[AMDGPU] Infer amdgpu-no-flat-scratch-init attribute in AMDGPUAttributor (#94647)
[llvm-project.git] / polly / lib / Transform / DeLICM.cpp
blobb7e464e6739c6778e4d9df11411971ca774ff291
1 //===------ DeLICM.cpp -----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Undo the effect of Loop Invariant Code Motion (LICM) and
10 // GVN Partial Redundancy Elimination (PRE) on SCoP-level.
12 // Namely, remove register/scalar dependencies by mapping them back to array
13 // elements.
15 //===----------------------------------------------------------------------===//
17 #include "polly/DeLICM.h"
18 #include "polly/LinkAllPasses.h"
19 #include "polly/Options.h"
20 #include "polly/ScopInfo.h"
21 #include "polly/ScopPass.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/ISLOStream.h"
24 #include "polly/Support/ISLTools.h"
25 #include "polly/ZoneAlgo.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/InitializePasses.h"
30 #include "polly/Support/PollyDebug.h"
31 #define DEBUG_TYPE "polly-delicm"
33 using namespace polly;
34 using namespace llvm;
36 namespace {
38 cl::opt<int>
39 DelicmMaxOps("polly-delicm-max-ops",
40 cl::desc("Maximum number of isl operations to invest for "
41 "lifetime analysis; 0=no limit"),
42 cl::init(1000000), cl::cat(PollyCategory));
44 cl::opt<bool> DelicmOverapproximateWrites(
45 "polly-delicm-overapproximate-writes",
46 cl::desc(
47 "Do more PHI writes than necessary in order to avoid partial accesses"),
48 cl::init(false), cl::Hidden, cl::cat(PollyCategory));
50 cl::opt<bool> DelicmPartialWrites("polly-delicm-partial-writes",
51 cl::desc("Allow partial writes"),
52 cl::init(true), cl::Hidden,
53 cl::cat(PollyCategory));
55 cl::opt<bool>
56 DelicmComputeKnown("polly-delicm-compute-known",
57 cl::desc("Compute known content of array elements"),
58 cl::init(true), cl::Hidden, cl::cat(PollyCategory));
60 STATISTIC(DeLICMAnalyzed, "Number of successfully analyzed SCoPs");
61 STATISTIC(DeLICMOutOfQuota,
62 "Analyses aborted because max_operations was reached");
63 STATISTIC(MappedValueScalars, "Number of mapped Value scalars");
64 STATISTIC(MappedPHIScalars, "Number of mapped PHI scalars");
65 STATISTIC(TargetsMapped, "Number of stores used for at least one mapping");
66 STATISTIC(DeLICMScopsModified, "Number of SCoPs optimized");
68 STATISTIC(NumValueWrites, "Number of scalar value writes after DeLICM");
69 STATISTIC(NumValueWritesInLoops,
70 "Number of scalar value writes nested in affine loops after DeLICM");
71 STATISTIC(NumPHIWrites, "Number of scalar phi writes after DeLICM");
72 STATISTIC(NumPHIWritesInLoops,
73 "Number of scalar phi writes nested in affine loops after DeLICM");
74 STATISTIC(NumSingletonWrites, "Number of singleton writes after DeLICM");
75 STATISTIC(NumSingletonWritesInLoops,
76 "Number of singleton writes nested in affine loops after DeLICM");
78 isl::union_map computeReachingOverwrite(isl::union_map Schedule,
79 isl::union_map Writes,
80 bool InclPrevWrite,
81 bool InclOverwrite) {
82 return computeReachingWrite(Schedule, Writes, true, InclPrevWrite,
83 InclOverwrite);
86 /// Compute the next overwrite for a scalar.
87 ///
88 /// @param Schedule { DomainWrite[] -> Scatter[] }
89 /// Schedule of (at least) all writes. Instances not in @p
90 /// Writes are ignored.
91 /// @param Writes { DomainWrite[] }
92 /// The element instances that write to the scalar.
93 /// @param InclPrevWrite Whether to extend the timepoints to include
94 /// the timepoint where the previous write happens.
95 /// @param InclOverwrite Whether the reaching overwrite includes the timepoint
96 /// of the overwrite itself.
97 ///
98 /// @return { Scatter[] -> DomainDef[] }
99 isl::union_map computeScalarReachingOverwrite(isl::union_map Schedule,
100 isl::union_set Writes,
101 bool InclPrevWrite,
102 bool InclOverwrite) {
104 // { DomainWrite[] }
105 auto WritesMap = isl::union_map::from_domain(Writes);
107 // { [Element[] -> Scatter[]] -> DomainWrite[] }
108 auto Result = computeReachingOverwrite(
109 std::move(Schedule), std::move(WritesMap), InclPrevWrite, InclOverwrite);
111 return Result.domain_factor_range();
114 /// Overload of computeScalarReachingOverwrite, with only one writing statement.
115 /// Consequently, the result consists of only one map space.
117 /// @param Schedule { DomainWrite[] -> Scatter[] }
118 /// @param Writes { DomainWrite[] }
119 /// @param InclPrevWrite Include the previous write to result.
120 /// @param InclOverwrite Include the overwrite to the result.
122 /// @return { Scatter[] -> DomainWrite[] }
123 isl::map computeScalarReachingOverwrite(isl::union_map Schedule,
124 isl::set Writes, bool InclPrevWrite,
125 bool InclOverwrite) {
126 isl::space ScatterSpace = getScatterSpace(Schedule);
127 isl::space DomSpace = Writes.get_space();
129 isl::union_map ReachOverwrite = computeScalarReachingOverwrite(
130 Schedule, isl::union_set(Writes), InclPrevWrite, InclOverwrite);
132 isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomSpace);
133 return singleton(std::move(ReachOverwrite), ResultSpace);
136 /// Try to find a 'natural' extension of a mapped to elements outside its
137 /// domain.
139 /// @param Relevant The map with mapping that may not be modified.
140 /// @param Universe The domain to which @p Relevant needs to be extended.
142 /// @return A map with that associates the domain elements of @p Relevant to the
143 /// same elements and in addition the elements of @p Universe to some
144 /// undefined elements. The function prefers to return simple maps.
145 isl::union_map expandMapping(isl::union_map Relevant, isl::union_set Universe) {
146 Relevant = Relevant.coalesce();
147 isl::union_set RelevantDomain = Relevant.domain();
148 isl::union_map Simplified = Relevant.gist_domain(RelevantDomain);
149 Simplified = Simplified.coalesce();
150 return Simplified.intersect_domain(Universe);
153 /// Represent the knowledge of the contents of any array elements in any zone or
154 /// the knowledge we would add when mapping a scalar to an array element.
156 /// Every array element at every zone unit has one of two states:
158 /// - Unused: Not occupied by any value so a transformation can change it to
159 /// other values.
161 /// - Occupied: The element contains a value that is still needed.
163 /// The union of Unused and Unknown zones forms the universe, the set of all
164 /// elements at every timepoint. The universe can easily be derived from the
165 /// array elements that are accessed someway. Arrays that are never accessed
166 /// also never play a role in any computation and can hence be ignored. With a
167 /// given universe, only one of the sets needs to stored implicitly. Computing
168 /// the complement is also an expensive operation, hence this class has been
169 /// designed that only one of sets is needed while the other is assumed to be
170 /// implicit. It can still be given, but is mostly ignored.
172 /// There are two use cases for the Knowledge class:
174 /// 1) To represent the knowledge of the current state of ScopInfo. The unused
175 /// state means that an element is currently unused: there is no read of it
176 /// before the next overwrite. Also called 'Existing'.
178 /// 2) To represent the requirements for mapping a scalar to array elements. The
179 /// unused state means that there is no change/requirement. Also called
180 /// 'Proposed'.
