[LoopVectorizer] Propagate underlying instruction to the cloned instances of VPPartia...
[llvm-project.git] / polly / lib / Analysis / ScopBuilder.cpp
blob82fa9e11550f2f72f72e104d1153edbadcd06ad9
1 //===- ScopBuilder.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Create a polyhedral description for a static control flow region.
11 // The pass creates a polyhedral description of the Scops detected by the SCoP
12 // detection derived from their LLVM-IR code.
14 //===----------------------------------------------------------------------===//
16 #include "polly/ScopBuilder.h"
17 #include "polly/Options.h"
18 #include "polly/ScopDetection.h"
19 #include "polly/ScopInfo.h"
20 #include "polly/Support/GICHelper.h"
21 #include "polly/Support/ISLTools.h"
22 #include "polly/Support/SCEVValidator.h"
23 #include "polly/Support/ScopHelper.h"
24 #include "polly/Support/VirtualInstruction.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/EquivalenceClasses.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/Sequence.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/Delinearization.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/RegionInfo.h"
38 #include "llvm/Analysis/RegionIterator.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <cassert>
60 using namespace llvm;
61 using namespace polly;
63 #include "polly/Support/PollyDebug.h"
64 #define DEBUG_TYPE "polly-scops"
66 STATISTIC(ScopFound, "Number of valid Scops");
67 STATISTIC(RichScopFound, "Number of Scops containing a loop");
68 STATISTIC(InfeasibleScops,
69 "Number of SCoPs with statically infeasible context.");
71 bool polly::ModelReadOnlyScalars;
73 // The maximal number of dimensions we allow during invariant load construction.
74 // More complex access ranges will result in very high compile time and are also
75 // unlikely to result in good code. This value is very high and should only
76 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006).
77 static unsigned const MaxDimensionsInAccessRange = 9;
79 static cl::opt<bool, true> XModelReadOnlyScalars(
80 "polly-analyze-read-only-scalars",
81 cl::desc("Model read-only scalar values in the scop description"),
82 cl::location(ModelReadOnlyScalars), cl::Hidden, cl::init(true),
83 cl::cat(PollyCategory));
85 static cl::opt<int>
86 OptComputeOut("polly-analysis-computeout",
87 cl::desc("Bound the scop analysis by a maximal amount of "
88 "computational steps (0 means no bound)"),
89 cl::Hidden, cl::init(800000), cl::cat(PollyCategory));
91 static cl::opt<bool> PollyAllowDereferenceOfAllFunctionParams(
92 "polly-allow-dereference-of-all-function-parameters",
93 cl::desc(
94 "Treat all parameters to functions that are pointers as dereferencible."
95 " This is useful for invariant load hoisting, since we can generate"
96 " less runtime checks. This is only valid if all pointers to functions"
97 " are always initialized, so that Polly can choose to hoist"
98 " their loads. "),
99 cl::Hidden, cl::init(false), cl::cat(PollyCategory));
101 static cl::opt<bool>
102 PollyIgnoreInbounds("polly-ignore-inbounds",
103 cl::desc("Do not take inbounds assumptions at all"),
104 cl::Hidden, cl::init(false), cl::cat(PollyCategory));
106 static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup(
107 "polly-rtc-max-arrays-per-group",
108 cl::desc("The maximal number of arrays to compare in each alias group."),
109 cl::Hidden, cl::init(20), cl::cat(PollyCategory));
111 static cl::opt<unsigned> RunTimeChecksMaxAccessDisjuncts(
112 "polly-rtc-max-array-disjuncts",
113 cl::desc("The maximal number of disjunts allowed in memory accesses to "
114 "to build RTCs."),
115 cl::Hidden, cl::init(8), cl::cat(PollyCategory));
117 static cl::opt<unsigned> RunTimeChecksMaxParameters(
118 "polly-rtc-max-parameters",
119 cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
120 cl::init(8), cl::cat(PollyCategory));
122 static cl::opt<bool> UnprofitableScalarAccs(
123 "polly-unprofitable-scalar-accs",
124 cl::desc("Count statements with scalar accesses as not optimizable"),
125 cl::Hidden, cl::init(false), cl::cat(PollyCategory));
127 static cl::opt<std::string> UserContextStr(
128 "polly-context", cl::value_desc("isl parameter set"),
129 cl::desc("Provide additional constraints on the context parameters"),
130 cl::init(""), cl::cat(PollyCategory));
132 static cl::opt<bool> DetectReductions("polly-detect-reductions",
133 cl::desc("Detect and exploit reductions"),
134 cl::Hidden, cl::init(true),
135 cl::cat(PollyCategory));
137 // Multiplicative reductions can be disabled separately as these kind of
138 // operations can overflow easily. Additive reductions and bit operations
139 // are in contrast pretty stable.
140 static cl::opt<bool> DisableMultiplicativeReductions(
141 "polly-disable-multiplicative-reductions",
142 cl::desc("Disable multiplicative reductions"), cl::Hidden,
143 cl::cat(PollyCategory));
145 enum class GranularityChoice { BasicBlocks, ScalarIndependence, Stores };
147 static cl::opt<GranularityChoice> StmtGranularity(
148 "polly-stmt-granularity",
149 cl::desc(
150 "Algorithm to use for splitting basic blocks into multiple statements"),
151 cl::values(clEnumValN(GranularityChoice::BasicBlocks, "bb",
152 "One statement per basic block"),
153 clEnumValN(GranularityChoice::ScalarIndependence, "scalar-indep",
154 "Scalar independence heuristic"),
155 clEnumValN(GranularityChoice::Stores, "store",
156 "Store-level granularity")),
157 cl::init(GranularityChoice::ScalarIndependence), cl::cat(PollyCategory));
159 /// Helper to treat non-affine regions and basic blocks the same.
161 ///{
163 /// Return the block that is the representing block for @p RN.
164 static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) {
165 return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry()
166 : RN->getNodeAs<BasicBlock>();
169 /// Return the @p idx'th block that is executed after @p RN.
170 static inline BasicBlock *
171 getRegionNodeSuccessor(RegionNode *RN, Instruction *TI, unsigned idx) {
172 if (RN->isSubRegion()) {
173 assert(idx == 0);
174 return RN->getNodeAs<Region>()->getExit();
176 return TI->getSuccessor(idx);
179 static bool containsErrorBlock(RegionNode *RN, const Region &R,
180 ScopDetection *SD) {
181 if (!RN->isSubRegion())
182 return SD->isErrorBlock(*RN->getNodeAs<BasicBlock>(), R);
183 for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks())
184 if (SD->isErrorBlock(*BB, R))
185 return true;
186 return false;
189 ///}
191 /// Create a map to map from a given iteration to a subsequent iteration.
193 /// This map maps from SetSpace -> SetSpace where the dimensions @p Dim
194 /// is incremented by one and all other dimensions are equal, e.g.,
195 /// [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3]
197 /// if @p Dim is 2 and @p SetSpace has 4 dimensions.
198 static isl::map createNextIterationMap(isl::space SetSpace, unsigned Dim) {
199 isl::space MapSpace = SetSpace.map_from_set();
200 isl::map NextIterationMap = isl::map::universe(MapSpace);
201 for (unsigned u : rangeIslSize(0, NextIterationMap.domain_tuple_dim()))
202 if (u != Dim)
203 NextIterationMap =
204 NextIterationMap.equate(isl::dim::in, u, isl::dim::out, u);
205 isl::constraint C =
206 isl::constraint::alloc_equality(isl::local_space(MapSpace));
207 C = C.set_constant_si(1);
208 C = C.set_coefficient_si(isl::dim::in, Dim, 1);
209 C = C.set_coefficient_si(isl::dim::out, Dim, -1);
210 NextIterationMap = NextIterationMap.add_constraint(C);
211 return NextIterationMap;
214 /// Add @p BSet to set @p BoundedParts if @p BSet is bounded.
215 static isl::set collectBoundedParts(isl::set S) {
216 isl::set BoundedParts = isl::set::empty(S.get_space());
217 for (isl::basic_set BSet : S.get_basic_set_list())
218 if (BSet.is_bounded())
219 BoundedParts = BoundedParts.unite(isl::set(BSet));
220 return BoundedParts;
223 /// Compute the (un)bounded parts of @p S wrt. to dimension @p Dim.
225 /// @returns A separation of @p S into first an unbounded then a bounded subset,
226 /// both with regards to the dimension @p Dim.
227 static std::pair<isl::set, isl::set> partitionSetParts(isl::set S,
228 unsigned Dim) {
229 for (unsigned u : rangeIslSize(0, S.tuple_dim()))
230 S = S.lower_bound_si(isl::dim::set, u, 0);
232 unsigned NumDimsS = unsignedFromIslSize(S.tuple_dim());
233 isl::set OnlyDimS = S;
235 // Remove dimensions that are greater than Dim as they are not interesting.
236 assert(NumDimsS >= Dim + 1);
237 OnlyDimS = OnlyDimS.project_out(isl::dim::set, Dim + 1, NumDimsS - Dim - 1);
239 // Create artificial parametric upper bounds for dimensions smaller than Dim
240 // as we are not interested in them.
241 OnlyDimS = OnlyDimS.insert_dims(isl::dim::param, 0, Dim);
243 for (unsigned u = 0; u < Dim; u++) {
244 isl::constraint C = isl::constraint::alloc_inequality(
245 isl::local_space(OnlyDimS.get_space()));
246 C = C.set_coefficient_si(isl::dim::param, u, 1);
247 C = C.set_coefficient_si(isl::dim::set, u, -1);
248 OnlyDimS = OnlyDimS.add_constraint(C);
251 // Collect all bounded parts of OnlyDimS.
252 isl::set BoundedParts = collectBoundedParts(OnlyDimS);
254 // Create the dimensions greater than Dim again.
255 BoundedParts =
256 BoundedParts.insert_dims(isl::dim::set, Dim + 1, NumDimsS - Dim - 1);
258 // Remove the artificial upper bound parameters again.
259 BoundedParts = BoundedParts.remove_dims(isl::dim::param, 0, Dim);
261 isl::set UnboundedParts = S.subtract(BoundedParts);
262 return std::make_pair(UnboundedParts, BoundedParts);
265 /// Create the conditions under which @p L @p Pred @p R is true.
266 static isl::set buildConditionSet(ICmpInst::Predicate Pred, isl::pw_aff L,
267 isl::pw_aff R) {
268 switch (Pred) {
269 case ICmpInst::ICMP_EQ:
270 return L.eq_set(R);
271 case ICmpInst::ICMP_NE:
272 return L.ne_set(R);
273 case ICmpInst::ICMP_SLT:
274 return L.lt_set(R);
275 case ICmpInst::ICMP_SLE:
276 return L.le_set(R);
277 case ICmpInst::ICMP_SGT:
278 return L.gt_set(R);
279 case ICmpInst::ICMP_SGE:
280 return L.ge_set(R);
281 case ICmpInst::ICMP_ULT:
282 return L.lt_set(R);
283 case ICmpInst::ICMP_UGT:
284 return L.gt_set(R);
285 case ICmpInst::ICMP_ULE:
286 return L.le_set(R);
287 case ICmpInst::ICMP_UGE:
288 return L.ge_set(R);
289 default:
290 llvm_unreachable("Non integer predicate not supported");
294 isl::set ScopBuilder::adjustDomainDimensions(isl::set Dom, Loop *OldL,
295 Loop *NewL) {
296 // If the loops are the same there is nothing to do.
297 if (NewL == OldL)
298 return Dom;
300 int OldDepth = scop->getRelativeLoopDepth(OldL);
301 int NewDepth = scop->getRelativeLoopDepth(NewL);
302 // If both loops are non-affine loops there is nothing to do.
303 if (OldDepth == -1 && NewDepth == -1)
304 return Dom;
306 // Distinguish three cases:
307 // 1) The depth is the same but the loops are not.
308 // => One loop was left one was entered.
309 // 2) The depth increased from OldL to NewL.
310 // => One loop was entered, none was left.
311 // 3) The depth decreased from OldL to NewL.
312 // => Loops were left were difference of the depths defines how many.
313 if (OldDepth == NewDepth) {
314 assert(OldL->getParentLoop() == NewL->getParentLoop());
315 Dom = Dom.project_out(isl::dim::set, NewDepth, 1);
316 Dom = Dom.add_dims(isl::dim::set, 1);
317 } else if (OldDepth < NewDepth) {
318 assert(OldDepth + 1 == NewDepth);
319 auto &R = scop->getRegion();
320 (void)R;
321 assert(NewL->getParentLoop() == OldL ||
322 ((!OldL || !R.contains(OldL)) && R.contains(NewL)));
323 Dom = Dom.add_dims(isl::dim::set, 1);
324 } else {
325 assert(OldDepth > NewDepth);
326 unsigned Diff = OldDepth - NewDepth;
327 unsigned NumDim = unsignedFromIslSize(Dom.tuple_dim());
328 assert(NumDim >= Diff);
329 Dom = Dom.project_out(isl::dim::set, NumDim - Diff, Diff);
332 return Dom;
335 /// Compute the isl representation for the SCEV @p E in this BB.
337 /// @param BB The BB for which isl representation is to be
338 /// computed.
339 /// @param InvalidDomainMap A map of BB to their invalid domains.
340 /// @param E The SCEV that should be translated.
341 /// @param NonNegative Flag to indicate the @p E has to be non-negative.
343 /// Note that this function will also adjust the invalid context accordingly.
345 __isl_give isl_pw_aff *
346 ScopBuilder::getPwAff(BasicBlock *BB,
347 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
348 const SCEV *E, bool NonNegative) {
349 PWACtx PWAC = scop->getPwAff(E, BB, NonNegative, &RecordedAssumptions);
350 InvalidDomainMap[BB] = InvalidDomainMap[BB].unite(PWAC.second);
351 return PWAC.first.release();
354 /// Build condition sets for unsigned ICmpInst(s).
355 /// Special handling is required for unsigned operands to ensure that if
356 /// MSB (aka the Sign bit) is set for an operands in an unsigned ICmpInst
357 /// it should wrap around.
359 /// @param IsStrictUpperBound holds information on the predicate relation
360 /// between TestVal and UpperBound, i.e,
361 /// TestVal < UpperBound OR TestVal <= UpperBound
362 __isl_give isl_set *ScopBuilder::buildUnsignedConditionSets(
363 BasicBlock *BB, Value *Condition, __isl_keep isl_set *Domain,
364 const SCEV *SCEV_TestVal, const SCEV *SCEV_UpperBound,
365 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
366 bool IsStrictUpperBound) {
367 // Do not take NonNeg assumption on TestVal
368 // as it might have MSB (Sign bit) set.
369 isl_pw_aff *TestVal = getPwAff(BB, InvalidDomainMap, SCEV_TestVal, false);
370 // Take NonNeg assumption on UpperBound.
371 isl_pw_aff *UpperBound =
372 getPwAff(BB, InvalidDomainMap, SCEV_UpperBound, true);
374 // 0 <= TestVal
375 isl_set *First =
376 isl_pw_aff_le_set(isl_pw_aff_zero_on_domain(isl_local_space_from_space(
377 isl_pw_aff_get_domain_space(TestVal))),
378 isl_pw_aff_copy(TestVal));
380 isl_set *Second;
381 if (IsStrictUpperBound)
382 // TestVal < UpperBound
383 Second = isl_pw_aff_lt_set(TestVal, UpperBound);
384 else
385 // TestVal <= UpperBound
386 Second = isl_pw_aff_le_set(TestVal, UpperBound);
388 isl_set *ConsequenceCondSet = isl_set_intersect(First, Second);
389 return ConsequenceCondSet;
392 bool ScopBuilder::buildConditionSets(
393 BasicBlock *BB, SwitchInst *SI, Loop *L, __isl_keep isl_set *Domain,
394 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
395 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
396 Value *Condition = getConditionFromTerminator(SI);
397 assert(Condition && "No condition for switch");
399 isl_pw_aff *LHS, *RHS;
400 LHS = getPwAff(BB, InvalidDomainMap, SE.getSCEVAtScope(Condition, L));
402 unsigned NumSuccessors = SI->getNumSuccessors();
403 ConditionSets.resize(NumSuccessors);
404 for (auto &Case : SI->cases()) {
405 unsigned Idx = Case.getSuccessorIndex();
406 ConstantInt *CaseValue = Case.getCaseValue();
408 RHS = getPwAff(BB, InvalidDomainMap, SE.getSCEV(CaseValue));
409 isl_set *CaseConditionSet =
410 buildConditionSet(ICmpInst::ICMP_EQ, isl::manage_copy(LHS),
411 isl::manage(RHS))
412 .release();
413 ConditionSets[Idx] = isl_set_coalesce(
414 isl_set_intersect(CaseConditionSet, isl_set_copy(Domain)));
417 assert(ConditionSets[0] == nullptr && "Default condition set was set");
418 isl_set *ConditionSetUnion = isl_set_copy(ConditionSets[1]);
419 for (unsigned u = 2; u < NumSuccessors; u++)
420 ConditionSetUnion =
421 isl_set_union(ConditionSetUnion, isl_set_copy(ConditionSets[u]));
422 ConditionSets[0] = isl_set_subtract(isl_set_copy(Domain), ConditionSetUnion);
424 isl_pw_aff_free(LHS);
426 return true;
429 bool ScopBuilder::buildConditionSets(
430 BasicBlock *BB, Value *Condition, Instruction *TI, Loop *L,
431 __isl_keep isl_set *Domain,
432 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
433 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
434 isl_set *ConsequenceCondSet = nullptr;
436 if (auto Load = dyn_cast<LoadInst>(Condition)) {
437 const SCEV *LHSSCEV = SE.getSCEVAtScope(Load, L);
438 const SCEV *RHSSCEV = SE.getZero(LHSSCEV->getType());
439 bool NonNeg = false;
440 isl_pw_aff *LHS = getPwAff(BB, InvalidDomainMap, LHSSCEV, NonNeg);
441 isl_pw_aff *RHS = getPwAff(BB, InvalidDomainMap, RHSSCEV, NonNeg);
442 ConsequenceCondSet = buildConditionSet(ICmpInst::ICMP_SLE, isl::manage(LHS),
443 isl::manage(RHS))
444 .release();
445 } else if (auto *PHI = dyn_cast<PHINode>(Condition)) {
446 auto *Unique = dyn_cast<ConstantInt>(
447 getUniqueNonErrorValue(PHI, &scop->getRegion(), &SD));
448 assert(Unique &&
449 "A PHINode condition should only be accepted by ScopDetection if "
450 "getUniqueNonErrorValue returns non-NULL");
452 if (Unique->isZero())
453 ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
454 else
455 ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
456 } else if (auto *CCond = dyn_cast<ConstantInt>(Condition)) {
457 if (CCond->isZero())
458 ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
459 else
460 ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
461 } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
462 auto Opcode = BinOp->getOpcode();
463 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
465 bool Valid = buildConditionSets(BB, BinOp->getOperand(0), TI, L, Domain,
466 InvalidDomainMap, ConditionSets) &&
467 buildConditionSets(BB, BinOp->getOperand(1), TI, L, Domain,
468 InvalidDomainMap, ConditionSets);
469 if (!Valid) {
470 while (!ConditionSets.empty())
471 isl_set_free(ConditionSets.pop_back_val());
472 return false;
475 isl_set_free(ConditionSets.pop_back_val());
476 isl_set *ConsCondPart0 = ConditionSets.pop_back_val();
477 isl_set_free(ConditionSets.pop_back_val());
478 isl_set *ConsCondPart1 = ConditionSets.pop_back_val();
480 if (Opcode == Instruction::And)
481 ConsequenceCondSet = isl_set_intersect(ConsCondPart0, ConsCondPart1);
482 else
483 ConsequenceCondSet = isl_set_union(ConsCondPart0, ConsCondPart1);
484 } else {
485 auto *ICond = dyn_cast<ICmpInst>(Condition);
486 assert(ICond &&
487 "Condition of exiting branch was neither constant nor ICmp!");
489 Region &R = scop->getRegion();
491 isl_pw_aff *LHS, *RHS;
492 // For unsigned comparisons we assumed the signed bit of neither operand
493 // to be set. The comparison is equal to a signed comparison under this
494 // assumption.
