[LV] Add test showing debug output for loops with uncountable BTCs.
[llvm-project.git] / openmp / runtime / src / z_Windows_NT_util.cpp
blobd75b48b2c1bcf7de047eec83dc39666051dbe77a
1 /*
2 * z_Windows_NT_util.cpp -- platform specific routines.
3 */
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_wait_release.h"
20 /* This code is related to NtQuerySystemInformation() function. This function
21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22 number of running threads in the system. */
24 #include <ntsecapi.h> // UNICODE_STRING
25 #undef WIN32_NO_STATUS
26 #include <ntstatus.h>
27 #include <psapi.h>
28 #ifdef _MSC_VER
29 #pragma comment(lib, "psapi.lib")
30 #endif
32 enum SYSTEM_INFORMATION_CLASS {
33 SystemProcessInformation = 5
34 }; // SYSTEM_INFORMATION_CLASS
36 struct CLIENT_ID {
37 HANDLE UniqueProcess;
38 HANDLE UniqueThread;
39 }; // struct CLIENT_ID
41 enum THREAD_STATE {
42 StateInitialized,
43 StateReady,
44 StateRunning,
45 StateStandby,
46 StateTerminated,
47 StateWait,
48 StateTransition,
49 StateUnknown
50 }; // enum THREAD_STATE
52 struct VM_COUNTERS {
53 SIZE_T PeakVirtualSize;
54 SIZE_T VirtualSize;
55 ULONG PageFaultCount;
56 SIZE_T PeakWorkingSetSize;
57 SIZE_T WorkingSetSize;
58 SIZE_T QuotaPeakPagedPoolUsage;
59 SIZE_T QuotaPagedPoolUsage;
60 SIZE_T QuotaPeakNonPagedPoolUsage;
61 SIZE_T QuotaNonPagedPoolUsage;
62 SIZE_T PagefileUsage;
63 SIZE_T PeakPagefileUsage;
64 SIZE_T PrivatePageCount;
65 }; // struct VM_COUNTERS
67 struct SYSTEM_THREAD {
68 LARGE_INTEGER KernelTime;
69 LARGE_INTEGER UserTime;
70 LARGE_INTEGER CreateTime;
71 ULONG WaitTime;
72 LPVOID StartAddress;
73 CLIENT_ID ClientId;
74 DWORD Priority;
75 LONG BasePriority;
76 ULONG ContextSwitchCount;
77 THREAD_STATE State;
78 ULONG WaitReason;
79 }; // SYSTEM_THREAD
81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
82 #if KMP_ARCH_X86 || KMP_ARCH_ARM
83 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
84 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
85 #else
86 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
87 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
88 #endif
90 struct SYSTEM_PROCESS_INFORMATION {
91 ULONG NextEntryOffset;
92 ULONG NumberOfThreads;
93 LARGE_INTEGER Reserved[3];
94 LARGE_INTEGER CreateTime;
95 LARGE_INTEGER UserTime;
96 LARGE_INTEGER KernelTime;
97 UNICODE_STRING ImageName;
98 DWORD BasePriority;
99 HANDLE ProcessId;
100 HANDLE ParentProcessId;
101 ULONG HandleCount;
102 ULONG Reserved2[2];
103 VM_COUNTERS VMCounters;
104 IO_COUNTERS IOCounters;
105 SYSTEM_THREAD Threads[1];
106 }; // SYSTEM_PROCESS_INFORMATION
107 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
112 #if KMP_ARCH_X86 || KMP_ARCH_ARM
113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
118 #else
119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
120 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
121 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
122 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
123 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
124 #endif
126 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
127 PVOID, ULONG, PULONG);
128 NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
130 HMODULE ntdll = NULL;
132 /* End of NtQuerySystemInformation()-related code */
134 static HMODULE kernel32 = NULL;
136 #if KMP_HANDLE_SIGNALS
137 typedef void (*sig_func_t)(int);
138 static sig_func_t __kmp_sighldrs[NSIG];
139 static int __kmp_siginstalled[NSIG];
140 #endif
142 #if KMP_USE_MONITOR
143 static HANDLE __kmp_monitor_ev;
144 #endif
145 static kmp_int64 __kmp_win32_time;
146 double __kmp_win32_tick;
148 int __kmp_init_runtime = FALSE;
149 CRITICAL_SECTION __kmp_win32_section;
151 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
152 InitializeCriticalSection(&mx->cs);
153 #if USE_ITT_BUILD
154 __kmp_itt_system_object_created(&mx->cs, "Critical Section");
155 #endif /* USE_ITT_BUILD */
158 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
159 DeleteCriticalSection(&mx->cs);
162 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
163 EnterCriticalSection(&mx->cs);
166 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
167 return TryEnterCriticalSection(&mx->cs);
170 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
171 LeaveCriticalSection(&mx->cs);
174 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
175 cv->waiters_count_ = 0;
176 cv->wait_generation_count_ = 0;
177 cv->release_count_ = 0;
179 /* Initialize the critical section */
180 __kmp_win32_mutex_init(&cv->waiters_count_lock_);
182 /* Create a manual-reset event. */
183 cv->event_ = CreateEvent(NULL, // no security
184 TRUE, // manual-reset
185 FALSE, // non-signaled initially
186 NULL); // unnamed
187 #if USE_ITT_BUILD
188 __kmp_itt_system_object_created(cv->event_, "Event");
189 #endif /* USE_ITT_BUILD */
192 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
193 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
194 __kmp_free_handle(cv->event_);
195 memset(cv, '\0', sizeof(*cv));
198 /* TODO associate cv with a team instead of a thread so as to optimize
199 the case where we wake up a whole team */
201 template <class C>
202 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
203 kmp_info_t *th, C *flag) {
204 int my_generation;
205 int last_waiter;
207 /* Avoid race conditions */
208 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
210 /* Increment count of waiters */
211 cv->waiters_count_++;
213 /* Store current generation in our activation record. */
214 my_generation = cv->wait_generation_count_;
216 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
217 __kmp_win32_mutex_unlock(mx);
219 for (;;) {
220 int wait_done = 0;
221 DWORD res, timeout = 5000; // just tried to quess an appropriate number
222 /* Wait until the event is signaled */
223 res = WaitForSingleObject(cv->event_, timeout);
225 if (res == WAIT_OBJECT_0) {
226 // event signaled
227 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
228 /* Exit the loop when the <cv->event_> is signaled and there are still
229 waiting threads from this <wait_generation> that haven't been released
230 from this wait yet. */
231 wait_done = (cv->release_count_ > 0) &&
232 (cv->wait_generation_count_ != my_generation);
233 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
234 } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) {
