_type_2_topology_type(info->levels[i].level_type);
2745 total_description->add(info->levels[i].level_type);
2747 retval = true;
2750 // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first
2751 if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID)
2752 return 0;
2754 // Set the masks to & with apicid
2755 for (unsigned i = 0; i < levels_index; ++i) {
2756 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2757 levels[i].mask = ~((-1) << levels[i].mask_width);
2758 levels[i].cache_mask = (-1) << levels[i].mask_width;
2759 for (unsigned j = 0; j < i; ++j)
2760 levels[i].mask ^= levels[j].mask;
2761 } else {
2762 KMP_DEBUG_ASSERT(i > 0);
2763 levels[i].mask = (-1) << levels[i - 1].mask_width;
2764 levels[i].cache_mask = 0;
2766 info->description.add(info->levels[i].level_type);
2769 // If this processor has level type not on other processors, then make
2770 // sure to include it in total types, depth, and description.
2771 // One assumption here is that the first type, i.e. socket, is known.
2772 // Another assumption is that types array is always large enough to fit any
2773 // new layers since its length is KMP_HW_LAST.
2774 if (!total_description->contains(info->description)) {
2775 for (int i = info->depth - 1, j = 0; i >= 0; --i, ++j) {
2776 // If this level is known already, then skip it.
2777 if (total_description->contains(levels[i].level_type))
2778 continue;
2779 // Unknown level, insert before last known level
2780 kmp_hw_t curr_type =
2781 __kmp_intel_type_2_topology_type(levels[i].level_type);
2782 KMP_ASSERT(j != 0 && "Bad APIC Id information");
2783 // Move over all known levels to make room for new level
2784 for (int k = info->depth - 1; k >= j; --k) {
2785 KMP_DEBUG_ASSERT(k + 1 < KMP_HW_LAST);
2786 total_types[k + 1] = total_types[k];
2788 // Insert new level
2789 total_types[j] = curr_type;
2790 (*total_depth)++;
2792 total_description->add(info->description);
2793 retval = true;
2795 return retval;
2798 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2800 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2801 kmp_cpuid buf;
2802 int topology_leaf, highest_leaf;
2803 int num_leaves;
2804 int depth = 0;
2805 cpuid_topo_desc_t total_description;
2806 static int leaves[] = {0, 0};
2808 // If affinity is disabled, __kmp_avail_proc may be zero
2809 int ninfos = (__kmp_avail_proc > 0 ? __kmp_avail_proc : 1);
2810 cpuid_proc_info_t *proc_info = (cpuid_proc_info_t *)__kmp_allocate(
2811 (sizeof(cpuid_proc_info_t) + sizeof(cpuid_cache_info_t)) * ninfos);
2812 cpuid_cache_info_t *cache_info = (cpuid_cache_info_t *)(proc_info + ninfos);
2814 kmp_i18n_id_t leaf_message_id;
2816 *msg_id = kmp_i18n_null;
2817 if (__kmp_affinity.flags.verbose) {
2818 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
2821 // Get the highest cpuid leaf supported
2822 __kmp_x86_cpuid(0, 0, &buf);
2823 highest_leaf = buf.eax;
2825 // If a specific topology method was requested, only allow that specific leaf
2826 // otherwise, try both leaves 31 and 11 in that order
2827 num_leaves = 0;
2828 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2829 num_leaves = 1;
2830 leaves[0] = 11;
2831 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2832 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2833 num_leaves = 1;
2834 leaves[0] = 31;
2835 leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2836 } else {
2837 num_leaves = 2;
2838 leaves[0] = 31;
2839 leaves[1] = 11;
2840 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2843 // Check to see if cpuid leaf 31 or 11 is supported.
2844 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2845 topology_leaf = -1;
2846 for (int i = 0; i < num_leaves; ++i) {
2847 int leaf = leaves[i];
2848 if (highest_leaf < leaf)
2849 continue;
2850 __kmp_x86_cpuid(leaf, 0, &buf);
2851 if (buf.ebx == 0)
2852 continue;
2853 topology_leaf = leaf;
2854 __kmp_x2apicid_get_levels(leaf, &proc_info[0], types, &depth,
2855 &total_description);
2856 if (depth == 0)
2857 continue;
2858 break;
2860 if (topology_leaf == -1 || depth == 0) {
2861 *msg_id = leaf_message_id;
2862 __kmp_free(proc_info);
2863 return false;
2865 KMP_ASSERT(depth <= INTEL_LEVEL_TYPE_LAST);
2867 // The algorithm used starts by setting the affinity to each available thread
2868 // and retrieving info from the cpuid instruction, so if we are not capable of
2869 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2870 // we need to do something else - use the defaults that we calculated from
2871 // issuing cpuid without binding to each proc.
2872 if (!KMP_AFFINITY_CAPABLE()) {
2873 // Hack to try and infer the machine topology using only the data
2874 // available from cpuid on the current thread, and __kmp_xproc.
2875 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2876 for (int i = 0; i < depth; ++i) {
2877 if (proc_info[0].levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2878 __kmp_nThreadsPerCore = proc_info[0].levels[i].nitems;
2879 } else if (proc_info[0].levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2880 nCoresPerPkg = proc_info[0].levels[i].nitems;
2883 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2884 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2885 __kmp_free(proc_info);
2886 return true;
2889 // From here on, we can assume that it is safe to call
2890 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2891 // __kmp_affinity.type = affinity_none.
2893 // Save the affinity mask for the current thread.
2894 kmp_affinity_raii_t previous_affinity;
2896 // Run through each of the available contexts, binding the current thread
2897 // to it, and obtaining the pertinent information using the cpuid instr.
2898 unsigned int proc;
2899 int hw_thread_index = 0;
2900 bool uniform_caches = true;
2902 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2903 // Skip this proc if it is not included in the machine model.
2904 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2905 continue;
2907 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2909 // Gather topology information
2910 __kmp_affinity_dispatch->bind_thread(proc);
2911 __kmp_x86_cpuid(topology_leaf, 0, &buf);
2912 proc_info[hw_thread_index].os_id = proc;
2913 proc_info[hw_thread_index].apic_id = buf.edx;
2914 __kmp_x2apicid_get_levels(topology_leaf, &proc_info[hw_thread_index], types,
2915 &depth, &total_description);
2916 if (proc_info[hw_thread_index].depth == 0) {
2917 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2918 __kmp_free(proc_info);
2919 return false;
2921 // Gather cache information and insert afterwards
2922 cache_info[hw_thread_index].get_leaf4_levels();
2923 if (uniform_caches && hw_thread_index > 0)
2924 if (cache_info[0] != cache_info[hw_thread_index])
2925 uniform_caches = false;
2926 // Hybrid information
2927 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2928 __kmp_get_hybrid_info(&proc_info[hw_thread_index].type,
2929 &proc_info[hw_thread_index].efficiency,
2930 &proc_info[hw_thread_index].native_model_id);
2932 hw_thread_index++;
2934 KMP_ASSERT(hw_thread_index > 0);
2935 previous_affinity.restore();
2937 // Allocate the data structure to be returned.
2938 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
2940 // Create topology Ids and hybrid types in __kmp_topology
2941 for (int i = 0; i < __kmp_topology->get_num_hw_threads(); ++i) {
2942 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2943 hw_thread.clear();
2944 hw_thread.os_id = proc_info[i].os_id;
2945 hw_thread.original_idx = i;
2946 unsigned apic_id = proc_info[i].apic_id;
2947 // Put in topology information
2948 for (int j = 0, idx = depth - 1; j < depth; ++j, --idx) {
2949 if (!(proc_info[i].description.contains_topology_type(
2950 __kmp_topology->get_type(j)))) {
2951 hw_thread.ids[idx] = kmp_hw_thread_t::UNKNOWN_ID;
2952 } else {
2953 hw_thread.ids[idx] = apic_id & proc_info[i].levels[j].mask;
2954 if (j > 0) {
2955 hw_thread.ids[idx] >>= proc_info[i].levels[j - 1].mask_width;
2959 hw_thread.attrs.set_core_type(proc_info[i].type);
2960 hw_thread.attrs.set_core_eff(proc_info[i].efficiency);
2963 __kmp_topology->sort_ids();
2965 // Change Ids to logical Ids
2966 for (int j = 0; j < depth - 1; ++j) {
2967 int new_id = 0;
2968 int prev_id = __kmp_topology->at(0).ids[j];
2969 int curr_id = __kmp_topology->at(0).ids[j + 1];
2970 __kmp_topology->at(0).ids[j + 1] = new_id;
2971 for (int i = 1; i < __kmp_topology->get_num_hw_threads(); ++i) {
2972 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2973 if (hw_thread.ids[j] == prev_id && hw_thread.ids[j + 1] == curr_id) {
2974 hw_thread.ids[j + 1] = new_id;
2975 } else if (hw_thread.ids[j] == prev_id &&
2976 hw_thread.ids[j + 1] != curr_id) {
2977 curr_id = hw_thread.ids[j + 1];
2978 hw_thread.ids[j + 1] = ++new_id;
2979 } else {
2980 prev_id = hw_thread.ids[j];
2981 curr_id = hw_thread.ids[j + 1];
2982 hw_thread.ids[j + 1] = ++new_id;
2987 // First check for easy cache placement. This occurs when caches are
2988 // equivalent to a layer in the CPUID leaf 0xb or 0x1f topology.
2989 if (uniform_caches) {
2990 for (size_t i = 0; i < cache_info[0].get_depth(); ++i) {
2991 unsigned cache_mask = cache_info[0][i].mask;
2992 unsigned cache_level = cache_info[0][i].level;
2993 KMP_ASSERT(cache_level <= cpuid_cache_info_t::MAX_CACHE_LEVEL);
2994 kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(cache_level);
2995 __kmp_topology->set_equivalent_type(cache_type, cache_type);
2996 for (int j = 0; j < depth; ++j) {
2997 unsigned hw_cache_mask = proc_info[0].levels[j].cache_mask;
2998 if (hw_cache_mask == cache_mask && j < depth - 1) {
2999 kmp_hw_t type = __kmp_intel_type_2_topology_type(
3000 proc_info[0].levels[j + 1].level_type);
3001 __kmp_topology->set_equivalent_type(cache_type, type);
3005 } else {
3006 // If caches are non-uniform, then record which caches exist.
3007 for (int i = 0; i < __kmp_topology->get_num_hw_threads(); ++i) {
3008 for (size_t j = 0; j < cache_info[i].get_depth(); ++j) {
3009 unsigned cache_level = cache_info[i][j].level;
3010 kmp_hw_t cache_type =
3011 cpuid_cache_info_t::get_topology_type(cache_level);
3012 if (__kmp_topology->get_equivalent_type(cache_type) == KMP_HW_UNKNOWN)
3013 __kmp_topology->set_equivalent_type(cache_type, cache_type);
3018 // See if any cache level needs to be added manually through cache Ids
3019 bool unresolved_cache_levels = false;
3020 for (unsigned level = 1; level <= cpuid_cache_info_t::MAX_CACHE_LEVEL;
3021 ++level) {
3022 kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(level);
3023 // This also filters out caches which may not be in the topology
3024 // since the equivalent type might be KMP_HW_UNKNOWN.
3025 if (__kmp_topology->get_equivalent_type(cache_type) == cache_type) {
3026 unresolved_cache_levels = true;
3027 break;
3031 // Insert unresolved cache layers into machine topology using cache Ids
3032 if (unresolved_cache_levels) {
3033 int num_hw_threads = __kmp_topology->get_num_hw_threads();
3034 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
3035 for (unsigned l = 1; l <= cpuid_cache_info_t::MAX_CACHE_LEVEL; ++l) {
3036 kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(l);
3037 if (__kmp_topology->get_equivalent_type(cache_type) != cache_type)
3038 continue;
3039 for (int i = 0; i < num_hw_threads; ++i) {
3040 int original_idx = __kmp_topology->at(i).original_idx;
3041 ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
3042 const cpuid_cache_info_t::info_t &info =
3043 cache_info[original_idx].get_level(l);
3044 // if cache level not in topology for this processor, then skip
3045 if (info.level == 0)
3046 continue;
3047 ids[i] = info.mask & proc_info[original_idx].apic_id;
3049 __kmp_topology->insert_layer(cache_type, ids);
3053 if (!__kmp_topology->check_ids()) {
3054 kmp_topology_t::deallocate(__kmp_topology);
3055 __kmp_topology = nullptr;
3056 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
3057 __kmp_free(proc_info);
3058 return false;
3060 __kmp_free(proc_info);
3061 return true;
3063 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3065 #define osIdIndex 0
3066 #define threadIdIndex 1
3067 #define coreIdIndex 2
3068 #define pkgIdIndex 3
3069 #define nodeIdIndex 4
3071 typedef unsigned *ProcCpuInfo;
3072 static unsigned maxIndex = pkgIdIndex;
3074 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
3075 const void *b) {
3076 unsigned i;
3077 const unsigned *aa = *(unsigned *const *)a;
3078 const unsigned *bb = *(unsigned *const *)b;
3079 for (i = maxIndex;; i--) {
3080 if (aa[i] < bb[i])
3081 return -1;
3082 if (aa[i] > bb[i])
3083 return 1;
3084 if (i == osIdIndex)
3085 break;
3087 return 0;
3090 #if KMP_USE_HIER_SCHED
3091 // Set the array sizes for the hierarchy layers
3092 static void __kmp_dispatch_set_hierarchy_values() {
3093 // Set the maximum number of L1's to number of cores
3094 // Set the maximum number of L2's to either number of cores / 2 for
3095 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
3096 // Or the number of cores for Intel(R) Xeon(R) processors
3097 // Set the maximum number of NUMA nodes and L3's to number of packages
3098 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
3099 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
3100 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
3101 #if KMP_ARCH_X86_64 && \
3102 (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
3103 KMP_OS_WINDOWS) && \
3104 KMP_MIC_SUPPORTED
3105 if (__kmp_mic_type >= mic3)
3106 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
3107 else
3108 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
3109 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
3110 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
3111 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
3112 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
3113 // Set the number of threads per unit
3114 // Number of hardware threads per L1/L2/L3/NUMA/LOOP
3115 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
3116 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
3117 __kmp_nThreadsPerCore;
3118 #if KMP_ARCH_X86_64 && \
3119 (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
3120 KMP_OS_WINDOWS) && \
3121 KMP_MIC_SUPPORTED
3122 if (__kmp_mic_type >= mic3)
3123 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
3124 2 * __kmp_nThreadsPerCore;
3125 else
3126 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
3127 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
3128 __kmp_nThreadsPerCore;
3129 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
3130 nCoresPerPkg * __kmp_nThreadsPerCore;
3131 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
3132 nCoresPerPkg * __kmp_nThreadsPerCore;
3133 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
3134 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
3137 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
3138 // i.e., this thread's L1 or this thread's L2, etc.
