[LoopVectorizer] Add support for chaining partial reductions (#120272)
[llvm-project.git] / third-party / benchmark / bindings / python / google_benchmark / __init__.py
blobe14769f451fe7089b49cdb874f5f5d68b5517e36
1 # Copyright 2020 Google Inc. All rights reserved.
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
7 # http://www.apache.org/licenses/LICENSE-2.0
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14 """Python benchmarking utilities.
16 Example usage:
17 import google_benchmark as benchmark
19 @benchmark.register
20 def my_benchmark(state):
21 ... # Code executed outside `while` loop is not timed.
23 while state:
24 ... # Code executed within `while` loop is timed.
26 if __name__ == '__main__':
27 benchmark.main()
28 """
29 import atexit
31 from absl import app
33 from google_benchmark import _benchmark
34 from google_benchmark._benchmark import (
35 Counter as Counter,
36 State as State,
37 kMicrosecond as kMicrosecond,
38 kMillisecond as kMillisecond,
39 kNanosecond as kNanosecond,
40 kSecond as kSecond,
41 o1 as o1,
42 oAuto as oAuto,
43 oLambda as oLambda,
44 oLogN as oLogN,
45 oN as oN,
46 oNCubed as oNCubed,
47 oNLogN as oNLogN,
48 oNone as oNone,
49 oNSquared as oNSquared,
51 from google_benchmark.version import __version__ as __version__
54 class __OptionMaker:
55 """A stateless class to collect benchmark options.
57 Collect all decorator calls like @option.range(start=0, limit=1<<5).
58 """
60 class Options:
61 """Pure data class to store options calls, along with the benchmarked function."""
63 def __init__(self, func):
64 self.func = func
65 self.builder_calls = []
67 @classmethod
68 def make(cls, func_or_options):
69 """Make Options from Options or the benchmarked function."""
70 if isinstance(func_or_options, cls.Options):
71 return func_or_options
72 return cls.Options(func_or_options)
74 def __getattr__(self, builder_name):
75 """Append option call in the Options."""
77 # The function that get returned on @option.range(start=0, limit=1<<5).
78 def __builder_method(*args, **kwargs):
79 # The decorator that get called, either with the benchmared function
80 # or the previous Options
81 def __decorator(func_or_options):
82 options = self.make(func_or_options)
83 options.builder_calls.append((builder_name, args, kwargs))
84 # The decorator returns Options so it is not technically a decorator
85 # and needs a final call to @register
86 return options
88 return __decorator
90 return __builder_method
93 # Alias for nicer API.
94 # We have to instantiate an object, even if stateless, to be able to use __getattr__
95 # on option.range
96 option = __OptionMaker()
99 def register(undefined=None, *, name=None):
100 """Register function for benchmarking."""
101 if undefined is None:
102 # Decorator is called without parenthesis so we return a decorator
103 return lambda f: register(f, name=name)
105 # We have either the function to benchmark (simple case) or an instance of Options
106 # (@option._ case).
107 options = __OptionMaker.make(undefined)
109 if name is None:
110 name = options.func.__name__
112 # We register the benchmark and reproduce all the @option._ calls onto the
113 # benchmark builder pattern
114 benchmark = _benchmark.RegisterBenchmark(name, options.func)
115 for name, args, kwargs in options.builder_calls[::-1]:
116 getattr(benchmark, name)(*args, **kwargs)
118 # return the benchmarked function because the decorator does not modify it
119 return options.func
122 def _flags_parser(argv):
123 argv = _benchmark.Initialize(argv)
124 return app.parse_flags_with_usage(argv)
127 def _run_benchmarks(argv):
128 if len(argv) > 1:
129 raise app.UsageError("Too many command-line arguments.")
130 return _benchmark.RunSpecifiedBenchmarks()
133 def main(argv=None):
134 return app.run(_run_benchmarks, argv=argv, flags_parser=_flags_parser)
137 # Methods for use with custom main function.
138 initialize = _benchmark.Initialize
139 run_benchmarks = _benchmark.RunSpecifiedBenchmarks
140 atexit.register(_benchmark.ClearRegisteredBenchmarks)