235 // check if the flag and cv counters are in consistent state
236 // as MS sent us debug dump whith inconsistent state of data
237 __kmp_win32_mutex_lock(mx);
238 typename C::flag_t old_f = flag->set_sleeping();
239 if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) {
240 __kmp_win32_mutex_unlock(mx);
241 continue;
243 // condition fulfilled, exiting
244 flag->unset_sleeping();
245 TCW_PTR(th->th.th_sleep_loc, NULL);
246 th->th.th_sleep_loc_type = flag_unset;
247 KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition "
248 "fulfilled: flag's loc(%p): %u\n",
249 flag->get(), (unsigned int)flag->load()));
251 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
252 KMP_DEBUG_ASSERT(cv->waiters_count_ > 0);
253 cv->release_count_ = cv->waiters_count_;
254 cv->wait_generation_count_++;
255 wait_done = 1;
256 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
258 __kmp_win32_mutex_unlock(mx);
260 /* there used to be a semicolon after the if statement, it looked like a
261 bug, so i removed it */
262 if (wait_done)
263 break;
266 __kmp_win32_mutex_lock(mx);
267 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
269 cv->waiters_count_--;
270 cv->release_count_--;
272 last_waiter = (cv->release_count_ == 0);
274 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
276 if (last_waiter) {
277 /* We're the last waiter to be notified, so reset the manual event. */
278 ResetEvent(cv->event_);
282 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
283 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
285 if (cv->waiters_count_ > 0) {
286 SetEvent(cv->event_);
287 /* Release all the threads in this generation. */
289 cv->release_count_ = cv->waiters_count_;
291 /* Start a new generation. */
292 cv->wait_generation_count_++;
295 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
298 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
299 __kmp_win32_cond_broadcast(cv);
302 void __kmp_enable(int new_state) {
303 if (__kmp_init_runtime)
304 LeaveCriticalSection(&__kmp_win32_section);
307 void __kmp_disable(int *old_state) {
308 *old_state = 0;
310 if (__kmp_init_runtime)
311 EnterCriticalSection(&__kmp_win32_section);
314 void __kmp_suspend_initialize(void) { /* do nothing */
317 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
318 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init);
319 int new_value = TRUE;
320 // Return if already initialized
321 if (old_value == new_value)
322 return;
323 // Wait, then return if being initialized
324 if (old_value == -1 ||
325 !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) {
326 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) {
327 KMP_CPU_PAUSE();
329 } else {
330 // Claim to be the initializer and do initializations
331 __kmp_win32_cond_init(&th->th.th_suspend_cv);
332 __kmp_win32_mutex_init(&th->th.th_suspend_mx);
333 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value);
337 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
338 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) {
339 /* this means we have initialize the suspension pthread objects for this
340 thread in this instance of the process */
341 __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
342 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
343 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE);
347 int __kmp_try_suspend_mx(kmp_info_t *th) {
348 return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
351 void __kmp_lock_suspend_mx(kmp_info_t *th) {
352 __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
355 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
356 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
359 /* This routine puts the calling thread to sleep after setting the
360 sleep bit for the indicated flag variable to true. */
361 template <class C>
362 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
363 kmp_info_t *th = __kmp_threads[th_gtid];
364 typename C::flag_t old_spin;
366 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
367 th_gtid, flag->get()));
369 __kmp_suspend_initialize_thread(th);
370 __kmp_lock_suspend_mx(th);
372 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
373 " loc(%p)\n",
374 th_gtid, flag->get()));
376 /* TODO: shouldn't this use release semantics to ensure that
377 __kmp_suspend_initialize_thread gets called first? */
378 old_spin = flag->set_sleeping();
379 TCW_PTR(th->th.th_sleep_loc, (void *)flag);
380 th->th.th_sleep_loc_type = flag->get_type();
381 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
382 __kmp_pause_status != kmp_soft_paused) {
383 flag->unset_sleeping();
384 TCW_PTR(th->th.th_sleep_loc, NULL);
385 th->th.th_sleep_loc_type = flag_unset;
386 __kmp_unlock_suspend_mx(th);
387 return;
390 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
391 " loc(%p)==%u\n",
392 th_gtid, flag->get(), (unsigned int)flag->load()));
394 if (flag->done_check_val(old_spin) || flag->done_check()) {
395 flag->unset_sleeping();
396 TCW_PTR(th->th.th_sleep_loc, NULL);
397 th->th.th_sleep_loc_type = flag_unset;
398 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
399 "for flag's loc(%p)\n",
400 th_gtid, flag->get()));
401 } else {
402 #ifdef DEBUG_SUSPEND
403 __kmp_suspend_count++;
404 #endif
405 /* Encapsulate in a loop as the documentation states that this may "with
406 low probability" return when the condition variable has not been signaled
407 or broadcast */
408 int deactivated = FALSE;
410 while (flag->is_sleeping()) {
411 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
412 "kmp_win32_cond_wait()\n",
413 th_gtid));
414 // Mark the thread as no longer active (only in the first iteration of the
415 // loop).
416 if (!deactivated) {
417 th->th.th_active = FALSE;
418 if (th->th.th_active_in_pool) {
419 th->th.th_active_in_pool = FALSE;
420 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
421 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
423 deactivated = TRUE;
426 KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
427 KMP_DEBUG_ASSERT(th->th.th_sleep_loc_type == flag->get_type());
429 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
430 flag);
432 #ifdef KMP_DEBUG
433 if (flag->is_sleeping()) {
434 KF_TRACE(100,
435 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
437 #endif /* KMP_DEBUG */
439 } // while
441 // We may have had the loop variable set before entering the loop body;
442 // so we need to reset sleep_loc.