3139 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
3140 int index = type + 1;
3141 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
3142 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
3143 if (type == kmp_hier_layer_e::LAYER_THREAD)
3144 return tid;
3145 else if (type == kmp_hier_layer_e::LAYER_LOOP)
3146 return 0;
3147 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
3148 if (tid >= num_hw_threads)
3149 tid = tid % num_hw_threads;
3150 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
3153 // Return the number of t1's per t2
3154 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
3155 int i1 = t1 + 1;
3156 int i2 = t2 + 1;
3157 KMP_DEBUG_ASSERT(i1 <= i2);
3158 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
3159 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
3160 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
3161 // (nthreads/t2) / (nthreads/t1) = t1 / t2
3162 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
3164 #endif // KMP_USE_HIER_SCHED
3166 static inline const char *__kmp_cpuinfo_get_filename() {
3167 const char *filename;
3168 if (__kmp_cpuinfo_file != nullptr)
3169 filename = __kmp_cpuinfo_file;
3170 else
3171 filename = "/proc/cpuinfo";
3172 return filename;
3175 static inline const char *__kmp_cpuinfo_get_envvar() {
3176 const char *envvar = nullptr;
3177 if (__kmp_cpuinfo_file != nullptr)
3178 envvar = "KMP_CPUINFO_FILE";
3179 return envvar;
3182 static bool __kmp_package_id_from_core_siblings_list(unsigned **threadInfo,
3183 unsigned num_avail,
3184 unsigned idx) {
3185 if (!KMP_AFFINITY_CAPABLE())
3186 return false;
3188 char path[256];
3189 KMP_SNPRINTF(path, sizeof(path),
3190 "/sys/devices/system/cpu/cpu%u/topology/core_siblings_list",
3191 threadInfo[idx][osIdIndex]);
3192 kmp_affin_mask_t *siblings = __kmp_parse_cpu_list(path);
3193 for (unsigned i = 0; i < num_avail; ++i) {
3194 unsigned cpu_id = threadInfo[i][osIdIndex];
3195 KMP_ASSERT(cpu_id < __kmp_affin_mask_size * CHAR_BIT);
3196 if (!KMP_CPU_ISSET(cpu_id, siblings))
3197 continue;
3198 if (threadInfo[i][pkgIdIndex] == UINT_MAX) {
3199 // Arbitrarily pick the first index we encounter, it only matters that
3200 // the value is the same for all siblings.
3201 threadInfo[i][pkgIdIndex] = idx;
3202 } else if (threadInfo[i][pkgIdIndex] != idx) {
3203 // Contradictory sibling lists.
3204 KMP_CPU_FREE(siblings);
3205 return false;
3208 KMP_ASSERT(threadInfo[idx][pkgIdIndex] != UINT_MAX);
3209 KMP_CPU_FREE(siblings);
3210 return true;
3213 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
3214 // affinity map. On AIX, the map is obtained through system SRAD (Scheduler
3215 // Resource Allocation Domain).
3216 static bool __kmp_affinity_create_cpuinfo_map(int *line,
3217 kmp_i18n_id_t *const msg_id) {
3218 *msg_id = kmp_i18n_null;
3220 #if KMP_OS_AIX
3221 unsigned num_records = __kmp_xproc;
3222 #else
3223 const char *filename = __kmp_cpuinfo_get_filename();
3224 const char *envvar = __kmp_cpuinfo_get_envvar();
3226 if (__kmp_affinity.flags.verbose) {
3227 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
3230 kmp_safe_raii_file_t f(filename, "r", envvar);
3232 // Scan of the file, and count the number of "processor" (osId) fields,
3233 // and find the highest value of <n> for a node_<n> field.
3234 char buf[256];
3235 unsigned num_records = 0;
3236 while (!feof(f)) {
3237 buf[sizeof(buf) - 1] = 1;
3238 if (!fgets(buf, sizeof(buf), f)) {
3239 // Read errors presumably because of EOF
3240 break;
3243 char s1[] = "processor";
3244 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
3245 num_records++;
3246 continue;
3249 // FIXME - this will match "node_<n> <garbage>"
3250 unsigned level;
3251 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
3252 // validate the input fisrt:
3253 if (level > (unsigned)__kmp_xproc) { // level is too big
3254 level = __kmp_xproc;
3256 if (nodeIdIndex + level >= maxIndex) {
3257 maxIndex = nodeIdIndex + level;
3259 continue;
3263 // Check for empty file / no valid processor records, or too many. The number
3264 // of records can't exceed the number of valid bits in the affinity mask.
3265 if (num_records == 0) {
3266 *msg_id = kmp_i18n_str_NoProcRecords;
3267 return false;
3269 if (num_records > (unsigned)__kmp_xproc) {
3270 *msg_id = kmp_i18n_str_TooManyProcRecords;
3271 return false;
3274 // Set the file pointer back to the beginning, so that we can scan the file
3275 // again, this time performing a full parse of the data. Allocate a vector of
3276 // ProcCpuInfo object, where we will place the data. Adding an extra element
3277 // at the end allows us to remove a lot of extra checks for termination
3278 // conditions.
3279 if (fseek(f, 0, SEEK_SET) != 0) {
3280 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
3281 return false;
3283 #endif // KMP_OS_AIX
3285 // Allocate the array of records to store the proc info in. The dummy
3286 // element at the end makes the logic in filling them out easier to code.
3287 unsigned **threadInfo =
3288 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
3289 unsigned i;
3290 for (i = 0; i <= num_records; i++) {
3291 threadInfo[i] =
3292 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3295 #define CLEANUP_THREAD_INFO \
3296 for (i = 0; i <= num_records; i++) { \
3297 __kmp_free(threadInfo[i]); \
3299 __kmp_free(threadInfo);
3301 // A value of UINT_MAX means that we didn't find the field
3302 unsigned __index;
3304 #define INIT_PROC_INFO(p) \
3305 for (__index = 0; __index <= maxIndex; __index++) { \
3306 (p)[__index] = UINT_MAX; \
3309 for (i = 0; i <= num_records; i++) {
3310 INIT_PROC_INFO(threadInfo[i]);
3313 #if KMP_OS_AIX
3314 int smt_threads;
3315 lpar_info_format1_t cpuinfo;
3316 unsigned num_avail = __kmp_xproc;
3318 if (__kmp_affinity.flags.verbose)
3319 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "system info for topology");
3321 // Get the number of SMT threads per core.
3322 smt_threads = syssmt(GET_NUMBER_SMT_SETS, 0, 0, NULL);
3324 // Allocate a resource set containing available system resourses.
3325 rsethandle_t sys_rset = rs_alloc(RS_SYSTEM);
3326 if (sys_rset == NULL) {
3327 CLEANUP_THREAD_INFO;
3328 *msg_id = kmp_i18n_str_UnknownTopology;
3329 return false;
3331 // Allocate a resource set for the SRAD info.
3332 rsethandle_t srad = rs_alloc(RS_EMPTY);
3333 if (srad == NULL) {
3334 rs_free(sys_rset);
3335 CLEANUP_THREAD_INFO;
3336 *msg_id = kmp_i18n_str_UnknownTopology;
3337 return false;
3340 // Get the SRAD system detail level.
3341 int sradsdl = rs_getinfo(NULL, R_SRADSDL, 0);
3342 if (sradsdl < 0) {
3343 rs_free(sys_rset);
3344 rs_free(srad);
3345 CLEANUP_THREAD_INFO;
3346 *msg_id = kmp_i18n_str_UnknownTopology;
3347 return false;
3349 // Get the number of RADs at that SRAD SDL.
3350 int num_rads = rs_numrads(sys_rset, sradsdl, 0);
3351 if (num_rads < 0) {
3352 rs_free(sys_rset);
3353 rs_free(srad);
3354 CLEANUP_THREAD_INFO;
3355 *msg_id = kmp_i18n_str_UnknownTopology;
3356 return false;
3359 // Get the maximum number of procs that may be contained in a resource set.
3360 int max_procs = rs_getinfo(NULL, R_MAXPROCS, 0);
3361 if (max_procs < 0) {
3362 rs_free(sys_rset);
3363 rs_free(srad);
3364 CLEANUP_THREAD_INFO;
3365 *msg_id = kmp_i18n_str_UnknownTopology;
3366 return false;
3369 int cur_rad = 0;
3370 int num_set = 0;
3371 for (int srad_idx = 0; cur_rad < num_rads && srad_idx < VMI_MAXRADS;
3372 ++srad_idx) {
3373 // Check if the SRAD is available in the RSET.
3374 if (rs_getrad(sys_rset, srad, sradsdl, srad_idx, 0) < 0)
3375 continue;
3377 for (int cpu = 0; cpu < max_procs; cpu++) {
3378 // Set the info for the cpu if it is in the SRAD.
3379 if (rs_op(RS_TESTRESOURCE, srad, NULL, R_PROCS, cpu)) {
3380 threadInfo[cpu][osIdIndex] = cpu;
3381 threadInfo[cpu][pkgIdIndex] = cur_rad;
3382 threadInfo[cpu][coreIdIndex] = cpu / smt_threads;
3383 ++num_set;
3384 if (num_set >= num_avail) {
3385 // Done if all available CPUs have been set.
3386 break;
3390 ++cur_rad;
3392 rs_free(sys_rset);
3393 rs_free(srad);
3395 // The topology is already sorted.
3397 #else // !KMP_OS_AIX
3398 unsigned num_avail = 0;
3399 *line = 0;
3400 #if KMP_ARCH_S390X
3401 bool reading_s390x_sys_info = true;
3402 #endif
3403 while (!feof(f)) {
3404 // Create an inner scoping level, so that all the goto targets at the end of
3405 // the loop appear in an outer scoping level. This avoids warnings about
3406 // jumping past an initialization to a target in the same block.
3408 buf[sizeof(buf) - 1] = 1;
3409 bool long_line = false;
3410 if (!fgets(buf, sizeof(buf), f)) {
3411 // Read errors presumably because of EOF
3412 // If there is valid data in threadInfo[num_avail], then fake
3413 // a blank line in ensure that the last address gets parsed.
3414 bool valid = false;
3415 for (i = 0; i <= maxIndex; i++) {
3416 if (threadInfo[num_avail][i] != UINT_MAX) {
3417 valid = true;
3420 if (!valid) {
3421 break;
3423 buf[0] = 0;
3424 } else if (!buf[sizeof(buf) - 1]) {
3425 // The line is longer than the buffer. Set a flag and don't
3426 // emit an error if we were going to ignore the line, anyway.
3427 long_line = true;
3429 #define CHECK_LINE \
3430 if (long_line) { \
3431 CLEANUP_THREAD_INFO; \
3432 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
3433 return false; \
3436 (*line)++;
3438 #if KMP_ARCH_LOONGARCH64
3439 // The parsing logic of /proc/cpuinfo in this function highly depends on
3440 // the blank lines between each processor info block. But on LoongArch a
3441 // blank line exists before the first processor info block (i.e. after the
3442 // "system type" line). This blank line was added because the "system
3443 // type" line is unrelated to any of the CPUs. We must skip this line so
3444 // that the original logic works on LoongArch.
