[AMDGPU] Infer amdgpu-no-flat-scratch-init attribute in AMDGPUAttributor (#94647)
[llvm-project.git] / polly / lib / Transform / Simplify.cpp
blob75e91cd1c031a9f2bb75583185917a651354b422
1 //===------ Simplify.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Simplify a SCoP by removing unnecessary statements and accesses.
11 //===----------------------------------------------------------------------===//
13 #include "polly/Simplify.h"
14 #include "polly/ScopInfo.h"
15 #include "polly/ScopPass.h"
16 #include "polly/Support/GICHelper.h"
17 #include "polly/Support/ISLOStream.h"
18 #include "polly/Support/ISLTools.h"
19 #include "polly/Support/VirtualInstruction.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/Debug.h"
23 #include <optional>
25 #include "polly/Support/PollyDebug.h"
26 #define DEBUG_TYPE "polly-simplify"
28 using namespace llvm;
29 using namespace polly;
31 namespace {
33 #define TWO_STATISTICS(VARNAME, DESC) \
34 static llvm::Statistic VARNAME[2] = { \
35 {DEBUG_TYPE, #VARNAME "0", DESC " (first)"}, \
36 {DEBUG_TYPE, #VARNAME "1", DESC " (second)"}}
38 /// Number of max disjuncts we allow in removeOverwrites(). This is to avoid
39 /// that the analysis of accesses in a statement is becoming too complex. Chosen
40 /// to be relatively small because all the common cases should access only few
41 /// array elements per statement.
42 static unsigned const SimplifyMaxDisjuncts = 4;
44 TWO_STATISTICS(ScopsProcessed, "Number of SCoPs processed");
45 TWO_STATISTICS(ScopsModified, "Number of SCoPs simplified");
47 TWO_STATISTICS(TotalEmptyDomainsRemoved,
48 "Number of statement with empty domains removed in any SCoP");
49 TWO_STATISTICS(TotalOverwritesRemoved, "Number of removed overwritten writes");
50 TWO_STATISTICS(TotalWritesCoalesced, "Number of writes coalesced with another");
51 TWO_STATISTICS(TotalRedundantWritesRemoved,
52 "Number of writes of same value removed in any SCoP");
53 TWO_STATISTICS(TotalEmptyPartialAccessesRemoved,
54 "Number of empty partial accesses removed");
55 TWO_STATISTICS(TotalDeadAccessesRemoved, "Number of dead accesses removed");
56 TWO_STATISTICS(TotalDeadInstructionsRemoved,
57 "Number of unused instructions removed");
58 TWO_STATISTICS(TotalStmtsRemoved, "Number of statements removed in any SCoP");
60 TWO_STATISTICS(NumValueWrites, "Number of scalar value writes after Simplify");
61 TWO_STATISTICS(
62 NumValueWritesInLoops,
63 "Number of scalar value writes nested in affine loops after Simplify");
64 TWO_STATISTICS(NumPHIWrites,
65 "Number of scalar phi writes after the first simplification");
66 TWO_STATISTICS(
67 NumPHIWritesInLoops,
68 "Number of scalar phi writes nested in affine loops after Simplify");
69 TWO_STATISTICS(NumSingletonWrites, "Number of singleton writes after Simplify");
70 TWO_STATISTICS(
71 NumSingletonWritesInLoops,
72 "Number of singleton writes nested in affine loops after Simplify");
74 static bool isImplicitRead(MemoryAccess *MA) {
75 return MA->isRead() && MA->isOriginalScalarKind();
78 static bool isExplicitAccess(MemoryAccess *MA) {
79 return MA->isOriginalArrayKind();
82 static bool isImplicitWrite(MemoryAccess *MA) {
83 return MA->isWrite() && MA->isOriginalScalarKind();
86 /// Like isl::union_map::unite, but may also return an underapproximated
87 /// result if getting too complex.
88 ///
89 /// This is implemented by adding disjuncts to the results until the limit is
90 /// reached.
91 static isl::union_map underapproximatedAddMap(isl::union_map UMap,
92 isl::map Map) {
93 if (UMap.is_null() || Map.is_null())
94 return {};
96 isl::map PrevMap = UMap.extract_map(Map.get_space());
98 // Fast path: If known that we cannot exceed the disjunct limit, just add
99 // them.
