[libc] Switch to using the generic `<gpuintrin.h>` implementations (#121810)
[llvm-project.git] / third-party / benchmark / src / statistics.cc
blob261dcb299a6773a2a0814a71c6ed61305cb11d72
1 // Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
2 // Copyright 2017 Roman Lebedev. All rights reserved.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
16 #include "statistics.h"
18 #include <algorithm>
19 #include <cmath>
20 #include <numeric>
21 #include <string>
22 #include <vector>
24 #include "benchmark/benchmark.h"
25 #include "check.h"
27 namespace benchmark {
29 auto StatisticsSum = [](const std::vector<double>& v) {
30 return std::accumulate(v.begin(), v.end(), 0.0);
33 double StatisticsMean(const std::vector<double>& v) {
34 if (v.empty()) return 0.0;
35 return StatisticsSum(v) * (1.0 / static_cast<double>(v.size()));
38 double StatisticsMedian(const std::vector<double>& v) {
39 if (v.size() < 3) return StatisticsMean(v);
40 std::vector<double> copy(v);
42 auto center = copy.begin() + v.size() / 2;
43 std::nth_element(copy.begin(), center, copy.end());
45 // Did we have an odd number of samples? If yes, then center is the median.
46 // If not, then we are looking for the average between center and the value
47 // before. Instead of resorting, we just look for the max value before it,
48 // which is not necessarily the element immediately preceding `center` Since
49 // `copy` is only partially sorted by `nth_element`.
50 if (v.size() % 2 == 1) return *center;
51 auto center2 = std::max_element(copy.begin(), center);
52 return (*center + *center2) / 2.0;
55 // Return the sum of the squares of this sample set
56 auto SumSquares = [](const std::vector<double>& v) {
57 return std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
60 auto Sqr = [](const double dat) { return dat * dat; };
61 auto Sqrt = [](const double dat) {
62 // Avoid NaN due to imprecision in the calculations
63 if (dat < 0.0) return 0.0;
64 return std::sqrt(dat);
67 double StatisticsStdDev(const std::vector<double>& v) {
68 const auto mean = StatisticsMean(v);
69 if (v.empty()) return mean;
71 // Sample standard deviation is undefined for n = 1
72 if (v.size() == 1) return 0.0;
74 const double avg_squares =
75 SumSquares(v) * (1.0 / static_cast<double>(v.size()));
76 return Sqrt(static_cast<double>(v.size()) /
77 (static_cast<double>(v.size()) - 1.0) *
78 (avg_squares - Sqr(mean)));
81 double StatisticsCV(const std::vector<double>& v) {
82 if (v.size() < 2) return 0.0;
84 const auto stddev = StatisticsStdDev(v);
85 const auto mean = StatisticsMean(v);
87 if (std::fpclassify(mean) == FP_ZERO) return 0.0;
89 return stddev / mean;
92 std::vector<BenchmarkReporter::Run> ComputeStats(
93 const std::vector<BenchmarkReporter::Run>& reports) {
94 typedef BenchmarkReporter::Run Run;
95 std::vector<Run> results;
97 auto error_count = std::count_if(reports.begin(), reports.end(),
98 [](Run const& run) { return run.skipped; });
100 if (reports.size() - error_count < 2) {
101 // We don't report aggregated data if there was a single run.
102 return results;
105 // Accumulators.
106 std::vector<double> real_accumulated_time_stat;
107 std::vector<double> cpu_accumulated_time_stat;
109 real_accumulated_time_stat.reserve(reports.size());
110 cpu_accumulated_time_stat.reserve(reports.size());
112 // All repetitions should be run with the same number of iterations so we
113 // can take this information from the first benchmark.
114 const IterationCount run_iterations = reports.front().iterations;
115 // create stats for user counters
116 struct CounterStat {
117 Counter c;
118 std::vector<double> s;
120 std::map<std::string, CounterStat> counter_stats;
121 for (Run const& r : reports) {
122 for (auto const& cnt : r.counters) {
123 auto it = counter_stats.find(cnt.first);
124 if (it == counter_stats.end()) {
125 it = counter_stats
126 .emplace(cnt.first,
127 CounterStat{cnt.second, std::vector<double>{}})
128 .first;
129 it->second.s.reserve(reports.size());
130 } else {
131 BM_CHECK_EQ(it->second.c.flags, cnt.second.flags);
136 // Populate the accumulators.
137 for (Run const& run : reports) {
138 BM_CHECK_EQ(reports[0].benchmark_name(), run.benchmark_name());
139 BM_CHECK_EQ(run_iterations, run.iterations);
140 if (run.skipped) continue;
141 real_accumulated_time_stat.emplace_back(run.real_accumulated_time);
142 cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time);
143 // user counters
144 for (auto const& cnt : run.counters) {
145 auto it = counter_stats.find(cnt.first);
146 BM_CHECK_NE(it, counter_stats.end());
147 it->second.s.emplace_back(cnt.second);
151 // Only add label if it is same for all runs
152 std::string report_label = reports[0].report_label;
153 for (std::size_t i = 1; i < reports.size(); i++) {
154 if (reports[i].report_label != report_label) {
155 report_label = "";
156 break;
160 const double iteration_rescale_factor =
161 double(reports.size()) / double(run_iterations);
163 for (const auto& Stat : *reports[0].statistics) {
164 // Get the data from the accumulator to BenchmarkReporter::Run's.
165 Run data;
166 data.run_name = reports[0].run_name;
167 data.family_index = reports[0].family_index;
168 data.per_family_instance_index = reports[0].per_family_instance_index;
169 data.run_type = BenchmarkReporter::Run::RT_Aggregate;
170 data.threads = reports[0].threads;
171 data.repetitions = reports[0].repetitions;
172 data.repetition_index = Run::no_repetition_index;
173 data.aggregate_name = Stat.name_;
174 data.aggregate_unit = Stat.unit_;
175 data.report_label = report_label;
177 // It is incorrect to say that an aggregate is computed over
178 // run's iterations, because those iterations already got averaged.
179 // Similarly, if there are N repetitions with 1 iterations each,
180 // an aggregate will be computed over N measurements, not 1.
181 // Thus it is best to simply use the count of separate reports.
182 data.iterations = reports.size();
184 data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat);
185 data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat);
187 if (data.aggregate_unit == StatisticUnit::kTime) {
188 // We will divide these times by data.iterations when reporting, but the
189 // data.iterations is not necessarily the scale of these measurements,
190 // because in each repetition, these timers are sum over all the iters.
191 // And if we want to say that the stats are over N repetitions and not
192 // M iterations, we need to multiply these by (N/M).
193 data.real_accumulated_time *= iteration_rescale_factor;
194 data.cpu_accumulated_time *= iteration_rescale_factor;
197 data.time_unit = reports[0].time_unit;
199 // user counters
200 for (auto const& kv : counter_stats) {
201 // Do *NOT* rescale the custom counters. They are already properly scaled.
202 const auto uc_stat = Stat.compute_(kv.second.s);
203 auto c = Counter(uc_stat, counter_stats[kv.first].c.flags,
204 counter_stats[kv.first].c.oneK);
205 data.counters[kv.first] = c;
208 results.push_back(data);
211 return results;
214 } // end namespace benchmark