3445 if (*buf == '\n' && *line == 2)
3446 continue;
3447 #endif
3448 #if KMP_ARCH_S390X
3449 // s390x /proc/cpuinfo starts with a variable number of lines containing
3450 // the overall system information. Skip them.
3451 if (reading_s390x_sys_info) {
3452 if (*buf == '\n')
3453 reading_s390x_sys_info = false;
3454 continue;
3456 #endif
3458 #if KMP_ARCH_S390X
3459 char s1[] = "cpu number";
3460 #else
3461 char s1[] = "processor";
3462 #endif
3463 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
3464 CHECK_LINE;
3465 char *p = strchr(buf + sizeof(s1) - 1, ':');
3466 unsigned val;
3467 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3468 goto no_val;
3469 if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
3470 #if KMP_ARCH_AARCH64
3471 // Handle the old AArch64 /proc/cpuinfo layout differently,
3472 // it contains all of the 'processor' entries listed in a
3473 // single 'Processor' section, therefore the normal looking
3474 // for duplicates in that section will always fail.
3475 num_avail++;
3476 #else
3477 goto dup_field;
3478 #endif
3479 threadInfo[num_avail][osIdIndex] = val;
3480 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
3481 char path[256];
3482 KMP_SNPRINTF(
3483 path, sizeof(path),
3484 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
3485 threadInfo[num_avail][osIdIndex]);
3486 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
3488 #if KMP_ARCH_S390X
3489 // Disambiguate physical_package_id.
3490 unsigned book_id;
3491 KMP_SNPRINTF(path, sizeof(path),
3492 "/sys/devices/system/cpu/cpu%u/topology/book_id",
3493 threadInfo[num_avail][osIdIndex]);
3494 __kmp_read_from_file(path, "%u", &book_id);
3495 threadInfo[num_avail][pkgIdIndex] |= (book_id << 8);
3497 unsigned drawer_id;
3498 KMP_SNPRINTF(path, sizeof(path),
3499 "/sys/devices/system/cpu/cpu%u/topology/drawer_id",
3500 threadInfo[num_avail][osIdIndex]);
3501 __kmp_read_from_file(path, "%u", &drawer_id);
3502 threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16);
3503 #endif
3505 KMP_SNPRINTF(path, sizeof(path),
3506 "/sys/devices/system/cpu/cpu%u/topology/core_id",
3507 threadInfo[num_avail][osIdIndex]);
3508 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
3509 continue;
3510 #else
3512 char s2[] = "physical id";
3513 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
3514 CHECK_LINE;
3515 char *p = strchr(buf + sizeof(s2) - 1, ':');
3516 unsigned val;
3517 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3518 goto no_val;
3519 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
3520 goto dup_field;
3521 threadInfo[num_avail][pkgIdIndex] = val;
3522 continue;
3524 char s3[] = "core id";
3525 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
3526 CHECK_LINE;
3527 char *p = strchr(buf + sizeof(s3) - 1, ':');
3528 unsigned val;
3529 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3530 goto no_val;
3531 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
3532 goto dup_field;
3533 threadInfo[num_avail][coreIdIndex] = val;
3534 continue;
3535 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
3537 char s4[] = "thread id";
3538 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
3539 CHECK_LINE;
3540 char *p = strchr(buf + sizeof(s4) - 1, ':');
3541 unsigned val;
3542 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3543 goto no_val;
3544 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
3545 goto dup_field;
3546 threadInfo[num_avail][threadIdIndex] = val;
3547 continue;
3549 unsigned level;
3550 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
3551 CHECK_LINE;
3552 char *p = strchr(buf + sizeof(s4) - 1, ':');
3553 unsigned val;
3554 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3555 goto no_val;
3556 // validate the input before using level:
3557 if (level > (unsigned)__kmp_xproc) { // level is too big
3558 level = __kmp_xproc;
3560 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
3561 goto dup_field;
3562 threadInfo[num_avail][nodeIdIndex + level] = val;
3563 continue;
3566 // We didn't recognize the leading token on the line. There are lots of
3567 // leading tokens that we don't recognize - if the line isn't empty, go on
3568 // to the next line.
3569 if ((*buf != 0) && (*buf != '\n')) {
3570 // If the line is longer than the buffer, read characters
3571 // until we find a newline.
3572 if (long_line) {
3573 int ch;
3574 while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
3577 continue;
3580 // A newline has signalled the end of the processor record.
3581 // Check that there aren't too many procs specified.
3582 if ((int)num_avail == __kmp_xproc) {
3583 CLEANUP_THREAD_INFO;
3584 *msg_id = kmp_i18n_str_TooManyEntries;
3585 return false;
3588 // Check for missing fields. The osId field must be there. The physical
3589 // id field will be checked later.
3590 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
3591 CLEANUP_THREAD_INFO;
3592 *msg_id = kmp_i18n_str_MissingProcField;
3593 return false;
3596 // Skip this proc if it is not included in the machine model.
3597 if (KMP_AFFINITY_CAPABLE() &&
3598 !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
3599 __kmp_affin_fullMask)) {
3600 INIT_PROC_INFO(threadInfo[num_avail]);
3601 continue;
3604 // We have a successful parse of this proc's info.
3605 // Increment the counter, and prepare for the next proc.
3606 num_avail++;
3607 KMP_ASSERT(num_avail <= num_records);
3608 INIT_PROC_INFO(threadInfo[num_avail]);
3610 continue;
3612 no_val:
3613 CLEANUP_THREAD_INFO;
3614 *msg_id = kmp_i18n_str_MissingValCpuinfo;
3615 return false;
3617 dup_field:
3618 CLEANUP_THREAD_INFO;
3619 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3620 return false;
3622 *line = 0;
3624 // At least on powerpc, Linux may return -1 for physical_package_id. Try
3625 // to reconstruct topology from core_siblings_list in that case.
3626 for (i = 0; i < num_avail; ++i) {
3627 if (threadInfo[i][pkgIdIndex] == UINT_MAX) {
3628 if (!__kmp_package_id_from_core_siblings_list(threadInfo, num_avail, i)) {
3629 CLEANUP_THREAD_INFO;
3630 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
3631 return false;
3636 #if KMP_MIC && REDUCE_TEAM_SIZE
3637 unsigned teamSize = 0;
3638 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3640 // check for num_records == __kmp_xproc ???
3642 // If it is configured to omit the package level when there is only a single
3643 // package, the logic at the end of this routine won't work if there is only a
3644 // single thread
3645 KMP_ASSERT(num_avail > 0);
3646 KMP_ASSERT(num_avail <= num_records);
3648 // Sort the threadInfo table by physical Id.
3649 qsort(threadInfo, num_avail, sizeof(*threadInfo),
3650 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
3652 #endif // KMP_OS_AIX
3654 // The table is now sorted by pkgId / coreId / threadId, but we really don't
3655 // know the radix of any of the fields. pkgId's may be sparsely assigned among
3656 // the chips on a system. Although coreId's are usually assigned
3657 // [0 .. coresPerPkg-1] and threadId's are usually assigned
3658 // [0..threadsPerCore-1], we don't want to make any such assumptions.
3660 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3661 // total # packages) are at this point - we want to determine that now. We
3662 // only have an upper bound on the first two figures.
3663 unsigned *counts =
3664 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3665 unsigned *maxCt =
3666 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3667 unsigned *totals =
3668 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3669 unsigned *lastId =
3670 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3672 bool assign_thread_ids = false;
3673 unsigned threadIdCt;
3674 unsigned index;
3676 restart_radix_check:
3677 threadIdCt = 0;
3679 // Initialize the counter arrays with data from threadInfo[0].
3680 if (assign_thread_ids) {
3681 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
3682 threadInfo[0][threadIdIndex] = threadIdCt++;
3683 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
3684 threadIdCt = threadInfo[0][threadIdIndex] + 1;
3687 for (index = 0; index <= maxIndex; index++) {
3688 counts[index] = 1;
3689 maxCt[index] = 1;
3690 totals[index] = 1;
3691 lastId[index] = threadInfo[0][index];
3695 // Run through the rest of the OS procs.
3696 for (i = 1; i < num_avail; i++) {
3697 // Find the most significant index whose id differs from the id for the
3698 // previous OS proc.
3699 for (index = maxIndex; index >= threadIdIndex; index--) {
3700 if (assign_thread_ids && (index == threadIdIndex)) {
3701 // Auto-assign the thread id field if it wasn't specified.
3702 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3703 threadInfo[i][threadIdIndex] = threadIdCt++;
3705 // Apparently the thread id field was specified for some entries and not
3706 // others. Start the thread id counter off at the next higher thread id.
3707 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3708 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3711 if (threadInfo[i][index] != lastId[index]) {
3712 // Run through all indices which are less significant, and reset the
3713 // counts to 1. At all levels up to and including index, we need to
3714 // increment the totals and record the last id.
3715 unsigned index2;
3716 for (index2 = threadIdIndex; index2 < index; index2++) {
3717 totals[index2]++;
3718 if (counts[index2] > maxCt[index2]) {
3719 maxCt[index2] = counts[index2];
3721 counts[index2] = 1;
3722 lastId[index2] = threadInfo[i][index2];
3724 counts[index]++;
3725 totals[index]++;
3726 lastId[index] = threadInfo[i][index];
3728 if (assign_thread_ids && (index > threadIdIndex)) {
3730 #if KMP_MIC && REDUCE_TEAM_SIZE
3731 // The default team size is the total #threads in the machine
3732 // minus 1 thread for every core that has 3 or more threads.
3733 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3734 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3736 // Restart the thread counter, as we are on a new core.
3737 threadIdCt = 0;
3739 // Auto-assign the thread id field if it wasn't specified.
3740 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3741 threadInfo[i][threadIdIndex] = threadIdCt++;
3744 // Apparently the thread id field was specified for some entries and
3745 // not others. Start the thread id counter off at the next higher
3746 // thread id.
3747 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3748 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3751 break;
3754 if (index < threadIdIndex) {
3755 // If thread ids were specified, it is an error if they are not unique.
3756 // Also, check that we waven't already restarted the loop (to be safe -
3757 // shouldn't need to).
3758 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
3759 __kmp_free(lastId);
3760 __kmp_free(totals);
3761 __kmp_free(maxCt);
3762 __kmp_free(counts);
3763 CLEANUP_THREAD_INFO;
3764 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3765 return false;
3768 // If the thread ids were not specified and we see entries that
3769 // are duplicates, start the loop over and assign the thread ids manually.
3770 assign_thread_ids = true;
3771 goto restart_radix_check;
3775 #if KMP_MIC && REDUCE_TEAM_SIZE
3776 // The default team size is the total #threads in the machine
3777 // minus 1 thread for every core that has 3 or more threads.
3778 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3779 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3781 for (index = threadIdIndex; index <= maxIndex; index++) {
3782 if (counts[index] > maxCt[index]) {
3783 maxCt[index] = counts[index];
3787 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
3788 nCoresPerPkg = maxCt[coreIdIndex];
3789 nPackages = totals[pkgIdIndex];
3791 // When affinity is off, this routine will still be called to set
3792 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3793 // Make sure all these vars are set correctly, and return now if affinity is
3794 // not enabled.
3795 __kmp_ncores = totals[coreIdIndex];
3796 if (!KMP_AFFINITY_CAPABLE()) {
3797 KMP_ASSERT(__kmp_affinity.type == affinity_none);
3798 return true;
3801 #if KMP_MIC && REDUCE_TEAM_SIZE
3802 // Set the default team size.
3803 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3804 __kmp_dflt_team_nth = teamSize;
3805 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
3806 "__kmp_dflt_team_nth = %d\n",
3807 __kmp_dflt_team_nth));
3809 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3811 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
3813 // Count the number of levels which have more nodes at that level than at the
3814 // parent's level (with there being an implicit root node of the top level).
3815 // This is equivalent to saying that there is at least one node at this level
3816 // which has a sibling. These levels are in the map, and the package level is
3817 // always in the map.
3818 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
3819 for (index = threadIdIndex; index < maxIndex; index++) {
3820 KMP_ASSERT(totals[index] >= totals[index + 1]);
3821 inMap[index] = (totals[index] > totals[index + 1]);
3823 inMap[maxIndex] = (totals[maxIndex] > 1);
3824 inMap[pkgIdIndex] = true;
3825 inMap[coreIdIndex] = true;
3826 inMap[threadIdIndex] = true;
3828 int depth = 0;
3829 int idx = 0;
3830 kmp_hw_t types[KMP_HW_LAST];
3831 int pkgLevel = -1;
3832 int coreLevel = -1;
3833 int threadLevel = -1;
3834 for (index = threadIdIndex; index <= maxIndex; index++) {
3835 if (inMap[index]) {
3836 depth++;
3839 if (inMap[pkgIdIndex]) {
3840 pkgLevel = idx;
3841 types[idx++] = KMP_HW_SOCKET;
3843 if (inMap[coreIdIndex]) {
3844 coreLevel = idx;
3845 types[idx++] = KMP_HW_CORE;
3847 if (inMap[threadIdIndex]) {
3848 threadLevel = idx;
3849 types[idx++] = KMP_HW_THREAD;
3851 KMP_ASSERT(depth > 0);
3853 // Construct the data structure that is to be returned.