100 if (unsignedFromIslSize(PrevMap.n_basic_map()) +
101 unsignedFromIslSize(Map.n_basic_map()) <=
102 SimplifyMaxDisjuncts)
103 return UMap.unite(Map);
105 isl::map Result = isl::map::empty(PrevMap.get_space());
106 for (isl::basic_map BMap : PrevMap.get_basic_map_list()) {
107 if (unsignedFromIslSize(Result.n_basic_map()) > SimplifyMaxDisjuncts)
108 break;
109 Result = Result.unite(BMap);
111 for (isl::basic_map BMap : Map.get_basic_map_list()) {
112 if (unsignedFromIslSize(Result.n_basic_map()) > SimplifyMaxDisjuncts)
113 break;
114 Result = Result.unite(BMap);
117 isl::union_map UResult =
118 UMap.subtract(isl::map::universe(PrevMap.get_space()));
119 UResult.unite(Result);
121 return UResult;
124 class SimplifyImpl final {
125 private:
126 /// The invocation id (if there are multiple instances in the pass manager's
127 /// pipeline) to determine which statistics to update.
128 int CallNo;
130 /// The last/current SCoP that is/has been processed.
131 Scop *S = nullptr;
133 /// Number of statements with empty domains removed from the SCoP.
134 int EmptyDomainsRemoved = 0;
136 /// Number of writes that are overwritten anyway.
137 int OverwritesRemoved = 0;
139 /// Number of combined writes.
140 int WritesCoalesced = 0;
142 /// Number of redundant writes removed from this SCoP.
143 int RedundantWritesRemoved = 0;
145 /// Number of writes with empty access domain removed.
146 int EmptyPartialAccessesRemoved = 0;
148 /// Number of unused accesses removed from this SCoP.
149 int DeadAccessesRemoved = 0;
151 /// Number of unused instructions removed from this SCoP.
152 int DeadInstructionsRemoved = 0;
154 /// Number of unnecessary statements removed from the SCoP.
155 int StmtsRemoved = 0;
157 /// Remove statements that are never executed due to their domains being
158 /// empty.
160 /// In contrast to Scop::simplifySCoP, this removes based on the SCoP's
161 /// effective domain, i.e. including the SCoP's context as used by some other
162 /// simplification methods in this pass. This is necessary because the
163 /// analysis on empty domains is unreliable, e.g. remove a scalar value
164 /// definition MemoryAccesses, but not its use.
165 void removeEmptyDomainStmts();
167 /// Remove writes that are overwritten unconditionally later in the same
168 /// statement.
170 /// There must be no read of the same value between the write (that is to be
171 /// removed) and the overwrite.
172 void removeOverwrites();
174 /// Combine writes that write the same value if possible.
176 /// This function is able to combine:
177 /// - Partial writes with disjoint domain.
178 /// - Writes that write to the same array element.
180 /// In all cases, both writes must write the same values.
181 void coalesceWrites();
183 /// Remove writes that just write the same value already stored in the
184 /// element.
185 void removeRedundantWrites();
187 /// Remove statements without side effects.
188 void removeUnnecessaryStmts();
190 /// Remove accesses that have an empty domain.
191 void removeEmptyPartialAccesses();
193 /// Mark all reachable instructions and access, and sweep those that are not
194 /// reachable.
195 void markAndSweep(LoopInfo *LI);
197 /// Print simplification statistics to @p OS.
198 void printStatistics(llvm::raw_ostream &OS, int Indent = 0) const;
200 /// Print the current state of all MemoryAccesses to @p OS.
201 void printAccesses(llvm::raw_ostream &OS, int Indent = 0) const;
203 public:
204 explicit SimplifyImpl(int CallNo = 0) : CallNo(CallNo) {}
206 void run(Scop &S, LoopInfo *LI);
208 void printScop(raw_ostream &OS, Scop &S) const;
210 /// Return whether at least one simplification has been applied.
211 bool isModified() const;
214 /// Return whether at least one simplification has been applied.
215 bool SimplifyImpl::isModified() const {
216 return EmptyDomainsRemoved > 0 || OverwritesRemoved > 0 ||
217 WritesCoalesced > 0 || RedundantWritesRemoved > 0 ||
218 EmptyPartialAccessesRemoved > 0 || DeadAccessesRemoved > 0 ||
219 DeadInstructionsRemoved > 0 || StmtsRemoved > 0;
222 /// Remove statements that are never executed due to their domains being
223 /// empty.
225 /// In contrast to Scop::simplifySCoP, this removes based on the SCoP's
226 /// effective domain, i.e. including the SCoP's context as used by some other
227 /// simplification methods in this pass. This is necessary because the
228 /// analysis on empty domains is unreliable, e.g. remove a scalar value
229 /// definition MemoryAccesses, but not its use.
