1 //===-- DWARFCallFrameInfo.cpp --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "lldb/Symbol/DWARFCallFrameInfo.h"
10 #include "lldb/Core/Debugger.h"
11 #include "lldb/Core/Module.h"
12 #include "lldb/Core/Section.h"
13 #include "lldb/Core/dwarf.h"
14 #include "lldb/Host/Host.h"
15 #include "lldb/Symbol/ObjectFile.h"
16 #include "lldb/Symbol/UnwindPlan.h"
17 #include "lldb/Target/RegisterContext.h"
18 #include "lldb/Target/Thread.h"
19 #include "lldb/Utility/ArchSpec.h"
20 #include "lldb/Utility/LLDBLog.h"
21 #include "lldb/Utility/Log.h"
22 #include "lldb/Utility/Timer.h"
28 using namespace lldb_private
;
29 using namespace lldb_private::dwarf
;
33 // Used for calls when the value type is specified by a DWARF EH Frame pointer
36 GetGNUEHPointer(const DataExtractor
&DE
, offset_t
*offset_ptr
,
37 uint32_t eh_ptr_enc
, addr_t pc_rel_addr
, addr_t text_addr
,
38 addr_t data_addr
) //, BSDRelocs *data_relocs) const
40 if (eh_ptr_enc
== DW_EH_PE_omit
)
41 return ULLONG_MAX
; // Value isn't in the buffer...
43 uint64_t baseAddress
= 0;
44 uint64_t addressValue
= 0;
45 const uint32_t addr_size
= DE
.GetAddressByteSize();
46 assert(addr_size
== 4 || addr_size
== 8);
48 bool signExtendValue
= false;
49 // Decode the base part or adjust our offset
50 switch (eh_ptr_enc
& 0x70) {
52 signExtendValue
= true;
53 baseAddress
= *offset_ptr
;
54 if (pc_rel_addr
!= LLDB_INVALID_ADDRESS
)
55 baseAddress
+= pc_rel_addr
;
57 // Log::GlobalWarning ("PC relative pointer encoding found with
58 // invalid pc relative address.");
61 case DW_EH_PE_textrel
:
62 signExtendValue
= true;
63 if (text_addr
!= LLDB_INVALID_ADDRESS
)
64 baseAddress
= text_addr
;
66 // Log::GlobalWarning ("text relative pointer encoding being
67 // decoded with invalid text section address, setting base address
71 case DW_EH_PE_datarel
:
72 signExtendValue
= true;
73 if (data_addr
!= LLDB_INVALID_ADDRESS
)
74 baseAddress
= data_addr
;
76 // Log::GlobalWarning ("data relative pointer encoding being
77 // decoded with invalid data section address, setting base address
81 case DW_EH_PE_funcrel
:
82 signExtendValue
= true;
85 case DW_EH_PE_aligned
: {
86 // SetPointerSize should be called prior to extracting these so the pointer
88 assert(addr_size
!= 0);
90 // Align to a address size boundary first
91 uint32_t alignOffset
= *offset_ptr
% addr_size
;
93 offset_ptr
+= addr_size
- alignOffset
;
101 // Decode the value part
102 switch (eh_ptr_enc
& DW_EH_PE_MASK_ENCODING
) {
103 case DW_EH_PE_absptr
: {
104 addressValue
= DE
.GetAddress(offset_ptr
);
106 // addressValue = data_relocs->Relocate(*offset_ptr -
107 // addr_size, *this, addressValue);
109 case DW_EH_PE_uleb128
:
110 addressValue
= DE
.GetULEB128(offset_ptr
);
112 case DW_EH_PE_udata2
:
113 addressValue
= DE
.GetU16(offset_ptr
);
115 case DW_EH_PE_udata4
:
116 addressValue
= DE
.GetU32(offset_ptr
);
118 case DW_EH_PE_udata8
:
119 addressValue
= DE
.GetU64(offset_ptr
);
121 case DW_EH_PE_sleb128
:
122 addressValue
= DE
.GetSLEB128(offset_ptr
);
124 case DW_EH_PE_sdata2
:
125 addressValue
= (int16_t)DE
.GetU16(offset_ptr
);
127 case DW_EH_PE_sdata4
:
128 addressValue
= (int32_t)DE
.GetU32(offset_ptr
);
130 case DW_EH_PE_sdata8
:
131 addressValue
= (int64_t)DE
.GetU64(offset_ptr
);
134 // Unhandled encoding type
139 // Since we promote everything to 64 bit, we may need to sign extend
140 if (signExtendValue
&& addr_size
< sizeof(baseAddress
)) {
141 uint64_t sign_bit
= 1ull << ((addr_size
* 8ull) - 1ull);
142 if (sign_bit
& addressValue
) {
143 uint64_t mask
= ~sign_bit
+ 1;
144 addressValue
|= mask
;
147 return baseAddress
+ addressValue
;
150 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile
&objfile
,
151 SectionSP
§ion_sp
, Type type
)
152 : m_objfile(objfile
), m_section_sp(section_sp
), m_type(type
) {}
154 bool DWARFCallFrameInfo::GetUnwindPlan(const Address
&addr
,
155 UnwindPlan
&unwind_plan
) {
156 return GetUnwindPlan(AddressRange(addr
, 1), unwind_plan
);
159 bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange
&range
,
160 UnwindPlan
&unwind_plan
) {
161 FDEEntryMap::Entry fde_entry
;
162 Address addr
= range
.GetBaseAddress();