443 TCW_PTR(th->th.th_sleep_loc, NULL);
444 th->th.th_sleep_loc_type = flag_unset;
446 KMP_DEBUG_ASSERT(!flag->is_sleeping());
447 KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
449 // Mark the thread as active again (if it was previous marked as inactive)
450 if (deactivated) {
451 th->th.th_active = TRUE;
452 if (TCR_4(th->th.th_in_pool)) {
453 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
454 th->th.th_active_in_pool = TRUE;
459 __kmp_unlock_suspend_mx(th);
460 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
463 template <bool C, bool S>
464 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
465 __kmp_suspend_template(th_gtid, flag);
467 template <bool C, bool S>
468 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
469 __kmp_suspend_template(th_gtid, flag);
471 template <bool C, bool S>
472 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
473 __kmp_suspend_template(th_gtid, flag);
475 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
476 __kmp_suspend_template(th_gtid, flag);
479 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
480 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
481 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
482 template void
483 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
484 template void
485 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
487 /* This routine signals the thread specified by target_gtid to wake up
488 after setting the sleep bit indicated by the flag argument to FALSE */
489 template <class C>
490 static inline void __kmp_resume_template(int target_gtid, C *flag) {
491 kmp_info_t *th = __kmp_threads[target_gtid];
493 #ifdef KMP_DEBUG
494 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
495 #endif
497 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
498 gtid, target_gtid));
500 __kmp_suspend_initialize_thread(th);
501 __kmp_lock_suspend_mx(th);
503 if (!flag || flag != th->th.th_sleep_loc) {
504 // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
505 // different location; wake up at new location
506 flag = (C *)th->th.th_sleep_loc;
509 // First, check if the flag is null or its type has changed. If so, someone
510 // else woke it up.
511 if (!flag || flag->get_type() != th->th.th_sleep_loc_type) {
512 // simply shows what flag was cast to
513 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
514 "awake: flag's loc(%p)\n",
515 gtid, target_gtid, NULL));
516 __kmp_unlock_suspend_mx(th);
517 return;
518 } else {
519 if (!flag->is_sleeping()) {
520 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
521 "awake: flag's loc(%p): %u\n",
522 gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
523 __kmp_unlock_suspend_mx(th);
524 return;
527 KMP_DEBUG_ASSERT(flag);
528 flag->unset_sleeping();
529 TCW_PTR(th->th.th_sleep_loc, NULL);
530 th->th.th_sleep_loc_type = flag_unset;
532 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
533 "bit for flag's loc(%p)\n",
534 gtid, target_gtid, flag->get()));
536 __kmp_win32_cond_signal(&th->th.th_suspend_cv);
537 __kmp_unlock_suspend_mx(th);
539 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
540 " for T#%d\n",
541 gtid, target_gtid));
544 template <bool C, bool S>
545 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
546 __kmp_resume_template(target_gtid, flag);
548 template <bool C, bool S>
549 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
550 __kmp_resume_template(target_gtid, flag);
552 template <bool C, bool S>
553 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
554 __kmp_resume_template(target_gtid, flag);
556 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
557 __kmp_resume_template(target_gtid, flag);
560 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
561 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
562 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
563 template void
564 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
566 void __kmp_yield() { Sleep(0); }
568 void __kmp_gtid_set_specific(int gtid) {
569 if (__kmp_init_gtid) {
570 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
571 __kmp_gtid_threadprivate_key));
572 kmp_intptr_t g = (kmp_intptr_t)gtid;
573 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(g + 1)))
574 KMP_FATAL(TLSSetValueFailed);
575 } else {
576 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
580 int __kmp_gtid_get_specific() {
581 int gtid;
582 if (!__kmp_init_gtid) {
583 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
584 "KMP_GTID_SHUTDOWN\n"));
585 return KMP_GTID_SHUTDOWN;
587 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
588 if (gtid == 0) {
589 gtid = KMP_GTID_DNE;
590 } else {
591 gtid--;
593 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
594 __kmp_gtid_threadprivate_key, gtid));
595 return gtid;
598 void __kmp_affinity_bind_thread(int proc) {
599 if (__kmp_num_proc_groups > 1) {
600 // Form the GROUP_AFFINITY struct directly, rather than filling
601 // out a bit vector and calling __kmp_set_system_affinity().
602 GROUP_AFFINITY ga;
603 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
604 sizeof(DWORD_PTR))));
605 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
606 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
607 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
609 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
610 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
611 DWORD error = GetLastError();
612 // AC: continue silently if not verbose
613 if (__kmp_affinity.flags.verbose) {
614 kmp_msg_t err_code = KMP_ERR(error);
615 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
616 __kmp_msg_null);
617 if (__kmp_generate_warnings == kmp_warnings_off) {
618 __kmp_str_free(&err_code.str);
622 } else {
623 kmp_affin_mask_t *mask;
624 KMP_CPU_ALLOC_ON_STACK(mask);
625 KMP_CPU_ZERO(mask);
626 KMP_CPU_SET(proc, mask);
627 __kmp_set_system_affinity(mask, TRUE);
628 KMP_CPU_FREE_FROM_STACK(mask);
632 void __kmp_affinity_determine_capable(const char *env_var) {
633 // All versions of Windows* OS (since Win '95) support
634 // SetThreadAffinityMask().