230 void SimplifyImpl::removeEmptyDomainStmts() {
231 size_t NumStmtsBefore = S->getSize();
233 S->removeStmts([](ScopStmt &Stmt) -> bool {
234 auto EffectiveDomain =
235 Stmt.getDomain().intersect_params(Stmt.getParent()->getContext());
236 return EffectiveDomain.is_empty();
239 assert(NumStmtsBefore >= S->getSize());
240 EmptyDomainsRemoved = NumStmtsBefore - S->getSize();
241 POLLY_DEBUG(dbgs() << "Removed " << EmptyDomainsRemoved << " (of "
242 << NumStmtsBefore << ") statements with empty domains \n");
243 TotalEmptyDomainsRemoved[CallNo] += EmptyDomainsRemoved;
246 /// Remove writes that are overwritten unconditionally later in the same
247 /// statement.
249 /// There must be no read of the same value between the write (that is to be
250 /// removed) and the overwrite.
251 void SimplifyImpl::removeOverwrites() {
252 for (auto &Stmt : *S) {
253 isl::set Domain = Stmt.getDomain();
254 isl::union_map WillBeOverwritten = isl::union_map::empty(S->getIslCtx());
256 SmallVector<MemoryAccess *, 32> Accesses(getAccessesInOrder(Stmt));
258 // Iterate in reverse order, so the overwrite comes before the write that
259 // is to be removed.
260 for (auto *MA : reverse(Accesses)) {
262 // In region statements, the explicit accesses can be in blocks that are
263 // can be executed in any order. We therefore process only the implicit
264 // writes and stop after that.
265 if (Stmt.isRegionStmt() && isExplicitAccess(MA))
266 break;
268 auto AccRel = MA->getAccessRelation();
269 AccRel = AccRel.intersect_domain(Domain);
270 AccRel = AccRel.intersect_params(S->getContext());
272 // If a value is read in-between, do not consider it as overwritten.
273 if (MA->isRead()) {
274 // Invalidate all overwrites for the array it accesses to avoid too
275 // complex isl sets.
276 isl::map AccRelUniv = isl::map::universe(AccRel.get_space());
277 WillBeOverwritten = WillBeOverwritten.subtract(AccRelUniv);
278 continue;
281 // If all of a write's elements are overwritten, remove it.
282 isl::union_map AccRelUnion = AccRel;
283 if (AccRelUnion.is_subset(WillBeOverwritten)) {
284 POLLY_DEBUG(dbgs() << "Removing " << MA
285 << " which will be overwritten anyway\n");
287 Stmt.removeSingleMemoryAccess(MA);
288 OverwritesRemoved++;
289 TotalOverwritesRemoved[CallNo]++;
292 // Unconditional writes overwrite other values.
293 if (MA->isMustWrite()) {
294 // Avoid too complex isl sets. If necessary, throw away some of the
295 // knowledge.
296 WillBeOverwritten = underapproximatedAddMap(WillBeOverwritten, AccRel);
302 /// Combine writes that write the same value if possible.
304 /// This function is able to combine:
305 /// - Partial writes with disjoint domain.
306 /// - Writes that write to the same array element.
308 /// In all cases, both writes must write the same values.
309 void SimplifyImpl::coalesceWrites() {
310 for (auto &Stmt : *S) {
311 isl::set Domain = Stmt.getDomain().intersect_params(S->getContext());
313 // We let isl do the lookup for the same-value condition. For this, we
314 // wrap llvm::Value into an isl::set such that isl can do the lookup in
315 // its hashtable implementation. llvm::Values are only compared within a
316 // ScopStmt, so the map can be local to this scope. TODO: Refactor with
317 // ZoneAlgorithm::makeValueSet()
318 SmallDenseMap<Value *, isl::set> ValueSets;
319 auto makeValueSet = [&ValueSets, this](Value *V) -> isl::set {
320 assert(V);
321 isl::set &Result = ValueSets[V];
322 if (Result.is_null()) {
323 isl::ctx Ctx = S->getIslCtx();
324 std::string Name = getIslCompatibleName(
325 "Val", V, ValueSets.size() - 1, std::string(), UseInstructionNames);
326 isl::id Id = isl::id::alloc(Ctx, Name, V);
327 Result = isl::set::universe(
328 isl::space(Ctx, 0, 0).set_tuple_id(isl::dim::set, Id));
330 return Result;
333 // List of all eligible (for coalescing) writes of the future.
334 // { [Domain[] -> Element[]] -> [Value[] -> MemoryAccess[]] }
335 isl::union_map FutureWrites = isl::union_map::empty(S->getIslCtx());
337 // Iterate over accesses from the last to the first.