164 // Make sure that the Address we're searching for is the same object file as
165 // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
166 ModuleSP module_sp
= addr
.GetModule();
167 if (module_sp
.get() == nullptr || module_sp
->GetObjectFile() == nullptr ||
168 module_sp
->GetObjectFile() != &m_objfile
)
171 if (std::optional
<FDEEntryMap::Entry
> entry
= GetFirstFDEEntryInRange(range
))
172 return FDEToUnwindPlan(entry
->data
, addr
, unwind_plan
);
176 bool DWARFCallFrameInfo::GetAddressRange(Address addr
, AddressRange
&range
) {
178 // Make sure that the Address we're searching for is the same object file as
179 // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
180 ModuleSP module_sp
= addr
.GetModule();
181 if (module_sp
.get() == nullptr || module_sp
->GetObjectFile() == nullptr ||
182 module_sp
->GetObjectFile() != &m_objfile
)
185 if (m_section_sp
.get() == nullptr || m_section_sp
->IsEncrypted())
188 FDEEntryMap::Entry
*fde_entry
=
189 m_fde_index
.FindEntryThatContains(addr
.GetFileAddress());
193 range
= AddressRange(fde_entry
->base
, fde_entry
->size
,
194 m_objfile
.GetSectionList());
198 std::optional
<DWARFCallFrameInfo::FDEEntryMap::Entry
>
199 DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange
&range
) {
200 if (!m_section_sp
|| m_section_sp
->IsEncrypted())
205 addr_t start_file_addr
= range
.GetBaseAddress().GetFileAddress();
206 const FDEEntryMap::Entry
*fde
=
207 m_fde_index
.FindEntryThatContainsOrFollows(start_file_addr
);
208 if (fde
&& fde
->DoesIntersect(
209 FDEEntryMap::Range(start_file_addr
, range
.GetByteSize())))
215 void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
216 FunctionAddressAndSizeVector
&function_info
) {
218 const size_t count
= m_fde_index
.GetSize();
219 function_info
.Clear();
221 function_info
.Reserve(count
);
222 for (size_t i
= 0; i
< count
; ++i
) {
223 const FDEEntryMap::Entry
*func_offset_data_entry
=
224 m_fde_index
.GetEntryAtIndex(i
);
225 if (func_offset_data_entry
) {
226 FunctionAddressAndSizeVector::Entry
function_offset_entry(
227 func_offset_data_entry
->base
, func_offset_data_entry
->size
);
228 function_info
.Append(function_offset_entry
);
233 const DWARFCallFrameInfo::CIE
*
234 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset
) {
235 cie_map_t::iterator pos
= m_cie_map
.find(cie_offset
);
237 if (pos
!= m_cie_map
.end()) {
238 // Parse and cache the CIE
239 if (pos
->second
== nullptr)
240 pos
->second
= ParseCIE(cie_offset
);
242 return pos
->second
.get();
247 DWARFCallFrameInfo::CIESP
248 DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset
) {
249 CIESP
cie_sp(new CIE(cie_offset
));
250 lldb::offset_t offset
= cie_offset
;
251 if (!m_cfi_data_initialized
)
253 uint32_t length
= m_cfi_data
.GetU32(&offset
);
254 dw_offset_t cie_id
, end_offset
;
255 bool is_64bit
= (length
== UINT32_MAX
);
257 length
= m_cfi_data
.GetU64(&offset
);
258 cie_id
= m_cfi_data
.GetU64(&offset
);
259 end_offset
= cie_offset
+ length
+ 12;
261 cie_id
= m_cfi_data
.GetU32(&offset
);
262 end_offset
= cie_offset
+ length
+ 4;
264 if (length
> 0 && ((m_type
== DWARF
&& cie_id
== UINT32_MAX
) ||
265 (m_type
== EH
&& cie_id
== 0ul))) {
267 // cie.offset = cie_offset;
268 // cie.length = length;
269 // cie.cieID = cieID;
270 cie_sp
->ptr_encoding
= DW_EH_PE_absptr
; // default
271 cie_sp
->version
= m_cfi_data
.GetU8(&offset
);
272 if (cie_sp
->version
> CFI_VERSION4
) {
273 Debugger::ReportError(
274 llvm::formatv("CIE parse error: CFI version {0} is not supported",
279 for (i
= 0; i
< CFI_AUG_MAX_SIZE
; ++i
) {
280 cie_sp
->augmentation
[i
] = m_cfi_data
.GetU8(&offset
);
281 if (cie_sp
->augmentation
[i
] == '\0') {
282 // Zero out remaining bytes in augmentation string
283 for (size_t j
= i
+ 1; j
< CFI_AUG_MAX_SIZE
; ++j
)
284 cie_sp
->augmentation
[j
] = '\0';
290 if (i
== CFI_AUG_MAX_SIZE
&&
291 cie_sp
->augmentation
[CFI_AUG_MAX_SIZE
- 1] != '\0') {
292 Debugger::ReportError(llvm::formatv(
293 "CIE parse error: CIE augmentation string was too large "
294 "for the fixed sized buffer of {0} bytes.",
299 // m_cfi_data uses address size from target architecture of the process may
300 // ignore these fields?