636 #if KMP_GROUP_AFFINITY
637 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
638 #else
639 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
640 #endif
642 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
643 "Windows* OS affinity interface functional (mask size = "
644 "%" KMP_SIZE_T_SPEC ").\n",
645 __kmp_affin_mask_size));
648 double __kmp_read_cpu_time(void) {
649 FILETIME CreationTime, ExitTime, KernelTime, UserTime;
650 int status;
651 double cpu_time;
653 cpu_time = 0;
655 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
656 &KernelTime, &UserTime);
658 if (status) {
659 double sec = 0;
661 sec += KernelTime.dwHighDateTime;
662 sec += UserTime.dwHighDateTime;
664 /* Shift left by 32 bits */
665 sec *= (double)(1 << 16) * (double)(1 << 16);
667 sec += KernelTime.dwLowDateTime;
668 sec += UserTime.dwLowDateTime;
670 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
673 return cpu_time;
676 int __kmp_read_system_info(struct kmp_sys_info *info) {
677 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
678 info->minflt = 0; /* the number of page faults serviced without any I/O */
679 info->majflt = 0; /* the number of page faults serviced that required I/O */
680 info->nswap = 0; // the number of times a process was "swapped" out of memory
681 info->inblock = 0; // the number of times the file system had to perform input
682 info->oublock = 0; // number of times the file system had to perform output
683 info->nvcsw = 0; /* the number of times a context switch was voluntarily */
684 info->nivcsw = 0; /* the number of times a context switch was forced */
686 return 1;
689 void __kmp_runtime_initialize(void) {
690 SYSTEM_INFO info;
691 kmp_str_buf_t path;
692 UINT path_size;
694 if (__kmp_init_runtime) {
695 return;
698 #if KMP_DYNAMIC_LIB
699 /* Pin dynamic library for the lifetime of application */
701 // First, turn off error message boxes
702 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
703 HMODULE h;
704 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
705 GET_MODULE_HANDLE_EX_FLAG_PIN,
706 (LPCTSTR)&__kmp_serial_initialize, &h);
707 (void)ret;
708 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
709 SetErrorMode(err_mode); // Restore error mode
710 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
712 #endif
714 InitializeCriticalSection(&__kmp_win32_section);
715 #if USE_ITT_BUILD
716 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
717 #endif /* USE_ITT_BUILD */
718 __kmp_initialize_system_tick();
720 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
721 if (!__kmp_cpuinfo.initialized) {
722 __kmp_query_cpuid(&__kmp_cpuinfo);
724 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
726 /* Set up minimum number of threads to switch to TLS gtid */
727 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
728 // Windows* OS, static library.
729 /* New thread may use stack space previously used by another thread,
730 currently terminated. On Windows* OS, in case of static linking, we do not
731 know the moment of thread termination, and our structures (__kmp_threads
732 and __kmp_root arrays) are still keep info about dead threads. This leads
733 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
734 (by searching through stack addresses of all known threads) for
735 unregistered foreign tread.
737 Setting __kmp_tls_gtid_min to 0 workarounds this problem:
738 __kmp_get_global_thread_id() does not search through stacks, but get gtid
739 from TLS immediately.
740 --ln
742 __kmp_tls_gtid_min = 0;
743 #else
744 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
745 #endif
747 /* for the static library */
748 if (!__kmp_gtid_threadprivate_key) {
749 __kmp_gtid_threadprivate_key = TlsAlloc();
750 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
751 KMP_FATAL(TLSOutOfIndexes);
755 // Load ntdll.dll.
756 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
757 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
758 have to specify full path to the library. */
759 __kmp_str_buf_init(&path);
760 path_size = GetSystemDirectory(path.str, path.size);
761 KMP_DEBUG_ASSERT(path_size > 0);
762 if (path_size >= path.size) {
763 // Buffer is too short. Expand the buffer and try again.
764 __kmp_str_buf_reserve(&path, path_size);
765 path_size = GetSystemDirectory(path.str, path.size);
766 KMP_DEBUG_ASSERT(path_size > 0);
768 if (path_size > 0 && path_size < path.size) {
769 // Now we have system directory name in the buffer.
770 // Append backslash and name of dll to form full path,
771 path.used = path_size;
772 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
774 // Now load ntdll using full path.
775 ntdll = GetModuleHandle(path.str);
778 KMP_DEBUG_ASSERT(ntdll != NULL);
779 if (ntdll != NULL) {
780 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
781 ntdll, "NtQuerySystemInformation");
783 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
785 #if KMP_GROUP_AFFINITY
786 // Load kernel32.dll.
787 // Same caveat - must use full system path name.
788 if (path_size > 0 && path_size < path.size) {
789 // Truncate the buffer back to just the system path length,
790 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
791 path.used = path_size;
792 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
794 // Load kernel32.dll using full path.
795 kernel32 = GetModuleHandle(path.str);
796 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
798 // Load the function pointers to kernel32.dll routines
799 // that may or may not exist on this system.
800 if (kernel32 != NULL) {
801 __kmp_GetActiveProcessorCount =
802 (kmp_GetActiveProcessorCount_t)GetProcAddress(
803 kernel32, "GetActiveProcessorCount");
804 __kmp_GetActiveProcessorGroupCount =
805 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
806 kernel32, "GetActiveProcessorGroupCount");
807 __kmp_GetThreadGroupAffinity =
808 (kmp_GetThreadGroupAffinity_t)GetProcAddress(
809 kernel32, "GetThreadGroupAffinity");
810 __kmp_SetThreadGroupAffinity =
811 (kmp_SetThreadGroupAffinity_t)GetProcAddress(
812 kernel32, "SetThreadGroupAffinity");
814 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
815 " = %p\n",
816 __kmp_GetActiveProcessorCount));
817 KA_TRACE(10, ("__kmp_runtime_initialize: "
818 "__kmp_GetActiveProcessorGroupCount = %p\n",
819 __kmp_GetActiveProcessorGroupCount));
820 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
821 " = %p\n",
822 __kmp_GetThreadGroupAffinity));
823 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
824 " = %p\n",
825 __kmp_SetThreadGroupAffinity));
826 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
827 sizeof(kmp_affin_mask_t)));
829 // See if group affinity is supported on this system.
830 // If so, calculate the #groups and #procs.
832 // Group affinity was introduced with Windows* 7 OS and
833 // Windows* Server 2008 R2 OS.
834 if ((__kmp_GetActiveProcessorCount != NULL) &&
835 (__kmp_GetActiveProcessorGroupCount != NULL) &&
836 (__kmp_GetThreadGroupAffinity != NULL) &&
837 (__kmp_SetThreadGroupAffinity != NULL) &&
838 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
839 1)) {
840 // Calculate the total number of active OS procs.
841 int i;
843 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
844 " detected\n",
845 __kmp_num_proc_groups));
847 __kmp_xproc = 0;
849 for (i = 0; i < __kmp_num_proc_groups; i++) {
850 DWORD size = __kmp_GetActiveProcessorCount(i);
851 __kmp_xproc += size;
852 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
853 i, size));
855 } else {
856 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
857 " detected\n",
858 __kmp_num_proc_groups));
862 if (__kmp_num_proc_groups <= 1) {
863 GetSystemInfo(&info);
864 __kmp_xproc = info.dwNumberOfProcessors;
866 #else
867 (void)kernel32;
868 GetSystemInfo(&info);
869 __kmp_xproc = info.dwNumberOfProcessors;
870 #endif /* KMP_GROUP_AFFINITY */
872 // If the OS said there were 0 procs, take a guess and use a value of 2.