338 SmallVector<MemoryAccess *, 32> Accesses(getAccessesInOrder(Stmt));
339 for (MemoryAccess *MA : reverse(Accesses)) {
340 // In region statements, the explicit accesses can be in blocks that can
341 // be executed in any order. We therefore process only the implicit
342 // writes and stop after that.
343 if (Stmt.isRegionStmt() && isExplicitAccess(MA))
344 break;
346 // { Domain[] -> Element[] }
347 isl::map AccRel = MA->getLatestAccessRelation().intersect_domain(Domain);
349 // { [Domain[] -> Element[]] }
350 isl::set AccRelWrapped = AccRel.wrap();
352 // { Value[] }
353 isl::set ValSet;
355 if (MA->isMustWrite() && (MA->isOriginalScalarKind() ||
356 isa<StoreInst>(MA->getAccessInstruction()))) {
357 // Normally, tryGetValueStored() should be used to determine which
358 // element is written, but it can return nullptr; For PHI accesses,
359 // getAccessValue() returns the PHI instead of the PHI's incoming
360 // value. In this case, where we only compare values of a single
361 // statement, this is fine, because within a statement, a PHI in a
362 // successor block has always the same value as the incoming write. We
363 // still preferably use the incoming value directly so we also catch
364 // direct uses of that.
365 Value *StoredVal = MA->tryGetValueStored();
366 if (!StoredVal)
367 StoredVal = MA->getAccessValue();
368 ValSet = makeValueSet(StoredVal);
370 // { Domain[] }
371 isl::set AccDomain = AccRel.domain();
373 // Parts of the statement's domain that is not written by this access.
374 isl::set UndefDomain = Domain.subtract(AccDomain);
376 // { Element[] }
377 isl::set ElementUniverse =
378 isl::set::universe(AccRel.get_space().range());
380 // { Domain[] -> Element[] }
381 isl::map UndefAnything =
382 isl::map::from_domain_and_range(UndefDomain, ElementUniverse);
384 // We are looking a compatible write access. The other write can
385 // access these elements...
386 isl::map AllowedAccesses = AccRel.unite(UndefAnything);
388 // ... and must write the same value.
389 // { [Domain[] -> Element[]] -> Value[] }
390 isl::map Filter =
391 isl::map::from_domain_and_range(AllowedAccesses.wrap(), ValSet);
393 // Lookup future write that fulfills these conditions.
394 // { [[Domain[] -> Element[]] -> Value[]] -> MemoryAccess[] }
395 isl::union_map Filtered =
396 FutureWrites.uncurry().intersect_domain(Filter.wrap());
398 // Iterate through the candidates.
399 for (isl::map Map : Filtered.get_map_list()) {
400 MemoryAccess *OtherMA = (MemoryAccess *)Map.get_space()
401 .get_tuple_id(isl::dim::out)
402 .get_user();
404 isl::map OtherAccRel =
405 OtherMA->getLatestAccessRelation().intersect_domain(Domain);
407 // The filter only guaranteed that some of OtherMA's accessed
408 // elements are allowed. Verify that it only accesses allowed
409 // elements. Otherwise, continue with the next candidate.
410 if (!OtherAccRel.is_subset(AllowedAccesses).is_true())
411 continue;
413 // The combined access relation.
414 // { Domain[] -> Element[] }
415 isl::map NewAccRel = AccRel.unite(OtherAccRel);
416 simplify(NewAccRel);
418 // Carry out the coalescing.
419 Stmt.removeSingleMemoryAccess(MA);
420 OtherMA->setNewAccessRelation(NewAccRel);
422 // We removed MA, OtherMA takes its role.
423 MA = OtherMA;
425 TotalWritesCoalesced[CallNo]++;
426 WritesCoalesced++;
428 // Don't look for more candidates.
429 break;
433 // Two writes cannot be coalesced if there is another access (to some of
434 // the written elements) between them. Remove all visited write accesses
435 // from the list of eligible writes. Don't just remove the accessed
436 // elements, but any MemoryAccess that touches any of the invalidated
437 // elements.