495 bool NonNeg = ICond->isUnsigned();
496 const SCEV *LeftOperand = SE.getSCEVAtScope(ICond->getOperand(0), L),
497 *RightOperand = SE.getSCEVAtScope(ICond->getOperand(1), L);
499 LeftOperand = tryForwardThroughPHI(LeftOperand, R, SE, &SD);
500 RightOperand = tryForwardThroughPHI(RightOperand, R, SE, &SD);
502 switch (ICond->getPredicate()) {
503 case ICmpInst::ICMP_ULT:
504 ConsequenceCondSet =
505 buildUnsignedConditionSets(BB, Condition, Domain, LeftOperand,
506 RightOperand, InvalidDomainMap, true);
507 break;
508 case ICmpInst::ICMP_ULE:
509 ConsequenceCondSet =
510 buildUnsignedConditionSets(BB, Condition, Domain, LeftOperand,
511 RightOperand, InvalidDomainMap, false);
512 break;
513 case ICmpInst::ICMP_UGT:
514 ConsequenceCondSet =
515 buildUnsignedConditionSets(BB, Condition, Domain, RightOperand,
516 LeftOperand, InvalidDomainMap, true);
517 break;
518 case ICmpInst::ICMP_UGE:
519 ConsequenceCondSet =
520 buildUnsignedConditionSets(BB, Condition, Domain, RightOperand,
521 LeftOperand, InvalidDomainMap, false);
522 break;
523 default:
524 LHS = getPwAff(BB, InvalidDomainMap, LeftOperand, NonNeg);
525 RHS = getPwAff(BB, InvalidDomainMap, RightOperand, NonNeg);
526 ConsequenceCondSet = buildConditionSet(ICond->getPredicate(),
527 isl::manage(LHS), isl::manage(RHS))
528 .release();
529 break;
533 // If no terminator was given we are only looking for parameter constraints
534 // under which @p Condition is true/false.
535 if (!TI)
536 ConsequenceCondSet = isl_set_params(ConsequenceCondSet);
537 assert(ConsequenceCondSet);
538 ConsequenceCondSet = isl_set_coalesce(
539 isl_set_intersect(ConsequenceCondSet, isl_set_copy(Domain)));
541 isl_set *AlternativeCondSet = nullptr;
542 bool TooComplex =
543 isl_set_n_basic_set(ConsequenceCondSet) >= (int)MaxDisjunctsInDomain;
545 if (!TooComplex) {
546 AlternativeCondSet = isl_set_subtract(isl_set_copy(Domain),
547 isl_set_copy(ConsequenceCondSet));
548 TooComplex =
549 isl_set_n_basic_set(AlternativeCondSet) >= (int)MaxDisjunctsInDomain;
552 if (TooComplex) {
553 scop->invalidate(COMPLEXITY, TI ? TI->getDebugLoc() : DebugLoc(),
554 TI ? TI->getParent() : nullptr /* BasicBlock */);
555 isl_set_free(AlternativeCondSet);
556 isl_set_free(ConsequenceCondSet);
557 return false;
560 ConditionSets.push_back(ConsequenceCondSet);
561 ConditionSets.push_back(isl_set_coalesce(AlternativeCondSet));
563 return true;
566 bool ScopBuilder::buildConditionSets(
567 BasicBlock *BB, Instruction *TI, Loop *L, __isl_keep isl_set *Domain,
568 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
569 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
570 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
571 return buildConditionSets(BB, SI, L, Domain, InvalidDomainMap,
572 ConditionSets);
574 assert(isa<BranchInst>(TI) && "Terminator was neither branch nor switch.");
576 if (TI->getNumSuccessors() == 1) {
577 ConditionSets.push_back(isl_set_copy(Domain));
578 return true;
581 Value *Condition = getConditionFromTerminator(TI);
582 assert(Condition && "No condition for Terminator");
584 return buildConditionSets(BB, Condition, TI, L, Domain, InvalidDomainMap,
585 ConditionSets);
588 bool ScopBuilder::propagateDomainConstraints(
589 Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
590 // Iterate over the region R and propagate the domain constrains from the
591 // predecessors to the current node. In contrast to the
592 // buildDomainsWithBranchConstraints function, this one will pull the domain
593 // information from the predecessors instead of pushing it to the successors.
594 // Additionally, we assume the domains to be already present in the domain
595 // map here. However, we iterate again in reverse post order so we know all
596 // predecessors have been visited before a block or non-affine subregion is
597 // visited.
599 ReversePostOrderTraversal<Region *> RTraversal(R);
600 for (auto *RN : RTraversal) {
601 // Recurse for affine subregions but go on for basic blocks and non-affine
602 // subregions.
603 if (RN->isSubRegion()) {
604 Region *SubRegion = RN->getNodeAs<Region>();
605 if (!scop->isNonAffineSubRegion(SubRegion)) {
606 if (!propagateDomainConstraints(SubRegion, InvalidDomainMap))
607 return false;
608 continue;
612 BasicBlock *BB = getRegionNodeBasicBlock(RN);
613 isl::set &Domain = scop->getOrInitEmptyDomain(BB);
614 assert(!Domain.is_null());
616 // Under the union of all predecessor conditions we can reach this block.
617 isl::set PredDom = getPredecessorDomainConstraints(BB, Domain);
618 Domain = Domain.intersect(PredDom).coalesce();
619 Domain = Domain.align_params(scop->getParamSpace());
621 Loop *BBLoop = getRegionNodeLoop(RN, LI);
622 if (BBLoop && BBLoop->getHeader() == BB && scop->contains(BBLoop))
623 if (!addLoopBoundsToHeaderDomain(BBLoop, InvalidDomainMap))
624 return false;
627 return true;
630 void ScopBuilder::propagateDomainConstraintsToRegionExit(
631 BasicBlock *BB, Loop *BBLoop,
632 SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks,
633 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
634 // Check if the block @p BB is the entry of a region. If so we propagate it's
635 // domain to the exit block of the region. Otherwise we are done.
636 auto *RI = scop->getRegion().getRegionInfo();
637 auto *BBReg = RI ? RI->getRegionFor(BB) : nullptr;
638 auto *ExitBB = BBReg ? BBReg->getExit() : nullptr;
639 if (!BBReg || BBReg->getEntry() != BB || !scop->contains(ExitBB))
640 return;
642 // Do not propagate the domain if there is a loop backedge inside the region
643 // that would prevent the exit block from being executed.
644 auto *L = BBLoop;
645 while (L && scop->contains(L)) {
646 SmallVector<BasicBlock *, 4> LatchBBs;
647 BBLoop->getLoopLatches(LatchBBs);
648 for (auto *LatchBB : LatchBBs)
649 if (BB != LatchBB && BBReg->contains(LatchBB))
650 return;
651 L = L->getParentLoop();
654 isl::set Domain = scop->getOrInitEmptyDomain(BB);
655 assert(!Domain.is_null() && "Cannot propagate a nullptr");
657 Loop *ExitBBLoop = getFirstNonBoxedLoopFor(ExitBB, LI, scop->getBoxedLoops());
659 // Since the dimensions of @p BB and @p ExitBB might be different we have to
660 // adjust the domain before we can propagate it.
661 isl::set AdjustedDomain = adjustDomainDimensions(Domain, BBLoop, ExitBBLoop);
662 isl::set &ExitDomain = scop->getOrInitEmptyDomain(ExitBB);
664 // If the exit domain is not yet created we set it otherwise we "add" the
665 // current domain.
666 ExitDomain =
667 !ExitDomain.is_null() ? AdjustedDomain.unite(ExitDomain) : AdjustedDomain;
669 // Initialize the invalid domain.
670 InvalidDomainMap[ExitBB] = ExitDomain.empty(ExitDomain.get_space());
672 FinishedExitBlocks.insert(ExitBB);
675 isl::set ScopBuilder::getPredecessorDomainConstraints(BasicBlock *BB,
676 isl::set Domain) {
677 // If @p BB is the ScopEntry we are done
678 if (scop->getRegion().getEntry() == BB)
679 return isl::set::universe(Domain.get_space());
681 // The region info of this function.
682 auto &RI = *scop->getRegion().getRegionInfo();
684 Loop *BBLoop = getFirstNonBoxedLoopFor(BB, LI, scop->getBoxedLoops());
686 // A domain to collect all predecessor domains, thus all conditions under
687 // which the block is executed. To this end we start with the empty domain.
688 isl::set PredDom = isl::set::empty(Domain.get_space());
690 // Set of regions of which the entry block domain has been propagated to BB.
691 // all predecessors inside any of the regions can be skipped.
692 SmallSet<Region *, 8> PropagatedRegions;
694 for (auto *PredBB : predecessors(BB)) {
695 // Skip backedges.
696 if (DT.dominates(BB, PredBB))
697 continue;
699 // If the predecessor is in a region we used for propagation we can skip it.
700 auto PredBBInRegion = [PredBB](Region *PR) { return PR->contains(PredBB); };
701 if (llvm::any_of(PropagatedRegions, PredBBInRegion)) {
702 continue;
705 // Check if there is a valid region we can use for propagation, thus look
706 // for a region that contains the predecessor and has @p BB as exit block.
707 // FIXME: This was an side-effect-free (and possibly infinite) loop when
708 // committed and seems not to be needed.
709 auto *PredR = RI.getRegionFor(PredBB);
710 while (PredR->getExit() != BB && !PredR->contains(BB))
711 PredR = PredR->getParent();
713 // If a valid region for propagation was found use the entry of that region
714 // for propagation, otherwise the PredBB directly.
715 if (PredR->getExit() == BB) {
716 PredBB = PredR->getEntry();
717 PropagatedRegions.insert(PredR);
720 isl::set PredBBDom = scop->getDomainConditions(PredBB);
721 Loop *PredBBLoop =
722 getFirstNonBoxedLoopFor(PredBB, LI, scop->getBoxedLoops());
723 PredBBDom = adjustDomainDimensions(PredBBDom, PredBBLoop, BBLoop);
724 PredDom = PredDom.unite(PredBBDom);
727 return PredDom;
730 bool ScopBuilder::addLoopBoundsToHeaderDomain(
731 Loop *L, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
732 int LoopDepth = scop->getRelativeLoopDepth(L);
733 assert(LoopDepth >= 0 && "Loop in region should have at least depth one");
735 BasicBlock *HeaderBB = L->getHeader();
736 assert(scop->isDomainDefined(HeaderBB));
737 isl::set &HeaderBBDom = scop->getOrInitEmptyDomain(HeaderBB);
739 isl::map NextIterationMap =
740 createNextIterationMap(HeaderBBDom.get_space(), LoopDepth);
742 isl::set UnionBackedgeCondition = HeaderBBDom.empty(HeaderBBDom.get_space());
744 SmallVector<BasicBlock *, 4> LatchBlocks;
745 L->getLoopLatches(LatchBlocks);
747 for (BasicBlock *LatchBB : LatchBlocks) {
748 // If the latch is only reachable via error statements we skip it.
749 if (!scop->isDomainDefined(LatchBB))
750 continue;
752 isl::set LatchBBDom = scop->getDomainConditions(LatchBB);
754 isl::set BackedgeCondition;
756 Instruction *TI = LatchBB->getTerminator();
757 BranchInst *BI = dyn_cast<BranchInst>(TI);
758 assert(BI && "Only branch instructions allowed in loop latches");
760 if (BI->isUnconditional())
761 BackedgeCondition = LatchBBDom;
762 else {
763 SmallVector<isl_set *, 8> ConditionSets;
764 int idx = BI->getSuccessor(0) != HeaderBB;
765 if (!buildConditionSets(LatchBB, TI, L, LatchBBDom.get(),
766 InvalidDomainMap, ConditionSets))
767 return false;
769 // Free the non back edge condition set as we do not need it.
770 isl_set_free(ConditionSets[1 - idx]);
772 BackedgeCondition = isl::manage(ConditionSets[idx]);
775 int LatchLoopDepth = scop->getRelativeLoopDepth(LI.getLoopFor(LatchBB));
776 assert(LatchLoopDepth >= LoopDepth);
777 BackedgeCondition = BackedgeCondition.project_out(
778 isl::dim::set, LoopDepth + 1, LatchLoopDepth - LoopDepth);
779 UnionBackedgeCondition = UnionBackedgeCondition.unite(BackedgeCondition);
782 isl::map ForwardMap = ForwardMap.lex_le(HeaderBBDom.get_space());
783 for (int i = 0; i < LoopDepth; i++)
784 ForwardMap = ForwardMap.equate(isl::dim::in, i, isl::dim::out, i);
786 isl::set UnionBackedgeConditionComplement =
787 UnionBackedgeCondition.complement();
788 UnionBackedgeConditionComplement =
789 UnionBackedgeConditionComplement.lower_bound_si(isl::dim::set, LoopDepth,
791 UnionBackedgeConditionComplement =
792 UnionBackedgeConditionComplement.apply(ForwardMap);
793 HeaderBBDom = HeaderBBDom.subtract(UnionBackedgeConditionComplement);
794 HeaderBBDom = HeaderBBDom.apply(NextIterationMap);
796 auto Parts = partitionSetParts(HeaderBBDom, LoopDepth);
797 HeaderBBDom = Parts.second;
799 // Check if there is a <nsw> tagged AddRec for this loop and if so do not
800 // require a runtime check. The assumption is already implied by the <nsw>
801 // tag.
802 bool RequiresRTC = !scop->hasNSWAddRecForLoop(L);
804 isl::set UnboundedCtx = Parts.first.params();
805 recordAssumption(&RecordedAssumptions, INFINITELOOP, UnboundedCtx,
806 HeaderBB->getTerminator()->getDebugLoc(), AS_RESTRICTION,
807 nullptr, RequiresRTC);
808 return true;
811 void ScopBuilder::buildInvariantEquivalenceClasses() {
812 DenseMap<std::pair<const SCEV *, Type *>, LoadInst *> EquivClasses;
814 const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
815 for (LoadInst *LInst : RIL) {
816 const SCEV *PointerSCEV = SE.getSCEV(LInst->getPointerOperand());
818 Type *Ty = LInst->getType();
819 LoadInst *&ClassRep = EquivClasses[std::make_pair(PointerSCEV, Ty)];
820 if (ClassRep) {
821 scop->addInvariantLoadMapping(LInst, ClassRep);
822 continue;
825 ClassRep = LInst;
826 scop->addInvariantEquivClass(
827 InvariantEquivClassTy{PointerSCEV, MemoryAccessList(), {}, Ty});
831 bool ScopBuilder::buildDomains(
832 Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
833 bool IsOnlyNonAffineRegion = scop->isNonAffineSubRegion(R);
834 auto *EntryBB = R->getEntry();
835 auto *L = IsOnlyNonAffineRegion ? nullptr : LI.getLoopFor(EntryBB);
836 int LD = scop->getRelativeLoopDepth(L);
837 auto *S =
838 isl_set_universe(isl_space_set_alloc(scop->getIslCtx().get(), 0, LD + 1));
840 InvalidDomainMap[EntryBB] = isl::manage(isl_set_empty(isl_set_get_space(S)));
841 isl::set Domain = isl::manage(S);
842 scop->setDomain(EntryBB, Domain);
844 if (IsOnlyNonAffineRegion)
845 return !containsErrorBlock(R->getNode(), *R, &SD);
847 if (!buildDomainsWithBranchConstraints(R, InvalidDomainMap))
848 return false;
850 if (!propagateDomainConstraints(R, InvalidDomainMap))
851 return false;
853 // Error blocks and blocks dominated by them have been assumed to never be
854 // executed. Representing them in the Scop does not add any value. In fact,
855 // it is likely to cause issues during construction of the ScopStmts. The
856 // contents of error blocks have not been verified to be expressible and
857 // will cause problems when building up a ScopStmt for them.
858 // Furthermore, basic blocks dominated by error blocks may reference
859 // instructions in the error block which, if the error block is not modeled,
860 // can themselves not be constructed properly. To this end we will replace
861 // the domains of error blocks and those only reachable via error blocks
862 // with an empty set. Additionally, we will record for each block under which
863 // parameter combination it would be reached via an error block in its
864 // InvalidDomain. This information is needed during load hoisting.
865 if (!propagateInvalidStmtDomains(R, InvalidDomainMap))
866 return false;
868 return true;
871 bool ScopBuilder::buildDomainsWithBranchConstraints(
872 Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
873 // To create the domain for each block in R we iterate over all blocks and
874 // subregions in R and propagate the conditions under which the current region
875 // element is executed. To this end we iterate in reverse post order over R as
876 // it ensures that we first visit all predecessors of a region node (either a
877 // basic block or a subregion) before we visit the region node itself.
878 // Initially, only the domain for the SCoP region entry block is set and from
879 // there we propagate the current domain to all successors, however we add the
880 // condition that the successor is actually executed next.
881 // As we are only interested in non-loop carried constraints here we can
882 // simply skip loop back edges.
884 SmallPtrSet<BasicBlock *, 8> FinishedExitBlocks;
885 ReversePostOrderTraversal<Region *> RTraversal(R);
886 for (auto *RN : RTraversal) {
887 // Recurse for affine subregions but go on for basic blocks and non-affine
888 // subregions.
889 if (RN->isSubRegion()) {
890 Region *SubRegion = RN->getNodeAs<Region>();
891 if (!scop->isNonAffineSubRegion(SubRegion)) {
892 if (!buildDomainsWithBranchConstraints(SubRegion, InvalidDomainMap))
893 return false;
894 continue;
898 if (containsErrorBlock(RN, scop->getRegion(), &SD))
899 scop->notifyErrorBlock();
902 BasicBlock *BB = getRegionNodeBasicBlock(RN);
903 Instruction *TI = BB->getTerminator();
905 if (isa<UnreachableInst>(TI))
906 continue;
908 if (!scop->isDomainDefined(BB))
909 continue;
910 isl::set Domain = scop->getDomainConditions(BB);
912 scop->updateMaxLoopDepth(unsignedFromIslSize(Domain.tuple_dim()));
914 auto *BBLoop = getRegionNodeLoop(RN, LI);
915 // Propagate the domain from BB directly to blocks that have a superset
916 // domain, at the moment only region exit nodes of regions that start in BB.
917 propagateDomainConstraintsToRegionExit(BB, BBLoop, FinishedExitBlocks,
918 InvalidDomainMap);
920 // If all successors of BB have been set a domain through the propagation
921 // above we do not need to build condition sets but can just skip this
922 // block. However, it is important to note that this is a local property
923 // with regards to the region @p R. To this end FinishedExitBlocks is a
924 // local variable.
925 auto IsFinishedRegionExit = [&FinishedExitBlocks](BasicBlock *SuccBB) {
926 return FinishedExitBlocks.count(SuccBB);
928 if (std::all_of(succ_begin(BB), succ_end(BB), IsFinishedRegionExit))
929 continue;
931 // Build the condition sets for the successor nodes of the current region
932 // node. If it is a non-affine subregion we will always execute the single
933 // exit node, hence the single entry node domain is the condition set. For
934 // basic blocks we use the helper function buildConditionSets.
935 SmallVector<isl_set *, 8> ConditionSets;
936 if (RN->isSubRegion())
937 ConditionSets.push_back(Domain.copy());
938 else if (!buildConditionSets(BB, TI, BBLoop, Domain.get(), InvalidDomainMap,
939 ConditionSets))
940 return false;
942 // Now iterate over the successors and set their initial domain based on
943 // their condition set. We skip back edges here and have to be careful when
944 // we leave a loop not to keep constraints over a dimension that doesn't
945 // exist anymore.