873 // This is done for Linux* OS, also. Do we need error / warning?
874 if (__kmp_xproc <= 0) {
875 __kmp_xproc = 2;
878 KA_TRACE(5,
879 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
881 __kmp_str_buf_free(&path);
883 #if USE_ITT_BUILD
884 __kmp_itt_initialize();
885 #endif /* USE_ITT_BUILD */
887 __kmp_init_runtime = TRUE;
888 } // __kmp_runtime_initialize
890 void __kmp_runtime_destroy(void) {
891 if (!__kmp_init_runtime) {
892 return;
895 #if USE_ITT_BUILD
896 __kmp_itt_destroy();
897 #endif /* USE_ITT_BUILD */
899 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
900 /* due to the KX_TRACE() commands */
901 KA_TRACE(40, ("__kmp_runtime_destroy\n"));
903 if (__kmp_gtid_threadprivate_key) {
904 TlsFree(__kmp_gtid_threadprivate_key);
905 __kmp_gtid_threadprivate_key = 0;
908 __kmp_affinity_uninitialize();
909 DeleteCriticalSection(&__kmp_win32_section);
911 ntdll = NULL;
912 NtQuerySystemInformation = NULL;
914 #if KMP_ARCH_X86_64
915 kernel32 = NULL;
916 __kmp_GetActiveProcessorCount = NULL;
917 __kmp_GetActiveProcessorGroupCount = NULL;
918 __kmp_GetThreadGroupAffinity = NULL;
919 __kmp_SetThreadGroupAffinity = NULL;
920 #endif // KMP_ARCH_X86_64
922 __kmp_init_runtime = FALSE;
925 void __kmp_terminate_thread(int gtid) {
926 kmp_info_t *th = __kmp_threads[gtid];
928 if (!th)
929 return;
931 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
933 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
934 /* It's OK, the thread may have exited already */
936 __kmp_free_handle(th->th.th_info.ds.ds_thread);
939 void __kmp_clear_system_time(void) {
940 LARGE_INTEGER time;
941 QueryPerformanceCounter(&time);
942 __kmp_win32_time = (kmp_int64)time.QuadPart;
945 void __kmp_initialize_system_tick(void) {
947 BOOL status;
948 LARGE_INTEGER freq;
950 status = QueryPerformanceFrequency(&freq);
951 if (!status) {
952 DWORD error = GetLastError();
953 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
954 KMP_ERR(error), __kmp_msg_null);
956 } else {
957 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
962 /* Calculate the elapsed wall clock time for the user */
964 void __kmp_elapsed(double *t) {
965 LARGE_INTEGER now;
966 QueryPerformanceCounter(&now);
967 *t = ((double)now.QuadPart) * __kmp_win32_tick;
970 /* Calculate the elapsed wall clock tick for the user */
972 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
974 void __kmp_read_system_time(double *delta) {
975 if (delta != NULL) {
976 LARGE_INTEGER now;
977 QueryPerformanceCounter(&now);
978 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
979 __kmp_win32_tick;
983 /* Return the current time stamp in nsec */
984 kmp_uint64 __kmp_now_nsec() {
985 LARGE_INTEGER now;
986 QueryPerformanceCounter(&now);
987 return 1e9 * __kmp_win32_tick * now.QuadPart;
990 extern "C" void *__stdcall __kmp_launch_worker(void *arg) {
991 volatile void *stack_data;
992 void *exit_val;
993 void *padding = 0;
994 kmp_info_t *this_thr = (kmp_info_t *)arg;
995 int gtid;
997 gtid = this_thr->th.th_info.ds.ds_gtid;
998 __kmp_gtid_set_specific(gtid);
999 #ifdef KMP_TDATA_GTID
1000 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1001 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
1002 "reference: http://support.microsoft.com/kb/118816"
1003 //__kmp_gtid = gtid;
1004 #endif
1006 #if USE_ITT_BUILD
1007 __kmp_itt_thread_name(gtid);
1008 #endif /* USE_ITT_BUILD */
1010 __kmp_affinity_bind_init_mask(gtid);
1012 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1013 // Set FP control regs to be a copy of the parallel initialization thread's.
1014 __kmp_clear_x87_fpu_status_word();
1015 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
1016 __kmp_load_mxcsr(&__kmp_init_mxcsr);
1017 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1019 if (__kmp_stkoffset > 0 && gtid > 0) {
1020 padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
1021 (void)padding;
1024 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1025 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1026 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1028 if (TCR_4(__kmp_gtid_mode) <
1029 2) { // check stack only if it is used to get gtid
1030 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
1031 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
1032 __kmp_check_stack_overlap(this_thr);
1034 KMP_MB();
1035 exit_val = __kmp_launch_thread(this_thr);
1036 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1037 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1038 KMP_MB();
1039 return exit_val;
1042 #if KMP_USE_MONITOR
1043 /* The monitor thread controls all of the threads in the complex */
1045 void *__stdcall __kmp_launch_monitor(void *arg) {
1046 DWORD wait_status;
1047 kmp_thread_t monitor;
1048 int status;
1049 int interval;
1050 kmp_info_t *this_thr = (kmp_info_t *)arg;
1052 KMP_DEBUG_ASSERT(__kmp_init_monitor);
1053 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
1054 // TODO: hide "2" in enum (like {true,false,started})
1055 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1056 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1058 KMP_MB(); /* Flush all pending memory write invalidates. */
1059 KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
1061 monitor = GetCurrentThread();
1063 /* set thread priority */
1064 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
1065 if (!status) {
1066 DWORD error = GetLastError();
1067 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1070 /* register us as monitor */
1071 __kmp_gtid_set_specific(KMP_GTID_MONITOR);
1072 #ifdef KMP_TDATA_GTID
1073 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1074 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
1075 "reference: http://support.microsoft.com/kb/118816"
1076 //__kmp_gtid = KMP_GTID_MONITOR;
1077 #endif
1079 #if USE_ITT_BUILD
1080 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1081 // monitor thread.