438 SmallPtrSet<MemoryAccess *, 2> TouchedAccesses;
439 for (isl::map Map :
440 FutureWrites.intersect_domain(AccRelWrapped).get_map_list()) {
441 MemoryAccess *MA = (MemoryAccess *)Map.get_space()
442 .range()
443 .unwrap()
444 .get_tuple_id(isl::dim::out)
445 .get_user();
446 TouchedAccesses.insert(MA);
448 isl::union_map NewFutureWrites =
449 isl::union_map::empty(FutureWrites.ctx());
450 for (isl::map FutureWrite : FutureWrites.get_map_list()) {
451 MemoryAccess *MA = (MemoryAccess *)FutureWrite.get_space()
452 .range()
453 .unwrap()
454 .get_tuple_id(isl::dim::out)
455 .get_user();
456 if (!TouchedAccesses.count(MA))
457 NewFutureWrites = NewFutureWrites.unite(FutureWrite);
459 FutureWrites = NewFutureWrites;
461 if (MA->isMustWrite() && !ValSet.is_null()) {
462 // { MemoryAccess[] }
463 auto AccSet =
464 isl::set::universe(isl::space(S->getIslCtx(), 0, 0)
465 .set_tuple_id(isl::dim::set, MA->getId()));
467 // { Val[] -> MemoryAccess[] }
468 isl::map ValAccSet = isl::map::from_domain_and_range(ValSet, AccSet);
470 // { [Domain[] -> Element[]] -> [Value[] -> MemoryAccess[]] }
471 isl::map AccRelValAcc =
472 isl::map::from_domain_and_range(AccRelWrapped, ValAccSet.wrap());
473 FutureWrites = FutureWrites.unite(AccRelValAcc);
479 /// Remove writes that just write the same value already stored in the
480 /// element.
481 void SimplifyImpl::removeRedundantWrites() {
482 for (auto &Stmt : *S) {
483 SmallDenseMap<Value *, isl::set> ValueSets;
484 auto makeValueSet = [&ValueSets, this](Value *V) -> isl::set {
485 assert(V);
486 isl::set &Result = ValueSets[V];
487 if (Result.is_null()) {
488 isl_ctx *Ctx = S->getIslCtx().get();
489 std::string Name = getIslCompatibleName(
490 "Val", V, ValueSets.size() - 1, std::string(), UseInstructionNames);
491 isl::id Id = isl::manage(isl_id_alloc(Ctx, Name.c_str(), V));
492 Result = isl::set::universe(
493 isl::space(Ctx, 0, 0).set_tuple_id(isl::dim::set, Id));
495 return Result;
498 isl::set Domain = Stmt.getDomain();
499 Domain = Domain.intersect_params(S->getContext());
501 // List of element reads that still have the same value while iterating
502 // through the MemoryAccesses.
503 // { [Domain[] -> Element[]] -> Val[] }
504 isl::union_map Known = isl::union_map::empty(S->getIslCtx());
506 SmallVector<MemoryAccess *, 32> Accesses(getAccessesInOrder(Stmt));
507 for (MemoryAccess *MA : Accesses) {
508 // Is the memory access in a defined order relative to the other
509 // accesses? In region statements, only the first and the last accesses
510 // have defined order. Execution of those in the middle may depend on
511 // runtime conditions an therefore cannot be modified.
512 bool IsOrdered =
513 Stmt.isBlockStmt() || MA->isOriginalScalarKind() ||
514 (!S->getBoxedLoops().size() && MA->getAccessInstruction() &&
515 Stmt.getEntryBlock() == MA->getAccessInstruction()->getParent());
517 isl::map AccRel = MA->getAccessRelation();
518 AccRel = AccRel.intersect_domain(Domain);
519 isl::set AccRelWrapped = AccRel.wrap();
521 // Determine whether a write is redundant (stores only values that are
522 // already present in the written array elements) and remove it if this
523 // is the case.
524 if (IsOrdered && MA->isMustWrite() &&
525 (isa<StoreInst>(MA->getAccessInstruction()) ||
526 MA->isOriginalScalarKind())) {
527 Value *StoredVal = MA->tryGetValueStored();
528 if (!StoredVal)
529 StoredVal = MA->getAccessValue();
531 if (StoredVal) {
532 // Lookup in the set of known values.
533 isl::map AccRelStoredVal = isl::map::from_domain_and_range(
534 AccRelWrapped, makeValueSet(StoredVal));
535 if (isl::union_map(AccRelStoredVal).is_subset(Known)) {
536 POLLY_DEBUG(dbgs() << "Cleanup of " << MA << ":\n");
537 POLLY_DEBUG(dbgs() << " Scalar: " << *StoredVal << "\n");
538 POLLY_DEBUG(dbgs() << " AccRel: " << AccRel << "\n");
540 Stmt.removeSingleMemoryAccess(MA);
542 RedundantWritesRemoved++;
543 TotalRedundantWritesRemoved[CallNo]++;
548 // Update the know values set.
549 if (MA->isRead()) {
550 // Loaded values are the currently known values of the array element
551 // it was loaded from.