946 assert(RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size());
947 for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) {
948 isl::set CondSet = isl::manage(ConditionSets[u]);
949 BasicBlock *SuccBB = getRegionNodeSuccessor(RN, TI, u);
951 // Skip blocks outside the region.
952 if (!scop->contains(SuccBB))
953 continue;
955 // If we propagate the domain of some block to "SuccBB" we do not have to
956 // adjust the domain.
957 if (FinishedExitBlocks.count(SuccBB))
958 continue;
960 // Skip back edges.
961 if (DT.dominates(SuccBB, BB))
962 continue;
964 Loop *SuccBBLoop =
965 getFirstNonBoxedLoopFor(SuccBB, LI, scop->getBoxedLoops());
967 CondSet = adjustDomainDimensions(CondSet, BBLoop, SuccBBLoop);
969 // Set the domain for the successor or merge it with an existing domain in
970 // case there are multiple paths (without loop back edges) to the
971 // successor block.
972 isl::set &SuccDomain = scop->getOrInitEmptyDomain(SuccBB);
974 if (!SuccDomain.is_null()) {
975 SuccDomain = SuccDomain.unite(CondSet).coalesce();
976 } else {
977 // Initialize the invalid domain.
978 InvalidDomainMap[SuccBB] = CondSet.empty(CondSet.get_space());
979 SuccDomain = CondSet;
982 SuccDomain = SuccDomain.detect_equalities();
984 // Check if the maximal number of domain disjunctions was reached.
985 // In case this happens we will clean up and bail.
986 if (unsignedFromIslSize(SuccDomain.n_basic_set()) < MaxDisjunctsInDomain)
987 continue;
989 scop->invalidate(COMPLEXITY, DebugLoc());
990 while (++u < ConditionSets.size())
991 isl_set_free(ConditionSets[u]);
992 return false;
996 return true;
999 bool ScopBuilder::propagateInvalidStmtDomains(
1000 Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
1001 ReversePostOrderTraversal<Region *> RTraversal(R);
1002 for (auto *RN : RTraversal) {
1004 // Recurse for affine subregions but go on for basic blocks and non-affine
1005 // subregions.
1006 if (RN->isSubRegion()) {
1007 Region *SubRegion = RN->getNodeAs<Region>();
1008 if (!scop->isNonAffineSubRegion(SubRegion)) {
1009 propagateInvalidStmtDomains(SubRegion, InvalidDomainMap);
1010 continue;
1014 bool ContainsErrorBlock = containsErrorBlock(RN, scop->getRegion(), &SD);
1015 BasicBlock *BB = getRegionNodeBasicBlock(RN);
1016 isl::set &Domain = scop->getOrInitEmptyDomain(BB);
1017 assert(!Domain.is_null() && "Cannot propagate a nullptr");
1019 isl::set InvalidDomain = InvalidDomainMap[BB];
1021 bool IsInvalidBlock = ContainsErrorBlock || Domain.is_subset(InvalidDomain);
1023 if (!IsInvalidBlock) {
1024 InvalidDomain = InvalidDomain.intersect(Domain);
1025 } else {
1026 InvalidDomain = Domain;
1027 isl::set DomPar = Domain.params();
1028 recordAssumption(&RecordedAssumptions, ERRORBLOCK, DomPar,
1029 BB->getTerminator()->getDebugLoc(), AS_RESTRICTION);
1030 Domain = isl::set::empty(Domain.get_space());
1033 if (InvalidDomain.is_empty()) {
1034 InvalidDomainMap[BB] = InvalidDomain;
1035 continue;
1038 auto *BBLoop = getRegionNodeLoop(RN, LI);
1039 auto *TI = BB->getTerminator();
1040 unsigned NumSuccs = RN->isSubRegion() ? 1 : TI->getNumSuccessors();
1041 for (unsigned u = 0; u < NumSuccs; u++) {
1042 auto *SuccBB = getRegionNodeSuccessor(RN, TI, u);
1044 // Skip successors outside the SCoP.
1045 if (!scop->contains(SuccBB))
1046 continue;
1048 // Skip backedges.
1049 if (DT.dominates(SuccBB, BB))
1050 continue;
1052 Loop *SuccBBLoop =
1053 getFirstNonBoxedLoopFor(SuccBB, LI, scop->getBoxedLoops());
1055 auto AdjustedInvalidDomain =
1056 adjustDomainDimensions(InvalidDomain, BBLoop, SuccBBLoop);
1058 isl::set SuccInvalidDomain = InvalidDomainMap[SuccBB];
1059 SuccInvalidDomain = SuccInvalidDomain.unite(AdjustedInvalidDomain);
1060 SuccInvalidDomain = SuccInvalidDomain.coalesce();
1062 InvalidDomainMap[SuccBB] = SuccInvalidDomain;
1064 // Check if the maximal number of domain disjunctions was reached.
1065 // In case this happens we will bail.
1066 if (unsignedFromIslSize(SuccInvalidDomain.n_basic_set()) <
1067 MaxDisjunctsInDomain)
1068 continue;
1070 InvalidDomainMap.erase(BB);
1071 scop->invalidate(COMPLEXITY, TI->getDebugLoc(), TI->getParent());
1072 return false;
1075 InvalidDomainMap[BB] = InvalidDomain;
1078 return true;
1081 void ScopBuilder::buildPHIAccesses(ScopStmt *PHIStmt, PHINode *PHI,
1082 Region *NonAffineSubRegion,
1083 bool IsExitBlock) {
1084 // PHI nodes that are in the exit block of the region, hence if IsExitBlock is
1085 // true, are not modeled as ordinary PHI nodes as they are not part of the
1086 // region. However, we model the operands in the predecessor blocks that are
1087 // part of the region as regular scalar accesses.
1089 // If we can synthesize a PHI we can skip it, however only if it is in
1090 // the region. If it is not it can only be in the exit block of the region.
1091 // In this case we model the operands but not the PHI itself.
1092 auto *Scope = LI.getLoopFor(PHI->getParent());
1093 if (!IsExitBlock && canSynthesize(PHI, *scop, &SE, Scope))
1094 return;
1096 // PHI nodes are modeled as if they had been demoted prior to the SCoP
1097 // detection. Hence, the PHI is a load of a new memory location in which the
1098 // incoming value was written at the end of the incoming basic block.
1099 bool OnlyNonAffineSubRegionOperands = true;
1100 for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
1101 Value *Op = PHI->getIncomingValue(u);
1102 BasicBlock *OpBB = PHI->getIncomingBlock(u);
1103 ScopStmt *OpStmt = scop->getIncomingStmtFor(PHI->getOperandUse(u));
1105 // Do not build PHI dependences inside a non-affine subregion, but make
1106 // sure that the necessary scalar values are still made available.
1107 if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB)) {
1108 auto *OpInst = dyn_cast<Instruction>(Op);
1109 if (!OpInst || !NonAffineSubRegion->contains(OpInst))
1110 ensureValueRead(Op, OpStmt);
1111 continue;
1114 OnlyNonAffineSubRegionOperands = false;
1115 ensurePHIWrite(PHI, OpStmt, OpBB, Op, IsExitBlock);
1118 if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) {
1119 addPHIReadAccess(PHIStmt, PHI);
1123 void ScopBuilder::buildScalarDependences(ScopStmt *UserStmt,
1124 Instruction *Inst) {
1125 assert(!isa<PHINode>(Inst));
1127 // Pull-in required operands.
1128 for (Use &Op : Inst->operands())
1129 ensureValueRead(Op.get(), UserStmt);
1132 // Create a sequence of two schedules. Either argument may be null and is
1133 // interpreted as the empty schedule. Can also return null if both schedules are
1134 // empty.
1135 static isl::schedule combineInSequence(isl::schedule Prev, isl::schedule Succ) {
1136 if (Prev.is_null())
1137 return Succ;
1138 if (Succ.is_null())
1139 return Prev;
1141 return Prev.sequence(Succ);
1144 // Create an isl_multi_union_aff that defines an identity mapping from the
1145 // elements of USet to their N-th dimension.
1147 // # Example:
1149 // Domain: { A[i,j]; B[i,j,k] }
1150 // N: 1
1152 // Resulting Mapping: { {A[i,j] -> [(j)]; B[i,j,k] -> [(j)] }
1154 // @param USet A union set describing the elements for which to generate a
1155 // mapping.
1156 // @param N The dimension to map to.
1157 // @returns A mapping from USet to its N-th dimension.
1158 static isl::multi_union_pw_aff mapToDimension(isl::union_set USet, unsigned N) {
1159 assert(!USet.is_null());
1160 assert(!USet.is_empty());
1162 auto Result = isl::union_pw_multi_aff::empty(USet.get_space());
1164 for (isl::set S : USet.get_set_list()) {
1165 unsigned Dim = unsignedFromIslSize(S.tuple_dim());
1166 assert(Dim >= N);
1167 auto PMA = isl::pw_multi_aff::project_out_map(S.get_space(), isl::dim::set,
1168 N, Dim - N);
1169 if (N > 1)
1170 PMA = PMA.drop_dims(isl::dim::out, 0, N - 1);
1172 Result = Result.add_pw_multi_aff(PMA);
1175 return isl::multi_union_pw_aff(isl::union_pw_multi_aff(Result));
1178 void ScopBuilder::buildSchedule() {
1179 Loop *L = getLoopSurroundingScop(*scop, LI);
1180 LoopStackTy LoopStack({LoopStackElementTy(L, {}, 0)});
1181 buildSchedule(scop->getRegion().getNode(), LoopStack);
1182 assert(LoopStack.size() == 1 && LoopStack.back().L == L);
1183 scop->setScheduleTree(LoopStack[0].Schedule);
1186 /// To generate a schedule for the elements in a Region we traverse the Region
1187 /// in reverse-post-order and add the contained RegionNodes in traversal order
1188 /// to the schedule of the loop that is currently at the top of the LoopStack.
1189 /// For loop-free codes, this results in a correct sequential ordering.
1191 /// Example:
1192 /// bb1(0)
1193 /// / \.
1194 /// bb2(1) bb3(2)
1195 /// \ / \.
1196 /// bb4(3) bb5(4)
1197 /// \ /
1198 /// bb6(5)
1200 /// Including loops requires additional processing. Whenever a loop header is
1201 /// encountered, the corresponding loop is added to the @p LoopStack. Starting
1202 /// from an empty schedule, we first process all RegionNodes that are within
1203 /// this loop and complete the sequential schedule at this loop-level before
1204 /// processing about any other nodes. To implement this
1205 /// loop-nodes-first-processing, the reverse post-order traversal is
1206 /// insufficient. Hence, we additionally check if the traversal yields
1207 /// sub-regions or blocks that are outside the last loop on the @p LoopStack.
1208 /// These region-nodes are then queue and only traverse after the all nodes
1209 /// within the current loop have been processed.
1210 void ScopBuilder::buildSchedule(Region *R, LoopStackTy &LoopStack) {
1211 Loop *OuterScopLoop = getLoopSurroundingScop(*scop, LI);
1213 ReversePostOrderTraversal<Region *> RTraversal(R);
1214 std::deque<RegionNode *> WorkList(RTraversal.begin(), RTraversal.end());
1215 std::deque<RegionNode *> DelayList;
1216 bool LastRNWaiting = false;
1218 // Iterate over the region @p R in reverse post-order but queue
1219 // sub-regions/blocks iff they are not part of the last encountered but not
1220 // completely traversed loop. The variable LastRNWaiting is a flag to indicate
1221 // that we queued the last sub-region/block from the reverse post-order
1222 // iterator. If it is set we have to explore the next sub-region/block from
1223 // the iterator (if any) to guarantee progress. If it is not set we first try
1224 // the next queued sub-region/blocks.
1225 while (!WorkList.empty() || !DelayList.empty()) {
1226 RegionNode *RN;
1228 if ((LastRNWaiting && !WorkList.empty()) || DelayList.empty()) {
1229 RN = WorkList.front();
1230 WorkList.pop_front();
1231 LastRNWaiting = false;
1232 } else {
1233 RN = DelayList.front();
1234 DelayList.pop_front();
1237 Loop *L = getRegionNodeLoop(RN, LI);
1238 if (!scop->contains(L))
1239 L = OuterScopLoop;
1241 Loop *LastLoop = LoopStack.back().L;
1242 if (LastLoop != L) {
1243 if (LastLoop && !LastLoop->contains(L)) {
1244 LastRNWaiting = true;
1245 DelayList.push_back(RN);
1246 continue;
1248 LoopStack.push_back({L, {}, 0});
1250 buildSchedule(RN, LoopStack);
1254 void ScopBuilder::buildSchedule(RegionNode *RN, LoopStackTy &LoopStack) {
1255 if (RN->isSubRegion()) {
1256 auto *LocalRegion = RN->getNodeAs<Region>();
1257 if (!scop->isNonAffineSubRegion(LocalRegion)) {
1258 buildSchedule(LocalRegion, LoopStack);
1259 return;
1263 assert(LoopStack.rbegin() != LoopStack.rend());
1264 auto LoopData = LoopStack.rbegin();
1265 LoopData->NumBlocksProcessed += getNumBlocksInRegionNode(RN);
1267 for (auto *Stmt : scop->getStmtListFor(RN)) {
1268 isl::union_set UDomain{Stmt->getDomain()};
1269 auto StmtSchedule = isl::schedule::from_domain(UDomain);
1270 LoopData->Schedule = combineInSequence(LoopData->Schedule, StmtSchedule);
1273 // Check if we just processed the last node in this loop. If we did, finalize
1274 // the loop by:
1276 // - adding new schedule dimensions
1277 // - folding the resulting schedule into the parent loop schedule
1278 // - dropping the loop schedule from the LoopStack.
1280 // Then continue to check surrounding loops, which might also have been
1281 // completed by this node.
1282 size_t Dimension = LoopStack.size();
1283 while (LoopData->L &&
1284 LoopData->NumBlocksProcessed == getNumBlocksInLoop(LoopData->L)) {
1285 isl::schedule Schedule = LoopData->Schedule;
1286 auto NumBlocksProcessed = LoopData->NumBlocksProcessed;
1288 assert(std::next(LoopData) != LoopStack.rend());
1289 Loop *L = LoopData->L;
1290 ++LoopData;
1291 --Dimension;
1293 if (!Schedule.is_null()) {
1294 isl::union_set Domain = Schedule.get_domain();
1295 isl::multi_union_pw_aff MUPA = mapToDimension(Domain, Dimension);
1296 Schedule = Schedule.insert_partial_schedule(MUPA);
1298 if (hasDisableAllTransformsHint(L)) {
1299 /// If any of the loops has a disable_nonforced heuristic, mark the
1300 /// entire SCoP as such. The ISL rescheduler can only reschedule the
1301 /// SCoP in its entirety.
1302 /// TODO: ScopDetection could avoid including such loops or warp them as
1303 /// boxed loop. It still needs to pass-through loop with user-defined
1304 /// metadata.
1305 scop->markDisableHeuristics();
1308 // It is easier to insert the marks here that do it retroactively.
1309 isl::id IslLoopId = createIslLoopAttr(scop->getIslCtx(), L);
1310 if (!IslLoopId.is_null())
1311 Schedule =
1312 Schedule.get_root().child(0).insert_mark(IslLoopId).get_schedule();
1314 LoopData->Schedule = combineInSequence(LoopData->Schedule, Schedule);
1317 LoopData->NumBlocksProcessed += NumBlocksProcessed;
1319 // Now pop all loops processed up there from the LoopStack
1320 LoopStack.erase(LoopStack.begin() + Dimension, LoopStack.end());
1323 void ScopBuilder::buildEscapingDependences(Instruction *Inst) {
1324 // Check for uses of this instruction outside the scop. Because we do not
1325 // iterate over such instructions and therefore did not "ensure" the existence
1326 // of a write, we must determine such use here.
1327 if (scop->isEscaping(Inst))
1328 ensureValueWrite(Inst);
1331 void ScopBuilder::addRecordedAssumptions() {
1332 for (auto &AS : llvm::reverse(RecordedAssumptions)) {
1334 if (!AS.BB) {
1335 scop->addAssumption(AS.Kind, AS.Set, AS.Loc, AS.Sign,
1336 nullptr /* BasicBlock */, AS.RequiresRTC);
1337 continue;
1340 // If the domain was deleted the assumptions are void.
1341 isl_set *Dom = scop->getDomainConditions(AS.BB).release();
1342 if (!Dom)
1343 continue;
1345 // If a basic block was given use its domain to simplify the assumption.
1346 // In case of restrictions we know they only have to hold on the domain,
1347 // thus we can intersect them with the domain of the block. However, for
1348 // assumptions the domain has to imply them, thus:
1349 // _ _____
1350 // Dom => S <==> A v B <==> A - B
1352 // To avoid the complement we will register A - B as a restriction not an
1353 // assumption.
1354 isl_set *S = AS.Set.copy();
1355 if (AS.Sign == AS_RESTRICTION)
1356 S = isl_set_params(isl_set_intersect(S, Dom));
1357 else /* (AS.Sign == AS_ASSUMPTION) */
1358 S = isl_set_params(isl_set_subtract(Dom, S));
1360 scop->addAssumption(AS.Kind, isl::manage(S), AS.Loc, AS_RESTRICTION, AS.BB,
1361 AS.RequiresRTC);
1365 void ScopBuilder::addUserAssumptions(
1366 AssumptionCache &AC, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
1367 for (auto &Assumption : AC.assumptions()) {
1368 auto *CI = dyn_cast_or_null<CallInst>(Assumption);
1369 if (!CI || CI->arg_size() != 1)
1370 continue;
1372 bool InScop = scop->contains(CI);
1373 if (!InScop && !scop->isDominatedBy(DT, CI->getParent()))
1374 continue;
1376 auto *L = LI.getLoopFor(CI->getParent());
1377 auto *Val = CI->getArgOperand(0);
1378 ParameterSetTy DetectedParams;
1379 auto &R = scop->getRegion();
1380 if (!isAffineConstraint(Val, &R, L, SE, DetectedParams)) {
1381 ORE.emit(
1382 OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreUserAssumption", CI)
1383 << "Non-affine user assumption ignored.");
1384 continue;
1387 // Collect all newly introduced parameters.
1388 ParameterSetTy NewParams;
1389 for (auto *Param : DetectedParams) {
1390 Param = extractConstantFactor(Param, SE).second;
1391 Param = scop->getRepresentingInvariantLoadSCEV(Param);
1392 if (scop->isParam(Param))
1393 continue;
1394 NewParams.insert(Param);
1397 SmallVector<isl_set *, 2> ConditionSets;
1398 auto *TI = InScop ? CI->getParent()->getTerminator() : nullptr;
1399 BasicBlock *BB = InScop ? CI->getParent() : R.getEntry();
1400 auto *Dom = InScop ? isl_set_copy(scop->getDomainConditions(BB).get())
1401 : isl_set_copy(scop->getContext().get());
1402 assert(Dom && "Cannot propagate a nullptr.");
1403 bool Valid = buildConditionSets(BB, Val, TI, L, Dom, InvalidDomainMap,
1404 ConditionSets);
1405 isl_set_free(Dom);
1407 if (!Valid)
1408 continue;
1410 isl_set *AssumptionCtx = nullptr;
1411 if (InScop) {
1412 AssumptionCtx = isl_set_complement(isl_set_params(ConditionSets[1]));
1413 isl_set_free(ConditionSets[0]);
1414 } else {
1415 AssumptionCtx = isl_set_complement(ConditionSets[1]);
1416 AssumptionCtx = isl_set_intersect(AssumptionCtx, ConditionSets[0]);
1419 // Project out newly introduced parameters as they are not otherwise useful.