182 /// In addition to these states at unit zones, Knowledge needs to know when
183 /// values are written. This is because written values may have no lifetime (one
184 /// reason is that the value is never read). Such writes would therefore never
185 /// conflict, but overwrite values that might still be required. Another source
186 /// of problems are multiple writes to the same element at the same timepoint,
187 /// because their order is undefined.
188 class Knowledge final {
189 private:
190 /// { [Element[] -> Zone[]] }
191 /// Set of array elements and when they are alive.
192 /// Can contain a nullptr; in this case the set is implicitly defined as the
193 /// complement of #Unused.
195 /// The set of alive array elements is represented as zone, as the set of live
196 /// values can differ depending on how the elements are interpreted.
197 /// Assuming a value X is written at timestep [0] and read at timestep [1]
198 /// without being used at any later point, then the value is alive in the
199 /// interval ]0,1[. This interval cannot be represented by an integer set, as
200 /// it does not contain any integer point. Zones allow us to represent this
201 /// interval and can be converted to sets of timepoints when needed (e.g., in
202 /// isConflicting when comparing to the write sets).
203 /// @see convertZoneToTimepoints and this file's comment for more details.
204 isl::union_set Occupied;
206 /// { [Element[] -> Zone[]] }
207 /// Set of array elements when they are not alive, i.e. their memory can be
208 /// used for other purposed. Can contain a nullptr; in this case the set is
209 /// implicitly defined as the complement of #Occupied.
210 isl::union_set Unused;
212 /// { [Element[] -> Zone[]] -> ValInst[] }
213 /// Maps to the known content for each array element at any interval.
215 /// Any element/interval can map to multiple known elements. This is due to
216 /// multiple llvm::Value referring to the same content. Examples are
218 /// - A value stored and loaded again. The LoadInst represents the same value
219 /// as the StoreInst's value operand.
221 /// - A PHINode is equal to any one of the incoming values. In case of
222 /// LCSSA-form, it is always equal to its single incoming value.
224 /// Two Knowledges are considered not conflicting if at least one of the known
225 /// values match. Not known values are not stored as an unnamed tuple (as
226 /// #Written does), but maps to nothing.
228 /// Known values are usually just defined for #Occupied elements. Knowing
229 /// #Unused contents has no advantage as it can be overwritten.
230 isl::union_map Known;
232 /// { [Element[] -> Scatter[]] -> ValInst[] }
233 /// The write actions currently in the scop or that would be added when
234 /// mapping a scalar. Maps to the value that is written.
236 /// Written values that cannot be identified are represented by an unknown
237 /// ValInst[] (an unnamed tuple of 0 dimension). It conflicts with itself.
238 isl::union_map Written;
240 /// Check whether this Knowledge object is well-formed.
241 void checkConsistency() const {
242 #ifndef NDEBUG
243 // Default-initialized object
244 if (Occupied.is_null() && Unused.is_null() && Known.is_null() &&
245 Written.is_null())
246 return;
248 assert(!Occupied.is_null() || !Unused.is_null());
249 assert(!Known.is_null());
250 assert(!Written.is_null());
252 // If not all fields are defined, we cannot derived the universe.
253 if (Occupied.is_null() || Unused.is_null())
254 return;
256 assert(Occupied.is_disjoint(Unused));
257 auto Universe = Occupied.unite(Unused);
259 assert(!Known.domain().is_subset(Universe).is_false());
260 assert(!Written.domain().is_subset(Universe).is_false());
261 #endif
264 public:
265 /// Initialize a nullptr-Knowledge. This is only provided for convenience; do
266 /// not use such an object.
267 Knowledge() {}
269 /// Create a new object with the given members.
270 Knowledge(isl::union_set Occupied, isl::union_set Unused,
271 isl::union_map Known, isl::union_map Written)
272 : Occupied(std::move(Occupied)), Unused(std::move(Unused)),
273 Known(std::move(Known)), Written(std::move(Written)) {
274 checkConsistency();
277 /// Return whether this object was not default-constructed.
278 bool isUsable() const {
279 return (Occupied.is_null() || Unused.is_null()) && !Known.is_null() &&
280 !Written.is_null();
283 /// Print the content of this object to @p OS.
284 void print(llvm::raw_ostream &OS, unsigned Indent = 0) const {
285 if (isUsable()) {
286 if (!Occupied.is_null())
287 OS.indent(Indent) << "Occupied: " << Occupied << "\n";
288 else
289 OS.indent(Indent) << "Occupied: <Everything else not in Unused>\n";
290 if (!Unused.is_null())
291 OS.indent(Indent) << "Unused: " << Unused << "\n";
292 else
293 OS.indent(Indent) << "Unused: <Everything else not in Occupied>\n";
294 OS.indent(Indent) << "Known: " << Known << "\n";
295 OS.indent(Indent) << "Written : " << Written << '\n';
296 } else {
297 OS.indent(Indent) << "Invalid knowledge\n";
301 /// Combine two knowledges, this and @p That.
302 void learnFrom(Knowledge That) {
303 assert(!isConflicting(*this, That));
304 assert(!Unused.is_null() && !That.Occupied.is_null());
305 assert(
306 That.Unused.is_null() &&
307 "This function is only prepared to learn occupied elements from That");
308 assert(Occupied.is_null() && "This function does not implement "
309 "`this->Occupied = "
310 "this->Occupied.unite(That.Occupied);`");
312 Unused = Unused.subtract(That.Occupied);
313 Known = Known.unite(That.Known);
314 Written = Written.unite(That.Written);
316 checkConsistency();
319 /// Determine whether two Knowledges conflict with each other.
321 /// In theory @p Existing and @p Proposed are symmetric, but the
322 /// implementation is constrained by the implicit interpretation. That is, @p
323 /// Existing must have #Unused defined (use case 1) and @p Proposed must have
324 /// #Occupied defined (use case 1).
326 /// A conflict is defined as non-preserved semantics when they are merged. For
327 /// instance, when for the same array and zone they assume different
328 /// llvm::Values.
330 /// @param Existing One of the knowledges with #Unused defined.
331 /// @param Proposed One of the knowledges with #Occupied defined.
332 /// @param OS Dump the conflict reason to this output stream; use
333 /// nullptr to not output anything.
334 /// @param Indent Indention for the conflict reason.
336 /// @return True, iff the two knowledges are conflicting.
337 static bool isConflicting(const Knowledge &Existing,
338 const Knowledge &Proposed,
339 llvm::raw_ostream *OS = nullptr,
340 unsigned Indent = 0) {
341 assert(!Existing.Unused.is_null());
342 assert(!Proposed.Occupied.is_null());
344 #ifndef NDEBUG
345 if (!Existing.Occupied.is_null() && !Proposed.Unused.is_null()) {
346 auto ExistingUniverse = Existing.Occupied.unite(Existing.Unused);
347 auto ProposedUniverse = Proposed.Occupied.unite(Proposed.Unused);
348 assert(ExistingUniverse.is_equal(ProposedUniverse) &&
349 "Both inputs' Knowledges must be over the same universe");
351 #endif
353 // Do the Existing and Proposed lifetimes conflict?
355 // Lifetimes are described as the cross-product of array elements and zone
356 // intervals in which they are alive (the space { [Element[] -> Zone[]] }).
357 // In the following we call this "element/lifetime interval".
359 // In order to not conflict, one of the following conditions must apply for
360 // each element/lifetime interval:
362 // 1. If occupied in one of the knowledges, it is unused in the other.
364 // - or -
366 // 2. Both contain the same value.
368 // Instead of partitioning the element/lifetime intervals into a part that
369 // both Knowledges occupy (which requires an expensive subtraction) and for
370 // these to check whether they are known to be the same value, we check only
371 // the second condition and ensure that it also applies when then first
372 // condition is true. This is done by adding a wildcard value to
373 // Proposed.Known and Existing.Unused such that they match as a common known
374 // value. We use the "unknown ValInst" for this purpose. Every
375 // Existing.Unused may match with an unknown Proposed.Occupied because these
376 // never are in conflict with each other.