301 if (m_type
== DWARF
&& cie_sp
->version
>= CFI_VERSION4
) {
302 cie_sp
->address_size
= m_cfi_data
.GetU8(&offset
);
303 cie_sp
->segment_size
= m_cfi_data
.GetU8(&offset
);
306 cie_sp
->code_align
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
307 cie_sp
->data_align
= (int32_t)m_cfi_data
.GetSLEB128(&offset
);
309 cie_sp
->return_addr_reg_num
=
310 m_type
== DWARF
&& cie_sp
->version
>= CFI_VERSION3
311 ? static_cast<uint32_t>(m_cfi_data
.GetULEB128(&offset
))
312 : m_cfi_data
.GetU8(&offset
);
314 if (cie_sp
->augmentation
[0]) {
315 // Get the length of the eh_frame augmentation data which starts with a
316 // ULEB128 length in bytes
317 const size_t aug_data_len
= (size_t)m_cfi_data
.GetULEB128(&offset
);
318 const size_t aug_data_end
= offset
+ aug_data_len
;
319 const size_t aug_str_len
= strlen(cie_sp
->augmentation
);
320 // A 'z' may be present as the first character of the string.
321 // If present, the Augmentation Data field shall be present. The contents
322 // of the Augmentation Data shall be interpreted according to other
323 // characters in the Augmentation String.
324 if (cie_sp
->augmentation
[0] == 'z') {
325 // Extract the Augmentation Data
326 size_t aug_str_idx
= 0;
327 for (aug_str_idx
= 1; aug_str_idx
< aug_str_len
; aug_str_idx
++) {
328 char aug
= cie_sp
->augmentation
[aug_str_idx
];
331 // Indicates the presence of one argument in the Augmentation Data
332 // of the CIE, and a corresponding argument in the Augmentation
333 // Data of the FDE. The argument in the Augmentation Data of the
334 // CIE is 1-byte and represents the pointer encoding used for the
335 // argument in the Augmentation Data of the FDE, which is the
336 // address of a language-specific data area (LSDA). The size of the
337 // LSDA pointer is specified by the pointer encoding used.
338 cie_sp
->lsda_addr_encoding
= m_cfi_data
.GetU8(&offset
);
342 // Indicates the presence of two arguments in the Augmentation Data
343 // of the CIE. The first argument is 1-byte and represents the
344 // pointer encoding used for the second argument, which is the
345 // address of a personality routine handler. The size of the
346 // personality routine pointer is specified by the pointer encoding
349 // The address of the personality function will be stored at this
350 // location. Pre-execution, it will be all zero's so don't read it
351 // until we're trying to do an unwind & the reloc has been
354 uint8_t arg_ptr_encoding
= m_cfi_data
.GetU8(&offset
);
355 const lldb::addr_t pc_rel_addr
= m_section_sp
->GetFileAddress();
356 cie_sp
->personality_loc
= GetGNUEHPointer(
357 m_cfi_data
, &offset
, arg_ptr_encoding
, pc_rel_addr
,
358 LLDB_INVALID_ADDRESS
, LLDB_INVALID_ADDRESS
);
363 // A 'R' may be present at any position after the
364 // first character of the string. The Augmentation Data shall
365 // include a 1 byte argument that represents the pointer encoding
366 // for the address pointers used in the FDE. Example: 0x1B ==
367 // DW_EH_PE_pcrel | DW_EH_PE_sdata4
368 cie_sp
->ptr_encoding
= m_cfi_data
.GetU8(&offset
);
372 } else if (strcmp(cie_sp
->augmentation
, "eh") == 0) {
373 // If the Augmentation string has the value "eh", then the EH Data
374 // field shall be present
377 // Set the offset to be the end of the augmentation data just in case we
378 // didn't understand any of the data.