1082 #endif /* USE_ITT_BUILD */
1084 KMP_MB(); /* Flush all pending memory write invalidates. */
1086 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
1088 while (!TCR_4(__kmp_global.g.g_done)) {
1089 /* This thread monitors the state of the system */
1091 KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1093 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
1095 if (wait_status == WAIT_TIMEOUT) {
1096 TCW_4(__kmp_global.g.g_time.dt.t_value,
1097 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
1100 KMP_MB(); /* Flush all pending memory write invalidates. */
1103 KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1105 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1106 if (!status) {
1107 DWORD error = GetLastError();
1108 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1111 if (__kmp_global.g.g_abort != 0) {
1112 /* now we need to terminate the worker threads */
1113 /* the value of t_abort is the signal we caught */
1114 int gtid;
1116 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1117 (__kmp_global.g.g_abort)));
1119 /* terminate the OpenMP worker threads */
1120 /* TODO this is not valid for sibling threads!!
1121 * the uber master might not be 0 anymore.. */
1122 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1123 __kmp_terminate_thread(gtid);
1125 __kmp_cleanup();
1127 Sleep(0);
1129 KA_TRACE(10,
1130 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1132 if (__kmp_global.g.g_abort > 0) {
1133 raise(__kmp_global.g.g_abort);
1137 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1139 KMP_MB();
1140 return arg;
1142 #endif
1144 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1145 kmp_thread_t handle;
1146 DWORD idThread;
1148 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1150 th->th.th_info.ds.ds_gtid = gtid;
1152 if (KMP_UBER_GTID(gtid)) {
1153 int stack_data;
1155 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1156 other threads to use. Is it appropriate to just use GetCurrentThread?
1157 When should we close this handle? When unregistering the root? */
1159 BOOL rc;
1160 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1161 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1162 FALSE, DUPLICATE_SAME_ACCESS);
1163 KMP_ASSERT(rc);
1164 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1165 "handle = %" KMP_UINTPTR_SPEC "\n",
1166 (LPVOID)th, th->th.th_info.ds.ds_thread));
1167 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1169 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1170 /* we will dynamically update the stack range if gtid_mode == 1 */
1171 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1172 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1173 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1174 __kmp_check_stack_overlap(th);
1176 } else {
1177 KMP_MB(); /* Flush all pending memory write invalidates. */
1179 /* Set stack size for this thread now. */
1180 KA_TRACE(10,
1181 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1182 stack_size));
1184 stack_size += gtid * __kmp_stkoffset;
1186 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1187 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1189 KA_TRACE(10,
1190 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1191 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1192 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1193 (LPVOID)th, &idThread));
1195 handle = CreateThread(
1196 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1197 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1199 KA_TRACE(10,
1200 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1201 " bytes, &__kmp_launch_worker = %p, th = %p, "
1202 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1203 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1204 (LPVOID)th, idThread, handle));
1206 if (handle == 0) {
1207 DWORD error = GetLastError();
1208 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1209 } else {
1210 th->th.th_info.ds.ds_thread = handle;
1213 KMP_MB(); /* Flush all pending memory write invalidates. */
1216 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1219 int __kmp_still_running(kmp_info_t *th) {
1220 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1223 #if KMP_USE_MONITOR
1224 void __kmp_create_monitor(kmp_info_t *th) {
1225 kmp_thread_t handle;
1226 DWORD idThread;
1227 int ideal, new_ideal;
1229 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1230 // We don't need monitor thread in case of MAX_BLOCKTIME
1231 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1232 "MAX blocktime\n"));
1233 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1234 th->th.th_info.ds.ds_gtid = 0;
1235 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1236 return;
1238 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1240 KMP_MB(); /* Flush all pending memory write invalidates. */
1242 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1243 if (__kmp_monitor_ev == NULL) {
1244 DWORD error = GetLastError();
1245 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1247 #if USE_ITT_BUILD
1248 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1249 #endif /* USE_ITT_BUILD */
1251 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1252 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1254 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1255 // to automatically expand stacksize based on CreateThread error code.
1256 if (__kmp_monitor_stksize == 0) {
1257 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1259 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1260 __kmp_monitor_stksize = __kmp_sys_min_stksize;
1263 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1264 (int)__kmp_monitor_stksize));
1266 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1268 handle =
1269 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1270 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1271 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1272 if (handle == 0) {
1273 DWORD error = GetLastError();
1274 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1275 } else
1276 th->th.th_info.ds.ds_thread = handle;
1278 KMP_MB(); /* Flush all pending memory write invalidates. */
1280 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1281 (void *)th->th.th_info.ds.ds_thread));
1283 #endif
1285 /* Check to see if thread is still alive.
1286 NOTE: The ExitProcess(code) system call causes all threads to Terminate
1287 with a exit_val = code. Because of this we can not rely on exit_val having
1288 any particular value. So this routine may return STILL_ALIVE in exit_val
1289 even after the thread is dead. */
1291 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1292 DWORD rc;
1293 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1294 if (rc == 0) {
1295 DWORD error = GetLastError();
1296 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1297 __kmp_msg_null);
1299 return (*exit_val == STILL_ACTIVE);
1302 void __kmp_exit_thread(int exit_status) {
1303 ExitThread(exit_status);
1304 } // __kmp_exit_thread
1306 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
1307 static void __kmp_reap_common(kmp_info_t *th) {
1308 DWORD exit_val;
1310 KMP_MB(); /* Flush all pending memory write invalidates. */
1312 KA_TRACE(
1313 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1315 /* 2006-10-19:
1316 There are two opposite situations:
1317 1. Windows* OS keep thread alive after it resets ds_alive flag and
1318 exits from thread function. (For example, see C70770/Q394281 "unloading of
1319 dll based on OMP is very slow".)
1320 2. Windows* OS may kill thread before it resets ds_alive flag.
1322 Right solution seems to be waiting for *either* thread termination *or*
1323 ds_alive resetting. */
1325 // TODO: This code is very similar to KMP_WAIT. Need to generalize
1326 // KMP_WAIT to cover this usage also.