1420 if (!NewParams.empty()) {
1421 for (isl_size u = 0; u < isl_set_n_param(AssumptionCtx); u++) {
1422 auto *Id = isl_set_get_dim_id(AssumptionCtx, isl_dim_param, u);
1423 auto *Param = static_cast<const SCEV *>(isl_id_get_user(Id));
1424 isl_id_free(Id);
1426 if (!NewParams.count(Param))
1427 continue;
1429 AssumptionCtx =
1430 isl_set_project_out(AssumptionCtx, isl_dim_param, u--, 1);
1433 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "UserAssumption", CI)
1434 << "Use user assumption: "
1435 << stringFromIslObj(AssumptionCtx, "null"));
1436 isl::set newContext =
1437 scop->getContext().intersect(isl::manage(AssumptionCtx));
1438 scop->setContext(newContext);
1442 bool ScopBuilder::buildAccessMultiDimFixed(MemAccInst Inst, ScopStmt *Stmt) {
1443 // Memory builtins are not considered in this function.
1444 if (!Inst.isLoad() && !Inst.isStore())
1445 return false;
1447 Value *Val = Inst.getValueOperand();
1448 Type *ElementType = Val->getType();
1449 Value *Address = Inst.getPointerOperand();
1450 const SCEV *AccessFunction =
1451 SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
1452 const SCEVUnknown *BasePointer =
1453 dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
1454 enum MemoryAccess::AccessType AccType =
1455 isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
1457 if (auto *BitCast = dyn_cast<BitCastInst>(Address))
1458 Address = BitCast->getOperand(0);
1460 auto *GEP = dyn_cast<GetElementPtrInst>(Address);
1461 if (!GEP || DL.getTypeAllocSize(GEP->getResultElementType()) !=
1462 DL.getTypeAllocSize(ElementType))
1463 return false;
1465 SmallVector<const SCEV *, 4> Subscripts;
1466 SmallVector<int, 4> Sizes;
1467 getIndexExpressionsFromGEP(SE, GEP, Subscripts, Sizes);
1468 auto *BasePtr = GEP->getOperand(0);
1470 if (auto *BasePtrCast = dyn_cast<BitCastInst>(BasePtr))
1471 BasePtr = BasePtrCast->getOperand(0);
1473 // Check for identical base pointers to ensure that we do not miss index
1474 // offsets that have been added before this GEP is applied.
1475 if (BasePtr != BasePointer->getValue())
1476 return false;
1478 std::vector<const SCEV *> SizesSCEV;
1480 const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
1482 Loop *SurroundingLoop = Stmt->getSurroundingLoop();
1483 for (auto *Subscript : Subscripts) {
1484 InvariantLoadsSetTy AccessILS;
1485 if (!isAffineExpr(&scop->getRegion(), SurroundingLoop, Subscript, SE,
1486 &AccessILS))
1487 return false;
1489 for (LoadInst *LInst : AccessILS)
1490 if (!ScopRIL.count(LInst))
1491 return false;
1494 if (Sizes.empty())
1495 return false;
1497 SizesSCEV.push_back(nullptr);
1499 for (auto V : Sizes)
1500 SizesSCEV.push_back(SE.getSCEV(
1501 ConstantInt::get(IntegerType::getInt64Ty(BasePtr->getContext()), V)));
1503 addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
1504 true, Subscripts, SizesSCEV, Val);
1505 return true;
1508 bool ScopBuilder::buildAccessMultiDimParam(MemAccInst Inst, ScopStmt *Stmt) {
1509 // Memory builtins are not considered by this function.
1510 if (!Inst.isLoad() && !Inst.isStore())
1511 return false;
1513 if (!PollyDelinearize)
1514 return false;
1516 Value *Address = Inst.getPointerOperand();
1517 Value *Val = Inst.getValueOperand();
1518 Type *ElementType = Val->getType();
1519 unsigned ElementSize = DL.getTypeAllocSize(ElementType);
1520 enum MemoryAccess::AccessType AccType =
1521 isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
1523 const SCEV *AccessFunction =
1524 SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
1525 const SCEVUnknown *BasePointer =
1526 dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
1528 assert(BasePointer && "Could not find base pointer");
1530 auto &InsnToMemAcc = scop->getInsnToMemAccMap();
1531 auto AccItr = InsnToMemAcc.find(Inst);
1532 if (AccItr == InsnToMemAcc.end())
1533 return false;
1535 std::vector<const SCEV *> Sizes = {nullptr};
1537 Sizes.insert(Sizes.end(), AccItr->second.Shape->DelinearizedSizes.begin(),
1538 AccItr->second.Shape->DelinearizedSizes.end());
1540 // In case only the element size is contained in the 'Sizes' array, the
1541 // access does not access a real multi-dimensional array. Hence, we allow
1542 // the normal single-dimensional access construction to handle this.
1543 if (Sizes.size() == 1)
1544 return false;
1546 // Remove the element size. This information is already provided by the
1547 // ElementSize parameter. In case the element size of this access and the
1548 // element size used for delinearization differs the delinearization is
1549 // incorrect. Hence, we invalidate the scop.
1551 // TODO: Handle delinearization with differing element sizes.
1552 auto DelinearizedSize =
1553 cast<SCEVConstant>(Sizes.back())->getAPInt().getSExtValue();
1554 Sizes.pop_back();
1555 if (ElementSize != DelinearizedSize)
1556 scop->invalidate(DELINEARIZATION, Inst->getDebugLoc(), Inst->getParent());
1558 addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
1559 true, AccItr->second.DelinearizedSubscripts, Sizes, Val);
1560 return true;
1563 bool ScopBuilder::buildAccessMemIntrinsic(MemAccInst Inst, ScopStmt *Stmt) {
1564 auto *MemIntr = dyn_cast_or_null<MemIntrinsic>(Inst);
1566 if (MemIntr == nullptr)
1567 return false;
1569 auto *L = LI.getLoopFor(Inst->getParent());
1570 const SCEV *LengthVal = SE.getSCEVAtScope(MemIntr->getLength(), L);
1571 assert(LengthVal);
1573 // Check if the length val is actually affine or if we overapproximate it
1574 InvariantLoadsSetTy AccessILS;
1575 const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
1577 Loop *SurroundingLoop = Stmt->getSurroundingLoop();
1578 bool LengthIsAffine = isAffineExpr(&scop->getRegion(), SurroundingLoop,
1579 LengthVal, SE, &AccessILS);
1580 for (LoadInst *LInst : AccessILS)
1581 if (!ScopRIL.count(LInst))
1582 LengthIsAffine = false;
1583 if (!LengthIsAffine)
1584 LengthVal = nullptr;
1586 auto *DestPtrVal = MemIntr->getDest();
1587 assert(DestPtrVal);
1589 const SCEV *DestAccFunc = SE.getSCEVAtScope(DestPtrVal, L);
1590 assert(DestAccFunc);
1591 // Ignore accesses to "NULL".
1592 // TODO: We could use this to optimize the region further, e.g., intersect
1593 // the context with
1594 // isl_set_complement(isl_set_params(getDomain()))
1595 // as we know it would be undefined to execute this instruction anyway.
1596 if (DestAccFunc->isZero())
1597 return true;
1599 if (auto *U = dyn_cast<SCEVUnknown>(DestAccFunc)) {
1600 if (isa<ConstantPointerNull>(U->getValue()))
1601 return true;
1604 auto *DestPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(DestAccFunc));
1605 assert(DestPtrSCEV);
1606 DestAccFunc = SE.getMinusSCEV(DestAccFunc, DestPtrSCEV);
1607 addArrayAccess(Stmt, Inst, MemoryAccess::MUST_WRITE, DestPtrSCEV->getValue(),
1608 IntegerType::getInt8Ty(DestPtrVal->getContext()),
1609 LengthIsAffine, {DestAccFunc, LengthVal}, {nullptr},
1610 Inst.getValueOperand());
1612 auto *MemTrans = dyn_cast<MemTransferInst>(MemIntr);
1613 if (!MemTrans)
1614 return true;
1616 auto *SrcPtrVal = MemTrans->getSource();
1617 assert(SrcPtrVal);
1619 const SCEV *SrcAccFunc = SE.getSCEVAtScope(SrcPtrVal, L);
1620 assert(SrcAccFunc);
1621 // Ignore accesses to "NULL".
1622 // TODO: See above TODO
1623 if (SrcAccFunc->isZero())
1624 return true;
1626 auto *SrcPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(SrcAccFunc));
1627 assert(SrcPtrSCEV);
1628 SrcAccFunc = SE.getMinusSCEV(SrcAccFunc, SrcPtrSCEV);
1629 addArrayAccess(Stmt, Inst, MemoryAccess::READ, SrcPtrSCEV->getValue(),
1630 IntegerType::getInt8Ty(SrcPtrVal->getContext()),
1631 LengthIsAffine, {SrcAccFunc, LengthVal}, {nullptr},
1632 Inst.getValueOperand());
1634 return true;
1637 bool ScopBuilder::buildAccessCallInst(MemAccInst Inst, ScopStmt *Stmt) {
1638 auto *CI = dyn_cast_or_null<CallInst>(Inst);
1640 if (CI == nullptr)
1641 return false;
1643 if (CI->doesNotAccessMemory() || isIgnoredIntrinsic(CI) || isDebugCall(CI))
1644 return true;
1646 const SCEV *AF = SE.getConstant(IntegerType::getInt64Ty(CI->getContext()), 0);
1647 auto *CalledFunction = CI->getCalledFunction();
1648 MemoryEffects ME = AA.getMemoryEffects(CalledFunction);
1649 if (ME.doesNotAccessMemory())
1650 return true;
1652 if (ME.onlyAccessesArgPointees()) {
1653 ModRefInfo ArgMR = ME.getModRef(IRMemLocation::ArgMem);
1654 auto AccType =
1655 !isModSet(ArgMR) ? MemoryAccess::READ : MemoryAccess::MAY_WRITE;
1656 Loop *L = LI.getLoopFor(Inst->getParent());
1657 for (const auto &Arg : CI->args()) {
1658 if (!Arg->getType()->isPointerTy())
1659 continue;
1661 const SCEV *ArgSCEV = SE.getSCEVAtScope(Arg, L);
1662 if (ArgSCEV->isZero())
1663 continue;
1665 if (auto *U = dyn_cast<SCEVUnknown>(ArgSCEV)) {
1666 if (isa<ConstantPointerNull>(U->getValue()))
1667 return true;
1670 auto *ArgBasePtr = cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
1671 addArrayAccess(Stmt, Inst, AccType, ArgBasePtr->getValue(),
1672 ArgBasePtr->getType(), false, {AF}, {nullptr}, CI);
1674 return true;
1677 if (ME.onlyReadsMemory()) {
1678 GlobalReads.emplace_back(Stmt, CI);
1679 return true;
1681 return false;
1684 bool ScopBuilder::buildAccessSingleDim(MemAccInst Inst, ScopStmt *Stmt) {
1685 // Memory builtins are not considered by this function.
1686 if (!Inst.isLoad() && !Inst.isStore())
1687 return false;
1689 Value *Address = Inst.getPointerOperand();
1690 Value *Val = Inst.getValueOperand();
1691 Type *ElementType = Val->getType();
1692 enum MemoryAccess::AccessType AccType =
1693 isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
1695 const SCEV *AccessFunction =
1696 SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
1697 const SCEVUnknown *BasePointer =
1698 dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
1700 assert(BasePointer && "Could not find base pointer");
1701 AccessFunction = SE.getMinusSCEV(AccessFunction, BasePointer);
1703 // Check if the access depends on a loop contained in a non-affine subregion.
1704 bool isVariantInNonAffineLoop = false;
1705 SetVector<const Loop *> Loops;
1706 findLoops(AccessFunction, Loops);
1707 for (const Loop *L : Loops)
1708 if (Stmt->contains(L)) {
1709 isVariantInNonAffineLoop = true;
1710 break;
1713 InvariantLoadsSetTy AccessILS;
1715 Loop *SurroundingLoop = Stmt->getSurroundingLoop();
1716 bool IsAffine = !isVariantInNonAffineLoop &&
1717 isAffineExpr(&scop->getRegion(), SurroundingLoop,
1718 AccessFunction, SE, &AccessILS);
1720 const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
1721 for (LoadInst *LInst : AccessILS)
1722 if (!ScopRIL.count(LInst))
1723 IsAffine = false;
1725 if (!IsAffine && AccType == MemoryAccess::MUST_WRITE)
1726 AccType = MemoryAccess::MAY_WRITE;
1728 addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
1729 IsAffine, {AccessFunction}, {nullptr}, Val);
1730 return true;
1733 void ScopBuilder::buildMemoryAccess(MemAccInst Inst, ScopStmt *Stmt) {
1734 if (buildAccessMemIntrinsic(Inst, Stmt))
1735 return;
1737 if (buildAccessCallInst(Inst, Stmt))
1738 return;
1740 if (buildAccessMultiDimFixed(Inst, Stmt))
1741 return;
1743 if (buildAccessMultiDimParam(Inst, Stmt))
1744 return;
1746 if (buildAccessSingleDim(Inst, Stmt))
1747 return;
1749 llvm_unreachable(
1750 "At least one of the buildAccess functions must handled this access, or "
1751 "ScopDetection should have rejected this SCoP");
1754 void ScopBuilder::buildAccessFunctions() {
1755 for (auto &Stmt : *scop) {
1756 if (Stmt.isBlockStmt()) {
1757 buildAccessFunctions(&Stmt, *Stmt.getBasicBlock());
1758 continue;
1761 Region *R = Stmt.getRegion();
1762 for (BasicBlock *BB : R->blocks())
1763 buildAccessFunctions(&Stmt, *BB, R);
1766 // Build write accesses for values that are used after the SCoP.
1767 // The instructions defining them might be synthesizable and therefore not
1768 // contained in any statement, hence we iterate over the original instructions
1769 // to identify all escaping values.
1770 for (BasicBlock *BB : scop->getRegion().blocks()) {
1771 for (Instruction &Inst : *BB)
1772 buildEscapingDependences(&Inst);
1776 bool ScopBuilder::shouldModelInst(Instruction *Inst, Loop *L) {
1777 return !Inst->isTerminator() && !isIgnoredIntrinsic(Inst) &&
1778 !canSynthesize(Inst, *scop, &SE, L);
1781 /// Generate a name for a statement.
1783 /// @param BB The basic block the statement will represent.
1784 /// @param BBIdx The index of the @p BB relative to other BBs/regions.
1785 /// @param Count The index of the created statement in @p BB.
1786 /// @param IsMain Whether this is the main of all statement for @p BB. If true,
1787 /// no suffix will be added.
1788 /// @param IsLast Uses a special indicator for the last statement of a BB.
1789 static std::string makeStmtName(BasicBlock *BB, long BBIdx, int Count,
1790 bool IsMain, bool IsLast = false) {
1791 std::string Suffix;
1792 if (!IsMain) {
1793 if (UseInstructionNames)
1794 Suffix = '_';
1795 if (IsLast)
1796 Suffix += "last";
1797 else if (Count < 26)
1798 Suffix += 'a' + Count;
1799 else
1800 Suffix += std::to_string(Count);
1802 return getIslCompatibleName("Stmt", BB, BBIdx, Suffix, UseInstructionNames);
1805 /// Generate a name for a statement that represents a non-affine subregion.
1807 /// @param R The region the statement will represent.
1808 /// @param RIdx The index of the @p R relative to other BBs/regions.
1809 static std::string makeStmtName(Region *R, long RIdx) {
1810 return getIslCompatibleName("Stmt", R->getNameStr(), RIdx, "",
1811 UseInstructionNames);
1814 void ScopBuilder::buildSequentialBlockStmts(BasicBlock *BB, bool SplitOnStore) {
1815 Loop *SurroundingLoop = LI.getLoopFor(BB);
1817 int Count = 0;
1818 long BBIdx = scop->getNextStmtIdx();
1819 std::vector<Instruction *> Instructions;
1820 for (Instruction &Inst : *BB) {
1821 if (shouldModelInst(&Inst, SurroundingLoop))
1822 Instructions.push_back(&Inst);
1823 if (Inst.getMetadata("polly_split_after") ||
1824 (SplitOnStore && isa<StoreInst>(Inst))) {
1825 std::string Name = makeStmtName(BB, BBIdx, Count, Count == 0);
1826 scop->addScopStmt(BB, Name, SurroundingLoop, Instructions);
1827 Count++;
1828 Instructions.clear();
1832 std::string Name = makeStmtName(BB, BBIdx, Count, Count == 0);
1833 scop->addScopStmt(BB, Name, SurroundingLoop, Instructions);
1836 /// Is @p Inst an ordered instruction?
1838 /// An unordered instruction is an instruction, such that a sequence of
1839 /// unordered instructions can be permuted without changing semantics. Any
1840 /// instruction for which this is not always the case is ordered.
1841 static bool isOrderedInstruction(Instruction *Inst) {
1842 return Inst->mayHaveSideEffects() || Inst->mayReadOrWriteMemory();
1845 /// Join instructions to the same statement if one uses the scalar result of the
1846 /// other.
1847 static void joinOperandTree(EquivalenceClasses<Instruction *> &UnionFind,
1848 ArrayRef<Instruction *> ModeledInsts) {
1849 for (Instruction *Inst : ModeledInsts) {
1850 if (isa<PHINode>(Inst))
1851 continue;
1853 for (Use &Op : Inst->operands()) {
1854 Instruction *OpInst = dyn_cast<Instruction>(Op.get());
1855 if (!OpInst)
1856 continue;
1858 // Check if OpInst is in the BB and is a modeled instruction.
1859 auto OpVal = UnionFind.findValue(OpInst);
1860 if (OpVal == UnionFind.end())
1861 continue;
1863 UnionFind.unionSets(Inst, OpInst);
1868 /// Ensure that the order of ordered instructions does not change.
1870 /// If we encounter an ordered instruction enclosed in instructions belonging to
1871 /// a different statement (which might as well contain ordered instructions, but
1872 /// this is not tested here), join them.
1873 static void
1874 joinOrderedInstructions(EquivalenceClasses<Instruction *> &UnionFind,
1875 ArrayRef<Instruction *> ModeledInsts) {
1876 SetVector<Instruction *> SeenLeaders;
1877 for (Instruction *Inst : ModeledInsts) {
1878 if (!isOrderedInstruction(Inst))
1879 continue;
1881 Instruction *Leader = UnionFind.getLeaderValue(Inst);
1882 // Since previous iterations might have merged sets, some items in
1883 // SeenLeaders are not leaders anymore. However, The new leader of
1884 // previously merged instructions must be one of the former leaders of
1885 // these merged instructions.
1886 bool Inserted = SeenLeaders.insert(Leader);
1887 if (Inserted)
1888 continue;
1890 // Merge statements to close holes. Say, we have already seen statements A
1891 // and B, in this order. Then we see an instruction of A again and we would
1892 // see the pattern "A B A". This function joins all statements until the
1893 // only seen occurrence of A.
1894 for (Instruction *Prev : reverse(SeenLeaders)) {
1895 // We are backtracking from the last element until we see Inst's leader
1896 // in SeenLeaders and merge all into one set. Although leaders of
1897 // instructions change during the execution of this loop, it's irrelevant
1898 // as we are just searching for the element that we already confirmed is
1899 // in the list.
1900 if (Prev == Leader)
1901 break;
1902 UnionFind.unionSets(Prev, Leader);
1907 /// If the BasicBlock has an edge from itself, ensure that the PHI WRITEs for
1908 /// the incoming values from this block are executed after the PHI READ.
1910 /// Otherwise it could overwrite the incoming value from before the BB with the
1911 /// value for the next execution. This can happen if the PHI WRITE is added to
1912 /// the statement with the instruction that defines the incoming value (instead
1913 /// of the last statement of the same BB). To ensure that the PHI READ and WRITE
1914 /// are in order, we put both into the statement. PHI WRITEs are always executed
1915 /// after PHI READs when they are in the same statement.