552 Value *LoadedVal = MA->getAccessValue();
553 if (LoadedVal && IsOrdered) {
554 isl::map AccRelVal = isl::map::from_domain_and_range(
555 AccRelWrapped, makeValueSet(LoadedVal));
557 Known = Known.unite(AccRelVal);
559 } else if (MA->isWrite()) {
560 // Remove (possibly) overwritten values from the known elements set.
561 // We remove all elements of the accessed array to avoid too complex
562 // isl sets.
563 isl::set AccRelUniv = isl::set::universe(AccRelWrapped.get_space());
564 Known = Known.subtract_domain(AccRelUniv);
566 // At this point, we could add the written value of must-writes.
567 // However, writing same values is already handled by
568 // coalesceWrites().
574 /// Remove statements without side effects.
575 void SimplifyImpl::removeUnnecessaryStmts() {
576 auto NumStmtsBefore = S->getSize();
577 S->simplifySCoP(true);
578 assert(NumStmtsBefore >= S->getSize());
579 StmtsRemoved = NumStmtsBefore - S->getSize();
580 POLLY_DEBUG(dbgs() << "Removed " << StmtsRemoved << " (of " << NumStmtsBefore
581 << ") statements\n");
582 TotalStmtsRemoved[CallNo] += StmtsRemoved;
585 /// Remove accesses that have an empty domain.
586 void SimplifyImpl::removeEmptyPartialAccesses() {
587 for (ScopStmt &Stmt : *S) {
588 // Defer the actual removal to not invalidate iterators.
589 SmallVector<MemoryAccess *, 8> DeferredRemove;
591 for (MemoryAccess *MA : Stmt) {
592 if (!MA->isWrite())
593 continue;
595 isl::map AccRel = MA->getAccessRelation();
596 if (!AccRel.is_empty().is_true())
597 continue;
599 POLLY_DEBUG(
600 dbgs() << "Removing " << MA
601 << " because it's a partial access that never occurs\n");
602 DeferredRemove.push_back(MA);
605 for (MemoryAccess *MA : DeferredRemove) {
606 Stmt.removeSingleMemoryAccess(MA);
607 EmptyPartialAccessesRemoved++;
608 TotalEmptyPartialAccessesRemoved[CallNo]++;
613 /// Mark all reachable instructions and access, and sweep those that are not
614 /// reachable.
615 void SimplifyImpl::markAndSweep(LoopInfo *LI) {
616 DenseSet<MemoryAccess *> UsedMA;
617 DenseSet<VirtualInstruction> UsedInsts;
619 // Get all reachable instructions and accesses.
620 markReachable(S, LI, UsedInsts, UsedMA);
622 // Remove all non-reachable accesses.
623 // We need get all MemoryAccesses first, in order to not invalidate the
624 // iterators when removing them.
625 SmallVector<MemoryAccess *, 64> AllMAs;
626 for (ScopStmt &Stmt : *S)
627 AllMAs.append(Stmt.begin(), Stmt.end());
629 for (MemoryAccess *MA : AllMAs) {
630 if (UsedMA.count(MA))
631 continue;
632 POLLY_DEBUG(dbgs() << "Removing " << MA
633 << " because its value is not used\n");
634 ScopStmt *Stmt = MA->getStatement();
635 Stmt->removeSingleMemoryAccess(MA);
637 DeadAccessesRemoved++;
638 TotalDeadAccessesRemoved[CallNo]++;
641 // Remove all non-reachable instructions.
642 for (ScopStmt &Stmt : *S) {
643 // Note that for region statements, we can only remove the non-terminator
644 // instructions of the entry block. All other instructions are not in the
645 // instructions list, but implicitly always part of the statement.
647 SmallVector<Instruction *, 32> AllInsts(Stmt.insts_begin(),
648 Stmt.insts_end());
649 SmallVector<Instruction *, 32> RemainInsts;
651 for (Instruction *Inst : AllInsts) {
652 auto It = UsedInsts.find({&Stmt, Inst});
653 if (It == UsedInsts.end()) {
654 POLLY_DEBUG(dbgs() << "Removing "; Inst->print(dbgs());
655 dbgs() << " because it is not used\n");
656 DeadInstructionsRemoved++;
657 TotalDeadInstructionsRemoved[CallNo]++;
658 continue;
661 RemainInsts.push_back(Inst);
663 // If instructions appear multiple times, keep only the first.
664 UsedInsts.erase(It);
667 // Set the new instruction list to be only those we did not remove.
668 Stmt.setInstructions(RemainInsts);
672 /// Print simplification statistics to @p OS.