377 auto ProposedOccupiedAnyVal = makeUnknownForDomain(Proposed.Occupied);
378 auto ProposedValues = Proposed.Known.unite(ProposedOccupiedAnyVal);
380 auto ExistingUnusedAnyVal = makeUnknownForDomain(Existing.Unused);
381 auto ExistingValues = Existing.Known.unite(ExistingUnusedAnyVal);
383 auto MatchingVals = ExistingValues.intersect(ProposedValues);
384 auto Matches = MatchingVals.domain();
386 // Any Proposed.Occupied must either have a match between the known values
387 // of Existing and Occupied, or be in Existing.Unused. In the latter case,
388 // the previously added "AnyVal" will match each other.
389 if (!Proposed.Occupied.is_subset(Matches)) {
390 if (OS) {
391 auto Conflicting = Proposed.Occupied.subtract(Matches);
392 auto ExistingConflictingKnown =
393 Existing.Known.intersect_domain(Conflicting);
394 auto ProposedConflictingKnown =
395 Proposed.Known.intersect_domain(Conflicting);
397 OS->indent(Indent) << "Proposed lifetime conflicting with Existing's\n";
398 OS->indent(Indent) << "Conflicting occupied: " << Conflicting << "\n";
399 if (!ExistingConflictingKnown.is_empty())
400 OS->indent(Indent)
401 << "Existing Known: " << ExistingConflictingKnown << "\n";
402 if (!ProposedConflictingKnown.is_empty())
403 OS->indent(Indent)
404 << "Proposed Known: " << ProposedConflictingKnown << "\n";
406 return true;
409 // Do the writes in Existing conflict with occupied values in Proposed?
411 // In order to not conflict, it must either write to unused lifetime or
412 // write the same value. To check, we remove the writes that write into
413 // Proposed.Unused (they never conflict) and then see whether the written
414 // value is already in Proposed.Known. If there are multiple known values
415 // and a written value is known under different names, it is enough when one
416 // of the written values (assuming that they are the same value under
417 // different names, e.g. a PHINode and one of the incoming values) matches
418 // one of the known names.
420 // We convert here the set of lifetimes to actual timepoints. A lifetime is
421 // in conflict with a set of write timepoints, if either a live timepoint is
422 // clearly within the lifetime or if a write happens at the beginning of the
423 // lifetime (where it would conflict with the value that actually writes the
424 // value alive). There is no conflict at the end of a lifetime, as the alive
425 // value will always be read, before it is overwritten again. The last
426 // property holds in Polly for all scalar values and we expect all users of
427 // Knowledge to check this property also for accesses to MemoryKind::Array.
428 auto ProposedFixedDefs =
429 convertZoneToTimepoints(Proposed.Occupied, true, false);
430 auto ProposedFixedKnown =
431 convertZoneToTimepoints(Proposed.Known, isl::dim::in, true, false);
433 auto ExistingConflictingWrites =
434 Existing.Written.intersect_domain(ProposedFixedDefs);
435 auto ExistingConflictingWritesDomain = ExistingConflictingWrites.domain();
437 auto CommonWrittenVal =
438 ProposedFixedKnown.intersect(ExistingConflictingWrites);
439 auto CommonWrittenValDomain = CommonWrittenVal.domain();
441 if (!ExistingConflictingWritesDomain.is_subset(CommonWrittenValDomain)) {
442 if (OS) {
443 auto ExistingConflictingWritten =
444 ExistingConflictingWrites.subtract_domain(CommonWrittenValDomain);
445 auto ProposedConflictingKnown = ProposedFixedKnown.subtract_domain(
446 ExistingConflictingWritten.domain());
448 OS->indent(Indent)
449 << "Proposed a lifetime where there is an Existing write into it\n";
450 OS->indent(Indent) << "Existing conflicting writes: "
451 << ExistingConflictingWritten << "\n";
452 if (!ProposedConflictingKnown.is_empty())
453 OS->indent(Indent)
454 << "Proposed conflicting known: " << ProposedConflictingKnown
455 << "\n";
457 return true;
460 // Do the writes in Proposed conflict with occupied values in Existing?
461 auto ExistingAvailableDefs =
462 convertZoneToTimepoints(Existing.Unused, true, false);
463 auto ExistingKnownDefs =
464 convertZoneToTimepoints(Existing.Known, isl::dim::in, true, false);
466 auto ProposedWrittenDomain = Proposed.Written.domain();
467 auto KnownIdentical = ExistingKnownDefs.intersect(Proposed.Written);
468 auto IdenticalOrUnused =
469 ExistingAvailableDefs.unite(KnownIdentical.domain());
470 if (!ProposedWrittenDomain.is_subset(IdenticalOrUnused)) {
471 if (OS) {
472 auto Conflicting = ProposedWrittenDomain.subtract(IdenticalOrUnused);
473 auto ExistingConflictingKnown =
474 ExistingKnownDefs.intersect_domain(Conflicting);
475 auto ProposedConflictingWritten =
476 Proposed.Written.intersect_domain(Conflicting);
478 OS->indent(Indent) << "Proposed writes into range used by Existing\n";
479 OS->indent(Indent) << "Proposed conflicting writes: "
480 << ProposedConflictingWritten << "\n";
481 if (!ExistingConflictingKnown.is_empty())
482 OS->indent(Indent)
483 << "Existing conflicting known: " << ExistingConflictingKnown
484 << "\n";
486 return true;
489 // Does Proposed write at the same time as Existing already does (order of
490 // writes is undefined)? Writing the same value is permitted.
491 auto ExistingWrittenDomain = Existing.Written.domain();
492 auto BothWritten =
493 Existing.Written.domain().intersect(Proposed.Written.domain());
494 auto ExistingKnownWritten = filterKnownValInst(Existing.Written);
495 auto ProposedKnownWritten = filterKnownValInst(Proposed.Written);
496 auto CommonWritten =
497 ExistingKnownWritten.intersect(ProposedKnownWritten).domain();
499 if (!BothWritten.is_subset(CommonWritten)) {
500 if (OS) {
501 auto Conflicting = BothWritten.subtract(CommonWritten);
502 auto ExistingConflictingWritten =
503 Existing.Written.intersect_domain(Conflicting);
504 auto ProposedConflictingWritten =
505 Proposed.Written.intersect_domain(Conflicting);
507 OS->indent(Indent) << "Proposed writes at the same time as an already "
508 "Existing write\n";
509 OS->indent(Indent) << "Conflicting writes: " << Conflicting << "\n";
510 if (!ExistingConflictingWritten.is_empty())
511 OS->indent(Indent)
512 << "Exiting write: " << ExistingConflictingWritten << "\n";
513 if (!ProposedConflictingWritten.is_empty())
514 OS->indent(Indent)
515 << "Proposed write: " << ProposedConflictingWritten << "\n";
517 return true;
520 return false;
524 /// Implementation of the DeLICM/DePRE transformation.
525 class DeLICMImpl final : public ZoneAlgorithm {
526 private:
527 /// Knowledge before any transformation took place.
528 Knowledge OriginalZone;
530 /// Current knowledge of the SCoP including all already applied
531 /// transformations.
532 Knowledge Zone;
534 /// Number of StoreInsts something can be mapped to.
535 int NumberOfCompatibleTargets = 0;
537 /// The number of StoreInsts to which at least one value or PHI has been
538 /// mapped to.
539 int NumberOfTargetsMapped = 0;
541 /// The number of llvm::Value mapped to some array element.
542 int NumberOfMappedValueScalars = 0;
544 /// The number of PHIs mapped to some array element.
545 int NumberOfMappedPHIScalars = 0;
547 /// Determine whether two knowledges are conflicting with each other.