1917 /// TODO: This is an overpessimization. We only have to ensure that the PHI
1918 /// WRITE is not put into a statement containing the PHI itself. That could also
1919 /// be done by
1920 /// - having all (strongly connected) PHIs in a single statement,
1921 /// - unite only the PHIs in the operand tree of the PHI WRITE (because it only
1922 /// has a chance of being lifted before a PHI by being in a statement with a
1923 /// PHI that comes before in the basic block), or
1924 /// - when uniting statements, ensure that no (relevant) PHIs are overtaken.
1925 static void joinOrderedPHIs(EquivalenceClasses<Instruction *> &UnionFind,
1926 ArrayRef<Instruction *> ModeledInsts) {
1927 for (Instruction *Inst : ModeledInsts) {
1928 PHINode *PHI = dyn_cast<PHINode>(Inst);
1929 if (!PHI)
1930 continue;
1932 int Idx = PHI->getBasicBlockIndex(PHI->getParent());
1933 if (Idx < 0)
1934 continue;
1936 Instruction *IncomingVal =
1937 dyn_cast<Instruction>(PHI->getIncomingValue(Idx));
1938 if (!IncomingVal)
1939 continue;
1941 UnionFind.unionSets(PHI, IncomingVal);
1945 void ScopBuilder::buildEqivClassBlockStmts(BasicBlock *BB) {
1946 Loop *L = LI.getLoopFor(BB);
1948 // Extracting out modeled instructions saves us from checking
1949 // shouldModelInst() repeatedly.
1950 SmallVector<Instruction *, 32> ModeledInsts;
1951 EquivalenceClasses<Instruction *> UnionFind;
1952 Instruction *MainInst = nullptr, *MainLeader = nullptr;
1953 for (Instruction &Inst : *BB) {
1954 if (!shouldModelInst(&Inst, L))
1955 continue;
1956 ModeledInsts.push_back(&Inst);
1957 UnionFind.insert(&Inst);
1959 // When a BB is split into multiple statements, the main statement is the
1960 // one containing the 'main' instruction. We select the first instruction
1961 // that is unlikely to be removed (because it has side-effects) as the main
1962 // one. It is used to ensure that at least one statement from the bb has the
1963 // same name as with -polly-stmt-granularity=bb.
1964 if (!MainInst && (isa<StoreInst>(Inst) ||
1965 (isa<CallInst>(Inst) && !isa<IntrinsicInst>(Inst))))
1966 MainInst = &Inst;
1969 joinOperandTree(UnionFind, ModeledInsts);
1970 joinOrderedInstructions(UnionFind, ModeledInsts);
1971 joinOrderedPHIs(UnionFind, ModeledInsts);
1973 // The list of instructions for statement (statement represented by the leader
1974 // instruction).
1975 MapVector<Instruction *, std::vector<Instruction *>> LeaderToInstList;
1977 // The order of statements must be preserved w.r.t. their ordered
1978 // instructions. Without this explicit scan, we would also use non-ordered
1979 // instructions (whose order is arbitrary) to determine statement order.
1980 for (Instruction *Inst : ModeledInsts) {
1981 if (!isOrderedInstruction(Inst))
1982 continue;
1984 auto LeaderIt = UnionFind.findLeader(Inst);
1985 if (LeaderIt == UnionFind.member_end())
1986 continue;
1988 // Insert element for the leader instruction.
1989 (void)LeaderToInstList[*LeaderIt];
1992 // Collect the instructions of all leaders. UnionFind's member iterator
1993 // unfortunately are not in any specific order.
1994 for (Instruction *Inst : ModeledInsts) {
1995 auto LeaderIt = UnionFind.findLeader(Inst);
1996 if (LeaderIt == UnionFind.member_end())
1997 continue;
1999 if (Inst == MainInst)
2000 MainLeader = *LeaderIt;
2001 std::vector<Instruction *> &InstList = LeaderToInstList[*LeaderIt];
2002 InstList.push_back(Inst);
2005 // Finally build the statements.
2006 int Count = 0;
2007 long BBIdx = scop->getNextStmtIdx();
2008 for (auto &Instructions : LeaderToInstList) {
2009 std::vector<Instruction *> &InstList = Instructions.second;
2011 // If there is no main instruction, make the first statement the main.
2012 bool IsMain = (MainInst ? MainLeader == Instructions.first : Count == 0);
2014 std::string Name = makeStmtName(BB, BBIdx, Count, IsMain);
2015 scop->addScopStmt(BB, Name, L, std::move(InstList));
2016 Count += 1;
2019 // Unconditionally add an epilogue (last statement). It contains no
2020 // instructions, but holds the PHI write accesses for successor basic blocks,
2021 // if the incoming value is not defined in another statement if the same BB.
2022 // The epilogue becomes the main statement only if there is no other
2023 // statement that could become main.
2024 // The epilogue will be removed if no PHIWrite is added to it.
2025 std::string EpilogueName = makeStmtName(BB, BBIdx, Count, Count == 0, true);
2026 scop->addScopStmt(BB, EpilogueName, L, {});
2029 void ScopBuilder::buildStmts(Region &SR) {
2030 if (scop->isNonAffineSubRegion(&SR)) {
2031 std::vector<Instruction *> Instructions;
2032 Loop *SurroundingLoop =
2033 getFirstNonBoxedLoopFor(SR.getEntry(), LI, scop->getBoxedLoops());
2034 for (Instruction &Inst : *SR.getEntry())
2035 if (shouldModelInst(&Inst, SurroundingLoop))
2036 Instructions.push_back(&Inst);
2037 long RIdx = scop->getNextStmtIdx();
2038 std::string Name = makeStmtName(&SR, RIdx);
2039 scop->addScopStmt(&SR, Name, SurroundingLoop, Instructions);
2040 return;
2043 for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
2044 if (I->isSubRegion())
2045 buildStmts(*I->getNodeAs<Region>());
2046 else {
2047 BasicBlock *BB = I->getNodeAs<BasicBlock>();
2048 switch (StmtGranularity) {
2049 case GranularityChoice::BasicBlocks:
2050 buildSequentialBlockStmts(BB);
2051 break;
2052 case GranularityChoice::ScalarIndependence:
2053 buildEqivClassBlockStmts(BB);
2054 break;
2055 case GranularityChoice::Stores:
2056 buildSequentialBlockStmts(BB, true);
2057 break;
2062 void ScopBuilder::buildAccessFunctions(ScopStmt *Stmt, BasicBlock &BB,
2063 Region *NonAffineSubRegion) {
2064 assert(
2065 Stmt &&
2066 "The exit BB is the only one that cannot be represented by a statement");
2067 assert(Stmt->represents(&BB));
2069 // We do not build access functions for error blocks, as they may contain
2070 // instructions we can not model.
2071 if (SD.isErrorBlock(BB, scop->getRegion()))
2072 return;
2074 auto BuildAccessesForInst = [this, Stmt,
2075 NonAffineSubRegion](Instruction *Inst) {
2076 PHINode *PHI = dyn_cast<PHINode>(Inst);
2077 if (PHI)
2078 buildPHIAccesses(Stmt, PHI, NonAffineSubRegion, false);
2080 if (auto MemInst = MemAccInst::dyn_cast(*Inst)) {
2081 assert(Stmt && "Cannot build access function in non-existing statement");
2082 buildMemoryAccess(MemInst, Stmt);
2085 // PHI nodes have already been modeled above and terminators that are
2086 // not part of a non-affine subregion are fully modeled and regenerated
2087 // from the polyhedral domains. Hence, they do not need to be modeled as
2088 // explicit data dependences.
2089 if (!PHI)
2090 buildScalarDependences(Stmt, Inst);
2093 const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
2094 bool IsEntryBlock = (Stmt->getEntryBlock() == &BB);
2095 if (IsEntryBlock) {
2096 for (Instruction *Inst : Stmt->getInstructions())
2097 BuildAccessesForInst(Inst);
2098 if (Stmt->isRegionStmt())
2099 BuildAccessesForInst(BB.getTerminator());
2100 } else {
2101 for (Instruction &Inst : BB) {
2102 if (isIgnoredIntrinsic(&Inst))
2103 continue;
2105 // Invariant loads already have been processed.
2106 if (isa<LoadInst>(Inst) && RIL.count(cast<LoadInst>(&Inst)))
2107 continue;
2109 BuildAccessesForInst(&Inst);
2114 MemoryAccess *ScopBuilder::addMemoryAccess(
2115 ScopStmt *Stmt, Instruction *Inst, MemoryAccess::AccessType AccType,
2116 Value *BaseAddress, Type *ElementType, bool Affine, Value *AccessValue,
2117 ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
2118 MemoryKind Kind) {
2119 bool isKnownMustAccess = false;
2121 // Accesses in single-basic block statements are always executed.
2122 if (Stmt->isBlockStmt())
2123 isKnownMustAccess = true;
2125 if (Stmt->isRegionStmt()) {
2126 // Accesses that dominate the exit block of a non-affine region are always
2127 // executed. In non-affine regions there may exist MemoryKind::Values that
2128 // do not dominate the exit. MemoryKind::Values will always dominate the
2129 // exit and MemoryKind::PHIs only if there is at most one PHI_WRITE in the
2130 // non-affine region.
2131 if (Inst && DT.dominates(Inst->getParent(), Stmt->getRegion()->getExit()))
2132 isKnownMustAccess = true;
2135 // Non-affine PHI writes do not "happen" at a particular instruction, but
2136 // after exiting the statement. Therefore they are guaranteed to execute and
2137 // overwrite the old value.
2138 if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI)
2139 isKnownMustAccess = true;
2141 if (!isKnownMustAccess && AccType == MemoryAccess::MUST_WRITE)
2142 AccType = MemoryAccess::MAY_WRITE;
2144 auto *Access = new MemoryAccess(Stmt, Inst, AccType, BaseAddress, ElementType,
2145 Affine, Subscripts, Sizes, AccessValue, Kind);
2147 scop->addAccessFunction(Access);
2148 Stmt->addAccess(Access);
2149 return Access;
2152 void ScopBuilder::addArrayAccess(ScopStmt *Stmt, MemAccInst MemAccInst,
2153 MemoryAccess::AccessType AccType,
2154 Value *BaseAddress, Type *ElementType,
2155 bool IsAffine,
2156 ArrayRef<const SCEV *> Subscripts,
2157 ArrayRef<const SCEV *> Sizes,
2158 Value *AccessValue) {
2159 ArrayBasePointers.insert(BaseAddress);
2160 addMemoryAccess(Stmt, MemAccInst, AccType, BaseAddress, ElementType, IsAffine,
2161 AccessValue, Subscripts, Sizes, MemoryKind::Array);
2164 /// Check if @p Expr is divisible by @p Size.
2165 static bool isDivisible(const SCEV *Expr, unsigned Size, ScalarEvolution &SE) {
2166 assert(Size != 0);
2167 if (Size == 1)
2168 return true;
2170 // Only one factor needs to be divisible.
2171 if (auto *MulExpr = dyn_cast<SCEVMulExpr>(Expr)) {
2172 for (const SCEV *FactorExpr : MulExpr->operands())
2173 if (isDivisible(FactorExpr, Size, SE))
2174 return true;
2175 return false;
2178 // For other n-ary expressions (Add, AddRec, Max,...) all operands need
2179 // to be divisible.
2180 if (auto *NAryExpr = dyn_cast<SCEVNAryExpr>(Expr)) {
2181 for (const SCEV *OpExpr : NAryExpr->operands())
2182 if (!isDivisible(OpExpr, Size, SE))
2183 return false;
2184 return true;
2187 const SCEV *SizeSCEV = SE.getConstant(Expr->getType(), Size);
2188 const SCEV *UDivSCEV = SE.getUDivExpr(Expr, SizeSCEV);
2189 const SCEV *MulSCEV = SE.getMulExpr(UDivSCEV, SizeSCEV);
2190 return MulSCEV == Expr;
2193 void ScopBuilder::foldSizeConstantsToRight() {
2194 isl::union_set Accessed = scop->getAccesses().range();
2196 for (auto Array : scop->arrays()) {
2197 if (Array->getNumberOfDimensions() <= 1)
2198 continue;
2200 isl::space Space = Array->getSpace();
2201 Space = Space.align_params(Accessed.get_space());
2203 if (!Accessed.contains(Space))
2204 continue;
2206 isl::set Elements = Accessed.extract_set(Space);
2207 isl::map Transform = isl::map::universe(Array->getSpace().map_from_set());
2209 std::vector<int> Int;
2210 unsigned Dims = unsignedFromIslSize(Elements.tuple_dim());
2211 for (unsigned i = 0; i < Dims; i++) {
2212 isl::set DimOnly = isl::set(Elements).project_out(isl::dim::set, 0, i);
2213 DimOnly = DimOnly.project_out(isl::dim::set, 1, Dims - i - 1);
2214 DimOnly = DimOnly.lower_bound_si(isl::dim::set, 0, 0);
2216 isl::basic_set DimHull = DimOnly.affine_hull();
2218 if (i == Dims - 1) {
2219 Int.push_back(1);
2220 Transform = Transform.equate(isl::dim::in, i, isl::dim::out, i);
2221 continue;
2224 if (unsignedFromIslSize(DimHull.dim(isl::dim::div)) == 1) {
2225 isl::aff Diff = DimHull.get_div(0);
2226 isl::val Val = Diff.get_denominator_val();
2228 int ValInt = 1;
2229 if (Val.is_int()) {
2230 auto ValAPInt = APIntFromVal(Val);
2231 if (ValAPInt.isSignedIntN(32))
2232 ValInt = ValAPInt.getSExtValue();
2233 } else {
2236 Int.push_back(ValInt);
2237 isl::constraint C = isl::constraint::alloc_equality(
2238 isl::local_space(Transform.get_space()));
2239 C = C.set_coefficient_si(isl::dim::out, i, ValInt);
2240 C = C.set_coefficient_si(isl::dim::in, i, -1);
2241 Transform = Transform.add_constraint(C);
2242 continue;
2245 isl::basic_set ZeroSet = isl::basic_set(DimHull);
2246 ZeroSet = ZeroSet.fix_si(isl::dim::set, 0, 0);
2248 int ValInt = 1;
2249 if (ZeroSet.is_equal(DimHull)) {
2250 ValInt = 0;
2253 Int.push_back(ValInt);
2254 Transform = Transform.equate(isl::dim::in, i, isl::dim::out, i);
2257 isl::set MappedElements = isl::map(Transform).domain();
2258 if (!Elements.is_subset(MappedElements))
2259 continue;
2261 bool CanFold = true;
2262 if (Int[0] <= 1)
2263 CanFold = false;
2265 unsigned NumDims = Array->getNumberOfDimensions();
2266 for (unsigned i = 1; i < NumDims - 1; i++)
2267 if (Int[0] != Int[i] && Int[i])
2268 CanFold = false;
2270 if (!CanFold)
2271 continue;
2273 for (auto &Access : scop->access_functions())
2274 if (Access->getScopArrayInfo() == Array)
2275 Access->setAccessRelation(
2276 Access->getAccessRelation().apply_range(Transform));
2278 std::vector<const SCEV *> Sizes;
2279 for (unsigned i = 0; i < NumDims; i++) {
2280 auto Size = Array->getDimensionSize(i);
2282 if (i == NumDims - 1)
2283 Size = SE.getMulExpr(Size, SE.getConstant(Size->getType(), Int[0]));
2284 Sizes.push_back(Size);
2287 Array->updateSizes(Sizes, false /* CheckConsistency */);
2291 void ScopBuilder::finalizeAccesses() {
2292 updateAccessDimensionality();
2293 foldSizeConstantsToRight();
2294 foldAccessRelations();
2295 assumeNoOutOfBounds();
2298 void ScopBuilder::updateAccessDimensionality() {
2299 // Check all array accesses for each base pointer and find a (virtual) element
2300 // size for the base pointer that divides all access functions.
2301 for (ScopStmt &Stmt : *scop)
2302 for (MemoryAccess *Access : Stmt) {
2303 if (!Access->isArrayKind())
2304 continue;
2305 ScopArrayInfo *Array =
2306 const_cast<ScopArrayInfo *>(Access->getScopArrayInfo());
2308 if (Array->getNumberOfDimensions() != 1)
2309 continue;
2310 unsigned DivisibleSize = Array->getElemSizeInBytes();
2311 const SCEV *Subscript = Access->getSubscript(0);
2312 while (!isDivisible(Subscript, DivisibleSize, SE))
2313 DivisibleSize /= 2;
2314 auto *Ty = IntegerType::get(SE.getContext(), DivisibleSize * 8);
2315 Array->updateElementType(Ty);
2318 for (auto &Stmt : *scop)
2319 for (auto &Access : Stmt)
2320 Access->updateDimensionality();
2323 void ScopBuilder::foldAccessRelations() {
2324 for (auto &Stmt : *scop)
2325 for (auto &Access : Stmt)
2326 Access->foldAccessRelation();
2329 void ScopBuilder::assumeNoOutOfBounds() {
2330 if (PollyIgnoreInbounds)
2331 return;
2332 for (auto &Stmt : *scop)
2333 for (auto &Access : Stmt) {
2334 isl::set Outside = Access->assumeNoOutOfBound();
2335 const auto &Loc = Access->getAccessInstruction()
2336 ? Access->getAccessInstruction()->getDebugLoc()
2337 : DebugLoc();
2338 recordAssumption(&RecordedAssumptions, INBOUNDS, Outside, Loc,
2339 AS_ASSUMPTION);
2343 void ScopBuilder::ensureValueWrite(Instruction *Inst) {
2344 // Find the statement that defines the value of Inst. That statement has to
2345 // write the value to make it available to those statements that read it.
2346 ScopStmt *Stmt = scop->getStmtFor(Inst);
2348 // It is possible that the value is synthesizable within a loop (such that it
2349 // is not part of any statement), but not after the loop (where you need the
2350 // number of loop round-trips to synthesize it). In LCSSA-form a PHI node will
2351 // avoid this. In case the IR has no such PHI, use the last statement (where
2352 // the value is synthesizable) to write the value.
2353 if (!Stmt)
2354 Stmt = scop->getLastStmtFor(Inst->getParent());
2356 // Inst not defined within this SCoP.
2357 if (!Stmt)
2358 return;
2360 // Do not process further if the instruction is already written.
2361 if (Stmt->lookupValueWriteOf(Inst))
2362 return;
2364 addMemoryAccess(Stmt, Inst, MemoryAccess::MUST_WRITE, Inst, Inst->getType(),
2365 true, Inst, ArrayRef<const SCEV *>(),
2366 ArrayRef<const SCEV *>(), MemoryKind::Value);
2369 void ScopBuilder::ensureValueRead(Value *V, ScopStmt *UserStmt) {
2370 // TODO: Make ScopStmt::ensureValueRead(Value*) offer the same functionality
2371 // to be able to replace this one. Currently, there is a split responsibility.
2372 // In a first step, the MemoryAccess is created, but without the
2373 // AccessRelation. In the second step by ScopStmt::buildAccessRelations(), the
2374 // AccessRelation is created. At least for scalar accesses, there is no new
2375 // information available at ScopStmt::buildAccessRelations(), so we could
2376 // create the AccessRelation right away. This is what
2377 // ScopStmt::ensureValueRead(Value*) does.
2379 auto *Scope = UserStmt->getSurroundingLoop();
2380 auto VUse = VirtualUse::create(scop.get(), UserStmt, Scope, V, false);
2381 switch (VUse.getKind()) {
2382 case VirtualUse::Constant:
2383 case VirtualUse::Block:
2384 case VirtualUse::Synthesizable:
2385 case VirtualUse::Hoisted:
2386 case VirtualUse::Intra:
2387 // Uses of these kinds do not need a MemoryAccess.
2388 break;
2390 case VirtualUse::ReadOnly:
2391 // Add MemoryAccess for invariant values only if requested.
2392 if (!ModelReadOnlyScalars)
2393 break;
2395 [[fallthrough]];
2396 case VirtualUse::Inter:
2398 // Do not create another MemoryAccess for reloading the value if one already
2399 // exists.