379 offset
= (uint32_t)aug_data_end
;
382 if (end_offset
> offset
) {
383 cie_sp
->inst_offset
= offset
;
384 cie_sp
->inst_length
= end_offset
- offset
;
386 while (offset
< end_offset
) {
387 uint8_t inst
= m_cfi_data
.GetU8(&offset
);
388 uint8_t primary_opcode
= inst
& 0xC0;
389 uint8_t extended_opcode
= inst
& 0x3F;
391 if (!HandleCommonDwarfOpcode(primary_opcode
, extended_opcode
,
392 cie_sp
->data_align
, offset
,
393 cie_sp
->initial_row
))
394 break; // Stop if we hit an unrecognized opcode
401 void DWARFCallFrameInfo::GetCFIData() {
402 if (!m_cfi_data_initialized
) {
403 Log
*log
= GetLog(LLDBLog::Unwind
);
405 m_objfile
.GetModule()->LogMessage(log
, "Reading EH frame info");
406 m_objfile
.ReadSectionData(m_section_sp
.get(), m_cfi_data
);
407 m_cfi_data_initialized
= true;
410 // Scan through the eh_frame or debug_frame section looking for FDEs and noting
411 // the start/end addresses of the functions and a pointer back to the
412 // function's FDE for later expansion. Internalize CIEs as we come across them.
414 void DWARFCallFrameInfo::GetFDEIndex() {
415 if (m_section_sp
.get() == nullptr || m_section_sp
->IsEncrypted())
418 if (m_fde_index_initialized
)
421 std::lock_guard
<std::mutex
> guard(m_fde_index_mutex
);
423 if (m_fde_index_initialized
) // if two threads hit the locker
426 LLDB_SCOPED_TIMERF("%s - %s", LLVM_PRETTY_FUNCTION
,
427 m_objfile
.GetFileSpec().GetFilename().AsCString(""));
429 bool clear_address_zeroth_bit
= false;
430 if (ArchSpec arch
= m_objfile
.GetArchitecture()) {
431 if (arch
.GetTriple().getArch() == llvm::Triple::arm
||
432 arch
.GetTriple().getArch() == llvm::Triple::thumb
)
433 clear_address_zeroth_bit
= true;
436 lldb::offset_t offset
= 0;
437 if (!m_cfi_data_initialized
)
439 while (m_cfi_data
.ValidOffsetForDataOfSize(offset
, 8)) {
440 const dw_offset_t current_entry
= offset
;
441 dw_offset_t cie_id
, next_entry
, cie_offset
;
442 uint32_t len
= m_cfi_data
.GetU32(&offset
);
443 bool is_64bit
= (len
== UINT32_MAX
);
445 len
= m_cfi_data
.GetU64(&offset
);
446 cie_id
= m_cfi_data
.GetU64(&offset
);
447 next_entry
= current_entry
+ len
+ 12;
448 cie_offset
= current_entry
+ 12 - cie_id
;
450 cie_id
= m_cfi_data
.GetU32(&offset
);
451 next_entry
= current_entry
+ len
+ 4;
452 cie_offset
= current_entry
+ 4 - cie_id
;
455 if (next_entry
> m_cfi_data
.GetByteSize() + 1) {
456 Debugger::ReportError(llvm::formatv("Invalid fde/cie next entry offset "
457 "of {0:x} found in cie/fde at {1:x}",
458 next_entry
, current_entry
));
459 // Don't trust anything in this eh_frame section if we find blatantly
462 m_fde_index_initialized
= true;
466 // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
467 // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
468 // variable cie_offset should be equal to cie_id for debug_frame.
469 // FDE entries with cie_id == 0 shouldn't be ignored for it.
470 if ((cie_id
== 0 && m_type
== EH
) || cie_id
== UINT32_MAX
|| len
== 0) {
471 auto cie_sp
= ParseCIE(current_entry
);
473 // Cannot parse, the reason is already logged
475 m_fde_index_initialized
= true;
479 m_cie_map
[current_entry
] = std::move(cie_sp
);
487 if (cie_offset
> m_cfi_data
.GetByteSize()) {
488 Debugger::ReportError(llvm::formatv("Invalid cie offset of {0:x} "
489 "found in cie/fde at {1:x}",
490 cie_offset
, current_entry
));
491 // Don't trust anything in this eh_frame section if we find blatantly
494 m_fde_index_initialized
= true;
498 const CIE
*cie
= GetCIE(cie_offset
);
500 const lldb::addr_t pc_rel_addr
= m_section_sp
->GetFileAddress();
501 const lldb::addr_t text_addr
= LLDB_INVALID_ADDRESS
;
502 const lldb::addr_t data_addr
= LLDB_INVALID_ADDRESS
;
505 GetGNUEHPointer(m_cfi_data
, &offset
, cie
->ptr_encoding
, pc_rel_addr
,
506 text_addr
, data_addr
);
507 if (clear_address_zeroth_bit
)
510 lldb::addr_t length
= GetGNUEHPointer(
511 m_cfi_data
, &offset
, cie
->ptr_encoding
& DW_EH_PE_MASK_ENCODING
,
512 pc_rel_addr
, text_addr
, data_addr
);
513 FDEEntryMap::Entry
fde(addr
, length
, current_entry
);
514 m_fde_index
.Append(fde
);
516 Debugger::ReportError(llvm::formatv(
517 "unable to find CIE at {0:x} for cie_id = {1:x} for entry at {2:x}.",
518 cie_offset
, cie_id
, current_entry
));
523 m_fde_index_initialized
= true;
526 bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset
,
528 UnwindPlan
&unwind_plan
) {
529 Log
*log
= GetLog(LLDBLog::Unwind
);
530 lldb::offset_t offset
= dwarf_offset
;
531 lldb::offset_t current_entry
= offset
;
533 if (m_section_sp
.get() == nullptr || m_section_sp
->IsEncrypted())
536 if (!m_cfi_data_initialized
)
539 uint32_t length
= m_cfi_data
.GetU32(&offset
);
540 dw_offset_t cie_offset
;
541 bool is_64bit
= (length
== UINT32_MAX
);
543 length
= m_cfi_data
.GetU64(&offset
);
544 cie_offset
= m_cfi_data
.GetU64(&offset
);
546 cie_offset
= m_cfi_data
.GetU32(&offset
);
549 // FDE entries with zeroth cie_offset may occur for debug_frame.