3854 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
3856 for (i = 0; i < num_avail; ++i) {
3857 unsigned os = threadInfo[i][osIdIndex];
3858 int src_index;
3859 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3860 hw_thread.clear();
3861 hw_thread.os_id = os;
3862 hw_thread.original_idx = i;
3864 idx = 0;
3865 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
3866 if (!inMap[src_index]) {
3867 continue;
3869 if (src_index == pkgIdIndex) {
3870 hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3871 } else if (src_index == coreIdIndex) {
3872 hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3873 } else if (src_index == threadIdIndex) {
3874 hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3879 __kmp_free(inMap);
3880 __kmp_free(lastId);
3881 __kmp_free(totals);
3882 __kmp_free(maxCt);
3883 __kmp_free(counts);
3884 CLEANUP_THREAD_INFO;
3885 __kmp_topology->sort_ids();
3887 int tlevel = __kmp_topology->get_level(KMP_HW_THREAD);
3888 if (tlevel > 0) {
3889 // If the thread level does not have ids, then put them in.
3890 if (__kmp_topology->at(0).ids[tlevel] == kmp_hw_thread_t::UNKNOWN_ID) {
3891 __kmp_topology->at(0).ids[tlevel] = 0;
3893 for (int i = 1; i < __kmp_topology->get_num_hw_threads(); ++i) {
3894 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3895 if (hw_thread.ids[tlevel] != kmp_hw_thread_t::UNKNOWN_ID)
3896 continue;
3897 kmp_hw_thread_t &prev_hw_thread = __kmp_topology->at(i - 1);
3898 // Check if socket, core, anything above thread level changed.
3899 // If the ids did change, then restart thread id at 0
3900 // Otherwise, set thread id to prev thread's id + 1
3901 for (int j = 0; j < tlevel; ++j) {
3902 if (hw_thread.ids[j] != prev_hw_thread.ids[j]) {
3903 hw_thread.ids[tlevel] = 0;
3904 break;
3907 if (hw_thread.ids[tlevel] == kmp_hw_thread_t::UNKNOWN_ID)
3908 hw_thread.ids[tlevel] = prev_hw_thread.ids[tlevel] + 1;
3912 if (!__kmp_topology->check_ids()) {
3913 kmp_topology_t::deallocate(__kmp_topology);
3914 __kmp_topology = nullptr;
3915 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3916 return false;
3918 return true;
3921 // Create and return a table of affinity masks, indexed by OS thread ID.
3922 // This routine handles OR'ing together all the affinity masks of threads
3923 // that are sufficiently close, if granularity > fine.
3924 template <typename FindNextFunctionType>
3925 static void __kmp_create_os_id_masks(unsigned *numUnique,
3926 kmp_affinity_t &affinity,
3927 FindNextFunctionType find_next) {
3928 // First form a table of affinity masks in order of OS thread id.
3929 int maxOsId;
3930 int i;
3931 int numAddrs = __kmp_topology->get_num_hw_threads();
3932 int depth = __kmp_topology->get_depth();
3933 const char *env_var = __kmp_get_affinity_env_var(affinity);
3934 KMP_ASSERT(numAddrs);
3935 KMP_ASSERT(depth);
3937 i = find_next(-1);
3938 // If could not find HW thread location that satisfies find_next conditions,
3939 // then return and fallback to increment find_next.
3940 if (i >= numAddrs)
3941 return;
3943 maxOsId = 0;
3944 for (i = numAddrs - 1;; --i) {
3945 int osId = __kmp_topology->at(i).os_id;
3946 if (osId > maxOsId) {
3947 maxOsId = osId;
3949 if (i == 0)
3950 break;
3952 affinity.num_os_id_masks = maxOsId + 1;
3953 KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks);
3954 KMP_ASSERT(affinity.gran_levels >= 0);
3955 if (affinity.flags.verbose && (affinity.gran_levels > 0)) {
3956 KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels);
3958 if (affinity.gran_levels >= (int)depth) {
3959 KMP_AFF_WARNING(affinity, AffThreadsMayMigrate);
3962 // Run through the table, forming the masks for all threads on each core.
3963 // Threads on the same core will have identical kmp_hw_thread_t objects, not
3964 // considering the last level, which must be the thread id. All threads on a
3965 // core will appear consecutively.
3966 int unique = 0;
3967 int j = 0; // index of 1st thread on core
3968 int leader = 0;
3969 kmp_affin_mask_t *sum;
3970 KMP_CPU_ALLOC_ON_STACK(sum);
3971 KMP_CPU_ZERO(sum);
3973 i = j = leader = find_next(-1);
3974 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3975 kmp_full_mask_modifier_t full_mask;
3976 for (i = find_next(i); i < numAddrs; i = find_next(i)) {
3977 // If this thread is sufficiently close to the leader (within the
3978 // granularity setting), then set the bit for this os thread in the
3979 // affinity mask for this group, and go on to the next thread.
3980 if (__kmp_topology->is_close(leader, i, affinity)) {
3981 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3982 continue;
3985 // For every thread in this group, copy the mask to the thread's entry in
3986 // the OS Id mask table. Mark the first address as a leader.
3987 for (; j < i; j = find_next(j)) {
3988 int osId = __kmp_topology->at(j).os_id;
3989 KMP_DEBUG_ASSERT(osId <= maxOsId);
3990 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3991 KMP_CPU_COPY(mask, sum);
3992 __kmp_topology->at(j).leader = (j == leader);
3994 unique++;
3996 // Start a new mask.
3997 leader = i;
3998 full_mask.include(sum);
3999 KMP_CPU_ZERO(sum);
4000 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
4003 // For every thread in last group, copy the mask to the thread's
4004 // entry in the OS Id mask table.
4005 for (; j < i; j = find_next(j)) {
4006 int osId = __kmp_topology->at(j).os_id;
4007 KMP_DEBUG_ASSERT(osId <= maxOsId);
4008 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
4009 KMP_CPU_COPY(mask, sum);
4010 __kmp_topology->at(j).leader = (j == leader);
4012 full_mask.include(sum);
4013 unique++;
4014 KMP_CPU_FREE_FROM_STACK(sum);
4016 // See if the OS Id mask table further restricts or changes the full mask
4017 if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
4018 __kmp_topology->print(env_var);
4021 *numUnique = unique;
4024 // Stuff for the affinity proclist parsers. It's easier to declare these vars
4025 // as file-static than to try and pass them through the calling sequence of
4026 // the recursive-descent OMP_PLACES parser.
4027 static kmp_affin_mask_t *newMasks;
4028 static int numNewMasks;
4029 static int nextNewMask;
4031 #define ADD_MASK(_mask) \
4033 if (nextNewMask >= numNewMasks) { \
4034 int i; \
4035 numNewMasks *= 2; \
4036 kmp_affin_mask_t *temp; \
4037 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
4038 for (i = 0; i < numNewMasks / 2; i++) { \
4039 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
4040 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
4041 KMP_CPU_COPY(dest, src); \
4043 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
4044 newMasks = temp; \
4046 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
4047 nextNewMask++; \
4050 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
4052 if (((_osId) > _maxOsId) || \
4053 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
4054 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \
4055 } else { \
4056 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
4060 // Re-parse the proclist (for the explicit affinity type), and form the list
4061 // of affinity newMasks indexed by gtid.
4062 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) {
4063 int i;
4064 kmp_affin_mask_t **out_masks = &affinity.masks;
4065 unsigned *out_numMasks = &affinity.num_masks;
4066 const char *proclist = affinity.proclist;
4067 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4068 int maxOsId = affinity.num_os_id_masks - 1;
4069 const char *scan = proclist;
4070 const char *next = proclist;
4072 // We use malloc() for the temporary mask vector, so that we can use
4073 // realloc() to extend it.
4074 numNewMasks = 2;
4075 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
4076 nextNewMask = 0;
4077 kmp_affin_mask_t *sumMask;
4078 KMP_CPU_ALLOC(sumMask);
4079 int setSize = 0;
4081 for (;;) {
4082 int start, end, stride;
4084 SKIP_WS(scan);
4085 next = scan;
4086 if (*next == '\0') {
4087 break;
4090 if (*next == '{') {
4091 int num;
4092 setSize = 0;
4093 next++; // skip '{'
4094 SKIP_WS(next);
4095 scan = next;
4097 // Read the first integer in the set.
4098 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
4099 SKIP_DIGITS(next);
4100 num = __kmp_str_to_int(scan, *next);
4101 KMP_ASSERT2(num >= 0, "bad explicit proc list");
4103 // Copy the mask for that osId to the sum (union) mask.
4104 if ((num > maxOsId) ||
4105 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
4106 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
4107 KMP_CPU_ZERO(sumMask);
4108 } else {
4109 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
4110 setSize = 1;
4113 for (;;) {
4114 // Check for end of set.
4115 SKIP_WS(next);
4116 if (*next == '}') {
4117 next++; // skip '}'
4118 break;
4121 // Skip optional comma.
4122 if (*next == ',') {
4123 next++;
4125 SKIP_WS(next);
4127 // Read the next integer in the set.
4128 scan = next;
4129 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
4131 SKIP_DIGITS(next);
4132 num = __kmp_str_to_int(scan, *next);
4133 KMP_ASSERT2(num >= 0, "bad explicit proc list");
4135 // Add the mask for that osId to the sum mask.
4136 if ((num > maxOsId) ||
4137 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
4138 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
4139 } else {
4140 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
4141 setSize++;
4144 if (setSize > 0) {
4145 ADD_MASK(sumMask);
4148 SKIP_WS(next);
4149 if (*next == ',') {
4150 next++;
4152 scan = next;
4153 continue;
4156 // Read the first integer.
4157 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
4158 SKIP_DIGITS(next);
4159 start = __kmp_str_to_int(scan, *next);
4160 KMP_ASSERT2(start >= 0, "bad explicit proc list");
4161 SKIP_WS(next);
4163 // If this isn't a range, then add a mask to the list and go on.
4164 if (*next != '-') {
4165 ADD_MASK_OSID(start, osId2Mask, maxOsId);
4167 // Skip optional comma.
4168 if (*next == ',') {
4169 next++;
4171 scan = next;
4172 continue;
4175 // This is a range. Skip over the '-' and read in the 2nd int.
4176 next++; // skip '-'
4177 SKIP_WS(next);
4178 scan = next;
4179 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
4180 SKIP_DIGITS(next);
4181 end = __kmp_str_to_int(scan, *next);
4182 KMP_ASSERT2(end >= 0, "bad explicit proc list");
4184 // Check for a stride parameter
4185 stride = 1;
4186 SKIP_WS(next);
4187 if (*next == ':') {
4188 // A stride is specified. Skip over the ':" and read the 3rd int.
4189 int sign = +1;
4190 next++; // skip ':'
4191 SKIP_WS(next);
4192 scan = next;
4193 if (*next == '-') {
4194 sign = -1;
4195 next++;
4196 SKIP_WS(next);
4197 scan = next;
4199 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
4200 SKIP_DIGITS(next);
4201 stride = __kmp_str_to_int(scan, *next);
4202 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
4203 stride *= sign;
4206 // Do some range checks.
4207 KMP_ASSERT2(stride != 0, "bad explicit proc list");
4208 if (stride > 0) {
4209 KMP_ASSERT2(start <= end, "bad explicit proc list");
4210 } else {
4211 KMP_ASSERT2(start >= end, "bad explicit proc list");
4213 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
4215 // Add the mask for each OS proc # to the list.
4216 if (stride > 0) {
4217 do {
4218 ADD_MASK_OSID(start, osId2Mask, maxOsId);
4219 start += stride;
4220 } while (start <= end);
4221 } else {
4222 do {
4223 ADD_MASK_OSID(start, osId2Mask, maxOsId);
4224 start += stride;
4225 } while (start >= end);
4228 // Skip optional comma.