2400 if (UserStmt->lookupValueReadOf(V))
2401 break;
2403 addMemoryAccess(UserStmt, nullptr, MemoryAccess::READ, V, V->getType(),
2404 true, V, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
2405 MemoryKind::Value);
2407 // Inter-statement uses need to write the value in their defining statement.
2408 if (VUse.isInter())
2409 ensureValueWrite(cast<Instruction>(V));
2410 break;
2414 void ScopBuilder::ensurePHIWrite(PHINode *PHI, ScopStmt *IncomingStmt,
2415 BasicBlock *IncomingBlock,
2416 Value *IncomingValue, bool IsExitBlock) {
2417 // As the incoming block might turn out to be an error statement ensure we
2418 // will create an exit PHI SAI object. It is needed during code generation
2419 // and would be created later anyway.
2420 if (IsExitBlock)
2421 scop->getOrCreateScopArrayInfo(PHI, PHI->getType(), {},
2422 MemoryKind::ExitPHI);
2424 // This is possible if PHI is in the SCoP's entry block. The incoming blocks
2425 // from outside the SCoP's region have no statement representation.
2426 if (!IncomingStmt)
2427 return;
2429 // Take care for the incoming value being available in the incoming block.
2430 // This must be done before the check for multiple PHI writes because multiple
2431 // exiting edges from subregion each can be the effective written value of the
2432 // subregion. As such, all of them must be made available in the subregion
2433 // statement.
2434 ensureValueRead(IncomingValue, IncomingStmt);
2436 // Do not add more than one MemoryAccess per PHINode and ScopStmt.
2437 if (MemoryAccess *Acc = IncomingStmt->lookupPHIWriteOf(PHI)) {
2438 assert(Acc->getAccessInstruction() == PHI);
2439 Acc->addIncoming(IncomingBlock, IncomingValue);
2440 return;
2443 MemoryAccess *Acc = addMemoryAccess(
2444 IncomingStmt, PHI, MemoryAccess::MUST_WRITE, PHI, PHI->getType(), true,
2445 PHI, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
2446 IsExitBlock ? MemoryKind::ExitPHI : MemoryKind::PHI);
2447 assert(Acc);
2448 Acc->addIncoming(IncomingBlock, IncomingValue);
2451 void ScopBuilder::addPHIReadAccess(ScopStmt *PHIStmt, PHINode *PHI) {
2452 addMemoryAccess(PHIStmt, PHI, MemoryAccess::READ, PHI, PHI->getType(), true,
2453 PHI, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
2454 MemoryKind::PHI);
2457 void ScopBuilder::buildDomain(ScopStmt &Stmt) {
2458 isl::id Id = isl::id::alloc(scop->getIslCtx(), Stmt.getBaseName(), &Stmt);
2460 Stmt.Domain = scop->getDomainConditions(&Stmt);
2461 Stmt.Domain = Stmt.Domain.set_tuple_id(Id);
2464 void ScopBuilder::collectSurroundingLoops(ScopStmt &Stmt) {
2465 isl::set Domain = Stmt.getDomain();
2466 BasicBlock *BB = Stmt.getEntryBlock();
2468 Loop *L = LI.getLoopFor(BB);
2470 while (L && Stmt.isRegionStmt() && Stmt.getRegion()->contains(L))
2471 L = L->getParentLoop();
2473 SmallVector<llvm::Loop *, 8> Loops;
2475 while (L && Stmt.getParent()->getRegion().contains(L)) {
2476 Loops.push_back(L);
2477 L = L->getParentLoop();
2480 Stmt.NestLoops.insert(Stmt.NestLoops.begin(), Loops.rbegin(), Loops.rend());
2483 /// Return the reduction type for a given binary operator.
2484 static MemoryAccess::ReductionType
2485 getReductionType(const BinaryOperator *BinOp) {
2486 if (!BinOp)
2487 return MemoryAccess::RT_NONE;
2488 switch (BinOp->getOpcode()) {
2489 case Instruction::FAdd:
2490 if (!BinOp->isFast())
2491 return MemoryAccess::RT_NONE;
2492 [[fallthrough]];
2493 case Instruction::Add:
2494 return MemoryAccess::RT_ADD;
2495 case Instruction::Or:
2496 return MemoryAccess::RT_BOR;
2497 case Instruction::Xor:
2498 return MemoryAccess::RT_BXOR;
2499 case Instruction::And:
2500 return MemoryAccess::RT_BAND;
2501 case Instruction::FMul:
2502 if (!BinOp->isFast())
2503 return MemoryAccess::RT_NONE;
2504 [[fallthrough]];
2505 case Instruction::Mul:
2506 if (DisableMultiplicativeReductions)
2507 return MemoryAccess::RT_NONE;
2508 return MemoryAccess::RT_MUL;
2509 default:
2510 return MemoryAccess::RT_NONE;
2514 /// @brief Combine two reduction types
2515 static MemoryAccess::ReductionType
2516 combineReductionType(MemoryAccess::ReductionType RT0,
2517 MemoryAccess::ReductionType RT1) {
2518 if (RT0 == MemoryAccess::RT_BOTTOM)
2519 return RT1;
2520 if (RT0 == RT1)
2521 return RT1;
2522 return MemoryAccess::RT_NONE;
2525 /// True if @p AllAccs intersects with @p MemAccs execpt @p LoadMA and @p
2526 /// StoreMA
2527 bool hasIntersectingAccesses(isl::set AllAccs, MemoryAccess *LoadMA,
2528 MemoryAccess *StoreMA, isl::set Domain,
2529 SmallVector<MemoryAccess *, 8> &MemAccs) {
2530 bool HasIntersectingAccs = false;
2531 auto AllAccsNoParams = AllAccs.project_out_all_params();
2533 for (MemoryAccess *MA : MemAccs) {
2534 if (MA == LoadMA || MA == StoreMA)
2535 continue;
2536 auto AccRel = MA->getAccessRelation().intersect_domain(Domain);
2537 auto Accs = AccRel.range();
2538 auto AccsNoParams = Accs.project_out_all_params();
2540 bool CompatibleSpace = AllAccsNoParams.has_equal_space(AccsNoParams);
2542 if (CompatibleSpace) {
2543 auto OverlapAccs = Accs.intersect(AllAccs);
2544 bool DoesIntersect = !OverlapAccs.is_empty();
2545 HasIntersectingAccs |= DoesIntersect;
2548 return HasIntersectingAccs;
2551 /// Test if the accesses of @p LoadMA and @p StoreMA can form a reduction
2552 bool checkCandidatePairAccesses(MemoryAccess *LoadMA, MemoryAccess *StoreMA,
2553 isl::set Domain,
2554 SmallVector<MemoryAccess *, 8> &MemAccs) {
2555 // First check if the base value is the same.
2556 isl::map LoadAccs = LoadMA->getAccessRelation();
2557 isl::map StoreAccs = StoreMA->getAccessRelation();
2558 bool Valid = LoadAccs.has_equal_space(StoreAccs);
2559 POLLY_DEBUG(dbgs() << " == The accessed space below is "
2560 << (Valid ? "" : "not ") << "equal!\n");
2561 POLLY_DEBUG(LoadMA->dump(); StoreMA->dump());
2563 if (Valid) {
2564 // Then check if they actually access the same memory.
2565 isl::map R = isl::manage(LoadAccs.copy())
2566 .intersect_domain(isl::manage(Domain.copy()));
2567 isl::map W = isl::manage(StoreAccs.copy())
2568 .intersect_domain(isl::manage(Domain.copy()));
2569 isl::set RS = R.range();
2570 isl::set WS = W.range();
2572 isl::set InterAccs =
2573 isl::manage(RS.copy()).intersect(isl::manage(WS.copy()));
2574 Valid = !InterAccs.is_empty();
2575 POLLY_DEBUG(dbgs() << " == The accessed memory is " << (Valid ? "" : "not ")
2576 << "overlapping!\n");
2579 if (Valid) {
2580 // Finally, check if they are no other instructions accessing this memory
2581 isl::map AllAccsRel = LoadAccs.unite(StoreAccs);
2582 AllAccsRel = AllAccsRel.intersect_domain(Domain);
2583 isl::set AllAccs = AllAccsRel.range();
2584 Valid = !hasIntersectingAccesses(AllAccs, LoadMA, StoreMA, Domain, MemAccs);
2585 POLLY_DEBUG(dbgs() << " == The accessed memory is " << (Valid ? "not " : "")
2586 << "accessed by other instructions!\n");
2589 return Valid;
2592 void ScopBuilder::checkForReductions(ScopStmt &Stmt) {
2593 // Perform a data flow analysis on the current scop statement to propagate the
2594 // uses of loaded values. Then check and mark the memory accesses which are
2595 // part of reduction like chains.
2596 // During the data flow analysis we use the State variable to keep track of
2597 // the used "load-instructions" for each instruction in the scop statement.
2598 // This includes the LLVM-IR of the load and the "number of uses" (or the
2599 // number of paths in the operand tree which end in this load).
2600 using StatePairTy = std::pair<unsigned, MemoryAccess::ReductionType>;
2601 using FlowInSetTy = MapVector<const LoadInst *, StatePairTy>;
2602 using StateTy = MapVector<const Instruction *, FlowInSetTy>;
2603 StateTy State;
2605 // Invalid loads are loads which have uses we can't track properly in the
2606 // state map. This includes loads which:
2607 // o do not form a reduction when they flow into a memory location:
2608 // (e.g., A[i] = B[i] * 3 and A[i] = A[i] * A[i] + A[i])
2609 // o are used by a non binary operator or one which is not commutative
2610 // and associative (e.g., A[i] = A[i] % 3)
2611 // o might change the control flow (e.g., if (A[i]))
2612 // o are used in indirect memory accesses (e.g., A[B[i]])
2613 // o are used outside the current scop statement
2614 SmallPtrSet<const Instruction *, 8> InvalidLoads;
2615 SmallVector<BasicBlock *, 8> ScopBlocks;
2616 BasicBlock *BB = Stmt.getBasicBlock();
2617 if (BB)
2618 ScopBlocks.push_back(BB);
2619 else
2620 for (BasicBlock *Block : Stmt.getRegion()->blocks())
2621 ScopBlocks.push_back(Block);
2622 // Run the data flow analysis for all values in the scop statement
2623 for (BasicBlock *Block : ScopBlocks) {
2624 for (Instruction &Inst : *Block) {
2625 if ((Stmt.getParent())->getStmtFor(&Inst) != &Stmt)
2626 continue;
2627 bool UsedOutsideStmt = any_of(Inst.users(), [&Stmt](User *U) {
2628 return (Stmt.getParent())->getStmtFor(cast<Instruction>(U)) != &Stmt;
2630 // Treat loads and stores special
2631 if (auto *Load = dyn_cast<LoadInst>(&Inst)) {
2632 // Invalidate all loads used which feed into the address of this load.
2633 if (auto *Ptr = dyn_cast<Instruction>(Load->getPointerOperand())) {
2634 const auto &It = State.find(Ptr);
2635 if (It != State.end())
2636 for (const auto &FlowInSetElem : It->second)
2637 InvalidLoads.insert(FlowInSetElem.first);
2640 // If this load is used outside this stmt, invalidate it.
2641 if (UsedOutsideStmt)
2642 InvalidLoads.insert(Load);
2644 // And indicate that this load uses itself once but without specifying
2645 // any reduction operator.
2646 State[Load].insert(
2647 std::make_pair(Load, std::make_pair(1, MemoryAccess::RT_BOTTOM)));
2648 continue;
2651 if (auto *Store = dyn_cast<StoreInst>(&Inst)) {
2652 // Invalidate all loads which feed into the address of this store.
2653 if (const Instruction *Ptr =
2654 dyn_cast<Instruction>(Store->getPointerOperand())) {
2655 const auto &It = State.find(Ptr);
2656 if (It != State.end())
2657 for (const auto &FlowInSetElem : It->second)
2658 InvalidLoads.insert(FlowInSetElem.first);
2661 // Propagate the uses of the value operand to the store
2662 if (auto *ValueInst = dyn_cast<Instruction>(Store->getValueOperand()))
2663 State.insert(std::make_pair(Store, State[ValueInst]));
2664 continue;
2667 // Non load and store instructions are either binary operators or they
2668 // will invalidate all used loads.
2669 auto *BinOp = dyn_cast<BinaryOperator>(&Inst);
2670 MemoryAccess::ReductionType CurRedType = getReductionType(BinOp);
2671 POLLY_DEBUG(dbgs() << "CurInst: " << Inst << " RT: " << CurRedType
2672 << "\n");
2674 // Iterate over all operands and propagate their input loads to
2675 // instruction.
2676 FlowInSetTy &InstInFlowSet = State[&Inst];
2677 for (Use &Op : Inst.operands()) {
2678 auto *OpInst = dyn_cast<Instruction>(Op);
2679 if (!OpInst)
2680 continue;
2682 POLLY_DEBUG(dbgs().indent(4) << "Op Inst: " << *OpInst << "\n");
2683 const StateTy::iterator &OpInFlowSetIt = State.find(OpInst);
2684 if (OpInFlowSetIt == State.end())
2685 continue;
2687 // Iterate over all the input loads of the operand and combine them
2688 // with the input loads of current instruction.
2689 FlowInSetTy &OpInFlowSet = OpInFlowSetIt->second;
2690 for (auto &OpInFlowPair : OpInFlowSet) {
2691 unsigned OpFlowIn = OpInFlowPair.second.first;
2692 unsigned InstFlowIn = InstInFlowSet[OpInFlowPair.first].first;
2694 MemoryAccess::ReductionType OpRedType = OpInFlowPair.second.second;
2695 MemoryAccess::ReductionType InstRedType =
2696 InstInFlowSet[OpInFlowPair.first].second;
2698 MemoryAccess::ReductionType NewRedType =
2699 combineReductionType(OpRedType, CurRedType);
2700 if (InstFlowIn)
2701 NewRedType = combineReductionType(NewRedType, InstRedType);
2703 POLLY_DEBUG(dbgs().indent(8) << "OpRedType: " << OpRedType << "\n");
2704 POLLY_DEBUG(dbgs().indent(8) << "NewRedType: " << NewRedType << "\n");
2705 InstInFlowSet[OpInFlowPair.first] =
2706 std::make_pair(OpFlowIn + InstFlowIn, NewRedType);
2710 // If this operation is used outside the stmt, invalidate all the loads
2711 // which feed into it.
2712 if (UsedOutsideStmt)
2713 for (const auto &FlowInSetElem : InstInFlowSet)
2714 InvalidLoads.insert(FlowInSetElem.first);
2718 // All used loads are propagated through the whole basic block; now try to
2719 // find valid reduction-like candidate pairs. These load-store pairs fulfill
2720 // all reduction like properties with regards to only this load-store chain.
2721 // We later have to check if the loaded value was invalidated by an
2722 // instruction not in that chain.
2723 using MemAccPair = std::pair<MemoryAccess *, MemoryAccess *>;
2724 DenseMap<MemAccPair, MemoryAccess::ReductionType> ValidCandidates;
2726 // Iterate over all write memory accesses and check the loads flowing into
2727 // it for reduction candidate pairs.
2728 for (MemoryAccess *WriteMA : Stmt.MemAccs) {
2729 if (WriteMA->isRead())
2730 continue;
2731 StoreInst *St = dyn_cast<StoreInst>(WriteMA->getAccessInstruction());
2732 if (!St)
2733 continue;
2734 assert(!St->isVolatile());
2736 FlowInSetTy &MaInFlowSet = State[WriteMA->getAccessInstruction()];
2737 for (auto &MaInFlowSetElem : MaInFlowSet) {
2738 MemoryAccess *ReadMA = &Stmt.getArrayAccessFor(MaInFlowSetElem.first);
2739 assert(ReadMA && "Couldn't find memory access for incoming load!");
2741 POLLY_DEBUG(dbgs() << "'" << *ReadMA->getAccessInstruction()
2742 << "'\n\tflows into\n'"
2743 << *WriteMA->getAccessInstruction() << "'\n\t #"
2744 << MaInFlowSetElem.second.first << " times & RT: "
2745 << MaInFlowSetElem.second.second << "\n");
2747 MemoryAccess::ReductionType RT = MaInFlowSetElem.second.second;
2748 unsigned NumAllowableInFlow = 1;
2750 // We allow the load to flow in exactly once for binary reductions
2751 bool Valid = (MaInFlowSetElem.second.first == NumAllowableInFlow);
2753 // Check if we saw a valid chain of binary operators.
2754 Valid = Valid && RT != MemoryAccess::RT_BOTTOM;
2755 Valid = Valid && RT != MemoryAccess::RT_NONE;
2757 // Then check if the memory accesses allow a reduction.
2758 Valid = Valid && checkCandidatePairAccesses(
2759 ReadMA, WriteMA, Stmt.getDomain(), Stmt.MemAccs);
2761 // Finally, mark the pair as a candidate or the load as a invalid one.
2762 if (Valid)
2763 ValidCandidates[std::make_pair(ReadMA, WriteMA)] = RT;
2764 else
2765 InvalidLoads.insert(ReadMA->getAccessInstruction());
2769 // In the last step mark the memory accesses of candidate pairs as reduction
2770 // like if the load wasn't marked invalid in the previous step.
2771 for (auto &CandidatePair : ValidCandidates) {
2772 MemoryAccess *LoadMA = CandidatePair.first.first;
2773 if (InvalidLoads.count(LoadMA->getAccessInstruction()))
2774 continue;
2775 POLLY_DEBUG(
2776 dbgs() << " Load :: "
2777 << *((CandidatePair.first.first)->getAccessInstruction())
2778 << "\n Store :: "
2779 << *((CandidatePair.first.second)->getAccessInstruction())
2780 << "\n are marked as reduction like\n");
2781 MemoryAccess::ReductionType RT = CandidatePair.second;
2782 CandidatePair.first.first->markAsReductionLike(RT);
2783 CandidatePair.first.second->markAsReductionLike(RT);
2787 void ScopBuilder::verifyInvariantLoads() {
2788 auto &RIL = scop->getRequiredInvariantLoads();
2789 for (LoadInst *LI : RIL) {
2790 assert(LI && scop->contains(LI));
2791 // If there exists a statement in the scop which has a memory access for
2792 // @p LI, then mark this scop as infeasible for optimization.
2793 for (ScopStmt &Stmt : *scop)
2794 if (Stmt.getArrayAccessOrNULLFor(LI)) {
2795 scop->invalidate(INVARIANTLOAD, LI->getDebugLoc(), LI->getParent());
2796 return;
2801 void ScopBuilder::hoistInvariantLoads() {
2802 if (!PollyInvariantLoadHoisting)
2803 return;
2805 isl::union_map Writes = scop->getWrites();
2806 for (ScopStmt &Stmt : *scop) {
2807 InvariantAccessesTy InvariantAccesses;
2809 for (MemoryAccess *Access : Stmt) {
2810 isl::set NHCtx = getNonHoistableCtx(Access, Writes);
2811 if (!NHCtx.is_null())
2812 InvariantAccesses.push_back({Access, NHCtx});
2815 // Transfer the memory access from the statement to the SCoP.
2816 for (auto InvMA : InvariantAccesses)
2817 Stmt.removeMemoryAccess(InvMA.MA);
2818 addInvariantLoads(Stmt, InvariantAccesses);
2822 /// Check if an access range is too complex.
2824 /// An access range is too complex, if it contains either many disjuncts or
2825 /// very complex expressions. As a simple heuristic, we assume if a set to
2826 /// be too complex if the sum of existentially quantified dimensions and
2827 /// set dimensions is larger than a threshold. This reliably detects both
2828 /// sets with many disjuncts as well as sets with many divisions as they
2829 /// arise in h264.
2831 /// @param AccessRange The range to check for complexity.
2833 /// @returns True if the access range is too complex.