549 /// @see Knowledge::isConflicting
550 bool isConflicting(const Knowledge &Proposed) {
551 raw_ostream *OS = nullptr;
552 POLLY_DEBUG(OS = &llvm::dbgs());
553 return Knowledge::isConflicting(Zone, Proposed, OS, 4);
556 /// Determine whether @p SAI is a scalar that can be mapped to an array
557 /// element.
558 bool isMappable(const ScopArrayInfo *SAI) {
559 assert(SAI);
561 if (SAI->isValueKind()) {
562 auto *MA = S->getValueDef(SAI);
563 if (!MA) {
564 POLLY_DEBUG(
565 dbgs()
566 << " Reject because value is read-only within the scop\n");
567 return false;
570 // Mapping if value is used after scop is not supported. The code
571 // generator would need to reload the scalar after the scop, but it
572 // does not have the information to where it is mapped to. Only the
573 // MemoryAccesses have that information, not the ScopArrayInfo.
574 auto Inst = MA->getAccessInstruction();
575 for (auto User : Inst->users()) {
576 if (!isa<Instruction>(User))
577 return false;
578 auto UserInst = cast<Instruction>(User);
580 if (!S->contains(UserInst)) {
581 POLLY_DEBUG(dbgs() << " Reject because value is escaping\n");
582 return false;
586 return true;
589 if (SAI->isPHIKind()) {
590 auto *MA = S->getPHIRead(SAI);
591 assert(MA);
593 // Mapping of an incoming block from before the SCoP is not supported by
594 // the code generator.
595 auto PHI = cast<PHINode>(MA->getAccessInstruction());
596 for (auto Incoming : PHI->blocks()) {
597 if (!S->contains(Incoming)) {
598 POLLY_DEBUG(dbgs()
599 << " Reject because at least one incoming block is "
600 "not in the scop region\n");
601 return false;
605 return true;
608 POLLY_DEBUG(dbgs() << " Reject ExitPHI or other non-value\n");
609 return false;
612 /// Compute the uses of a MemoryKind::Value and its lifetime (from its
613 /// definition to the last use).
615 /// @param SAI The ScopArrayInfo representing the value's storage.
617 /// @return { DomainDef[] -> DomainUse[] }, { DomainDef[] -> Zone[] }
618 /// First element is the set of uses for each definition.
619 /// The second is the lifetime of each definition.
620 std::tuple<isl::union_map, isl::map>
621 computeValueUses(const ScopArrayInfo *SAI) {
622 assert(SAI->isValueKind());
624 // { DomainRead[] }
625 auto Reads = makeEmptyUnionSet();
627 // Find all uses.
628 for (auto *MA : S->getValueUses(SAI))
629 Reads = Reads.unite(getDomainFor(MA));
631 // { DomainRead[] -> Scatter[] }
632 auto ReadSchedule = getScatterFor(Reads);
634 auto *DefMA = S->getValueDef(SAI);
635 assert(DefMA);
637 // { DomainDef[] }
638 auto Writes = getDomainFor(DefMA);
640 // { DomainDef[] -> Scatter[] }
641 auto WriteScatter = getScatterFor(Writes);
643 // { Scatter[] -> DomainDef[] }
644 auto ReachDef = getScalarReachingDefinition(DefMA->getStatement());
646 // { [DomainDef[] -> Scatter[]] -> DomainUse[] }
647 auto Uses = isl::union_map(ReachDef.reverse().range_map())
648 .apply_range(ReadSchedule.reverse());
650 // { DomainDef[] -> Scatter[] }
651 auto UseScatter =
652 singleton(Uses.domain().unwrap(),
653 Writes.get_space().map_from_domain_and_range(ScatterSpace));
655 // { DomainDef[] -> Zone[] }
656 auto Lifetime = betweenScatter(WriteScatter, UseScatter, false, true);
658 // { DomainDef[] -> DomainRead[] }
659 auto DefUses = Uses.domain_factor_domain();
661 return std::make_pair(DefUses, Lifetime);
664 /// Try to map a MemoryKind::Value to a given array element.
666 /// @param SAI Representation of the scalar's memory to map.
667 /// @param TargetElt { Scatter[] -> Element[] }
668 /// Suggestion where to map a scalar to when at a timepoint.
670 /// @return true if the scalar was successfully mapped.
671 bool tryMapValue(const ScopArrayInfo *SAI, isl::map TargetElt) {
672 assert(SAI->isValueKind());
674 auto *DefMA = S->getValueDef(SAI);
675 assert(DefMA->isValueKind());
676 assert(DefMA->isMustWrite());
677 auto *V = DefMA->getAccessValue();
678 auto *DefInst = DefMA->getAccessInstruction();
680 // Stop if the scalar has already been mapped.
681 if (!DefMA->getLatestScopArrayInfo()->isValueKind())
682 return false;
684 // { DomainDef[] -> Scatter[] }
685 auto DefSched = getScatterFor(DefMA);
687 // Where each write is mapped to, according to the suggestion.
688 // { DomainDef[] -> Element[] }
689 auto DefTarget = TargetElt.apply_domain(DefSched.reverse());
690 simplify(DefTarget);
691 POLLY_DEBUG(dbgs() << " Def Mapping: " << DefTarget << '\n');
693 auto OrigDomain = getDomainFor(DefMA);
694 auto MappedDomain = DefTarget.domain();
695 if (!OrigDomain.is_subset(MappedDomain)) {
696 POLLY_DEBUG(
697 dbgs()
698 << " Reject because mapping does not encompass all instances\n");
699 return false;
702 // { DomainDef[] -> Zone[] }
703 isl::map Lifetime;
705 // { DomainDef[] -> DomainUse[] }
706 isl::union_map DefUses;
708 std::tie(DefUses, Lifetime) = computeValueUses(SAI);
709 POLLY_DEBUG(dbgs() << " Lifetime: " << Lifetime << '\n');
711 /// { [Element[] -> Zone[]] }
712 auto EltZone = Lifetime.apply_domain(DefTarget).wrap();
713 simplify(EltZone);
715 // When known knowledge is disabled, just return the unknown value. It will
716 // either get filtered out or conflict with itself.
717 // { DomainDef[] -> ValInst[] }
718 isl::map ValInst;
719 if (DelicmComputeKnown)
720 ValInst = makeValInst(V, DefMA->getStatement(),
721 LI->getLoopFor(DefInst->getParent()));
722 else
723 ValInst = makeUnknownForDomain(DefMA->getStatement());
725 // { DomainDef[] -> [Element[] -> Zone[]] }
726 auto EltKnownTranslator = DefTarget.range_product(Lifetime);
728 // { [Element[] -> Zone[]] -> ValInst[] }
729 auto EltKnown = ValInst.apply_domain(EltKnownTranslator);
730 simplify(EltKnown);
732 // { DomainDef[] -> [Element[] -> Scatter[]] }
733 auto WrittenTranslator = DefTarget.range_product(DefSched);
735 // { [Element[] -> Scatter[]] -> ValInst[] }
736 auto DefEltSched = ValInst.apply_domain(WrittenTranslator);
737 simplify(DefEltSched);
739 Knowledge Proposed(EltZone, {}, filterKnownValInst(EltKnown), DefEltSched);
740 if (isConflicting(Proposed))
741 return false;
743 // { DomainUse[] -> Element[] }
744 auto UseTarget = DefUses.reverse().apply_range(DefTarget);
746 mapValue(SAI, std::move(DefTarget), std::move(UseTarget),
747 std::move(Lifetime), std::move(Proposed));
748 return true;
751 /// After a scalar has been mapped, update the global knowledge.
752 void applyLifetime(Knowledge Proposed) {
753 Zone.learnFrom(std::move(Proposed));
756 /// Map a MemoryKind::Value scalar to an array element.
758 /// Callers must have ensured that the mapping is valid and not conflicting.