4229 SKIP_WS(next);
4230 if (*next == ',') {
4231 next++;
4233 scan = next;
4236 *out_numMasks = nextNewMask;
4237 if (nextNewMask == 0) {
4238 *out_masks = NULL;
4239 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4240 return;
4242 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
4243 for (i = 0; i < nextNewMask; i++) {
4244 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
4245 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
4246 KMP_CPU_COPY(dest, src);
4248 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4249 KMP_CPU_FREE(sumMask);
4252 /*-----------------------------------------------------------------------------
4253 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
4254 places. Again, Here is the grammar:
4256 place_list := place
4257 place_list := place , place_list
4258 place := num
4259 place := place : num
4260 place := place : num : signed
4261 place := { subplacelist }
4262 place := ! place // (lowest priority)
4263 subplace_list := subplace
4264 subplace_list := subplace , subplace_list
4265 subplace := num
4266 subplace := num : num
4267 subplace := num : num : signed
4268 signed := num
4269 signed := + signed
4270 signed := - signed
4271 -----------------------------------------------------------------------------*/
4272 static void __kmp_process_subplace_list(const char **scan,
4273 kmp_affinity_t &affinity, int maxOsId,
4274 kmp_affin_mask_t *tempMask,
4275 int *setSize) {
4276 const char *next;
4277 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4279 for (;;) {
4280 int start, count, stride, i;
4282 // Read in the starting proc id
4283 SKIP_WS(*scan);
4284 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
4285 next = *scan;
4286 SKIP_DIGITS(next);
4287 start = __kmp_str_to_int(*scan, *next);
4288 KMP_ASSERT(start >= 0);
4289 *scan = next;
4291 // valid follow sets are ',' ':' and '}'
4292 SKIP_WS(*scan);
4293 if (**scan == '}' || **scan == ',') {
4294 if ((start > maxOsId) ||
4295 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4296 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4297 } else {
4298 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4299 (*setSize)++;
4301 if (**scan == '}') {
4302 break;
4304 (*scan)++; // skip ','
4305 continue;
4307 KMP_ASSERT2(**scan == ':', "bad explicit places list");
4308 (*scan)++; // skip ':'
4310 // Read count parameter
4311 SKIP_WS(*scan);
4312 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
4313 next = *scan;
4314 SKIP_DIGITS(next);
4315 count = __kmp_str_to_int(*scan, *next);
4316 KMP_ASSERT(count >= 0);
4317 *scan = next;
4319 // valid follow sets are ',' ':' and '}'
4320 SKIP_WS(*scan);
4321 if (**scan == '}' || **scan == ',') {
4322 for (i = 0; i < count; i++) {
4323 if ((start > maxOsId) ||
4324 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4325 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4326 break; // don't proliferate warnings for large count
4327 } else {
4328 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4329 start++;
4330 (*setSize)++;
4333 if (**scan == '}') {
4334 break;
4336 (*scan)++; // skip ','
4337 continue;
4339 KMP_ASSERT2(**scan == ':', "bad explicit places list");
4340 (*scan)++; // skip ':'
4342 // Read stride parameter
4343 int sign = +1;
4344 for (;;) {
4345 SKIP_WS(*scan);
4346 if (**scan == '+') {
4347 (*scan)++; // skip '+'
4348 continue;
4350 if (**scan == '-') {
4351 sign *= -1;
4352 (*scan)++; // skip '-'
4353 continue;
4355 break;
4357 SKIP_WS(*scan);
4358 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
4359 next = *scan;
4360 SKIP_DIGITS(next);
4361 stride = __kmp_str_to_int(*scan, *next);
4362 KMP_ASSERT(stride >= 0);
4363 *scan = next;
4364 stride *= sign;
4366 // valid follow sets are ',' and '}'
4367 SKIP_WS(*scan);
4368 if (**scan == '}' || **scan == ',') {
4369 for (i = 0; i < count; i++) {
4370 if ((start > maxOsId) ||
4371 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4372 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4373 break; // don't proliferate warnings for large count
4374 } else {
4375 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4376 start += stride;
4377 (*setSize)++;
4380 if (**scan == '}') {
4381 break;
4383 (*scan)++; // skip ','
4384 continue;
4387 KMP_ASSERT2(0, "bad explicit places list");
4391 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity,
4392 int maxOsId, kmp_affin_mask_t *tempMask,
4393 int *setSize) {
4394 const char *next;
4395 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4397 // valid follow sets are '{' '!' and num
4398 SKIP_WS(*scan);
4399 if (**scan == '{') {
4400 (*scan)++; // skip '{'
4401 __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize);
4402 KMP_ASSERT2(**scan == '}', "bad explicit places list");
4403 (*scan)++; // skip '}'
4404 } else if (**scan == '!') {
4405 (*scan)++; // skip '!'
4406 __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize);
4407 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
4408 } else if ((**scan >= '0') && (**scan <= '9')) {
4409 next = *scan;
4410 SKIP_DIGITS(next);
4411 int num = __kmp_str_to_int(*scan, *next);
4412 KMP_ASSERT(num >= 0);
4413 if ((num > maxOsId) ||
4414 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
4415 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
4416 } else {
4417 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
4418 (*setSize)++;
4420 *scan = next; // skip num
4421 } else {
4422 KMP_ASSERT2(0, "bad explicit places list");
4426 // static void
4427 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) {
4428 int i, j, count, stride, sign;
4429 kmp_affin_mask_t **out_masks = &affinity.masks;
4430 unsigned *out_numMasks = &affinity.num_masks;
4431 const char *placelist = affinity.proclist;
4432 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4433 int maxOsId = affinity.num_os_id_masks - 1;
4434 const char *scan = placelist;
4435 const char *next = placelist;
4437 numNewMasks = 2;
4438 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
4439 nextNewMask = 0;
4441 // tempMask is modified based on the previous or initial
4442 // place to form the current place
4443 // previousMask contains the previous place
4444 kmp_affin_mask_t *tempMask;
4445 kmp_affin_mask_t *previousMask;
4446 KMP_CPU_ALLOC(tempMask);
4447 KMP_CPU_ZERO(tempMask);
4448 KMP_CPU_ALLOC(previousMask);
4449 KMP_CPU_ZERO(previousMask);
4450 int setSize = 0;
4452 for (;;) {
4453 __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize);
4455 // valid follow sets are ',' ':' and EOL
4456 SKIP_WS(scan);
4457 if (*scan == '\0' || *scan == ',') {
4458 if (setSize > 0) {
4459 ADD_MASK(tempMask);
4461 KMP_CPU_ZERO(tempMask);
4462 setSize = 0;
4463 if (*scan == '\0') {
4464 break;
4466 scan++; // skip ','
4467 continue;
4470 KMP_ASSERT2(*scan == ':', "bad explicit places list");
4471 scan++; // skip ':'
4473 // Read count parameter
4474 SKIP_WS(scan);
4475 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4476 next = scan;
4477 SKIP_DIGITS(next);
4478 count = __kmp_str_to_int(scan, *next);
4479 KMP_ASSERT(count >= 0);
4480 scan = next;
4482 // valid follow sets are ',' ':' and EOL
4483 SKIP_WS(scan);
4484 if (*scan == '\0' || *scan == ',') {
4485 stride = +1;
4486 } else {
4487 KMP_ASSERT2(*scan == ':', "bad explicit places list");
4488 scan++; // skip ':'
4490 // Read stride parameter
4491 sign = +1;
4492 for (;;) {
4493 SKIP_WS(scan);
4494 if (*scan == '+') {
4495 scan++; // skip '+'
4496 continue;
4498 if (*scan == '-') {
4499 sign *= -1;
4500 scan++; // skip '-'
4501 continue;
4503 break;
4505 SKIP_WS(scan);
4506 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4507 next = scan;
4508 SKIP_DIGITS(next);
4509 stride = __kmp_str_to_int(scan, *next);
4510 KMP_DEBUG_ASSERT(stride >= 0);
4511 scan = next;
4512 stride *= sign;
4515 // Add places determined by initial_place : count : stride
4516 for (i = 0; i < count; i++) {
4517 if (setSize == 0) {
4518 break;
4520 // Add the current place, then build the next place (tempMask) from that
4521 KMP_CPU_COPY(previousMask, tempMask);
4522 ADD_MASK(previousMask);
4523 KMP_CPU_ZERO(tempMask);
4524 setSize = 0;
4525 KMP_CPU_SET_ITERATE(j, previousMask) {
4526 if (!KMP_CPU_ISSET(j, previousMask)) {
4527 continue;
4529 if ((j + stride > maxOsId) || (j + stride < 0) ||
4530 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
4531 (!KMP_CPU_ISSET(j + stride,
4532 KMP_CPU_INDEX(osId2Mask, j + stride)))) {
4533 if (i < count - 1) {
4534 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride);
4536 continue;
4538 KMP_CPU_SET(j + stride, tempMask);
4539 setSize++;
4542 KMP_CPU_ZERO(tempMask);
4543 setSize = 0;
4545 // valid follow sets are ',' and EOL
4546 SKIP_WS(scan);
4547 if (*scan == '\0') {
4548 break;
4550 if (*scan == ',') {
4551 scan++; // skip ','
4552 continue;
4555 KMP_ASSERT2(0, "bad explicit places list");
4558 *out_numMasks = nextNewMask;
4559 if (nextNewMask == 0) {
4560 *out_masks = NULL;
4561 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4562 return;
4564 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
4565 KMP_CPU_FREE(tempMask);
4566 KMP_CPU_FREE(previousMask);
4567 for (i = 0; i < nextNewMask; i++) {
4568 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
4569 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
4570 KMP_CPU_COPY(dest, src);
4572 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4575 #undef ADD_MASK
4576 #undef ADD_MASK_OSID
4578 // This function figures out the deepest level at which there is at least one
4579 // cluster/core with more than one processing unit bound to it.
4580 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
4581 int core_level = 0;
4583 for (int i = 0; i < nprocs; i++) {
4584 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
4585 for (int j = bottom_level; j > 0; j--) {
4586 if (hw_thread.ids[j] > 0) {
4587 if (core_level < (j - 1)) {
4588 core_level = j - 1;
4593 return core_level;
4596 // This function counts number of clusters/cores at given level.
4597 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
4598 int core_level) {
4599 return __kmp_topology->get_count(core_level);
4601 // This function finds to which cluster/core given processing unit is bound.
4602 static int __kmp_affinity_find_core(int proc, int bottom_level,
4603 int core_level) {
4604 int core = 0;
4605 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
4606 for (int i = 0; i <= proc; ++i) {
4607 if (i + 1 <= proc) {
4608 for (int j = 0; j <= core_level; ++j) {
4609 if (__kmp_topology->at(i + 1).sub_ids[j] !=
4610 __kmp_topology->at(i).sub_ids[j]) {
4611 core++;
4612 break;
4617 return core;
4620 // This function finds maximal number of processing units bound to a
4621 // cluster/core at given level.
4622 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4623 int core_level) {
4624 if (core_level >= bottom_level)
4625 return 1;
4626 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
4627 return __kmp_topology->calculate_ratio(thread_level, core_level);
4630 static int *procarr = NULL;
4631 static int __kmp_aff_depth = 0;
4632 static int *__kmp_osid_to_hwthread_map = NULL;
4634 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask,
4635 kmp_affinity_ids_t &ids,
4636 kmp_affinity_attrs_t &attrs) {
4637 if (!KMP_AFFINITY_CAPABLE())
4638 return;
4640 // Initiailze ids and attrs thread data
4641 for (int i = 0; i < KMP_HW_LAST; ++i)
4642 ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
4643 attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4645 // Iterate through each os id within the mask and determine
4646 // the topology id and attribute information
4647 int cpu;
4648 int depth = __kmp_topology->get_depth();
4649 KMP_CPU_SET_ITERATE(cpu, mask) {
4650 int osid_idx = __kmp_osid_to_hwthread_map[cpu];
4651 ids.os_id = cpu;
4652 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx);
4653 for (int level = 0; level < depth; ++level) {
4654 kmp_hw_t type = __kmp_topology->get_type(level);
4655 int id = hw_thread.sub_ids[level];
4656 if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) {
4657 ids.ids[type] = id;
4658 } else {
4659 // This mask spans across multiple topology units, set it as such
4660 // and mark every level below as such as well.
4661 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4662 for (; level < depth; ++level) {
4663 kmp_hw_t type = __kmp_topology->get_type(level);
4664 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4668 if (!attrs.valid) {
4669 attrs.core_type = hw_thread.attrs.get_core_type();
4670 attrs.core_eff = hw_thread.attrs.get_core_eff();
4671 attrs.valid = 1;
4672 } else {
4673 // This mask spans across multiple attributes, set it as such
4674 if (attrs.core_type != hw_thread.attrs.get_core_type())
4675 attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN;
4676 if (attrs.core_eff != hw_thread.attrs.get_core_eff())
4677 attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF;
4682 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) {
4683 if (!KMP_AFFINITY_CAPABLE())
4684 return;
4685 const kmp_affin_mask_t *mask = th->th.th_affin_mask;
4686 kmp_affinity_ids_t &ids = th->th.th_topology_ids;
4687 kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs;
4688 __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4691 // Assign the topology information to each place in the place list
4692 // A thread can then grab not only its affinity mask, but the topology
4693 // information associated with that mask. e.g., Which socket is a thread on
4694 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) {
4695 if (!KMP_AFFINITY_CAPABLE())
4696 return;
4697 if (affinity.type != affinity_none) {
4698 KMP_ASSERT(affinity.num_os_id_masks);
4699 KMP_ASSERT(affinity.os_id_masks);
4701 KMP_ASSERT(affinity.num_masks);
4702 KMP_ASSERT(affinity.masks);
4703 KMP_ASSERT(__kmp_affin_fullMask);
4705 int max_cpu = __kmp_affin_fullMask->get_max_cpu();
4706 int num_hw_threads = __kmp_topology->get_num_hw_threads();
4708 // Allocate thread topology information
4709 if (!affinity.ids) {
4710 affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate(
4711 sizeof(kmp_affinity_ids_t) * affinity.num_masks);
4713 if (!affinity.attrs) {
4714 affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate(
4715 sizeof(kmp_affinity_attrs_t) * affinity.num_masks);
4717 if (!__kmp_osid_to_hwthread_map) {
4718 // Want the +1 because max_cpu should be valid index into map
4719 __kmp_osid_to_hwthread_map =
4720 (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1));
4723 // Create the OS proc to hardware thread map
4724 for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) {
4725 int os_id = __kmp_topology->at(hw_thread).os_id;
4726 if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask))
4727 __kmp_osid_to_hwthread_map[os_id] = hw_thread;
4730 for (unsigned i = 0; i < affinity.num_masks; ++i) {
4731 kmp_affinity_ids_t &ids = affinity.ids[i];
4732 kmp_affinity_attrs_t &attrs = affinity.attrs[i];
4733 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i);
4734 __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4738 // Called when __kmp_topology is ready
4739 static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) {
4740 // Initialize other data structures which depend on the topology
4741 if (__kmp_topology && __kmp_topology->get_num_hw_threads()) {
4742 machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
4743 __kmp_affinity_get_topology_info(affinity);
4744 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
4745 __kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore();
4746 #endif
4750 // Create a one element mask array (set of places) which only contains the
4751 // initial process's affinity mask
4752 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) {
4753 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4754 KMP_ASSERT(affinity.type == affinity_none);
4755 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4756 affinity.num_masks = 1;
4757 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4758 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0);
4759 KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4760 __kmp_aux_affinity_initialize_other_data(affinity);
4763 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) {
4764 // Create the "full" mask - this defines all of the processors that we
4765 // consider to be in the machine model. If respect is set, then it is the
4766 // initialization thread's affinity mask. Otherwise, it is all processors that
4767 // we know about on the machine.