2834 static bool isAccessRangeTooComplex(isl::set AccessRange) {
2835 unsigned NumTotalDims = 0;
2837 for (isl::basic_set BSet : AccessRange.get_basic_set_list()) {
2838 NumTotalDims += unsignedFromIslSize(BSet.dim(isl::dim::div));
2839 NumTotalDims += unsignedFromIslSize(BSet.dim(isl::dim::set));
2842 if (NumTotalDims > MaxDimensionsInAccessRange)
2843 return true;
2845 return false;
2848 bool ScopBuilder::hasNonHoistableBasePtrInScop(MemoryAccess *MA,
2849 isl::union_map Writes) {
2850 if (auto *BasePtrMA = scop->lookupBasePtrAccess(MA)) {
2851 return getNonHoistableCtx(BasePtrMA, Writes).is_null();
2854 Value *BaseAddr = MA->getOriginalBaseAddr();
2855 if (auto *BasePtrInst = dyn_cast<Instruction>(BaseAddr))
2856 if (!isa<LoadInst>(BasePtrInst))
2857 return scop->contains(BasePtrInst);
2859 return false;
2862 void ScopBuilder::addUserContext() {
2863 if (UserContextStr.empty())
2864 return;
2866 isl::set UserContext = isl::set(scop->getIslCtx(), UserContextStr.c_str());
2867 isl::space Space = scop->getParamSpace();
2868 isl::size SpaceParams = Space.dim(isl::dim::param);
2869 if (unsignedFromIslSize(SpaceParams) !=
2870 unsignedFromIslSize(UserContext.dim(isl::dim::param))) {
2871 std::string SpaceStr = stringFromIslObj(Space, "null");
2872 errs() << "Error: the context provided in -polly-context has not the same "
2873 << "number of dimensions than the computed context. Due to this "
2874 << "mismatch, the -polly-context option is ignored. Please provide "
2875 << "the context in the parameter space: " << SpaceStr << ".\n";
2876 return;
2879 for (auto i : rangeIslSize(0, SpaceParams)) {
2880 std::string NameContext =
2881 scop->getContext().get_dim_name(isl::dim::param, i);
2882 std::string NameUserContext = UserContext.get_dim_name(isl::dim::param, i);
2884 if (NameContext != NameUserContext) {
2885 std::string SpaceStr = stringFromIslObj(Space, "null");
2886 errs() << "Error: the name of dimension " << i
2887 << " provided in -polly-context "
2888 << "is '" << NameUserContext << "', but the name in the computed "
2889 << "context is '" << NameContext
2890 << "'. Due to this name mismatch, "
2891 << "the -polly-context option is ignored. Please provide "
2892 << "the context in the parameter space: " << SpaceStr << ".\n";
2893 return;
2896 UserContext = UserContext.set_dim_id(isl::dim::param, i,
2897 Space.get_dim_id(isl::dim::param, i));
2899 isl::set newContext = scop->getContext().intersect(UserContext);
2900 scop->setContext(newContext);
2903 isl::set ScopBuilder::getNonHoistableCtx(MemoryAccess *Access,
2904 isl::union_map Writes) {
2905 // TODO: Loads that are not loop carried, hence are in a statement with
2906 // zero iterators, are by construction invariant, though we
2907 // currently "hoist" them anyway. This is necessary because we allow
2908 // them to be treated as parameters (e.g., in conditions) and our code
2909 // generation would otherwise use the old value.
2911 auto &Stmt = *Access->getStatement();
2912 BasicBlock *BB = Stmt.getEntryBlock();
2914 if (Access->isScalarKind() || Access->isWrite() || !Access->isAffine() ||
2915 Access->isMemoryIntrinsic())
2916 return {};
2918 // Skip accesses that have an invariant base pointer which is defined but
2919 // not loaded inside the SCoP. This can happened e.g., if a readnone call
2920 // returns a pointer that is used as a base address. However, as we want
2921 // to hoist indirect pointers, we allow the base pointer to be defined in
2922 // the region if it is also a memory access. Each ScopArrayInfo object
2923 // that has a base pointer origin has a base pointer that is loaded and
2924 // that it is invariant, thus it will be hoisted too. However, if there is
2925 // no base pointer origin we check that the base pointer is defined
2926 // outside the region.
2927 auto *LI = cast<LoadInst>(Access->getAccessInstruction());
2928 if (hasNonHoistableBasePtrInScop(Access, Writes))
2929 return {};
2931 isl::map AccessRelation = Access->getAccessRelation();
2932 assert(!AccessRelation.is_empty());
2934 if (AccessRelation.involves_dims(isl::dim::in, 0, Stmt.getNumIterators()))
2935 return {};
2937 AccessRelation = AccessRelation.intersect_domain(Stmt.getDomain());
2938 isl::set SafeToLoad;
2940 auto &DL = scop->getFunction().getDataLayout();
2941 if (isSafeToLoadUnconditionally(LI->getPointerOperand(), LI->getType(),
2942 LI->getAlign(), DL, nullptr)) {
2943 SafeToLoad = isl::set::universe(AccessRelation.get_space().range());
2944 } else if (BB != LI->getParent()) {
2945 // Skip accesses in non-affine subregions as they might not be executed
2946 // under the same condition as the entry of the non-affine subregion.
2947 return {};
2948 } else {
2949 SafeToLoad = AccessRelation.range();
2952 if (isAccessRangeTooComplex(AccessRelation.range()))
2953 return {};
2955 isl::union_map Written = Writes.intersect_range(SafeToLoad);
2956 isl::set WrittenCtx = Written.params();
2957 bool IsWritten = !WrittenCtx.is_empty();
2959 if (!IsWritten)
2960 return WrittenCtx;
2962 WrittenCtx = WrittenCtx.remove_divs();
2963 bool TooComplex =
2964 unsignedFromIslSize(WrittenCtx.n_basic_set()) >= MaxDisjunctsInDomain;
2965 if (TooComplex || !isRequiredInvariantLoad(LI))
2966 return {};
2968 scop->addAssumption(INVARIANTLOAD, WrittenCtx, LI->getDebugLoc(),
2969 AS_RESTRICTION, LI->getParent());
2970 return WrittenCtx;
2973 static bool isAParameter(llvm::Value *maybeParam, const Function &F) {
2974 for (const llvm::Argument &Arg : F.args())
2975 if (&Arg == maybeParam)
2976 return true;
2978 return false;
2981 bool ScopBuilder::canAlwaysBeHoisted(MemoryAccess *MA,
2982 bool StmtInvalidCtxIsEmpty,
2983 bool MAInvalidCtxIsEmpty,
2984 bool NonHoistableCtxIsEmpty) {
2985 LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
2986 const DataLayout &DL = LInst->getDataLayout();
2987 if (PollyAllowDereferenceOfAllFunctionParams &&
2988 isAParameter(LInst->getPointerOperand(), scop->getFunction()))
2989 return true;
2991 // TODO: We can provide more information for better but more expensive
2992 // results.
2993 if (!isDereferenceableAndAlignedPointer(
2994 LInst->getPointerOperand(), LInst->getType(), LInst->getAlign(), DL))
2995 return false;
2997 // If the location might be overwritten we do not hoist it unconditionally.
2999 // TODO: This is probably too conservative.
3000 if (!NonHoistableCtxIsEmpty)
3001 return false;
3003 // If a dereferenceable load is in a statement that is modeled precisely we
3004 // can hoist it.
3005 if (StmtInvalidCtxIsEmpty && MAInvalidCtxIsEmpty)
3006 return true;
3008 // Even if the statement is not modeled precisely we can hoist the load if it
3009 // does not involve any parameters that might have been specialized by the
3010 // statement domain.
3011 for (const SCEV *Subscript : MA->subscripts())
3012 if (!isa<SCEVConstant>(Subscript))
3013 return false;
3014 return true;
3017 void ScopBuilder::addInvariantLoads(ScopStmt &Stmt,
3018 InvariantAccessesTy &InvMAs) {
3019 if (InvMAs.empty())
3020 return;
3022 isl::set StmtInvalidCtx = Stmt.getInvalidContext();
3023 bool StmtInvalidCtxIsEmpty = StmtInvalidCtx.is_empty();
3025 // Get the context under which the statement is executed but remove the error
3026 // context under which this statement is reached.
3027 isl::set DomainCtx = Stmt.getDomain().params();
3028 DomainCtx = DomainCtx.subtract(StmtInvalidCtx);
3030 if (unsignedFromIslSize(DomainCtx.n_basic_set()) >= MaxDisjunctsInDomain) {
3031 auto *AccInst = InvMAs.front().MA->getAccessInstruction();
3032 scop->invalidate(COMPLEXITY, AccInst->getDebugLoc(), AccInst->getParent());
3033 return;
3036 // Project out all parameters that relate to loads in the statement. Otherwise
3037 // we could have cyclic dependences on the constraints under which the
3038 // hoisted loads are executed and we could not determine an order in which to
3039 // pre-load them. This happens because not only lower bounds are part of the
3040 // domain but also upper bounds.
3041 for (auto &InvMA : InvMAs) {
3042 auto *MA = InvMA.MA;
3043 Instruction *AccInst = MA->getAccessInstruction();
3044 if (SE.isSCEVable(AccInst->getType())) {
3045 SetVector<Value *> Values;
3046 for (const SCEV *Parameter : scop->parameters()) {
3047 Values.clear();
3048 findValues(Parameter, SE, Values);
3049 if (!Values.count(AccInst))
3050 continue;
3052 isl::id ParamId = scop->getIdForParam(Parameter);
3053 if (!ParamId.is_null()) {
3054 int Dim = DomainCtx.find_dim_by_id(isl::dim::param, ParamId);
3055 if (Dim >= 0)
3056 DomainCtx = DomainCtx.eliminate(isl::dim::param, Dim, 1);
3062 for (auto &InvMA : InvMAs) {
3063 auto *MA = InvMA.MA;
3064 isl::set NHCtx = InvMA.NonHoistableCtx;
3066 // Check for another invariant access that accesses the same location as
3067 // MA and if found consolidate them. Otherwise create a new equivalence
3068 // class at the end of InvariantEquivClasses.
3069 LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
3070 Type *Ty = LInst->getType();
3071 const SCEV *PointerSCEV = SE.getSCEV(LInst->getPointerOperand());
3073 isl::set MAInvalidCtx = MA->getInvalidContext();
3074 bool NonHoistableCtxIsEmpty = NHCtx.is_empty();
3075 bool MAInvalidCtxIsEmpty = MAInvalidCtx.is_empty();
3077 isl::set MACtx;
3078 // Check if we know that this pointer can be speculatively accessed.
3079 if (canAlwaysBeHoisted(MA, StmtInvalidCtxIsEmpty, MAInvalidCtxIsEmpty,
3080 NonHoistableCtxIsEmpty)) {
3081 MACtx = isl::set::universe(DomainCtx.get_space());
3082 } else {
3083 MACtx = DomainCtx;
3084 MACtx = MACtx.subtract(MAInvalidCtx.unite(NHCtx));
3085 MACtx = MACtx.gist_params(scop->getContext());
3088 bool Consolidated = false;
3089 for (auto &IAClass : scop->invariantEquivClasses()) {
3090 if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
3091 continue;
3093 // If the pointer and the type is equal check if the access function wrt.
3094 // to the domain is equal too. It can happen that the domain fixes
3095 // parameter values and these can be different for distinct part of the
3096 // SCoP. If this happens we cannot consolidate the loads but need to
3097 // create a new invariant load equivalence class.
3098 auto &MAs = IAClass.InvariantAccesses;
3099 if (!MAs.empty()) {
3100 auto *LastMA = MAs.front();
3102 isl::set AR = MA->getAccessRelation().range();
3103 isl::set LastAR = LastMA->getAccessRelation().range();
3104 bool SameAR = AR.is_equal(LastAR);
3106 if (!SameAR)
3107 continue;
3110 // Add MA to the list of accesses that are in this class.
3111 MAs.push_front(MA);
3113 Consolidated = true;
3115 // Unify the execution context of the class and this statement.
3116 isl::set IAClassDomainCtx = IAClass.ExecutionContext;
3117 if (!IAClassDomainCtx.is_null())
3118 IAClassDomainCtx = IAClassDomainCtx.unite(MACtx).coalesce();
3119 else
3120 IAClassDomainCtx = MACtx;
3121 IAClass.ExecutionContext = IAClassDomainCtx;
3122 break;
3125 if (Consolidated)
3126 continue;
3128 MACtx = MACtx.coalesce();
3130 // If we did not consolidate MA, thus did not find an equivalence class
3131 // for it, we create a new one.
3132 scop->addInvariantEquivClass(
3133 InvariantEquivClassTy{PointerSCEV, MemoryAccessList{MA}, MACtx, Ty});
3137 /// Find the canonical scop array info object for a set of invariant load
3138 /// hoisted loads. The canonical array is the one that corresponds to the
3139 /// first load in the list of accesses which is used as base pointer of a
3140 /// scop array.
3141 static const ScopArrayInfo *findCanonicalArray(Scop &S,
3142 MemoryAccessList &Accesses) {
3143 for (MemoryAccess *Access : Accesses) {
3144 const ScopArrayInfo *CanonicalArray = S.getScopArrayInfoOrNull(
3145 Access->getAccessInstruction(), MemoryKind::Array);
3146 if (CanonicalArray)
3147 return CanonicalArray;
3149 return nullptr;
3152 /// Check if @p Array severs as base array in an invariant load.
3153 static bool isUsedForIndirectHoistedLoad(Scop &S, const ScopArrayInfo *Array) {
3154 for (InvariantEquivClassTy &EqClass2 : S.getInvariantAccesses())
3155 for (MemoryAccess *Access2 : EqClass2.InvariantAccesses)
3156 if (Access2->getScopArrayInfo() == Array)
3157 return true;
3158 return false;
3161 /// Replace the base pointer arrays in all memory accesses referencing @p Old,
3162 /// with a reference to @p New.
3163 static void replaceBasePtrArrays(Scop &S, const ScopArrayInfo *Old,
3164 const ScopArrayInfo *New) {
3165 for (ScopStmt &Stmt : S)
3166 for (MemoryAccess *Access : Stmt) {
3167 if (Access->getLatestScopArrayInfo() != Old)
3168 continue;
3170 isl::id Id = New->getBasePtrId();
3171 isl::map Map = Access->getAccessRelation();
3172 Map = Map.set_tuple_id(isl::dim::out, Id);
3173 Access->setAccessRelation(Map);
3177 void ScopBuilder::canonicalizeDynamicBasePtrs() {
3178 for (InvariantEquivClassTy &EqClass : scop->InvariantEquivClasses) {
3179 MemoryAccessList &BasePtrAccesses = EqClass.InvariantAccesses;
3181 const ScopArrayInfo *CanonicalBasePtrSAI =
3182 findCanonicalArray(*scop, BasePtrAccesses);
3184 if (!CanonicalBasePtrSAI)
3185 continue;
3187 for (MemoryAccess *BasePtrAccess : BasePtrAccesses) {
3188 const ScopArrayInfo *BasePtrSAI = scop->getScopArrayInfoOrNull(
3189 BasePtrAccess->getAccessInstruction(), MemoryKind::Array);
3190 if (!BasePtrSAI || BasePtrSAI == CanonicalBasePtrSAI ||
3191 !BasePtrSAI->isCompatibleWith(CanonicalBasePtrSAI))
3192 continue;
3194 // we currently do not canonicalize arrays where some accesses are
3195 // hoisted as invariant loads. If we would, we need to update the access
3196 // function of the invariant loads as well. However, as this is not a
3197 // very common situation, we leave this for now to avoid further
3198 // complexity increases.
3199 if (isUsedForIndirectHoistedLoad(*scop, BasePtrSAI))
3200 continue;
3202 replaceBasePtrArrays(*scop, BasePtrSAI, CanonicalBasePtrSAI);
3207 void ScopBuilder::buildAccessRelations(ScopStmt &Stmt) {
3208 for (MemoryAccess *Access : Stmt.MemAccs) {
3209 Type *ElementType = Access->getElementType();
3211 MemoryKind Ty;
3212 if (Access->isPHIKind())
3213 Ty = MemoryKind::PHI;
3214 else if (Access->isExitPHIKind())
3215 Ty = MemoryKind::ExitPHI;
3216 else if (Access->isValueKind())
3217 Ty = MemoryKind::Value;
3218 else
3219 Ty = MemoryKind::Array;
3221 // Create isl::pw_aff for SCEVs which describe sizes. Collect all
3222 // assumptions which are taken. isl::pw_aff objects are cached internally
3223 // and they are used later by scop.
3224 for (const SCEV *Size : Access->Sizes) {
3225 if (!Size)
3226 continue;
3227 scop->getPwAff(Size, nullptr, false, &RecordedAssumptions);
3229 auto *SAI = scop->getOrCreateScopArrayInfo(Access->getOriginalBaseAddr(),
3230 ElementType, Access->Sizes, Ty);
3232 // Create isl::pw_aff for SCEVs which describe subscripts. Collect all
3233 // assumptions which are taken. isl::pw_aff objects are cached internally
3234 // and they are used later by scop.
3235 for (const SCEV *Subscript : Access->subscripts()) {
3236 if (!Access->isAffine() || !Subscript)
3237 continue;
3238 scop->getPwAff(Subscript, Stmt.getEntryBlock(), false,
3239 &RecordedAssumptions);
3241 Access->buildAccessRelation(SAI);
3242 scop->addAccessData(Access);
3246 /// Add the minimal/maximal access in @p Set to @p User.
3248 /// @return True if more accesses should be added, false if we reached the
3249 /// maximal number of run-time checks to be generated.
3250 static bool buildMinMaxAccess(isl::set Set,
3251 Scop::MinMaxVectorTy &MinMaxAccesses, Scop &S) {
3252 isl::pw_multi_aff MinPMA, MaxPMA;
3253 isl::pw_aff LastDimAff;
3254 isl::aff OneAff;
3255 unsigned Pos;
3257 Set = Set.remove_divs();
3258 polly::simplify(Set);
3260 if (unsignedFromIslSize(Set.n_basic_set()) > RunTimeChecksMaxAccessDisjuncts)
3261 Set = Set.simple_hull();
3263 // Restrict the number of parameters involved in the access as the lexmin/
3264 // lexmax computation will take too long if this number is high.
3266 // Experiments with a simple test case using an i7 4800MQ:
3268 // #Parameters involved | Time (in sec)
3269 // 6 | 0.01
3270 // 7 | 0.04
3271 // 8 | 0.12
3272 // 9 | 0.40
3273 // 10 | 1.54
3274 // 11 | 6.78
3275 // 12 | 30.38
3277 if (isl_set_n_param(Set.get()) >
3278 static_cast<isl_size>(RunTimeChecksMaxParameters)) {
3279 unsigned InvolvedParams = 0;
3280 for (unsigned u = 0, e = isl_set_n_param(Set.get()); u < e; u++)
3281 if (Set.involves_dims(isl::dim::param, u, 1))
3282 InvolvedParams++;
3284 if (InvolvedParams > RunTimeChecksMaxParameters)
3285 return false;
3288 MinPMA = Set.lexmin_pw_multi_aff();
3289 MaxPMA = Set.lexmax_pw_multi_aff();
3291 MinPMA = MinPMA.coalesce();
3292 MaxPMA = MaxPMA.coalesce();
3294 if (MaxPMA.is_null())
3295 return false;
3297 unsigned MaxOutputSize = unsignedFromIslSize(MaxPMA.dim(isl::dim::out));
3299 // Adjust the last dimension of the maximal access by one as we want to
3300 // enclose the accessed memory region by MinPMA and MaxPMA. The pointer
3301 // we test during code generation might now point after the end of the
3302 // allocated array but we will never dereference it anyway.