760 /// @param SAI The ScopArrayInfo representing the scalar's memory to
761 /// map.
762 /// @param DefTarget { DomainDef[] -> Element[] }
763 /// The array element to map the scalar to.
764 /// @param UseTarget { DomainUse[] -> Element[] }
765 /// The array elements the uses are mapped to.
766 /// @param Lifetime { DomainDef[] -> Zone[] }
767 /// The lifetime of each llvm::Value definition for
768 /// reporting.
769 /// @param Proposed Mapping constraints for reporting.
770 void mapValue(const ScopArrayInfo *SAI, isl::map DefTarget,
771 isl::union_map UseTarget, isl::map Lifetime,
772 Knowledge Proposed) {
773 // Redirect the read accesses.
774 for (auto *MA : S->getValueUses(SAI)) {
775 // { DomainUse[] }
776 auto Domain = getDomainFor(MA);
778 // { DomainUse[] -> Element[] }
779 auto NewAccRel = UseTarget.intersect_domain(Domain);
780 simplify(NewAccRel);
782 assert(isl_union_map_n_map(NewAccRel.get()) == 1);
783 MA->setNewAccessRelation(isl::map::from_union_map(NewAccRel));
786 auto *WA = S->getValueDef(SAI);
787 WA->setNewAccessRelation(DefTarget);
788 applyLifetime(Proposed);
790 MappedValueScalars++;
791 NumberOfMappedValueScalars += 1;
794 isl::map makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
795 bool IsCertain = true) {
796 // When known knowledge is disabled, just return the unknown value. It will
797 // either get filtered out or conflict with itself.
798 if (!DelicmComputeKnown)
799 return makeUnknownForDomain(UserStmt);
800 return ZoneAlgorithm::makeValInst(Val, UserStmt, Scope, IsCertain);
803 /// Express the incoming values of a PHI for each incoming statement in an
804 /// isl::union_map.
806 /// @param SAI The PHI scalar represented by a ScopArrayInfo.
808 /// @return { PHIWriteDomain[] -> ValInst[] }
809 isl::union_map determinePHIWrittenValues(const ScopArrayInfo *SAI) {
810 auto Result = makeEmptyUnionMap();
812 // Collect the incoming values.
813 for (auto *MA : S->getPHIIncomings(SAI)) {
814 // { DomainWrite[] -> ValInst[] }
815 isl::union_map ValInst;
816 auto *WriteStmt = MA->getStatement();
818 auto Incoming = MA->getIncoming();
819 assert(!Incoming.empty());
820 if (Incoming.size() == 1) {
821 ValInst = makeValInst(Incoming[0].second, WriteStmt,
822 LI->getLoopFor(Incoming[0].first));
823 } else {
824 // If the PHI is in a subregion's exit node it can have multiple
825 // incoming values (+ maybe another incoming edge from an unrelated
826 // block). We cannot directly represent it as a single llvm::Value.
827 // We currently model it as unknown value, but modeling as the PHIInst
828 // itself could be OK, too.
829 ValInst = makeUnknownForDomain(WriteStmt);
832 Result = Result.unite(ValInst);
835 assert(Result.is_single_valued() &&
836 "Cannot have multiple incoming values for same incoming statement");
837 return Result;
840 /// Try to map a MemoryKind::PHI scalar to a given array element.
842 /// @param SAI Representation of the scalar's memory to map.
843 /// @param TargetElt { Scatter[] -> Element[] }
844 /// Suggestion where to map the scalar to when at a
845 /// timepoint.
847 /// @return true if the PHI scalar has been mapped.
848 bool tryMapPHI(const ScopArrayInfo *SAI, isl::map TargetElt) {
849 auto *PHIRead = S->getPHIRead(SAI);
850 assert(PHIRead->isPHIKind());
851 assert(PHIRead->isRead());
853 // Skip if already been mapped.
854 if (!PHIRead->getLatestScopArrayInfo()->isPHIKind())
855 return false;
857 // { DomainRead[] -> Scatter[] }
858 auto PHISched = getScatterFor(PHIRead);
860 // { DomainRead[] -> Element[] }
861 auto PHITarget = PHISched.apply_range(TargetElt);
862 simplify(PHITarget);
863 POLLY_DEBUG(dbgs() << " Mapping: " << PHITarget << '\n');
865 auto OrigDomain = getDomainFor(PHIRead);
866 auto MappedDomain = PHITarget.domain();
867 if (!OrigDomain.is_subset(MappedDomain)) {
868 POLLY_DEBUG(
869 dbgs()
870 << " Reject because mapping does not encompass all instances\n");
871 return false;
874 // { DomainRead[] -> DomainWrite[] }
875 auto PerPHIWrites = computePerPHI(SAI);
876 if (PerPHIWrites.is_null()) {
877 POLLY_DEBUG(
878 dbgs() << " Reject because cannot determine incoming values\n");
879 return false;
882 // { DomainWrite[] -> Element[] }
883 auto WritesTarget = PerPHIWrites.apply_domain(PHITarget).reverse();
884 simplify(WritesTarget);
886 // { DomainWrite[] }
887 auto UniverseWritesDom = isl::union_set::empty(ParamSpace.ctx());
889 for (auto *MA : S->getPHIIncomings(SAI))
890 UniverseWritesDom = UniverseWritesDom.unite(getDomainFor(MA));
892 auto RelevantWritesTarget = WritesTarget;
893 if (DelicmOverapproximateWrites)
894 WritesTarget = expandMapping(WritesTarget, UniverseWritesDom);
896 auto ExpandedWritesDom = WritesTarget.domain();
897 if (!DelicmPartialWrites &&
898 !UniverseWritesDom.is_subset(ExpandedWritesDom)) {
899 POLLY_DEBUG(
900 dbgs() << " Reject because did not find PHI write mapping for "
901 "all instances\n");
902 if (DelicmOverapproximateWrites)
903 POLLY_DEBUG(dbgs() << " Relevant Mapping: "
904 << RelevantWritesTarget << '\n');
905 POLLY_DEBUG(dbgs() << " Deduced Mapping: " << WritesTarget
906 << '\n');
907 POLLY_DEBUG(dbgs() << " Missing instances: "
908 << UniverseWritesDom.subtract(ExpandedWritesDom)
909 << '\n');
910 return false;
913 // { DomainRead[] -> Scatter[] }
914 isl::union_map PerPHIWriteScatterUmap = PerPHIWrites.apply_range(Schedule);
915 isl::map PerPHIWriteScatter =
916 singleton(PerPHIWriteScatterUmap, PHISched.get_space());
918 // { DomainRead[] -> Zone[] }
919 auto Lifetime = betweenScatter(PerPHIWriteScatter, PHISched, false, true);
920 simplify(Lifetime);
921 POLLY_DEBUG(dbgs() << " Lifetime: " << Lifetime << "\n");
923 // { DomainWrite[] -> Zone[] }
924 auto WriteLifetime = isl::union_map(Lifetime).apply_domain(PerPHIWrites);
926 // { DomainWrite[] -> ValInst[] }
927 auto WrittenValue = determinePHIWrittenValues(SAI);
929 // { DomainWrite[] -> [Element[] -> Scatter[]] }
930 auto WrittenTranslator = WritesTarget.range_product(Schedule);
932 // { [Element[] -> Scatter[]] -> ValInst[] }
933 auto Written = WrittenValue.apply_domain(WrittenTranslator);
934 simplify(Written);
936 // { DomainWrite[] -> [Element[] -> Zone[]] }
937 auto LifetimeTranslator = WritesTarget.range_product(WriteLifetime);
939 // { DomainWrite[] -> ValInst[] }
940 auto WrittenKnownValue = filterKnownValInst(WrittenValue);
942 // { [Element[] -> Zone[]] -> ValInst[] }
943 auto EltLifetimeInst = WrittenKnownValue.apply_domain(LifetimeTranslator);
944 simplify(EltLifetimeInst);
946 // { [Element[] -> Zone[] }
947 auto Occupied = LifetimeTranslator.range();
948 simplify(Occupied);
950 Knowledge Proposed(Occupied, {}, EltLifetimeInst, Written);
951 if (isConflicting(Proposed))
952 return false;
954 mapPHI(SAI, std::move(PHITarget), std::move(WritesTarget),
955 std::move(Lifetime), std::move(Proposed));
956 return true;
959 /// Map a MemoryKind::PHI scalar to an array element.