4768 int verbose = affinity.flags.verbose;
4769 const char *env_var = affinity.env_var;
4771 // Already initialized
4772 if (__kmp_affin_fullMask && __kmp_affin_origMask)
4773 return;
4775 if (__kmp_affin_fullMask == NULL) {
4776 KMP_CPU_ALLOC(__kmp_affin_fullMask);
4778 if (__kmp_affin_origMask == NULL) {
4779 KMP_CPU_ALLOC(__kmp_affin_origMask);
4781 if (KMP_AFFINITY_CAPABLE()) {
4782 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4783 // Make a copy before possible expanding to the entire machine mask
4784 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4785 if (affinity.flags.respect) {
4786 // Count the number of available processors.
4787 unsigned i;
4788 __kmp_avail_proc = 0;
4789 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4790 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4791 continue;
4793 __kmp_avail_proc++;
4795 if (__kmp_avail_proc > __kmp_xproc) {
4796 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4797 affinity.type = affinity_none;
4798 KMP_AFFINITY_DISABLE();
4799 return;
4802 if (verbose) {
4803 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4804 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4805 __kmp_affin_fullMask);
4806 KMP_INFORM(InitOSProcSetRespect, env_var, buf);
4808 } else {
4809 if (verbose) {
4810 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4811 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4812 __kmp_affin_fullMask);
4813 KMP_INFORM(InitOSProcSetNotRespect, env_var, buf);
4815 __kmp_avail_proc =
4816 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4817 #if KMP_OS_WINDOWS
4818 if (__kmp_num_proc_groups <= 1) {
4819 // Copy expanded full mask if topology has single processor group
4820 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4822 // Set the process affinity mask since threads' affinity
4823 // masks must be subset of process mask in Windows* OS
4824 __kmp_affin_fullMask->set_process_affinity(true);
4825 #endif
4830 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) {
4831 bool success = false;
4832 const char *env_var = affinity.env_var;
4833 kmp_i18n_id_t msg_id = kmp_i18n_null;
4834 int verbose = affinity.flags.verbose;
4836 // For backward compatibility, setting KMP_CPUINFO_FILE =>
4837 // KMP_TOPOLOGY_METHOD=cpuinfo
4838 if ((__kmp_cpuinfo_file != NULL) &&
4839 (__kmp_affinity_top_method == affinity_top_method_all)) {
4840 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4843 if (__kmp_affinity_top_method == affinity_top_method_all) {
4844 // In the default code path, errors are not fatal - we just try using
4845 // another method. We only emit a warning message if affinity is on, or the
4846 // verbose flag is set, an the nowarnings flag was not set.
4847 #if KMP_USE_HWLOC
4848 if (!success &&
4849 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4850 if (!__kmp_hwloc_error) {
4851 success = __kmp_affinity_create_hwloc_map(&msg_id);
4852 if (!success && verbose) {
4853 KMP_INFORM(AffIgnoringHwloc, env_var);
4855 } else if (verbose) {
4856 KMP_INFORM(AffIgnoringHwloc, env_var);
4859 #endif
4861 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4862 if (!success) {
4863 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4864 if (!success && verbose && msg_id != kmp_i18n_null) {
4865 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4868 if (!success) {
4869 success = __kmp_affinity_create_apicid_map(&msg_id);
4870 if (!success && verbose && msg_id != kmp_i18n_null) {
4871 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4874 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4876 #if KMP_OS_LINUX || KMP_OS_AIX
4877 if (!success) {
4878 int line = 0;
4879 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4880 if (!success && verbose && msg_id != kmp_i18n_null) {
4881 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4884 #endif /* KMP_OS_LINUX */
4886 #if KMP_GROUP_AFFINITY
4887 if (!success && (__kmp_num_proc_groups > 1)) {
4888 success = __kmp_affinity_create_proc_group_map(&msg_id);
4889 if (!success && verbose && msg_id != kmp_i18n_null) {
4890 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4893 #endif /* KMP_GROUP_AFFINITY */
4895 if (!success) {
4896 success = __kmp_affinity_create_flat_map(&msg_id);
4897 if (!success && verbose && msg_id != kmp_i18n_null) {
4898 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4900 KMP_ASSERT(success);
4904 // If the user has specified that a paricular topology discovery method is to be
4905 // used, then we abort if that method fails. The exception is group affinity,
4906 // which might have been implicitly set.
4907 #if KMP_USE_HWLOC
4908 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4909 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4910 success = __kmp_affinity_create_hwloc_map(&msg_id);
4911 if (!success) {
4912 KMP_ASSERT(msg_id != kmp_i18n_null);
4913 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4916 #endif // KMP_USE_HWLOC
4918 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4919 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4920 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4921 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4922 if (!success) {
4923 KMP_ASSERT(msg_id != kmp_i18n_null);
4924 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4926 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4927 success = __kmp_affinity_create_apicid_map(&msg_id);
4928 if (!success) {
4929 KMP_ASSERT(msg_id != kmp_i18n_null);
4930 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4933 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4935 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4936 int line = 0;
4937 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4938 if (!success) {
4939 KMP_ASSERT(msg_id != kmp_i18n_null);
4940 const char *filename = __kmp_cpuinfo_get_filename();
4941 if (line > 0) {
4942 KMP_FATAL(FileLineMsgExiting, filename, line,
4943 __kmp_i18n_catgets(msg_id));
4944 } else {
4945 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4950 #if KMP_GROUP_AFFINITY
4951 else if (__kmp_affinity_top_method == affinity_top_method_group) {
4952 success = __kmp_affinity_create_proc_group_map(&msg_id);
4953 KMP_ASSERT(success);
4954 if (!success) {
4955 KMP_ASSERT(msg_id != kmp_i18n_null);
4956 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4959 #endif /* KMP_GROUP_AFFINITY */
4961 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4962 success = __kmp_affinity_create_flat_map(&msg_id);
4963 // should not fail
4964 KMP_ASSERT(success);
4967 // Early exit if topology could not be created
4968 if (!__kmp_topology) {
4969 if (KMP_AFFINITY_CAPABLE()) {
4970 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4972 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4973 __kmp_ncores > 0) {
4974 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
4975 __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
4976 __kmp_nThreadsPerCore, __kmp_ncores);
4977 if (verbose) {
4978 __kmp_topology->print(env_var);
4981 return false;
4984 // Canonicalize, print (if requested), apply KMP_HW_SUBSET
4985 __kmp_topology->canonicalize();
4986 if (verbose)
4987 __kmp_topology->print(env_var);
4988 bool filtered = __kmp_topology->filter_hw_subset();
4989 if (filtered && verbose)
4990 __kmp_topology->print("KMP_HW_SUBSET");
4991 return success;
4994 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) {
4995 bool is_regular_affinity = (&affinity == &__kmp_affinity);
4996 bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity);
4997 const char *env_var = __kmp_get_affinity_env_var(affinity);
4999 if (affinity.flags.initialized) {
5000 KMP_ASSERT(__kmp_affin_fullMask != NULL);
5001 return;
5004 if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask))
5005 __kmp_aux_affinity_initialize_masks(affinity);
5007 if (is_regular_affinity && !__kmp_topology) {
5008 bool success = __kmp_aux_affinity_initialize_topology(affinity);
5009 if (success) {
5010 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
5011 } else {
5012 affinity.type = affinity_none;
5013 KMP_AFFINITY_DISABLE();
5017 // If KMP_AFFINITY=none, then only create the single "none" place
5018 // which is the process's initial affinity mask or the number of
5019 // hardware threads depending on respect,norespect
5020 if (affinity.type == affinity_none) {
5021 __kmp_create_affinity_none_places(affinity);
5022 #if KMP_USE_HIER_SCHED
5023 __kmp_dispatch_set_hierarchy_values();
5024 #endif
5025 affinity.flags.initialized = TRUE;
5026 return;
5029 __kmp_topology->set_granularity(affinity);
5030 int depth = __kmp_topology->get_depth();
5032 // Create the table of masks, indexed by thread Id.
5033 unsigned numUnique = 0;
5034 int numAddrs = __kmp_topology->get_num_hw_threads();
5035 // If OMP_PLACES=cores:<attribute> specified, then attempt
5036 // to make OS Id mask table using those attributes
5037 if (affinity.core_attr_gran.valid) {
5038 __kmp_create_os_id_masks(&numUnique, affinity, [&](int idx) {
5039 KMP_ASSERT(idx >= -1);
5040 for (int i = idx + 1; i < numAddrs; ++i)
5041 if (__kmp_topology->at(i).attrs.contains(affinity.core_attr_gran))
5042 return i;
5043 return numAddrs;
5045 if (!affinity.os_id_masks) {
5046 const char *core_attribute;
5047 if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF)
5048 core_attribute = "core_efficiency";
5049 else
5050 core_attribute = "core_type";
5051 KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var,
5052 core_attribute,
5053 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true))
5056 // If core attributes did not work, or none were specified,
5057 // then make OS Id mask table using typical incremental way with
5058 // checking for validity of each id at granularity level specified.
5059 if (!affinity.os_id_masks) {
5060 int gran = affinity.gran_levels;
5061 int gran_level = depth - 1 - affinity.gran_levels;
5062 if (gran >= 0 && gran_level >= 0 && gran_level < depth) {
5063 __kmp_create_os_id_masks(
5064 &numUnique, affinity, [depth, numAddrs, &affinity](int idx) {
5065 KMP_ASSERT(idx >= -1);
5066 int gran = affinity.gran_levels;
5067 int gran_level = depth - 1 - affinity.gran_levels;
5068 for (int i = idx + 1; i < numAddrs; ++i)
5069 if ((gran >= depth) ||
5070 (gran < depth && __kmp_topology->at(i).ids[gran_level] !=
5071 kmp_hw_thread_t::UNKNOWN_ID))
5072 return i;
5073 return numAddrs;
5077 // Final attempt to make OS Id mask table using typical incremental way.
5078 if (!affinity.os_id_masks) {
5079 __kmp_create_os_id_masks(&numUnique, affinity, [](int idx) {
5080 KMP_ASSERT(idx >= -1);
5081 return idx + 1;
5085 switch (affinity.type) {
5087 case affinity_explicit:
5088 KMP_DEBUG_ASSERT(affinity.proclist != NULL);
5089 if (is_hidden_helper_affinity ||
5090 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
5091 __kmp_affinity_process_proclist(affinity);
5092 } else {
5093 __kmp_affinity_process_placelist(affinity);
5095 if (affinity.num_masks == 0) {
5096 KMP_AFF_WARNING(affinity, AffNoValidProcID);
5097 affinity.type = affinity_none;
5098 __kmp_create_affinity_none_places(affinity);
5099 affinity.flags.initialized = TRUE;
5100 return;
5102 break;
5104 // The other affinity types rely on sorting the hardware threads according to
5105 // some permutation of the machine topology tree. Set affinity.compact
5106 // and affinity.offset appropriately, then jump to a common code
5107 // fragment to do the sort and create the array of affinity masks.