673 void SimplifyImpl::printStatistics(llvm::raw_ostream &OS, int Indent) const {
674 OS.indent(Indent) << "Statistics {\n";
675 OS.indent(Indent + 4) << "Empty domains removed: " << EmptyDomainsRemoved
676 << '\n';
677 OS.indent(Indent + 4) << "Overwrites removed: " << OverwritesRemoved << '\n';
678 OS.indent(Indent + 4) << "Partial writes coalesced: " << WritesCoalesced
679 << "\n";
680 OS.indent(Indent + 4) << "Redundant writes removed: "
681 << RedundantWritesRemoved << "\n";
682 OS.indent(Indent + 4) << "Accesses with empty domains removed: "
683 << EmptyPartialAccessesRemoved << "\n";
684 OS.indent(Indent + 4) << "Dead accesses removed: " << DeadAccessesRemoved
685 << '\n';
686 OS.indent(Indent + 4) << "Dead instructions removed: "
687 << DeadInstructionsRemoved << '\n';
688 OS.indent(Indent + 4) << "Stmts removed: " << StmtsRemoved << "\n";
689 OS.indent(Indent) << "}\n";
692 /// Print the current state of all MemoryAccesses to @p OS.
693 void SimplifyImpl::printAccesses(llvm::raw_ostream &OS, int Indent) const {
694 OS.indent(Indent) << "After accesses {\n";
695 for (auto &Stmt : *S) {
696 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
697 for (auto *MA : Stmt)
698 MA->print(OS);
700 OS.indent(Indent) << "}\n";
703 void SimplifyImpl::run(Scop &S, LoopInfo *LI) {
704 // Must not have run before.
705 assert(!this->S);
706 assert(!isModified());
708 // Prepare processing of this SCoP.
709 this->S = &S;
710 ScopsProcessed[CallNo]++;
712 POLLY_DEBUG(dbgs() << "Removing statements that are never executed...\n");
713 removeEmptyDomainStmts();
715 POLLY_DEBUG(dbgs() << "Removing partial writes that never happen...\n");
716 removeEmptyPartialAccesses();
718 POLLY_DEBUG(dbgs() << "Removing overwrites...\n");
719 removeOverwrites();
721 POLLY_DEBUG(dbgs() << "Coalesce partial writes...\n");
722 coalesceWrites();
724 POLLY_DEBUG(dbgs() << "Removing redundant writes...\n");
725 removeRedundantWrites();
727 POLLY_DEBUG(dbgs() << "Cleanup unused accesses...\n");
728 markAndSweep(LI);
730 POLLY_DEBUG(dbgs() << "Removing statements without side effects...\n");
731 removeUnnecessaryStmts();
733 if (isModified())
734 ScopsModified[CallNo]++;
735 POLLY_DEBUG(dbgs() << "\nFinal Scop:\n");
736 POLLY_DEBUG(dbgs() << S);
738 auto ScopStats = S.getStatistics();
739 NumValueWrites[CallNo] += ScopStats.NumValueWrites;
740 NumValueWritesInLoops[CallNo] += ScopStats.NumValueWritesInLoops;
741 NumPHIWrites[CallNo] += ScopStats.NumPHIWrites;
742 NumPHIWritesInLoops[CallNo] += ScopStats.NumPHIWritesInLoops;
743 NumSingletonWrites[CallNo] += ScopStats.NumSingletonWrites;
744 NumSingletonWritesInLoops[CallNo] += ScopStats.NumSingletonWritesInLoops;
747 void SimplifyImpl::printScop(raw_ostream &OS, Scop &S) const {
748 assert(&S == this->S &&
749 "Can only print analysis for the last processed SCoP");
750 printStatistics(OS);
752 if (!isModified()) {
753 OS << "SCoP could not be simplified\n";
754 return;
756 printAccesses(OS);
759 class SimplifyWrapperPass final : public ScopPass {
760 public:
761 static char ID;
762 int CallNo;
763 std::optional<SimplifyImpl> Impl;
765 explicit SimplifyWrapperPass(int CallNo = 0) : ScopPass(ID), CallNo(CallNo) {}
767 void getAnalysisUsage(AnalysisUsage &AU) const override {
768 AU.addRequiredTransitive<ScopInfoRegionPass>();
769 AU.addRequired<LoopInfoWrapperPass>();
770 AU.setPreservesAll();
773 bool runOnScop(Scop &S) override {
774 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
776 Impl.emplace(CallNo);
777 Impl->run(S, LI);
779 return false;