961 /// Callers must have ensured that the mapping is valid and not conflicting
962 /// with the common knowledge.
964 /// @param SAI The ScopArrayInfo representing the scalar's memory to
965 /// map.
966 /// @param ReadTarget { DomainRead[] -> Element[] }
967 /// The array element to map the scalar to.
968 /// @param WriteTarget { DomainWrite[] -> Element[] }
969 /// New access target for each PHI incoming write.
970 /// @param Lifetime { DomainRead[] -> Zone[] }
971 /// The lifetime of each PHI for reporting.
972 /// @param Proposed Mapping constraints for reporting.
973 void mapPHI(const ScopArrayInfo *SAI, isl::map ReadTarget,
974 isl::union_map WriteTarget, isl::map Lifetime,
975 Knowledge Proposed) {
976 // { Element[] }
977 isl::space ElementSpace = ReadTarget.get_space().range();
979 // Redirect the PHI incoming writes.
980 for (auto *MA : S->getPHIIncomings(SAI)) {
981 // { DomainWrite[] }
982 auto Domain = getDomainFor(MA);
984 // { DomainWrite[] -> Element[] }
985 auto NewAccRel = WriteTarget.intersect_domain(Domain);
986 simplify(NewAccRel);
988 isl::space NewAccRelSpace =
989 Domain.get_space().map_from_domain_and_range(ElementSpace);
990 isl::map NewAccRelMap = singleton(NewAccRel, NewAccRelSpace);
991 MA->setNewAccessRelation(NewAccRelMap);
994 // Redirect the PHI read.
995 auto *PHIRead = S->getPHIRead(SAI);
996 PHIRead->setNewAccessRelation(ReadTarget);
997 applyLifetime(Proposed);
999 MappedPHIScalars++;
1000 NumberOfMappedPHIScalars++;
1003 /// Search and map scalars to memory overwritten by @p TargetStoreMA.
1005 /// Start trying to map scalars that are used in the same statement as the
1006 /// store. For every successful mapping, try to also map scalars of the
1007 /// statements where those are written. Repeat, until no more mapping
1008 /// opportunity is found.
1010 /// There is currently no preference in which order scalars are tried.
1011 /// Ideally, we would direct it towards a load instruction of the same array
1012 /// element.
1013 bool collapseScalarsToStore(MemoryAccess *TargetStoreMA) {
1014 assert(TargetStoreMA->isLatestArrayKind());
1015 assert(TargetStoreMA->isMustWrite());
1017 auto TargetStmt = TargetStoreMA->getStatement();
1019 // { DomTarget[] }
1020 auto TargetDom = getDomainFor(TargetStmt);
1022 // { DomTarget[] -> Element[] }
1023 auto TargetAccRel = getAccessRelationFor(TargetStoreMA);
1025 // { Zone[] -> DomTarget[] }
1026 // For each point in time, find the next target store instance.
1027 auto Target =
1028 computeScalarReachingOverwrite(Schedule, TargetDom, false, true);
1030 // { Zone[] -> Element[] }
1031 // Use the target store's write location as a suggestion to map scalars to.
1032 auto EltTarget = Target.apply_range(TargetAccRel);
1033 simplify(EltTarget);
1034 POLLY_DEBUG(dbgs() << " Target mapping is " << EltTarget << '\n');
1036 // Stack of elements not yet processed.
1037 SmallVector<MemoryAccess *, 16> Worklist;
1039 // Set of scalars already tested.
1040 SmallPtrSet<const ScopArrayInfo *, 16> Closed;
1042 // Lambda to add all scalar reads to the work list.
1043 auto ProcessAllIncoming = [&](ScopStmt *Stmt) {
1044 for (auto *MA : *Stmt) {
1045 if (!MA->isLatestScalarKind())
1046 continue;
1047 if (!MA->isRead())
1048 continue;
1050 Worklist.push_back(MA);
1054 auto *WrittenVal = TargetStoreMA->getAccessInstruction()->getOperand(0);
1055 if (auto *WrittenValInputMA = TargetStmt->lookupInputAccessOf(WrittenVal))
1056 Worklist.push_back(WrittenValInputMA);
1057 else
1058 ProcessAllIncoming(TargetStmt);
1060 auto AnyMapped = false;
1061 auto &DL = S->getRegion().getEntry()->getModule()->getDataLayout();
1062 auto StoreSize =
1063 DL.getTypeAllocSize(TargetStoreMA->getAccessValue()->getType());
1065 while (!Worklist.empty()) {
1066 auto *MA = Worklist.pop_back_val();
1068 auto *SAI = MA->getScopArrayInfo();
1069 if (Closed.count(SAI))
1070 continue;
1071 Closed.insert(SAI);
1072 POLLY_DEBUG(dbgs() << "\n Trying to map " << MA << " (SAI: " << SAI
1073 << ")\n");
1075 // Skip non-mappable scalars.
1076 if (!isMappable(SAI))
1077 continue;
1079 auto MASize = DL.getTypeAllocSize(MA->getAccessValue()->getType());
1080 if (MASize > StoreSize) {
1081 POLLY_DEBUG(
1082 dbgs() << " Reject because storage size is insufficient\n");
1083 continue;
1086 // Try to map MemoryKind::Value scalars.
1087 if (SAI->isValueKind()) {
1088 if (!tryMapValue(SAI, EltTarget))
1089 continue;
1091 auto *DefAcc = S->getValueDef(SAI);
1092 ProcessAllIncoming(DefAcc->getStatement());
1094 AnyMapped = true;
1095 continue;
1098 // Try to map MemoryKind::PHI scalars.
1099 if (SAI->isPHIKind()) {
1100 if (!tryMapPHI(SAI, EltTarget))
1101 continue;
1102 // Add inputs of all incoming statements to the worklist. Prefer the
1103 // input accesses of the incoming blocks.
1104 for (auto *PHIWrite : S->getPHIIncomings(SAI)) {
1105 auto *PHIWriteStmt = PHIWrite->getStatement();
1106 bool FoundAny = false;
1107 for (auto Incoming : PHIWrite->getIncoming()) {
1108 auto *IncomingInputMA =
1109 PHIWriteStmt->lookupInputAccessOf(Incoming.second);
1110 if (!IncomingInputMA)
1111 continue;
1113 Worklist.push_back(IncomingInputMA);
1114 FoundAny = true;
1117 if (!FoundAny)
1118 ProcessAllIncoming(PHIWrite->getStatement());
1121 AnyMapped = true;
1122 continue;
1126 if (AnyMapped) {
1127 TargetsMapped++;
1128 NumberOfTargetsMapped++;
1130 return AnyMapped;
1133 /// Compute when an array element is unused.
1135 /// @return { [Element[] -> Zone[]] }
1136 isl::union_set computeLifetime() const {
1137 // { Element[] -> Zone[] }
1138 auto ArrayUnused = computeArrayUnused(Schedule, AllMustWrites, AllReads,
1139 false, false, true);
1141 auto Result = ArrayUnused.wrap();
1143 simplify(Result);
1144 return Result;
1147 /// Determine when an array element is written to, and which value instance is
1148 /// written.