5108 case affinity_logical:
5109 affinity.compact = 0;
5110 if (affinity.offset) {
5111 affinity.offset =
5112 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
5114 goto sortTopology;
5116 case affinity_physical:
5117 if (__kmp_nThreadsPerCore > 1) {
5118 affinity.compact = 1;
5119 if (affinity.compact >= depth) {
5120 affinity.compact = 0;
5122 } else {
5123 affinity.compact = 0;
5125 if (affinity.offset) {
5126 affinity.offset =
5127 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
5129 goto sortTopology;
5131 case affinity_scatter:
5132 if (affinity.compact >= depth) {
5133 affinity.compact = 0;
5134 } else {
5135 affinity.compact = depth - 1 - affinity.compact;
5137 goto sortTopology;
5139 case affinity_compact:
5140 if (affinity.compact >= depth) {
5141 affinity.compact = depth - 1;
5143 goto sortTopology;
5145 case affinity_balanced:
5146 if (depth <= 1 || is_hidden_helper_affinity) {
5147 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
5148 affinity.type = affinity_none;
5149 __kmp_create_affinity_none_places(affinity);
5150 affinity.flags.initialized = TRUE;
5151 return;
5152 } else if (!__kmp_topology->is_uniform()) {
5153 // Save the depth for further usage
5154 __kmp_aff_depth = depth;
5156 int core_level =
5157 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
5158 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
5159 core_level);
5160 int maxprocpercore = __kmp_affinity_max_proc_per_core(
5161 __kmp_avail_proc, depth - 1, core_level);
5163 int nproc = ncores * maxprocpercore;
5164 if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
5165 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
5166 affinity.type = affinity_none;
5167 __kmp_create_affinity_none_places(affinity);
5168 affinity.flags.initialized = TRUE;
5169 return;
5172 procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5173 for (int i = 0; i < nproc; i++) {
5174 procarr[i] = -1;
5177 int lastcore = -1;
5178 int inlastcore = 0;
5179 for (int i = 0; i < __kmp_avail_proc; i++) {
5180 int proc = __kmp_topology->at(i).os_id;
5181 int core = __kmp_affinity_find_core(i, depth - 1, core_level);
5183 if (core == lastcore) {
5184 inlastcore++;
5185 } else {
5186 inlastcore = 0;
5188 lastcore = core;
5190 procarr[core * maxprocpercore + inlastcore] = proc;
5193 if (affinity.compact >= depth) {
5194 affinity.compact = depth - 1;
5197 sortTopology:
5198 // Allocate the gtid->affinity mask table.
5199 if (affinity.flags.dups) {
5200 affinity.num_masks = __kmp_avail_proc;
5201 } else {
5202 affinity.num_masks = numUnique;
5205 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
5206 (__kmp_affinity_num_places > 0) &&
5207 ((unsigned)__kmp_affinity_num_places < affinity.num_masks) &&
5208 !is_hidden_helper_affinity) {
5209 affinity.num_masks = __kmp_affinity_num_places;
5212 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
5214 // Sort the topology table according to the current setting of
5215 // affinity.compact, then fill out affinity.masks.
5216 __kmp_topology->sort_compact(affinity);
5218 int i;
5219 unsigned j;
5220 int num_hw_threads = __kmp_topology->get_num_hw_threads();
5221 kmp_full_mask_modifier_t full_mask;
5222 for (i = 0, j = 0; i < num_hw_threads; i++) {
5223 if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) {
5224 continue;
5226 int osId = __kmp_topology->at(i).os_id;
5228 kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId);
5229 if (KMP_CPU_ISEMPTY(src))
5230 continue;
5231 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j);
5232 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
5233 KMP_CPU_COPY(dest, src);
5234 full_mask.include(src);
5235 if (++j >= affinity.num_masks) {
5236 break;
5239 KMP_DEBUG_ASSERT(j == affinity.num_masks);
5240 // See if the places list further restricts or changes the full mask
5241 if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
5242 __kmp_topology->print(env_var);
5245 // Sort the topology back using ids
5246 __kmp_topology->sort_ids();
5247 break;
5249 default:
5250 KMP_ASSERT2(0, "Unexpected affinity setting");
5252 __kmp_aux_affinity_initialize_other_data(affinity);
5253 affinity.flags.initialized = TRUE;
5256 void __kmp_affinity_initialize(kmp_affinity_t &affinity) {
5257 // Much of the code above was written assuming that if a machine was not
5258 // affinity capable, then affinity type == affinity_none.
5259 // We now explicitly represent this as affinity type == affinity_disabled.
5260 // There are too many checks for affinity type == affinity_none in this code.
5261 // Instead of trying to change them all, check if
5262 // affinity type == affinity_disabled, and if so, slam it with affinity_none,
5263 // call the real initialization routine, then restore affinity type to
5264 // affinity_disabled.
5265 int disabled = (affinity.type == affinity_disabled);
5266 if (!KMP_AFFINITY_CAPABLE())
5267 KMP_ASSERT(disabled);
5268 if (disabled)
5269 affinity.type = affinity_none;
5270 __kmp_aux_affinity_initialize(affinity);
5271 if (disabled)
5272 affinity.type = affinity_disabled;
5275 void __kmp_affinity_uninitialize(void) {
5276 for (kmp_affinity_t *affinity : __kmp_affinities) {
5277 if (affinity->masks != NULL)
5278 KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks);
5279 if (affinity->os_id_masks != NULL)
5280 KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks);
5281 if (affinity->proclist != NULL)
5282 __kmp_free(affinity->proclist);
5283 if (affinity->ids != NULL)
5284 __kmp_free(affinity->ids);
5285 if (affinity->attrs != NULL)
5286 __kmp_free(affinity->attrs);
5287 *affinity = KMP_AFFINITY_INIT(affinity->env_var);
5289 if (__kmp_affin_origMask != NULL) {
5290 if (KMP_AFFINITY_CAPABLE()) {
5291 #if KMP_OS_AIX
5292 // Uninitialize by unbinding the thread.
5293 bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY);
5294 #else
5295 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
5296 #endif
5298 KMP_CPU_FREE(__kmp_affin_origMask);
5299 __kmp_affin_origMask = NULL;
5301 __kmp_affinity_num_places = 0;
5302 if (procarr != NULL) {
5303 __kmp_free(procarr);
5304 procarr = NULL;
5306 if (__kmp_osid_to_hwthread_map) {
5307 __kmp_free(__kmp_osid_to_hwthread_map);
5308 __kmp_osid_to_hwthread_map = NULL;
5310 #if KMP_USE_HWLOC
5311 if (__kmp_hwloc_topology != NULL) {
5312 hwloc_topology_destroy(__kmp_hwloc_topology);
5313 __kmp_hwloc_topology = NULL;
5315 #endif
5316 if (__kmp_hw_subset) {
5317 kmp_hw_subset_t::deallocate(__kmp_hw_subset);
5318 __kmp_hw_subset = nullptr;
5320 if (__kmp_topology) {
5321 kmp_topology_t::deallocate(__kmp_topology);
5322 __kmp_topology = nullptr;
5324 KMPAffinity::destroy_api();
5327 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity,
5328 int *place, kmp_affin_mask_t **mask) {
5329 int mask_idx;
5330 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5331 if (is_hidden_helper)
5332 // The first gtid is the regular primary thread, the second gtid is the main
5333 // thread of hidden team which does not participate in task execution.
5334 mask_idx = gtid - 2;
5335 else
5336 mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
5337 KMP_DEBUG_ASSERT(affinity->num_masks > 0);
5338 *place = (mask_idx + affinity->offset) % affinity->num_masks;
5339 *mask = KMP_CPU_INDEX(affinity->masks, *place);
5342 // This function initializes the per-thread data concerning affinity including
5343 // the mask and topology information
5344 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
5346 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5348 // Set the thread topology information to default of unknown
5349 for (int id = 0; id < KMP_HW_LAST; ++id)
5350 th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID;
5351 th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
5353 if (!KMP_AFFINITY_CAPABLE()) {
5354 return;
5357 if (th->th.th_affin_mask == NULL) {
5358 KMP_CPU_ALLOC(th->th.th_affin_mask);
5359 } else {
5360 KMP_CPU_ZERO(th->th.th_affin_mask);
5363 // Copy the thread mask to the kmp_info_t structure. If
5364 // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e.
5365 // one that has all of the OS proc ids set, or if
5366 // __kmp_affinity.flags.respect is set, then the full mask is the
5367 // same as the mask of the initialization thread.
5368 kmp_affin_mask_t *mask;
5369 int i;
5370 const kmp_affinity_t *affinity;
5371 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5373 if (is_hidden_helper)
5374 affinity = &__kmp_hh_affinity;
5375 else
5376 affinity = &__kmp_affinity;
5378 if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) {
5379 if ((affinity->type == affinity_none) ||
5380 (affinity->type == affinity_balanced) ||
5381 KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
5382 #if KMP_GROUP_AFFINITY
5383 if (__kmp_num_proc_groups > 1) {
5384 return;
5386 #endif
5387 KMP_ASSERT(__kmp_affin_fullMask != NULL);
5388 i = 0;
5389 mask = __kmp_affin_fullMask;
5390 } else {
5391 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
5393 } else {
5394 if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) {
5395 #if KMP_GROUP_AFFINITY
5396 if (__kmp_num_proc_groups > 1) {
5397 return;
5399 #endif
5400 KMP_ASSERT(__kmp_affin_fullMask != NULL);
5401 i = KMP_PLACE_ALL;
5402 mask = __kmp_affin_fullMask;
5403 } else {
5404 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
5408 th->th.th_current_place = i;
5409 if (isa_root && !is_hidden_helper) {
5410 th->th.th_new_place = i;
5411 th->th.th_first_place = 0;
5412 th->th.th_last_place = affinity->num_masks - 1;
5413 } else if (KMP_AFFINITY_NON_PROC_BIND) {
5414 // When using a Non-OMP_PROC_BIND affinity method,
5415 // set all threads' place-partition-var to the entire place list
5416 th->th.th_first_place = 0;
5417 th->th.th_last_place = affinity->num_masks - 1;
5419 // Copy topology information associated with the place
5420 if (i >= 0) {
5421 th->th.th_topology_ids = __kmp_affinity.ids[i];
5422 th->th.th_topology_attrs = __kmp_affinity.attrs[i];
5425 if (i == KMP_PLACE_ALL) {
5426 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n",
5427 gtid));
5428 } else {
5429 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n",
5430 gtid, i));
5433 KMP_CPU_COPY(th->th.th_affin_mask, mask);
5436 void __kmp_affinity_bind_init_mask(int gtid) {
5437 if (!KMP_AFFINITY_CAPABLE()) {
5438 return;
5440 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5441 const kmp_affinity_t *affinity;
5442 const char *env_var;
5443 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5445 if (is_hidden_helper)
5446 affinity = &__kmp_hh_affinity;
5447 else
5448 affinity = &__kmp_affinity;
5449 env_var = __kmp_get_affinity_env_var(*affinity, /*for_binding=*/true);
5450 /* to avoid duplicate printing (will be correctly printed on barrier) */
5451 if (affinity->flags.verbose && (affinity->type == affinity_none ||
5452 (th->th.th_current_place != KMP_PLACE_ALL &&
5453 affinity->type != affinity_balanced)) &&
5454 !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
5455 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5456 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5457 th->th.th_affin_mask);
5458 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5459 gtid, buf);
5462 #if KMP_OS_WINDOWS
5463 // On Windows* OS, the process affinity mask might have changed. If the user
5464 // didn't request affinity and this call fails, just continue silently.
5465 // See CQ171393.
5466 if (affinity->type == affinity_none) {
5467 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
5468 } else
5469 #endif
5470 #ifndef KMP_OS_AIX
5471 // Do not set the full mask as the init mask on AIX.
5472 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5473 #endif
5476 void __kmp_affinity_bind_place(int gtid) {
5477 // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND
5478 if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) {
5479 return;
5482 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5484 KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current "
5485 "place = %d)\n",
5486 gtid, th->th.th_new_place, th->th.th_current_place));
5488 // Check that the new place is within this thread's partition.
5489 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5490 KMP_ASSERT(th->th.th_new_place >= 0);
5491 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks);
5492 if (th->th.th_first_place <= th->th.th_last_place) {
5493 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
5494 (th->th.th_new_place <= th->th.th_last_place));
5495 } else {
5496 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
5497 (th->th.th_new_place >= th->th.th_last_place));
5500 // Copy the thread mask to the kmp_info_t structure,
5501 // and set this thread's affinity.