1327 void *obj = NULL;
1328 kmp_uint32 spins;
1329 kmp_uint64 time;
1330 #if USE_ITT_BUILD
1331 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1332 #endif /* USE_ITT_BUILD */
1333 KMP_INIT_YIELD(spins);
1334 KMP_INIT_BACKOFF(time);
1335 do {
1336 #if USE_ITT_BUILD
1337 KMP_FSYNC_SPIN_PREPARE(obj);
1338 #endif /* USE_ITT_BUILD */
1339 __kmp_is_thread_alive(th, &exit_val);
1340 KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
1341 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1342 #if USE_ITT_BUILD
1343 if (exit_val == STILL_ACTIVE) {
1344 KMP_FSYNC_CANCEL(obj);
1345 } else {
1346 KMP_FSYNC_SPIN_ACQUIRED(obj);
1348 #endif /* USE_ITT_BUILD */
1351 __kmp_free_handle(th->th.th_info.ds.ds_thread);
1353 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate
1354 with a exit_val = code. Because of this we can not rely on exit_val having
1355 any particular value. */
1356 kmp_intptr_t e = (kmp_intptr_t)exit_val;
1357 if (exit_val == STILL_ACTIVE) {
1358 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1359 } else if ((void *)e != (void *)th) {
1360 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1363 KA_TRACE(10,
1364 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1365 "\n",
1366 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1368 th->th.th_info.ds.ds_thread = 0;
1369 th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1370 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1371 th->th.th_info.ds.ds_thread_id = 0;
1373 KMP_MB(); /* Flush all pending memory write invalidates. */
1376 #if KMP_USE_MONITOR
1377 void __kmp_reap_monitor(kmp_info_t *th) {
1378 int status;
1380 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1381 (void *)th->th.th_info.ds.ds_thread));
1383 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1384 // If both tid and gtid are 0, it means the monitor did not ever start.
1385 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1386 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1387 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1388 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1389 return;
1392 KMP_MB(); /* Flush all pending memory write invalidates. */
1394 status = SetEvent(__kmp_monitor_ev);
1395 if (status == FALSE) {
1396 DWORD error = GetLastError();
1397 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1399 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1400 th->th.th_info.ds.ds_gtid));
1401 __kmp_reap_common(th);
1403 __kmp_free_handle(__kmp_monitor_ev);
1405 KMP_MB(); /* Flush all pending memory write invalidates. */
1407 #endif
1409 void __kmp_reap_worker(kmp_info_t *th) {
1410 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1411 th->th.th_info.ds.ds_gtid));
1412 __kmp_reap_common(th);
1415 #if KMP_HANDLE_SIGNALS
1417 static void __kmp_team_handler(int signo) {
1418 if (__kmp_global.g.g_abort == 0) {
1419 // Stage 1 signal handler, let's shut down all of the threads.
1420 if (__kmp_debug_buf) {
1421 __kmp_dump_debug_buffer();
1423 KMP_MB(); // Flush all pending memory write invalidates.
1424 TCW_4(__kmp_global.g.g_abort, signo);
1425 KMP_MB(); // Flush all pending memory write invalidates.
1426 TCW_4(__kmp_global.g.g_done, TRUE);
1427 KMP_MB(); // Flush all pending memory write invalidates.
1429 } // __kmp_team_handler
1431 static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1432 sig_func_t old = signal(signum, handler);
1433 if (old == SIG_ERR) {
1434 int error = errno;
1435 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1436 __kmp_msg_null);
1438 return old;
1441 static void __kmp_install_one_handler(int sig, sig_func_t handler,
1442 int parallel_init) {
1443 sig_func_t old;
1444 KMP_MB(); /* Flush all pending memory write invalidates. */
1445 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1446 if (parallel_init) {
1447 old = __kmp_signal(sig, handler);
1448 // SIG_DFL on Windows* OS in NULL or 0.
1449 if (old == __kmp_sighldrs[sig]) {
1450 __kmp_siginstalled[sig] = 1;
1451 } else { // Restore/keep user's handler if one previously installed.
1452 old = __kmp_signal(sig, old);
1454 } else {
1455 // Save initial/system signal handlers to see if user handlers installed.
1456 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1457 // called once with parallel_init == TRUE.
1458 old = __kmp_signal(sig, SIG_DFL);
1459 __kmp_sighldrs[sig] = old;
1460 __kmp_signal(sig, old);
1462 KMP_MB(); /* Flush all pending memory write invalidates. */
1463 } // __kmp_install_one_handler
1465 static void __kmp_remove_one_handler(int sig) {
1466 if (__kmp_siginstalled[sig]) {
1467 sig_func_t old;
1468 KMP_MB(); // Flush all pending memory write invalidates.
1469 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1470 old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1471 if (old != __kmp_team_handler) {
1472 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1473 "restoring: sig=%d\n",
1474 sig));
1475 old = __kmp_signal(sig, old);
1477 __kmp_sighldrs[sig] = NULL;
1478 __kmp_siginstalled[sig] = 0;
1479 KMP_MB(); // Flush all pending memory write invalidates.
1481 } // __kmp_remove_one_handler
1483 void __kmp_install_signals(int parallel_init) {
1484 KB_TRACE(10, ("__kmp_install_signals: called\n"));
1485 if (!__kmp_handle_signals) {
1486 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1487 "handlers not installed\n"));
1488 return;
1490 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1491 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1492 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1493 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1494 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1495 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1496 } // __kmp_install_signals
1498 void __kmp_remove_signals(void) {
1499 int sig;
1500 KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1501 for (sig = 1; sig < NSIG; ++sig) {
1502 __kmp_remove_one_handler(sig);
1504 } // __kmp_remove_signals
1506 #endif // KMP_HANDLE_SIGNALS
1508 /* Put the thread to sleep for a time period */
1509 void __kmp_thread_sleep(int millis) {
1510 DWORD status;
1512 status = SleepEx((DWORD)millis, FALSE);
1513 if (status) {
1514 DWORD error = GetLastError();
1515 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1516 __kmp_msg_null);
1520 // Determine whether the given address is mapped into the current address space.