550 assert(!(m_type
== EH
&& 0 == cie_offset
) && cie_offset
!= UINT32_MAX
);
552 // Translate the CIE_id from the eh_frame format, which is relative to the
553 // FDE offset, into a __eh_frame section offset
555 unwind_plan
.SetSourceName("eh_frame CFI");
556 cie_offset
= current_entry
+ (is_64bit
? 12 : 4) - cie_offset
;
557 unwind_plan
.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo
);
559 unwind_plan
.SetSourceName("DWARF CFI");
560 // In theory the debug_frame info should be valid at all call sites
561 // ("asynchronous unwind info" as it is sometimes called) but in practice
562 // gcc et al all emit call frame info for the prologue and call sites, but
563 // not for the epilogue or all the other locations during the function
565 unwind_plan
.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo
);
567 unwind_plan
.SetSourcedFromCompiler(eLazyBoolYes
);
569 const CIE
*cie
= GetCIE(cie_offset
);
570 assert(cie
!= nullptr);
572 const dw_offset_t end_offset
= current_entry
+ length
+ (is_64bit
? 12 : 4);
574 const lldb::addr_t pc_rel_addr
= m_section_sp
->GetFileAddress();
575 const lldb::addr_t text_addr
= LLDB_INVALID_ADDRESS
;
576 const lldb::addr_t data_addr
= LLDB_INVALID_ADDRESS
;
577 lldb::addr_t range_base
=
578 GetGNUEHPointer(m_cfi_data
, &offset
, cie
->ptr_encoding
, pc_rel_addr
,
579 text_addr
, data_addr
);
580 lldb::addr_t range_len
= GetGNUEHPointer(
581 m_cfi_data
, &offset
, cie
->ptr_encoding
& DW_EH_PE_MASK_ENCODING
,
582 pc_rel_addr
, text_addr
, data_addr
);
583 AddressRange
range(range_base
, m_objfile
.GetAddressByteSize(),
584 m_objfile
.GetSectionList());
585 range
.SetByteSize(range_len
);
587 addr_t lsda_data_file_address
= LLDB_INVALID_ADDRESS
;
589 if (cie
->augmentation
[0] == 'z') {
590 uint32_t aug_data_len
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
591 if (aug_data_len
!= 0 && cie
->lsda_addr_encoding
!= DW_EH_PE_omit
) {
592 offset_t saved_offset
= offset
;
593 lsda_data_file_address
=
594 GetGNUEHPointer(m_cfi_data
, &offset
, cie
->lsda_addr_encoding
,
595 pc_rel_addr
, text_addr
, data_addr
);
596 if (offset
- saved_offset
!= aug_data_len
) {
597 // There is more in the augmentation region than we know how to process;
598 // don't read anything.
599 lsda_data_file_address
= LLDB_INVALID_ADDRESS
;
601 offset
= saved_offset
;
603 offset
+= aug_data_len
;
605 unwind_plan
.SetUnwindPlanForSignalTrap(
606 strchr(cie
->augmentation
, 'S') ? eLazyBoolYes
: eLazyBoolNo
);
609 Address personality_function_ptr
;
611 if (lsda_data_file_address
!= LLDB_INVALID_ADDRESS
&&
612 cie
->personality_loc
!= LLDB_INVALID_ADDRESS
) {
613 m_objfile
.GetModule()->ResolveFileAddress(lsda_data_file_address
,
615 m_objfile
.GetModule()->ResolveFileAddress(cie
->personality_loc
,
616 personality_function_ptr
);
619 if (lsda_data
.IsValid() && personality_function_ptr
.IsValid()) {
620 unwind_plan
.SetLSDAAddress(lsda_data
);
621 unwind_plan
.SetPersonalityFunctionPtr(personality_function_ptr
);
624 uint32_t code_align
= cie
->code_align
;
625 int32_t data_align
= cie
->data_align
;
627 unwind_plan
.SetPlanValidAddressRange(range
);
628 UnwindPlan::Row
*cie_initial_row
= new UnwindPlan::Row
;
629 *cie_initial_row
= cie
->initial_row
;
630 UnwindPlan::RowSP
row(cie_initial_row
);
632 unwind_plan
.SetRegisterKind(GetRegisterKind());
633 unwind_plan
.SetReturnAddressRegister(cie
->return_addr_reg_num
);
635 std::vector
<UnwindPlan::RowSP
> stack
;
637 UnwindPlan::Row::RegisterLocation reg_location
;
638 while (m_cfi_data
.ValidOffset(offset
) && offset
< end_offset
) {
639 uint8_t inst
= m_cfi_data
.GetU8(&offset
);
640 uint8_t primary_opcode
= inst
& 0xC0;
641 uint8_t extended_opcode
= inst
& 0x3F;
643 if (!HandleCommonDwarfOpcode(primary_opcode
, extended_opcode
, data_align
,
645 if (primary_opcode
) {
646 switch (primary_opcode
) {
647 case DW_CFA_advance_loc
: // (Row Creation Instruction)
648 { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
649 // takes a single argument that represents a constant delta. The
650 // required action is to create a new table row with a location value
651 // that is computed by taking the current entry's location value and
652 // adding (delta * code_align). All other values in the new row are
653 // initially identical to the current row.