3303 assert(MaxOutputSize >= 1 && "Assumed at least one output dimension");
3305 Pos = MaxOutputSize - 1;
3306 LastDimAff = MaxPMA.at(Pos);
3307 OneAff = isl::aff(isl::local_space(LastDimAff.get_domain_space()));
3308 OneAff = OneAff.add_constant_si(1);
3309 LastDimAff = LastDimAff.add(OneAff);
3310 MaxPMA = MaxPMA.set_pw_aff(Pos, LastDimAff);
3312 if (MinPMA.is_null() || MaxPMA.is_null())
3313 return false;
3315 MinMaxAccesses.push_back(std::make_pair(MinPMA, MaxPMA));
3317 return true;
3320 /// Wrapper function to calculate minimal/maximal accesses to each array.
3321 bool ScopBuilder::calculateMinMaxAccess(AliasGroupTy AliasGroup,
3322 Scop::MinMaxVectorTy &MinMaxAccesses) {
3323 MinMaxAccesses.reserve(AliasGroup.size());
3325 isl::union_set Domains = scop->getDomains();
3326 isl::union_map Accesses = isl::union_map::empty(scop->getIslCtx());
3328 for (MemoryAccess *MA : AliasGroup)
3329 Accesses = Accesses.unite(MA->getAccessRelation());
3331 Accesses = Accesses.intersect_domain(Domains);
3332 isl::union_set Locations = Accesses.range();
3334 bool LimitReached = false;
3335 for (isl::set Set : Locations.get_set_list()) {
3336 LimitReached |= !buildMinMaxAccess(Set, MinMaxAccesses, *scop);
3337 if (LimitReached)
3338 break;
3341 return !LimitReached;
3344 static isl::set getAccessDomain(MemoryAccess *MA) {
3345 isl::set Domain = MA->getStatement()->getDomain();
3346 Domain = Domain.project_out(isl::dim::set, 0,
3347 unsignedFromIslSize(Domain.tuple_dim()));
3348 return Domain.reset_tuple_id();
3351 bool ScopBuilder::buildAliasChecks() {
3352 if (!PollyUseRuntimeAliasChecks)
3353 return true;
3355 if (buildAliasGroups()) {
3356 // Aliasing assumptions do not go through addAssumption but we still want to
3357 // collect statistics so we do it here explicitly.
3358 if (scop->getAliasGroups().size())
3359 Scop::incrementNumberOfAliasingAssumptions(1);
3360 return true;
3363 // If a problem occurs while building the alias groups we need to delete
3364 // this SCoP and pretend it wasn't valid in the first place. To this end
3365 // we make the assumed context infeasible.
3366 scop->invalidate(ALIASING, DebugLoc());
3368 POLLY_DEBUG(dbgs() << "\n\nNOTE: Run time checks for " << scop->getNameStr()
3369 << " could not be created. This SCoP has been dismissed.");
3370 return false;
3373 std::tuple<ScopBuilder::AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>>
3374 ScopBuilder::buildAliasGroupsForAccesses() {
3375 BatchAAResults BAA(AA);
3376 AliasSetTracker AST(BAA);
3378 DenseMap<Value *, MemoryAccess *> PtrToAcc;
3379 DenseSet<const ScopArrayInfo *> HasWriteAccess;
3380 for (ScopStmt &Stmt : *scop) {
3382 isl::set StmtDomain = Stmt.getDomain();
3383 bool StmtDomainEmpty = StmtDomain.is_empty();
3385 // Statements with an empty domain will never be executed.
3386 if (StmtDomainEmpty)
3387 continue;
3389 for (MemoryAccess *MA : Stmt) {
3390 if (MA->isScalarKind())
3391 continue;
3392 if (!MA->isRead())
3393 HasWriteAccess.insert(MA->getScopArrayInfo());
3394 MemAccInst Acc(MA->getAccessInstruction());
3395 if (MA->isRead() && isa<MemTransferInst>(Acc))
3396 PtrToAcc[cast<MemTransferInst>(Acc)->getRawSource()] = MA;
3397 else
3398 PtrToAcc[Acc.getPointerOperand()] = MA;
3399 AST.add(Acc);
3403 AliasGroupVectorTy AliasGroups;
3404 for (AliasSet &AS : AST) {
3405 if (AS.isMustAlias() || AS.isForwardingAliasSet())
3406 continue;
3407 AliasGroupTy AG;
3408 for (const Value *Ptr : AS.getPointers())
3409 AG.push_back(PtrToAcc[const_cast<Value *>(Ptr)]);
3410 if (AG.size() < 2)
3411 continue;
3412 AliasGroups.push_back(std::move(AG));
3415 return std::make_tuple(AliasGroups, HasWriteAccess);
3418 bool ScopBuilder::buildAliasGroups() {
3419 // To create sound alias checks we perform the following steps:
3420 // o) We partition each group into read only and non read only accesses.
3421 // o) For each group with more than one base pointer we then compute minimal
3422 // and maximal accesses to each array of a group in read only and non
3423 // read only partitions separately.
3424 AliasGroupVectorTy AliasGroups;
3425 DenseSet<const ScopArrayInfo *> HasWriteAccess;
3427 std::tie(AliasGroups, HasWriteAccess) = buildAliasGroupsForAccesses();
3429 splitAliasGroupsByDomain(AliasGroups);
3431 for (AliasGroupTy &AG : AliasGroups) {
3432 if (!scop->hasFeasibleRuntimeContext())
3433 return false;
3436 IslMaxOperationsGuard MaxOpGuard(scop->getIslCtx().get(), OptComputeOut);
3437 bool Valid = buildAliasGroup(AG, HasWriteAccess);
3438 if (!Valid)
3439 return false;
3441 if (isl_ctx_last_error(scop->getIslCtx().get()) == isl_error_quota) {
3442 scop->invalidate(COMPLEXITY, DebugLoc());
3443 return false;
3447 return true;
3450 bool ScopBuilder::buildAliasGroup(
3451 AliasGroupTy &AliasGroup, DenseSet<const ScopArrayInfo *> HasWriteAccess) {
3452 AliasGroupTy ReadOnlyAccesses;
3453 AliasGroupTy ReadWriteAccesses;
3454 SmallPtrSet<const ScopArrayInfo *, 4> ReadWriteArrays;
3455 SmallPtrSet<const ScopArrayInfo *, 4> ReadOnlyArrays;
3457 if (AliasGroup.size() < 2)
3458 return true;
3460 for (MemoryAccess *Access : AliasGroup) {
3461 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "PossibleAlias",
3462 Access->getAccessInstruction())
3463 << "Possibly aliasing pointer, use restrict keyword.");
3464 const ScopArrayInfo *Array = Access->getScopArrayInfo();
3465 if (HasWriteAccess.count(Array)) {
3466 ReadWriteArrays.insert(Array);
3467 ReadWriteAccesses.push_back(Access);
3468 } else {
3469 ReadOnlyArrays.insert(Array);
3470 ReadOnlyAccesses.push_back(Access);
3474 // If there are no read-only pointers, and less than two read-write pointers,
3475 // no alias check is needed.
3476 if (ReadOnlyAccesses.empty() && ReadWriteArrays.size() <= 1)
3477 return true;
3479 // If there is no read-write pointer, no alias check is needed.
3480 if (ReadWriteArrays.empty())
3481 return true;
3483 // For non-affine accesses, no alias check can be generated as we cannot
3484 // compute a sufficiently tight lower and upper bound: bail out.
3485 for (MemoryAccess *MA : AliasGroup) {
3486 if (!MA->isAffine()) {
3487 scop->invalidate(ALIASING, MA->getAccessInstruction()->getDebugLoc(),
3488 MA->getAccessInstruction()->getParent());
3489 return false;
3493 // Ensure that for all memory accesses for which we generate alias checks,
3494 // their base pointers are available.
3495 for (MemoryAccess *MA : AliasGroup) {
3496 if (MemoryAccess *BasePtrMA = scop->lookupBasePtrAccess(MA))
3497 scop->addRequiredInvariantLoad(
3498 cast<LoadInst>(BasePtrMA->getAccessInstruction()));
3501 // scop->getAliasGroups().emplace_back();
3502 // Scop::MinMaxVectorPairTy &pair = scop->getAliasGroups().back();
3503 Scop::MinMaxVectorTy MinMaxAccessesReadWrite;
3504 Scop::MinMaxVectorTy MinMaxAccessesReadOnly;
3506 bool Valid;
3508 Valid = calculateMinMaxAccess(ReadWriteAccesses, MinMaxAccessesReadWrite);
3510 if (!Valid)
3511 return false;
3513 // Bail out if the number of values we need to compare is too large.
3514 // This is important as the number of comparisons grows quadratically with
3515 // the number of values we need to compare.
3516 if (MinMaxAccessesReadWrite.size() + ReadOnlyArrays.size() >
3517 RunTimeChecksMaxArraysPerGroup)
3518 return false;
3520 Valid = calculateMinMaxAccess(ReadOnlyAccesses, MinMaxAccessesReadOnly);
3522 scop->addAliasGroup(MinMaxAccessesReadWrite, MinMaxAccessesReadOnly);
3523 if (!Valid)
3524 return false;
3526 return true;
3529 void ScopBuilder::splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups) {
3530 for (unsigned u = 0; u < AliasGroups.size(); u++) {
3531 AliasGroupTy NewAG;
3532 AliasGroupTy &AG = AliasGroups[u];
3533 AliasGroupTy::iterator AGI = AG.begin();
3534 isl::set AGDomain = getAccessDomain(*AGI);
3535 while (AGI != AG.end()) {
3536 MemoryAccess *MA = *AGI;
3537 isl::set MADomain = getAccessDomain(MA);
3538 if (AGDomain.is_disjoint(MADomain)) {
3539 NewAG.push_back(MA);
3540 AGI = AG.erase(AGI);
3541 } else {
3542 AGDomain = AGDomain.unite(MADomain);
3543 AGI++;
3546 if (NewAG.size() > 1)
3547 AliasGroups.push_back(std::move(NewAG));
3551 #ifndef NDEBUG
3552 static void verifyUse(Scop *S, Use &Op, LoopInfo &LI) {
3553 auto PhysUse = VirtualUse::create(S, Op, &LI, false);
3554 auto VirtUse = VirtualUse::create(S, Op, &LI, true);
3555 assert(PhysUse.getKind() == VirtUse.getKind());
3558 /// Check the consistency of every statement's MemoryAccesses.
3560 /// The check is carried out by expecting the "physical" kind of use (derived
3561 /// from the BasicBlocks instructions resides in) to be same as the "virtual"
3562 /// kind of use (derived from a statement's MemoryAccess).
3564 /// The "physical" uses are taken by ensureValueRead to determine whether to
3565 /// create MemoryAccesses. When done, the kind of scalar access should be the
3566 /// same no matter which way it was derived.
3568 /// The MemoryAccesses might be changed by later SCoP-modifying passes and hence
3569 /// can intentionally influence on the kind of uses (not corresponding to the
3570 /// "physical" anymore, hence called "virtual"). The CodeGenerator therefore has
3571 /// to pick up the virtual uses. But here in the code generator, this has not
3572 /// happened yet, such that virtual and physical uses are equivalent.
3573 static void verifyUses(Scop *S, LoopInfo &LI, DominatorTree &DT) {
3574 for (auto *BB : S->getRegion().blocks()) {
3575 for (auto &Inst : *BB) {
3576 auto *Stmt = S->getStmtFor(&Inst);
3577 if (!Stmt)
3578 continue;
3580 if (isIgnoredIntrinsic(&Inst))
3581 continue;
3583 // Branch conditions are encoded in the statement domains.
3584 if (Inst.isTerminator() && Stmt->isBlockStmt())
3585 continue;
3587 // Verify all uses.
3588 for (auto &Op : Inst.operands())
3589 verifyUse(S, Op, LI);
3591 // Stores do not produce values used by other statements.
3592 if (isa<StoreInst>(Inst))
3593 continue;
3595 // For every value defined in the block, also check that a use of that
3596 // value in the same statement would not be an inter-statement use. It can
3597 // still be synthesizable or load-hoisted, but these kind of instructions
3598 // are not directly copied in code-generation.
3599 auto VirtDef =
3600 VirtualUse::create(S, Stmt, Stmt->getSurroundingLoop(), &Inst, true);
3601 assert(VirtDef.getKind() == VirtualUse::Synthesizable ||
3602 VirtDef.getKind() == VirtualUse::Intra ||
3603 VirtDef.getKind() == VirtualUse::Hoisted);
3607 if (S->hasSingleExitEdge())
3608 return;
3610 // PHINodes in the SCoP region's exit block are also uses to be checked.
3611 if (!S->getRegion().isTopLevelRegion()) {
3612 for (auto &Inst : *S->getRegion().getExit()) {
3613 if (!isa<PHINode>(Inst))
3614 break;
3616 for (auto &Op : Inst.operands())
3617 verifyUse(S, Op, LI);
3621 #endif
3623 void ScopBuilder::buildScop(Region &R, AssumptionCache &AC) {
3624 scop.reset(new Scop(R, SE, LI, DT, *SD.getDetectionContext(&R), ORE,
3625 SD.getNextID()));
3627 buildStmts(R);
3629 // Create all invariant load instructions first. These are categorized as
3630 // 'synthesizable', therefore are not part of any ScopStmt but need to be
3631 // created somewhere.
3632 const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
3633 for (BasicBlock *BB : scop->getRegion().blocks()) {
3634 if (SD.isErrorBlock(*BB, scop->getRegion()))
3635 continue;
3637 for (Instruction &Inst : *BB) {
3638 LoadInst *Load = dyn_cast<LoadInst>(&Inst);
3639 if (!Load)
3640 continue;
3642 if (!RIL.count(Load))
3643 continue;
3645 // Invariant loads require a MemoryAccess to be created in some statement.
3646 // It is not important to which statement the MemoryAccess is added
3647 // because it will later be removed from the ScopStmt again. We chose the
3648 // first statement of the basic block the LoadInst is in.
3649 ArrayRef<ScopStmt *> List = scop->getStmtListFor(BB);
3650 assert(!List.empty());
3651 ScopStmt *RILStmt = List.front();
3652 buildMemoryAccess(Load, RILStmt);
3655 buildAccessFunctions();
3657 // In case the region does not have an exiting block we will later (during
3658 // code generation) split the exit block. This will move potential PHI nodes
3659 // from the current exit block into the new region exiting block. Hence, PHI
3660 // nodes that are at this point not part of the region will be.
3661 // To handle these PHI nodes later we will now model their operands as scalar
3662 // accesses. Note that we do not model anything in the exit block if we have
3663 // an exiting block in the region, as there will not be any splitting later.
3664 if (!R.isTopLevelRegion() && !scop->hasSingleExitEdge()) {
3665 for (Instruction &Inst : *R.getExit()) {
3666 PHINode *PHI = dyn_cast<PHINode>(&Inst);
3667 if (!PHI)
3668 break;
3670 buildPHIAccesses(nullptr, PHI, nullptr, true);
3674 // Create memory accesses for global reads since all arrays are now known.
3675 const SCEV *AF = SE.getConstant(IntegerType::getInt64Ty(SE.getContext()), 0);
3676 for (auto GlobalReadPair : GlobalReads) {
3677 ScopStmt *GlobalReadStmt = GlobalReadPair.first;
3678 Instruction *GlobalRead = GlobalReadPair.second;
3679 for (auto *BP : ArrayBasePointers)
3680 addArrayAccess(GlobalReadStmt, MemAccInst(GlobalRead), MemoryAccess::READ,
3681 BP, BP->getType(), false, {AF}, {nullptr}, GlobalRead);
3684 buildInvariantEquivalenceClasses();
3686 /// A map from basic blocks to their invalid domains.
3687 DenseMap<BasicBlock *, isl::set> InvalidDomainMap;
3689 if (!buildDomains(&R, InvalidDomainMap)) {
3690 POLLY_DEBUG(
3691 dbgs() << "Bailing-out because buildDomains encountered problems\n");
3692 return;
3695 addUserAssumptions(AC, InvalidDomainMap);
3697 // Initialize the invalid domain.
3698 for (ScopStmt &Stmt : scop->Stmts)
3699 if (Stmt.isBlockStmt())
3700 Stmt.setInvalidDomain(InvalidDomainMap[Stmt.getEntryBlock()]);
3701 else
3702 Stmt.setInvalidDomain(InvalidDomainMap[getRegionNodeBasicBlock(
3703 Stmt.getRegion()->getNode())]);
3705 // Remove empty statements.
3706 // Exit early in case there are no executable statements left in this scop.
3707 scop->removeStmtNotInDomainMap();
3708 scop->simplifySCoP(false);
3709 if (scop->isEmpty()) {
3710 POLLY_DEBUG(dbgs() << "Bailing-out because SCoP is empty\n");
3711 return;
3714 // The ScopStmts now have enough information to initialize themselves.
3715 for (ScopStmt &Stmt : *scop) {
3716 collectSurroundingLoops(Stmt);
3718 buildDomain(Stmt);
3719 buildAccessRelations(Stmt);
3721 if (DetectReductions)
3722 checkForReductions(Stmt);
3725 // Check early for a feasible runtime context.
3726 if (!scop->hasFeasibleRuntimeContext()) {
3727 POLLY_DEBUG(
3728 dbgs() << "Bailing-out because of unfeasible context (early)\n");
3729 return;
3732 // Check early for profitability. Afterwards it cannot change anymore,
3733 // only the runtime context could become infeasible.
3734 if (!scop->isProfitable(UnprofitableScalarAccs)) {
3735 scop->invalidate(PROFITABLE, DebugLoc());
3736 POLLY_DEBUG(
3737 dbgs() << "Bailing-out because SCoP is not considered profitable\n");
3738 return;
3741 buildSchedule();
3743 finalizeAccesses();
3745 scop->realignParams();
3746 addUserContext();
3748 // After the context was fully constructed, thus all our knowledge about
3749 // the parameters is in there, we add all recorded assumptions to the
3750 // assumed/invalid context.
3751 addRecordedAssumptions();
3753 scop->simplifyContexts();
3754 if (!buildAliasChecks()) {
3755 POLLY_DEBUG(dbgs() << "Bailing-out because could not build alias checks\n");
3756 return;
3759 hoistInvariantLoads();
3760 canonicalizeDynamicBasePtrs();
3761 verifyInvariantLoads();
3762 scop->simplifySCoP(true);
3764 // Check late for a feasible runtime context because profitability did not
3765 // change.
3766 if (!scop->hasFeasibleRuntimeContext()) {
3767 POLLY_DEBUG(dbgs() << "Bailing-out because of unfeasible context (late)\n");
3768 return;
3771 #ifndef NDEBUG
3772 verifyUses(scop.get(), LI, DT);
3773 #endif
3776 ScopBuilder::ScopBuilder(Region *R, AssumptionCache &AC, AAResults &AA,
3777 const DataLayout &DL, DominatorTree &DT, LoopInfo &LI,
3778 ScopDetection &SD, ScalarEvolution &SE,
3779 OptimizationRemarkEmitter &ORE)
3780 : AA(AA), DL(DL), DT(DT), LI(LI), SD(SD), SE(SE), ORE(ORE) {
3781 DebugLoc Beg, End;
3782 auto P = getBBPairForRegion(R);
3783 getDebugLocations(P, Beg, End);
3785 std::string Msg = "SCoP begins here.";
3786 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEntry", Beg, P.first)
3787 << Msg);
3789 buildScop(*R, AC);
3791 POLLY_DEBUG(dbgs() << *scop);
3793 if (!scop->hasFeasibleRuntimeContext()) {
3794 InfeasibleScops++;
3795 Msg = "SCoP ends here but was dismissed.";
3796 POLLY_DEBUG(dbgs() << "SCoP detected but dismissed\n");
3797 RecordedAssumptions.clear();
3798 scop.reset();
3799 } else {
3800 Msg = "SCoP ends here.";
3801 ++ScopFound;
3802 if (scop->getMaxLoopDepth() > 0)
3803 ++RichScopFound;
3806 if (R->isTopLevelRegion())
3807 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.first)
3808 << Msg);
3809 else
3810 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.second)
3811 << Msg);