1521 int __kmp_is_address_mapped(void *addr) {
1522 MEMORY_BASIC_INFORMATION lpBuffer;
1523 SIZE_T dwLength;
1525 dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1527 VirtualQuery(addr, &lpBuffer, dwLength);
1529 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1530 ((lpBuffer.Protect == PAGE_NOACCESS) ||
1531 (lpBuffer.Protect == PAGE_EXECUTE)));
1534 kmp_uint64 __kmp_hardware_timestamp(void) {
1535 kmp_uint64 r = 0;
1537 QueryPerformanceCounter((LARGE_INTEGER *)&r);
1538 return r;
1541 /* Free handle and check the error code */
1542 void __kmp_free_handle(kmp_thread_t tHandle) {
1543 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1544 * as HANDLE */
1545 BOOL rc;
1546 rc = CloseHandle(tHandle);
1547 if (!rc) {
1548 DWORD error = GetLastError();
1549 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1553 int __kmp_get_load_balance(int max) {
1554 static ULONG glb_buff_size = 100 * 1024;
1556 // Saved count of the running threads for the thread balance algorithm
1557 static int glb_running_threads = 0;
1558 static double glb_call_time = 0; /* Thread balance algorithm call time */
1560 int running_threads = 0; // Number of running threads in the system.
1561 NTSTATUS status = 0;
1562 ULONG buff_size = 0;
1563 ULONG info_size = 0;
1564 void *buffer = NULL;
1565 PSYSTEM_PROCESS_INFORMATION spi = NULL;
1566 int first_time = 1;
1568 double call_time = 0.0; // start, finish;
1570 __kmp_elapsed(&call_time);
1572 if (glb_call_time &&
1573 (call_time - glb_call_time < __kmp_load_balance_interval)) {
1574 running_threads = glb_running_threads;
1575 goto finish;
1577 glb_call_time = call_time;
1579 // Do not spend time on running algorithm if we have a permanent error.
1580 if (NtQuerySystemInformation == NULL) {
1581 running_threads = -1;
1582 goto finish;
1585 if (max <= 0) {
1586 max = INT_MAX;
1589 do {
1591 if (first_time) {
1592 buff_size = glb_buff_size;
1593 } else {
1594 buff_size = 2 * buff_size;
1597 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1598 if (buffer == NULL) {
1599 running_threads = -1;
1600 goto finish;
1602 status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1603 buff_size, &info_size);
1604 first_time = 0;
1606 } while (status == STATUS_INFO_LENGTH_MISMATCH);
1607 glb_buff_size = buff_size;
1609 #define CHECK(cond) \
1611 KMP_DEBUG_ASSERT(cond); \
1612 if (!(cond)) { \
1613 running_threads = -1; \
1614 goto finish; \
1618 CHECK(buff_size >= info_size);
1619 spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1620 for (;;) {
1621 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1622 CHECK(0 <= offset &&
1623 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1624 HANDLE pid = spi->ProcessId;
1625 ULONG num = spi->NumberOfThreads;
1626 CHECK(num >= 1);
1627 size_t spi_size =
1628 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1629 CHECK(offset + spi_size <
1630 info_size); // Make sure process info record fits the buffer.
1631 if (spi->NextEntryOffset != 0) {
1632 CHECK(spi_size <=
1633 spi->NextEntryOffset); // And do not overlap with the next record.
1635 // pid == 0 corresponds to the System Idle Process. It always has running
1636 // threads on all cores. So, we don't consider the running threads of this
1637 // process.
1638 if (pid != 0) {
1639 for (ULONG i = 0; i < num; ++i) {
1640 THREAD_STATE state = spi->Threads[i].State;
1641 // Count threads that have Ready or Running state.
1642 // !!! TODO: Why comment does not match the code???
1643 if (state == StateRunning) {
1644 ++running_threads;
1645 // Stop counting running threads if the number is already greater than
1646 // the number of available cores
1647 if (running_threads >= max) {
1648 goto finish;
1653 if (spi->NextEntryOffset == 0) {
1654 break;
1656 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1659 #undef CHECK
1661 finish: // Clean up and exit.
1663 if (buffer != NULL) {
1664 KMP_INTERNAL_FREE(buffer);
1667 glb_running_threads = running_threads;
1669 return running_threads;
1670 } //__kmp_get_load_balance()
1672 // Find symbol from the loaded modules
1673 void *__kmp_lookup_symbol(const char *name, bool next) {
1674 HANDLE process = GetCurrentProcess();
1675 DWORD needed;
1676 HMODULE *modules = nullptr;
1677 if (!EnumProcessModules(process, modules, 0, &needed))
1678 return nullptr;
1679 DWORD num_modules = needed / sizeof(HMODULE);
1680 modules = (HMODULE *)malloc(num_modules * sizeof(HMODULE));
1681 if (!EnumProcessModules(process, modules, needed, &needed)) {
1682 free(modules);
1683 return nullptr;
1685 HMODULE curr_module = nullptr;
1686 if (next) {
1687 // Current module needs to be skipped if next flag is true
1688 if (!GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
1689 (LPCTSTR)&__kmp_lookup_symbol, &curr_module)) {
1690 free(modules);
1691 return nullptr;
1694 void *proc = nullptr;
1695 for (uint32_t i = 0; i < num_modules; i++) {
1696 if (next && modules[i] == curr_module)
1697 continue;
1698 proc = (void *)GetProcAddress(modules[i], name);
1699 if (proc)
1700 break;
1702 free(modules);
1703 return proc;
1706 // Functions for hidden helper task
1707 void __kmp_hidden_helper_worker_thread_wait() {
1708 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1711 void __kmp_do_initialize_hidden_helper_threads() {
1712 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1715 void __kmp_hidden_helper_threads_initz_wait() {
1716 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1719 void __kmp_hidden_helper_initz_release() {
1720 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1723 void __kmp_hidden_helper_main_thread_wait() {
1724 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1727 void __kmp_hidden_helper_main_thread_release() {
1728 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1731 void __kmp_hidden_helper_worker_thread_signal() {
1732 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1735 void __kmp_hidden_helper_threads_deinitz_wait() {
1736 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1739 void __kmp_hidden_helper_threads_deinitz_release() {
1740 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");