654 unwind_plan
.AppendRow(row
);
655 UnwindPlan::Row
*newrow
= new UnwindPlan::Row
;
656 *newrow
= *row
.get();
658 row
->SlideOffset(extended_opcode
* code_align
);
662 case DW_CFA_restore
: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
664 // takes a single argument that represents a register number. The
665 // required action is to change the rule for the indicated register
666 // to the rule assigned it by the initial_instructions in the CIE.
667 uint32_t reg_num
= extended_opcode
;
668 // We only keep enough register locations around to unwind what is in
669 // our thread, and these are organized by the register index in that
670 // state, so we need to convert our eh_frame register number from the
671 // EH frame info, to a register index
673 if (unwind_plan
.IsValidRowIndex(0) &&
674 unwind_plan
.GetRowAtIndex(0)->GetRegisterInfo(reg_num
,
676 row
->SetRegisterInfo(reg_num
, reg_location
);
681 switch (extended_opcode
) {
682 case DW_CFA_set_loc
: // 0x1 (Row Creation Instruction)
684 // DW_CFA_set_loc takes a single argument that represents an address.
685 // The required action is to create a new table row using the
686 // specified address as the location. All other values in the new row
687 // are initially identical to the current row. The new location value
688 // should always be greater than the current one.
689 unwind_plan
.AppendRow(row
);
690 UnwindPlan::Row
*newrow
= new UnwindPlan::Row
;
691 *newrow
= *row
.get();
693 row
->SetOffset(m_cfi_data
.GetAddress(&offset
) -
694 startaddr
.GetFileAddress());
698 case DW_CFA_advance_loc1
: // 0x2 (Row Creation Instruction)
700 // takes a single uword argument that represents a constant delta.
701 // This instruction is identical to DW_CFA_advance_loc except for the
702 // encoding and size of the delta argument.
703 unwind_plan
.AppendRow(row
);
704 UnwindPlan::Row
*newrow
= new UnwindPlan::Row
;
705 *newrow
= *row
.get();
707 row
->SlideOffset(m_cfi_data
.GetU8(&offset
) * code_align
);
711 case DW_CFA_advance_loc2
: // 0x3 (Row Creation Instruction)
713 // takes a single uword argument that represents a constant delta.
714 // This instruction is identical to DW_CFA_advance_loc except for the
715 // encoding and size of the delta argument.
716 unwind_plan
.AppendRow(row
);
717 UnwindPlan::Row
*newrow
= new UnwindPlan::Row
;
718 *newrow
= *row
.get();
720 row
->SlideOffset(m_cfi_data
.GetU16(&offset
) * code_align
);
724 case DW_CFA_advance_loc4
: // 0x4 (Row Creation Instruction)
726 // takes a single uword argument that represents a constant delta.
727 // This instruction is identical to DW_CFA_advance_loc except for the
728 // encoding and size of the delta argument.
729 unwind_plan
.AppendRow(row
);
730 UnwindPlan::Row
*newrow
= new UnwindPlan::Row
;
731 *newrow
= *row
.get();
733 row
->SlideOffset(m_cfi_data
.GetU32(&offset
) * code_align
);
737 case DW_CFA_restore_extended
: // 0x6
739 // takes a single unsigned LEB128 argument that represents a register
740 // number. This instruction is identical to DW_CFA_restore except for
741 // the encoding and size of the register argument.