5502 kmp_affin_mask_t *mask =
5503 KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place);
5504 KMP_CPU_COPY(th->th.th_affin_mask, mask);
5505 th->th.th_current_place = th->th.th_new_place;
5507 if (__kmp_affinity.flags.verbose) {
5508 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5509 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5510 th->th.th_affin_mask);
5511 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
5512 __kmp_gettid(), gtid, buf);
5514 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5517 int __kmp_aux_set_affinity(void **mask) {
5518 int gtid;
5519 kmp_info_t *th;
5520 int retval;
5522 if (!KMP_AFFINITY_CAPABLE()) {
5523 return -1;
5526 gtid = __kmp_entry_gtid();
5527 KA_TRACE(
5528 1000, (""); {
5529 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5530 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5531 (kmp_affin_mask_t *)(*mask));
5532 __kmp_debug_printf(
5533 "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
5534 gtid, buf);
5537 if (__kmp_env_consistency_check) {
5538 if ((mask == NULL) || (*mask == NULL)) {
5539 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5540 } else {
5541 unsigned proc;
5542 int num_procs = 0;
5544 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
5545 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5546 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5548 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
5549 continue;
5551 num_procs++;
5553 if (num_procs == 0) {
5554 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5557 #if KMP_GROUP_AFFINITY
5558 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
5559 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5561 #endif /* KMP_GROUP_AFFINITY */
5565 th = __kmp_threads[gtid];
5566 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5567 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5568 if (retval == 0) {
5569 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
5572 th->th.th_current_place = KMP_PLACE_UNDEFINED;
5573 th->th.th_new_place = KMP_PLACE_UNDEFINED;
5574 th->th.th_first_place = 0;
5575 th->th.th_last_place = __kmp_affinity.num_masks - 1;
5577 // Turn off 4.0 affinity for the current tread at this parallel level.
5578 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
5580 return retval;
5583 int __kmp_aux_get_affinity(void **mask) {
5584 int gtid;
5585 int retval;
5586 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG
5587 kmp_info_t *th;
5588 #endif
5589 if (!KMP_AFFINITY_CAPABLE()) {
5590 return -1;
5593 gtid = __kmp_entry_gtid();
5594 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG
5595 th = __kmp_threads[gtid];
5596 #else
5597 (void)gtid; // unused variable
5598 #endif
5599 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5601 KA_TRACE(
5602 1000, (""); {
5603 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5604 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5605 th->th.th_affin_mask);
5606 __kmp_printf(
5607 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
5608 buf);
5611 if (__kmp_env_consistency_check) {
5612 if ((mask == NULL) || (*mask == NULL)) {
5613 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
5617 #if !KMP_OS_WINDOWS && !KMP_OS_AIX
5619 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5620 KA_TRACE(
5621 1000, (""); {
5622 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5623 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5624 (kmp_affin_mask_t *)(*mask));
5625 __kmp_printf(
5626 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
5627 buf);
5629 return retval;
5631 #else
5632 (void)retval;
5634 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
5635 return 0;
5637 #endif /* !KMP_OS_WINDOWS && !KMP_OS_AIX */
5640 int __kmp_aux_get_affinity_max_proc() {
5641 if (!KMP_AFFINITY_CAPABLE()) {
5642 return 0;
5644 #if KMP_GROUP_AFFINITY
5645 if (__kmp_num_proc_groups > 1) {
5646 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
5648 #endif
5649 return __kmp_xproc;
5652 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
5653 if (!KMP_AFFINITY_CAPABLE()) {
5654 return -1;
5657 KA_TRACE(
5658 1000, (""); {
5659 int gtid = __kmp_entry_gtid();
5660 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5661 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5662 (kmp_affin_mask_t *)(*mask));
5663 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
5664 "affinity mask for thread %d = %s\n",
5665 proc, gtid, buf);
5668 if (__kmp_env_consistency_check) {
5669 if ((mask == NULL) || (*mask == NULL)) {
5670 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
5674 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5675 return -1;
5677 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5678 return -2;
5681 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
5682 return 0;
5685 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5686 if (!KMP_AFFINITY_CAPABLE()) {
5687 return -1;
5690 KA_TRACE(
5691 1000, (""); {
5692 int gtid = __kmp_entry_gtid();
5693 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5694 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5695 (kmp_affin_mask_t *)(*mask));
5696 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5697 "affinity mask for thread %d = %s\n",
5698 proc, gtid, buf);
5701 if (__kmp_env_consistency_check) {
5702 if ((mask == NULL) || (*mask == NULL)) {
5703 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5707 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5708 return -1;
5710 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5711 return -2;
5714 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5715 return 0;
5718 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5719 if (!KMP_AFFINITY_CAPABLE()) {
5720 return -1;
5723 KA_TRACE(
5724 1000, (""); {
5725 int gtid = __kmp_entry_gtid();
5726 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5727 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5728 (kmp_affin_mask_t *)(*mask));
5729 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5730 "affinity mask for thread %d = %s\n",
5731 proc, gtid, buf);
5734 if (__kmp_env_consistency_check) {
5735 if ((mask == NULL) || (*mask == NULL)) {
5736 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5740 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5741 return -1;
5743 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5744 return 0;
5747 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5750 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
5751 // Returns first os proc id with ATOM core
5752 int __kmp_get_first_osid_with_ecore(void) {
5753 int low = 0;
5754 int high = __kmp_topology->get_num_hw_threads() - 1;
5755 int mid = 0;
5756 while (high - low > 1) {
5757 mid = (high + low) / 2;
5758 if (__kmp_topology->at(mid).attrs.get_core_type() ==
5759 KMP_HW_CORE_TYPE_CORE) {
5760 low = mid + 1;
5761 } else {
5762 high = mid;
5765 if (__kmp_topology->at(mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) {
5766 return mid;
5768 return -1;
5770 #endif
5772 // Dynamic affinity settings - Affinity balanced
5773 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5774 KMP_DEBUG_ASSERT(th);
5775 bool fine_gran = true;
5776 int tid = th->th.th_info.ds.ds_tid;
5777 const char *env_var = "KMP_AFFINITY";
5779 // Do not perform balanced affinity for the hidden helper threads
5780 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
5781 return;
5783 switch (__kmp_affinity.gran) {
5784 case KMP_HW_THREAD:
5785 break;
5786 case KMP_HW_CORE:
5787 if (__kmp_nThreadsPerCore > 1) {
5788 fine_gran = false;
5790 break;
5791 case KMP_HW_SOCKET:
5792 if (nCoresPerPkg > 1) {
5793 fine_gran = false;
5795 break;
5796 default:
5797 fine_gran = false;
5800 if (__kmp_topology->is_uniform()) {
5801 int coreID;
5802 int threadID;
5803 // Number of hyper threads per core in HT machine
5804 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5805 // Number of cores
5806 int ncores = __kmp_ncores;
5807 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5808 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5809 ncores = nPackages;
5811 // How many threads will be bound to each core
5812 int chunk = nthreads / ncores;
5813 // How many cores will have an additional thread bound to it - "big cores"
5814 int big_cores = nthreads % ncores;
5815 // Number of threads on the big cores
5816 int big_nth = (chunk + 1) * big_cores;
5817 if (tid < big_nth) {
5818 coreID = tid / (chunk + 1);
5819 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5820 } else { // tid >= big_nth
5821 coreID = (tid - big_cores) / chunk;
5822 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5824 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5825 "Illegal set affinity operation when not capable");
5827 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5828 KMP_CPU_ZERO(mask);
5830 if (fine_gran) {
5831 int osID =
5832 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
5833 KMP_CPU_SET(osID, mask);
5834 } else {
5835 for (int i = 0; i < __kmp_nth_per_core; i++) {
5836 int osID;
5837 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
5838 KMP_CPU_SET(osID, mask);
5841 if (__kmp_affinity.flags.verbose) {
5842 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5843 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5844 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5845 tid, buf);
5847 __kmp_affinity_get_thread_topology_info(th);
5848 __kmp_set_system_affinity(mask, TRUE);
5849 } else { // Non-uniform topology
5851 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5852 KMP_CPU_ZERO(mask);
5854 int core_level =
5855 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
5856 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
5857 __kmp_aff_depth - 1, core_level);
5858 int nth_per_core = __kmp_affinity_max_proc_per_core(
5859 __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5861 // For performance gain consider the special case nthreads ==
5862 // __kmp_avail_proc
5863 if (nthreads == __kmp_avail_proc) {
5864 if (fine_gran) {
5865 int osID = __kmp_topology->at(tid).os_id;
5866 KMP_CPU_SET(osID, mask);
5867 } else {
5868 int core =
5869 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
5870 for (int i = 0; i < __kmp_avail_proc; i++) {
5871 int osID = __kmp_topology->at(i).os_id;
5872 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
5873 core) {
5874 KMP_CPU_SET(osID, mask);
5878 } else if (nthreads <= ncores) {
5880 int core = 0;
5881 for (int i = 0; i < ncores; i++) {
5882 // Check if this core from procarr[] is in the mask
5883 int in_mask = 0;
5884 for (int j = 0; j < nth_per_core; j++) {
5885 if (procarr[i * nth_per_core + j] != -1) {
5886 in_mask = 1;
5887 break;
5890 if (in_mask) {
5891 if (tid == core) {
5892 for (int j = 0; j < nth_per_core; j++) {
5893 int osID = procarr[i * nth_per_core + j];
5894 if (osID != -1) {
5895 KMP_CPU_SET(osID, mask);
5896 // For fine granularity it is enough to set the first available
5897 // osID for this core
5898 if (fine_gran) {
5899 break;
5903 break;
5904 } else {
5905 core++;
5909 } else { // nthreads > ncores
5910 // Array to save the number of processors at each core
5911 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5912 // Array to save the number of cores with "x" available processors;
5913 int *ncores_with_x_procs =
5914 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5915 // Array to save the number of cores with # procs from x to nth_per_core
5916 int *ncores_with_x_to_max_procs =
5917 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5919 for (int i = 0; i <= nth_per_core; i++) {
5920 ncores_with_x_procs[i] = 0;
5921 ncores_with_x_to_max_procs[i] = 0;
5924 for (int i = 0; i < ncores; i++) {
5925 int cnt = 0;
5926 for (int j = 0; j < nth_per_core; j++) {
5927 if (procarr[i * nth_per_core + j] != -1) {
5928 cnt++;
5931 nproc_at_core[i] = cnt;
5932 ncores_with_x_procs[cnt]++;
5935 for (int i = 0; i <= nth_per_core; i++) {
5936 for (int j = i; j <= nth_per_core; j++) {
5937 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5941 // Max number of processors
5942 int nproc = nth_per_core * ncores;
5943 // An array to keep number of threads per each context
5944 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5945 for (int i = 0; i < nproc; i++) {
5946 newarr[i] = 0;
5949 int nth = nthreads;
5950 int flag = 0;
5951 while (nth > 0) {
5952 for (int j = 1; j <= nth_per_core; j++) {
5953 int cnt = ncores_with_x_to_max_procs[j];
5954 for (int i = 0; i < ncores; i++) {
5955 // Skip the core with 0 processors
5956 if (nproc_at_core[i] == 0) {
5957 continue;
5959 for (int k = 0; k < nth_per_core; k++) {
5960 if (procarr[i * nth_per_core + k] != -1) {
5961 if (newarr[i * nth_per_core + k] == 0) {
5962 newarr[i * nth_per_core + k] = 1;
5963 cnt--;
5964 nth--;
5965 break;
5966 } else {
5967 if (flag != 0) {
5968 newarr[i * nth_per_core + k]++;
5969 cnt--;
5970 nth--;
5971 break;
5976 if (cnt == 0 || nth == 0) {
5977 break;
5980 if (nth == 0) {
5981 break;
5984 flag = 1;
5986 int sum = 0;
5987 for (int i = 0; i < nproc; i++) {
5988 sum += newarr[i];
5989 if (sum > tid) {
5990 if (fine_gran) {
5991 int osID = procarr[i];
5992 KMP_CPU_SET(osID, mask);
5993 } else {
5994 int coreID = i / nth_per_core;
5995 for (int ii = 0; ii < nth_per_core; ii++) {
5996 int osID = procarr[coreID * nth_per_core + ii];
5997 if (osID != -1) {
5998 KMP_CPU_SET(osID, mask);
6002 break;
6005 __kmp_free(newarr);
6008 if (__kmp_affinity.flags.verbose) {
6009 char buf[KMP_AFFIN_MASK_PRINT_LEN];
6010 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
6011 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
6012 tid, buf);
6014 __kmp_affinity_get_thread_topology_info(th);
6015 __kmp_set_system_affinity(mask, TRUE);
6019 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
6020 KMP_OS_AIX
6021 // We don't need this entry for Windows because
6022 // there is GetProcessAffinityMask() api
6024 // The intended usage is indicated by these steps:
6025 // 1) The user gets the current affinity mask
6026 // 2) Then sets the affinity by calling this function
6027 // 3) Error check the return value
6028 // 4) Use non-OpenMP parallelization
6029 // 5) Reset the affinity to what was stored in step 1)
6030 #ifdef __cplusplus
6031 extern "C"
6032 #endif
6034 kmp_set_thread_affinity_mask_initial()
6035 // the function returns 0 on success,
6036 // -1 if we cannot bind thread
6037 // >0 (errno) if an error happened during binding
6039 int gtid = __kmp_get_gtid();
6040 if (gtid < 0) {
6041 // Do not touch non-omp threads
6042 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
6043 "non-omp thread, returning\n"));
6044 return -1;
6046 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
6047 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
6048 "affinity not initialized, returning\n"));
6049 return -1;
6051 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
6052 "set full mask for thread %d\n",
6053 gtid));
6054 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
6055 #if KMP_OS_AIX
6056 return bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY);
6057 #else
6058 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
6059 #endif
6061 #endif
6063 #endif // KMP_AFFINITY_SUPPORTED