1150 /// @return { [Element[] -> Scatter[]] -> ValInst[] }
1151 isl::union_map computeWritten() const {
1152 // { [Element[] -> Scatter[]] -> ValInst[] }
1153 auto EltWritten = applyDomainRange(AllWriteValInst, Schedule);
1155 simplify(EltWritten);
1156 return EltWritten;
1159 /// Determine whether an access touches at most one element.
1161 /// The accessed element could be a scalar or accessing an array with constant
1162 /// subscript, such that all instances access only that element.
1164 /// @param MA The access to test.
1166 /// @return True, if zero or one elements are accessed; False if at least two
1167 /// different elements are accessed.
1168 bool isScalarAccess(MemoryAccess *MA) {
1169 auto Map = getAccessRelationFor(MA);
1170 auto Set = Map.range();
1171 return Set.is_singleton();
1174 /// Print mapping statistics to @p OS.
1175 void printStatistics(llvm::raw_ostream &OS, int Indent = 0) const {
1176 OS.indent(Indent) << "Statistics {\n";
1177 OS.indent(Indent + 4) << "Compatible overwrites: "
1178 << NumberOfCompatibleTargets << "\n";
1179 OS.indent(Indent + 4) << "Overwrites mapped to: " << NumberOfTargetsMapped
1180 << '\n';
1181 OS.indent(Indent + 4) << "Value scalars mapped: "
1182 << NumberOfMappedValueScalars << '\n';
1183 OS.indent(Indent + 4) << "PHI scalars mapped: "
1184 << NumberOfMappedPHIScalars << '\n';
1185 OS.indent(Indent) << "}\n";
1188 public:
1189 DeLICMImpl(Scop *S, LoopInfo *LI) : ZoneAlgorithm("polly-delicm", S, LI) {}
1191 /// Calculate the lifetime (definition to last use) of every array element.
1193 /// @return True if the computed lifetimes (#Zone) is usable.
1194 bool computeZone() {
1195 // Check that nothing strange occurs.
1196 collectCompatibleElts();
1198 isl::union_set EltUnused;
1199 isl::union_map EltKnown, EltWritten;
1202 IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), DelicmMaxOps);
1204 computeCommon();
1206 EltUnused = computeLifetime();
1207 EltKnown = computeKnown(true, false);
1208 EltWritten = computeWritten();
1210 DeLICMAnalyzed++;
1212 if (EltUnused.is_null() || EltKnown.is_null() || EltWritten.is_null()) {
1213 assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota &&
1214 "The only reason that these things have not been computed should "
1215 "be if the max-operations limit hit");
1216 DeLICMOutOfQuota++;
1217 POLLY_DEBUG(dbgs() << "DeLICM analysis exceeded max_operations\n");
1218 DebugLoc Begin, End;
1219 getDebugLocations(getBBPairForRegion(&S->getRegion()), Begin, End);
1220 OptimizationRemarkAnalysis R(DEBUG_TYPE, "OutOfQuota", Begin,
1221 S->getEntry());
1222 R << "maximal number of operations exceeded during zone analysis";
1223 S->getFunction().getContext().diagnose(R);
1224 return false;
1227 Zone = OriginalZone = Knowledge({}, EltUnused, EltKnown, EltWritten);
1228 POLLY_DEBUG(dbgs() << "Computed Zone:\n"; OriginalZone.print(dbgs(), 4));
1230 assert(Zone.isUsable() && OriginalZone.isUsable());
1231 return true;
1234 /// Try to map as many scalars to unused array elements as possible.
1236 /// Multiple scalars might be mappable to intersecting unused array element
1237 /// zones, but we can only chose one. This is a greedy algorithm, therefore
1238 /// the first processed element claims it.
1239 void greedyCollapse() {
1240 bool Modified = false;
1242 for (auto &Stmt : *S) {
1243 for (auto *MA : Stmt) {
1244 if (!MA->isLatestArrayKind())
1245 continue;
1246 if (!MA->isWrite())
1247 continue;
1249 if (MA->isMayWrite()) {
1250 POLLY_DEBUG(dbgs() << "Access " << MA
1251 << " pruned because it is a MAY_WRITE\n");
1252 OptimizationRemarkMissed R(DEBUG_TYPE, "TargetMayWrite",
1253 MA->getAccessInstruction());
1254 R << "Skipped possible mapping target because it is not an "
1255 "unconditional overwrite";
1256 S->getFunction().getContext().diagnose(R);
1257 continue;
1260 if (Stmt.getNumIterators() == 0) {
1261 POLLY_DEBUG(dbgs() << "Access " << MA
1262 << " pruned because it is not in a loop\n");
1263 OptimizationRemarkMissed R(DEBUG_TYPE, "WriteNotInLoop",
1264 MA->getAccessInstruction());
1265 R << "skipped possible mapping target because it is not in a loop";
1266 S->getFunction().getContext().diagnose(R);
1267 continue;
1270 if (isScalarAccess(MA)) {
1271 POLLY_DEBUG(dbgs()
1272 << "Access " << MA
1273 << " pruned because it writes only a single element\n");
1274 OptimizationRemarkMissed R(DEBUG_TYPE, "ScalarWrite",
1275 MA->getAccessInstruction());
1276 R << "skipped possible mapping target because the memory location "
1277 "written to does not depend on its outer loop";
1278 S->getFunction().getContext().diagnose(R);
1279 continue;
1282 if (!isa<StoreInst>(MA->getAccessInstruction())) {
1283 POLLY_DEBUG(dbgs() << "Access " << MA
1284 << " pruned because it is not a StoreInst\n");
1285 OptimizationRemarkMissed R(DEBUG_TYPE, "NotAStore",
1286 MA->getAccessInstruction());
1287 R << "skipped possible mapping target because non-store instructions "
1288 "are not supported";
1289 S->getFunction().getContext().diagnose(R);
1290 continue;
1293 // Check for more than one element acces per statement instance.
1294 // Currently we expect write accesses to be functional, eg. disallow
1296 // { Stmt[0] -> [i] : 0 <= i < 2 }
1298 // This may occur when some accesses to the element write/read only
1299 // parts of the element, eg. a single byte. Polly then divides each
1300 // element into subelements of the smallest access length, normal access
1301 // then touch multiple of such subelements. It is very common when the
1302 // array is accesses with memset, memcpy or memmove which take i8*
1303 // arguments.
1304 isl::union_map AccRel = MA->getLatestAccessRelation();
1305 if (!AccRel.is_single_valued().is_true()) {
1306 POLLY_DEBUG(dbgs() << "Access " << MA
1307 << " is incompatible because it writes multiple "
1308 "elements per instance\n");
1309 OptimizationRemarkMissed R(DEBUG_TYPE, "NonFunctionalAccRel",
1310 MA->getAccessInstruction());
1311 R << "skipped possible mapping target because it writes more than "
1312 "one element";
1313 S->getFunction().getContext().diagnose(R);
1314 continue;
1317 isl::union_set TouchedElts = AccRel.range();
1318 if (!TouchedElts.is_subset(CompatibleElts)) {
1319 POLLY_DEBUG(
1320 dbgs()
1321 << "Access " << MA
1322 << " is incompatible because it touches incompatible elements\n");
1323 OptimizationRemarkMissed R(DEBUG_TYPE, "IncompatibleElts",
1324 MA->getAccessInstruction());
1325 R << "skipped possible mapping target because a target location "
1326 "cannot be reliably analyzed";
1327 S->getFunction().getContext().diagnose(R);
1328 continue;
1331 assert(isCompatibleAccess(MA));
1332 NumberOfCompatibleTargets++;
1333 POLLY_DEBUG(dbgs() << "Analyzing target access " << MA << "\n");
1334 if (collapseScalarsToStore(MA))
1335 Modified = true;
1339 if (Modified)
1340 DeLICMScopsModified++;
1343 /// Dump the internal information about a performed DeLICM to @p OS.