742 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
743 if (unwind_plan
.IsValidRowIndex(0) &&
744 unwind_plan
.GetRowAtIndex(0)->GetRegisterInfo(reg_num
,
746 row
->SetRegisterInfo(reg_num
, reg_location
);
750 case DW_CFA_remember_state
: // 0xA
752 // These instructions define a stack of information. Encountering the
753 // DW_CFA_remember_state instruction means to save the rules for
754 // every register on the current row on the stack. Encountering the
755 // DW_CFA_restore_state instruction means to pop the set of rules off
756 // the stack and place them in the current row. (This operation is
757 // useful for compilers that move epilogue code into the body of a
759 stack
.push_back(row
);
760 UnwindPlan::Row
*newrow
= new UnwindPlan::Row
;
761 *newrow
= *row
.get();
766 case DW_CFA_restore_state
: // 0xB
768 // These instructions define a stack of information. Encountering the
769 // DW_CFA_remember_state instruction means to save the rules for
770 // every register on the current row on the stack. Encountering the
771 // DW_CFA_restore_state instruction means to pop the set of rules off
772 // the stack and place them in the current row. (This operation is
773 // useful for compilers that move epilogue code into the body of a
777 "DWARFCallFrameInfo::{0}(dwarf_offset: "
778 "{1:x16}, startaddr: [{2:x16}] encountered "
779 "DW_CFA_restore_state but state stack "
780 "is empty. Corrupt unwind info?",
781 __FUNCTION__
, dwarf_offset
, startaddr
.GetFileAddress());
784 lldb::addr_t offset
= row
->GetOffset();
787 row
->SetOffset(offset
);
791 case DW_CFA_GNU_args_size
: // 0x2e
793 // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
794 // operand representing an argument size. This instruction specifies
795 // the total of the size of the arguments which have been pushed onto
798 // TODO: Figure out how we should handle this.
799 m_cfi_data
.GetULEB128(&offset
);
803 case DW_CFA_val_offset
: // 0x14
804 case DW_CFA_val_offset_sf
: // 0x15
811 unwind_plan
.AppendRow(row
);
816 bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode
,
817 uint8_t extended_opcode
,
819 lldb::offset_t
&offset
,
820 UnwindPlan::Row
&row
) {
821 UnwindPlan::Row::RegisterLocation reg_location
;
823 if (primary_opcode
) {
824 switch (primary_opcode
) {
825 case DW_CFA_offset
: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
827 // takes two arguments: an unsigned LEB128 constant representing a
828 // factored offset and a register number. The required action is to
829 // change the rule for the register indicated by the register number to
830 // be an offset(N) rule with a value of (N = factored offset *
832 uint8_t reg_num
= extended_opcode
;
833 int32_t op_offset
= (int32_t)m_cfi_data
.GetULEB128(&offset
) * data_align
;
834 reg_location
.SetAtCFAPlusOffset(op_offset
);
835 row
.SetRegisterInfo(reg_num
, reg_location
);
840 switch (extended_opcode
) {
841 case DW_CFA_nop
: // 0x0
844 case DW_CFA_offset_extended
: // 0x5
846 // takes two unsigned LEB128 arguments representing a register number and
847 // a factored offset. This instruction is identical to DW_CFA_offset
848 // except for the encoding and size of the register argument.
849 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
850 int32_t op_offset
= (int32_t)m_cfi_data
.GetULEB128(&offset
) * data_align
;
851 UnwindPlan::Row::RegisterLocation reg_location
;
852 reg_location
.SetAtCFAPlusOffset(op_offset
);
853 row
.SetRegisterInfo(reg_num
, reg_location
);
857 case DW_CFA_undefined
: // 0x7
859 // takes a single unsigned LEB128 argument that represents a register
860 // number. The required action is to set the rule for the specified
861 // register to undefined.
862 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
863 UnwindPlan::Row::RegisterLocation reg_location
;
864 reg_location
.SetUndefined();
865 row
.SetRegisterInfo(reg_num
, reg_location
);
869 case DW_CFA_same_value
: // 0x8
871 // takes a single unsigned LEB128 argument that represents a register
872 // number. The required action is to set the rule for the specified
873 // register to same value.
874 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
875 UnwindPlan::Row::RegisterLocation reg_location
;
876 reg_location
.SetSame();
877 row
.SetRegisterInfo(reg_num
, reg_location
);
881 case DW_CFA_register
: // 0x9
883 // takes two unsigned LEB128 arguments representing register numbers. The
884 // required action is to set the rule for the first register to be the
886 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
887 uint32_t other_reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
888 UnwindPlan::Row::RegisterLocation reg_location
;
889 reg_location
.SetInRegister(other_reg_num
);
890 row
.SetRegisterInfo(reg_num
, reg_location
);
894 case DW_CFA_def_cfa
: // 0xC (CFA Definition Instruction)
896 // Takes two unsigned LEB128 operands representing a register number and
897 // a (non-factored) offset. The required action is to define the current
898 // CFA rule to use the provided register and offset.
899 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
900 int32_t op_offset
= (int32_t)m_cfi_data
.GetULEB128(&offset
);
901 row
.GetCFAValue().SetIsRegisterPlusOffset(reg_num
, op_offset
);
905 case DW_CFA_def_cfa_register
: // 0xD (CFA Definition Instruction)
907 // takes a single unsigned LEB128 argument representing a register
908 // number. The required action is to define the current CFA rule to use
909 // the provided register (but to keep the old offset).