782 void printScop(raw_ostream &OS, Scop &S) const override {
783 if (Impl)
784 Impl->printScop(OS, S);
787 void releaseMemory() override { Impl.reset(); }
790 char SimplifyWrapperPass::ID;
792 static llvm::PreservedAnalyses
793 runSimplifyUsingNPM(Scop &S, ScopAnalysisManager &SAM,
794 ScopStandardAnalysisResults &SAR, SPMUpdater &U, int CallNo,
795 raw_ostream *OS) {
796 SimplifyImpl Impl(CallNo);
797 Impl.run(S, &SAR.LI);
798 if (OS) {
799 *OS << "Printing analysis 'Polly - Simplify' for region: '" << S.getName()
800 << "' in function '" << S.getFunction().getName() << "':\n";
801 Impl.printScop(*OS, S);
804 if (!Impl.isModified())
805 return llvm::PreservedAnalyses::all();
807 PreservedAnalyses PA;
808 PA.preserveSet<AllAnalysesOn<Module>>();
809 PA.preserveSet<AllAnalysesOn<Function>>();
810 PA.preserveSet<AllAnalysesOn<Loop>>();
811 return PA;
814 } // anonymous namespace
816 llvm::PreservedAnalyses SimplifyPass::run(Scop &S, ScopAnalysisManager &SAM,
817 ScopStandardAnalysisResults &SAR,
818 SPMUpdater &U) {
819 return runSimplifyUsingNPM(S, SAM, SAR, U, CallNo, nullptr);
822 llvm::PreservedAnalyses
823 SimplifyPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
824 ScopStandardAnalysisResults &SAR, SPMUpdater &U) {
825 return runSimplifyUsingNPM(S, SAM, SAR, U, CallNo, &OS);
828 SmallVector<MemoryAccess *, 32> polly::getAccessesInOrder(ScopStmt &Stmt) {
829 SmallVector<MemoryAccess *, 32> Accesses;
831 for (MemoryAccess *MemAcc : Stmt)
832 if (isImplicitRead(MemAcc))
833 Accesses.push_back(MemAcc);
835 for (MemoryAccess *MemAcc : Stmt)
836 if (isExplicitAccess(MemAcc))
837 Accesses.push_back(MemAcc);
839 for (MemoryAccess *MemAcc : Stmt)
840 if (isImplicitWrite(MemAcc))
841 Accesses.push_back(MemAcc);
843 return Accesses;
846 Pass *polly::createSimplifyWrapperPass(int CallNo) {
847 return new SimplifyWrapperPass(CallNo);
850 INITIALIZE_PASS_BEGIN(SimplifyWrapperPass, "polly-simplify", "Polly - Simplify",
851 false, false)
852 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
853 INITIALIZE_PASS_END(SimplifyWrapperPass, "polly-simplify", "Polly - Simplify",
854 false, false)
856 //===----------------------------------------------------------------------===//
858 namespace {
859 /// Print result from SimplifyWrapperPass.
860 class SimplifyPrinterLegacyPass final : public ScopPass {
861 public:
862 static char ID;
864 SimplifyPrinterLegacyPass() : SimplifyPrinterLegacyPass(outs()) {}
865 explicit SimplifyPrinterLegacyPass(llvm::raw_ostream &OS)
866 : ScopPass(ID), OS(OS) {}
868 bool runOnScop(Scop &S) override {
869 SimplifyWrapperPass &P = getAnalysis<SimplifyWrapperPass>();
871 OS << "Printing analysis '" << P.getPassName() << "' for region: '"
872 << S.getRegion().getNameStr() << "' in function '"
873 << S.getFunction().getName() << "':\n";
874 P.printScop(OS, S);
876 return false;
879 void getAnalysisUsage(AnalysisUsage &AU) const override {
880 ScopPass::getAnalysisUsage(AU);
881 AU.addRequired<SimplifyWrapperPass>();
882 AU.setPreservesAll();
885 private:
886 llvm::raw_ostream &OS;
889 char SimplifyPrinterLegacyPass::ID = 0;
890 } // namespace
892 Pass *polly::createSimplifyPrinterLegacyPass(raw_ostream &OS) {
893 return new SimplifyPrinterLegacyPass(OS);
896 INITIALIZE_PASS_BEGIN(SimplifyPrinterLegacyPass, "polly-print-simplify",
897 "Polly - Print Simplify actions", false, false)
898 INITIALIZE_PASS_DEPENDENCY(SimplifyWrapperPass)
899 INITIALIZE_PASS_END(SimplifyPrinterLegacyPass, "polly-print-simplify",
900 "Polly - Print Simplify actions", false, false)