1344 void print(llvm::raw_ostream &OS, int Indent = 0) {
1345 if (!Zone.isUsable()) {
1346 OS.indent(Indent) << "Zone not computed\n";
1347 return;
1350 printStatistics(OS, Indent);
1351 if (!isModified()) {
1352 OS.indent(Indent) << "No modification has been made\n";
1353 return;
1355 printAccesses(OS, Indent);
1358 /// Return whether at least one transformation been applied.
1359 bool isModified() const { return NumberOfTargetsMapped > 0; }
1362 static std::unique_ptr<DeLICMImpl> collapseToUnused(Scop &S, LoopInfo &LI) {
1363 std::unique_ptr<DeLICMImpl> Impl = std::make_unique<DeLICMImpl>(&S, &LI);
1365 if (!Impl->computeZone()) {
1366 POLLY_DEBUG(dbgs() << "Abort because cannot reliably compute lifetimes\n");
1367 return Impl;
1370 POLLY_DEBUG(dbgs() << "Collapsing scalars to unused array elements...\n");
1371 Impl->greedyCollapse();
1373 POLLY_DEBUG(dbgs() << "\nFinal Scop:\n");
1374 POLLY_DEBUG(dbgs() << S);
1376 return Impl;
1379 static std::unique_ptr<DeLICMImpl> runDeLICM(Scop &S, LoopInfo &LI) {
1380 std::unique_ptr<DeLICMImpl> Impl = collapseToUnused(S, LI);
1382 Scop::ScopStatistics ScopStats = S.getStatistics();
1383 NumValueWrites += ScopStats.NumValueWrites;
1384 NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
1385 NumPHIWrites += ScopStats.NumPHIWrites;
1386 NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
1387 NumSingletonWrites += ScopStats.NumSingletonWrites;
1388 NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;
1390 return Impl;
1393 static PreservedAnalyses runDeLICMUsingNPM(Scop &S, ScopAnalysisManager &SAM,
1394 ScopStandardAnalysisResults &SAR,
1395 SPMUpdater &U, raw_ostream *OS) {
1396 LoopInfo &LI = SAR.LI;
1397 std::unique_ptr<DeLICMImpl> Impl = runDeLICM(S, LI);
1399 if (OS) {
1400 *OS << "Printing analysis 'Polly - DeLICM/DePRE' for region: '"
1401 << S.getName() << "' in function '" << S.getFunction().getName()
1402 << "':\n";
1403 if (Impl) {
1404 assert(Impl->getScop() == &S);
1406 *OS << "DeLICM result:\n";
1407 Impl->print(*OS);
1411 if (!Impl->isModified())
1412 return PreservedAnalyses::all();
1414 PreservedAnalyses PA;
1415 PA.preserveSet<AllAnalysesOn<Module>>();
1416 PA.preserveSet<AllAnalysesOn<Function>>();
1417 PA.preserveSet<AllAnalysesOn<Loop>>();
1418 return PA;
1421 class DeLICMWrapperPass final : public ScopPass {
1422 private:
1423 DeLICMWrapperPass(const DeLICMWrapperPass &) = delete;
1424 const DeLICMWrapperPass &operator=(const DeLICMWrapperPass &) = delete;
1426 /// The pass implementation, also holding per-scop data.
1427 std::unique_ptr<DeLICMImpl> Impl;
1429 public:
1430 static char ID;
1431 explicit DeLICMWrapperPass() : ScopPass(ID) {}
1433 void getAnalysisUsage(AnalysisUsage &AU) const override {
1434 AU.addRequiredTransitive<ScopInfoRegionPass>();
1435 AU.addRequired<LoopInfoWrapperPass>();
1436 AU.setPreservesAll();
1439 bool runOnScop(Scop &S) override {
1440 // Free resources for previous scop's computation, if not yet done.
1441 releaseMemory();
1443 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1444 Impl = runDeLICM(S, LI);
1446 return Impl->isModified();
1449 void printScop(raw_ostream &OS, Scop &S) const override {
1450 if (!Impl)
1451 return;
1452 assert(Impl->getScop() == &S);
1454 OS << "DeLICM result:\n";
1455 Impl->print(OS);
1458 void releaseMemory() override { Impl.reset(); }
1461 char DeLICMWrapperPass::ID;
1463 /// Print result from DeLICMWrapperPass.
1464 class DeLICMPrinterLegacyPass final : public ScopPass {
1465 public:
1466 static char ID;
1468 DeLICMPrinterLegacyPass() : DeLICMPrinterLegacyPass(outs()) {}
1469 explicit DeLICMPrinterLegacyPass(llvm::raw_ostream &OS)
1470 : ScopPass(ID), OS(OS) {}
1472 bool runOnScop(Scop &S) override {
1473 DeLICMWrapperPass &P = getAnalysis<DeLICMWrapperPass>();
1475 OS << "Printing analysis '" << P.getPassName() << "' for region: '"
1476 << S.getRegion().getNameStr() << "' in function '"
1477 << S.getFunction().getName() << "':\n";
1478 P.printScop(OS, S);
1480 return false;
1483 void getAnalysisUsage(AnalysisUsage &AU) const override {
1484 ScopPass::getAnalysisUsage(AU);
1485 AU.addRequired<DeLICMWrapperPass>();
1486 AU.setPreservesAll();
1489 private:
1490 llvm::raw_ostream &OS;
1493 char DeLICMPrinterLegacyPass::ID = 0;
1494 } // anonymous namespace
1496 Pass *polly::createDeLICMWrapperPass() { return new DeLICMWrapperPass(); }
1498 llvm::Pass *polly::createDeLICMPrinterLegacyPass(llvm::raw_ostream &OS) {
1499 return new DeLICMPrinterLegacyPass(OS);
1502 llvm::PreservedAnalyses polly::DeLICMPass::run(Scop &S,
1503 ScopAnalysisManager &SAM,
1504 ScopStandardAnalysisResults &SAR,
1505 SPMUpdater &U) {
1506 return runDeLICMUsingNPM(S, SAM, SAR, U, nullptr);
1509 llvm::PreservedAnalyses DeLICMPrinterPass::run(Scop &S,
1510 ScopAnalysisManager &SAM,
1511 ScopStandardAnalysisResults &SAR,
1512 SPMUpdater &U) {
1513 return runDeLICMUsingNPM(S, SAM, SAR, U, &OS);
1516 bool polly::isConflicting(
1517 isl::union_set ExistingOccupied, isl::union_set ExistingUnused,
1518 isl::union_map ExistingKnown, isl::union_map ExistingWrites,
1519 isl::union_set ProposedOccupied, isl::union_set ProposedUnused,
1520 isl::union_map ProposedKnown, isl::union_map ProposedWrites,
1521 llvm::raw_ostream *OS, unsigned Indent) {
1522 Knowledge Existing(std::move(ExistingOccupied), std::move(ExistingUnused),
1523 std::move(ExistingKnown), std::move(ExistingWrites));
1524 Knowledge Proposed(std::move(ProposedOccupied), std::move(ProposedUnused),
1525 std::move(ProposedKnown), std::move(ProposedWrites));
1527 return Knowledge::isConflicting(Existing, Proposed, OS, Indent);
1530 INITIALIZE_PASS_BEGIN(DeLICMWrapperPass, "polly-delicm", "Polly - DeLICM/DePRE",
1531 false, false)
1532 INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass)
1533 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1534 INITIALIZE_PASS_END(DeLICMWrapperPass, "polly-delicm", "Polly - DeLICM/DePRE",
1535 false, false)
1537 INITIALIZE_PASS_BEGIN(DeLICMPrinterLegacyPass, "polly-print-delicm",
1538 "Polly - Print DeLICM/DePRE", false, false)
1539 INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass)
1540 INITIALIZE_PASS_END(DeLICMPrinterLegacyPass, "polly-print-delicm",
1541 "Polly - Print DeLICM/DePRE", false, false)