910 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
911 row
.GetCFAValue().SetIsRegisterPlusOffset(reg_num
,
912 row
.GetCFAValue().GetOffset());
916 case DW_CFA_def_cfa_offset
: // 0xE (CFA Definition Instruction)
918 // Takes a single unsigned LEB128 operand representing a (non-factored)
919 // offset. The required action is to define the current CFA rule to use
920 // the provided offset (but to keep the old register).
921 int32_t op_offset
= (int32_t)m_cfi_data
.GetULEB128(&offset
);
922 row
.GetCFAValue().SetIsRegisterPlusOffset(
923 row
.GetCFAValue().GetRegisterNumber(), op_offset
);
927 case DW_CFA_def_cfa_expression
: // 0xF (CFA Definition Instruction)
929 size_t block_len
= (size_t)m_cfi_data
.GetULEB128(&offset
);
930 const uint8_t *block_data
=
931 static_cast<const uint8_t *>(m_cfi_data
.GetData(&offset
, block_len
));
932 row
.GetCFAValue().SetIsDWARFExpression(block_data
, block_len
);
936 case DW_CFA_expression
: // 0x10
938 // Takes two operands: an unsigned LEB128 value representing a register
939 // number, and a DW_FORM_block value representing a DWARF expression. The
940 // required action is to change the rule for the register indicated by
941 // the register number to be an expression(E) rule where E is the DWARF
942 // expression. That is, the DWARF expression computes the address. The
943 // value of the CFA is pushed on the DWARF evaluation stack prior to
944 // execution of the DWARF expression.
945 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
946 uint32_t block_len
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
947 const uint8_t *block_data
=
948 static_cast<const uint8_t *>(m_cfi_data
.GetData(&offset
, block_len
));
949 UnwindPlan::Row::RegisterLocation reg_location
;
950 reg_location
.SetAtDWARFExpression(block_data
, block_len
);
951 row
.SetRegisterInfo(reg_num
, reg_location
);
955 case DW_CFA_offset_extended_sf
: // 0x11
957 // takes two operands: an unsigned LEB128 value representing a register
958 // number and a signed LEB128 factored offset. This instruction is
959 // identical to DW_CFA_offset_extended except that the second operand is
960 // signed and factored.
961 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
962 int32_t op_offset
= (int32_t)m_cfi_data
.GetSLEB128(&offset
) * data_align
;
963 UnwindPlan::Row::RegisterLocation reg_location
;
964 reg_location
.SetAtCFAPlusOffset(op_offset
);
965 row
.SetRegisterInfo(reg_num
, reg_location
);
969 case DW_CFA_def_cfa_sf
: // 0x12 (CFA Definition Instruction)
971 // Takes two operands: an unsigned LEB128 value representing a register
972 // number and a signed LEB128 factored offset. This instruction is
973 // identical to DW_CFA_def_cfa except that the second operand is signed
975 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
976 int32_t op_offset
= (int32_t)m_cfi_data
.GetSLEB128(&offset
) * data_align
;
977 row
.GetCFAValue().SetIsRegisterPlusOffset(reg_num
, op_offset
);
981 case DW_CFA_def_cfa_offset_sf
: // 0x13 (CFA Definition Instruction)
983 // takes a signed LEB128 operand representing a factored offset. This
984 // instruction is identical to DW_CFA_def_cfa_offset except that the
985 // operand is signed and factored.
986 int32_t op_offset
= (int32_t)m_cfi_data
.GetSLEB128(&offset
) * data_align
;
987 uint32_t cfa_regnum
= row
.GetCFAValue().GetRegisterNumber();
988 row
.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum
, op_offset
);
992 case DW_CFA_val_expression
: // 0x16
994 // takes two operands: an unsigned LEB128 value representing a register
995 // number, and a DW_FORM_block value representing a DWARF expression. The
996 // required action is to change the rule for the register indicated by
997 // the register number to be a val_expression(E) rule where E is the
998 // DWARF expression. That is, the DWARF expression computes the value of
999 // the given register. The value of the CFA is pushed on the DWARF
1000 // evaluation stack prior to execution of the DWARF expression.
1001 uint32_t reg_num
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
1002 uint32_t block_len
= (uint32_t)m_cfi_data
.GetULEB128(&offset
);
1003 const uint8_t *block_data
=
1004 (const uint8_t *)m_cfi_data
.GetData(&offset
, block_len
);
1005 reg_location
.SetIsDWARFExpression(block_data
, block_len
);
1006 row
.SetRegisterInfo(reg_num
, reg_location
);
1014 void DWARFCallFrameInfo::ForEachFDEEntries(
1015 const std::function
<bool(lldb::addr_t
, uint32_t, dw_offset_t
)> &callback
) {
1018 for (size_t i
= 0, c
= m_fde_index
.GetSize(); i
< c
; ++i
) {
1019 const FDEEntryMap::Entry
&entry
= m_fde_index
.GetEntryRef(i
);
1020 if (!callback(entry
.base
, entry
.size
, entry
.data
))