1 //===-- safestack.cpp -----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the runtime support for the safe stack protection
10 // mechanism. The runtime manages allocation/deallocation of the unsafe stack
11 // for the main thread, as well as all pthreads that are created/destroyed
12 // during program execution.
14 //===----------------------------------------------------------------------===//
16 #define SANITIZER_COMMON_NO_REDEFINE_BUILTINS
18 #include "safestack_platform.h"
19 #include "safestack_util.h"
20 #include "sanitizer_common/sanitizer_internal_defs.h"
24 #include <sys/resource.h>
26 #include "interception/interception.h"
28 // interception.h drags in sanitizer_redefine_builtins.h, which in turn
29 // creates references to __sanitizer_internal_memcpy etc. The interceptors
30 // aren't needed here, so just forward to libc.
32 SANITIZER_INTERFACE_ATTRIBUTE
void *__sanitizer_internal_memcpy(void *dest
,
35 return memcpy(dest
, src
, n
);
38 SANITIZER_INTERFACE_ATTRIBUTE
void *__sanitizer_internal_memmove(
39 void *dest
, const void *src
, size_t n
) {
40 return memmove(dest
, src
, n
);
43 SANITIZER_INTERFACE_ATTRIBUTE
void *__sanitizer_internal_memset(void *s
, int c
,
45 return memset(s
, c
, n
);
49 using namespace safestack
;
51 // TODO: To make accessing the unsafe stack pointer faster, we plan to
52 // eventually store it directly in the thread control block data structure on
53 // platforms where this structure is pointed to by %fs or %gs. This is exactly
54 // the same mechanism as currently being used by the traditional stack
55 // protector pass to store the stack guard (see getStackCookieLocation()
56 // function above). Doing so requires changing the tcbhead_t struct in glibc
57 // on Linux and tcb struct in libc on FreeBSD.
59 // For now, store it in a thread-local variable.
61 __attribute__((visibility(
62 "default"))) __thread
void *__safestack_unsafe_stack_ptr
= nullptr;
67 // TODO: The runtime library does not currently protect the safe stack beyond
68 // relying on the system-enforced ASLR. The protection of the (safe) stack can
69 // be provided by three alternative features:
71 // 1) Protection via hardware segmentation on x86-32 and some x86-64
72 // architectures: the (safe) stack segment (implicitly accessed via the %ss
73 // segment register) can be separated from the data segment (implicitly
74 // accessed via the %ds segment register). Dereferencing a pointer to the safe
75 // segment would result in a segmentation fault.
77 // 2) Protection via software fault isolation: memory writes that are not meant
78 // to access the safe stack can be prevented from doing so through runtime
79 // instrumentation. One way to do it is to allocate the safe stack(s) in the
80 // upper half of the userspace and bitmask the corresponding upper bit of the
81 // memory addresses of memory writes that are not meant to access the safe
84 // 3) Protection via information hiding on 64 bit architectures: the location
85 // of the safe stack(s) can be randomized through secure mechanisms, and the
86 // leakage of the stack pointer can be prevented. Currently, libc can leak the
87 // stack pointer in several ways (e.g. in longjmp, signal handling, user-level
88 // context switching related functions, etc.). These can be fixed in libc and
89 // in other low-level libraries, by either eliminating the escaping/dumping of
90 // the stack pointer (i.e., %rsp) when that's possible, or by using
91 // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret
92 // we control and protect better, as is already done for setjmp in glibc.)
93 // Furthermore, a static machine code level verifier can be ran after code
94 // generation to make sure that the stack pointer is never written to memory,
95 // or if it is, its written on the safe stack.
97 // Finally, while the Unsafe Stack pointer is currently stored in a thread
98 // local variable, with libc support it could be stored in the TCB (thread
99 // control block) as well, eliminating another level of indirection and making
100 // such accesses faster. Alternatively, dedicating a separate register for
101 // storing it would also be possible.
103 /// Minimum stack alignment for the unsafe stack.
104 const unsigned kStackAlign
= 16;
106 /// Default size of the unsafe stack. This value is only used if the stack
107 /// size rlimit is set to infinity.
108 const unsigned kDefaultUnsafeStackSize
= 0x2800000;
110 // Per-thread unsafe stack information. It's not frequently accessed, so there
111 // it can be kept out of the tcb in normal thread-local variables.
112 __thread
void *unsafe_stack_start
= nullptr;
113 __thread
size_t unsafe_stack_size
= 0;
114 __thread
size_t unsafe_stack_guard
= 0;
116 inline void *unsafe_stack_alloc(size_t size
, size_t guard
) {
117 SFS_CHECK(size
+ guard
>= size
);
118 void *addr
= Mmap(nullptr, size
+ guard
, PROT_READ
| PROT_WRITE
,
119 MAP_PRIVATE
| MAP_ANON
, -1, 0);
120 SFS_CHECK(MAP_FAILED
!= addr
);
121 Mprotect(addr
, guard
, PROT_NONE
);
122 return (char *)addr
+ guard
;
125 inline void unsafe_stack_setup(void *start
, size_t size
, size_t guard
) {
126 SFS_CHECK((char *)start
+ size
>= (char *)start
);
127 SFS_CHECK((char *)start
+ guard
>= (char *)start
);
128 void *stack_ptr
= (char *)start
+ size
;
129 SFS_CHECK((((size_t)stack_ptr
) & (kStackAlign
- 1)) == 0);
131 __safestack_unsafe_stack_ptr
= stack_ptr
;
132 unsafe_stack_start
= start
;
133 unsafe_stack_size
= size
;
134 unsafe_stack_guard
= guard
;
137 /// Thread data for the cleanup handler
138 pthread_key_t thread_cleanup_key
;
140 /// Safe stack per-thread information passed to the thread_start function
142 void *(*start_routine
)(void *);
143 void *start_routine_arg
;
145 void *unsafe_stack_start
;
146 size_t unsafe_stack_size
;
147 size_t unsafe_stack_guard
;
150 /// Wrap the thread function in order to deallocate the unsafe stack when the
151 /// thread terminates by returning from its main function.
152 void *thread_start(void *arg
) {
153 struct tinfo
*tinfo
= (struct tinfo
*)arg
;
155 void *(*start_routine
)(void *) = tinfo
->start_routine
;
156 void *start_routine_arg
= tinfo
->start_routine_arg
;
158 // Setup the unsafe stack; this will destroy tinfo content
159 unsafe_stack_setup(tinfo
->unsafe_stack_start
, tinfo
->unsafe_stack_size
,
160 tinfo
->unsafe_stack_guard
);
162 // Make sure out thread-specific destructor will be called
163 pthread_setspecific(thread_cleanup_key
, (void *)1);
165 return start_routine(start_routine_arg
);
168 /// Linked list used to store exiting threads stack/thread information.
169 struct thread_stack_ll
{
170 struct thread_stack_ll
*next
;
177 /// Linked list of unsafe stacks for threads that are exiting. We delay
178 /// unmapping them until the thread exits.
179 thread_stack_ll
*thread_stacks
= nullptr;
180 pthread_mutex_t thread_stacks_mutex
= PTHREAD_MUTEX_INITIALIZER
;
182 /// Thread-specific data destructor. We want to free the unsafe stack only after
183 /// this thread is terminated. libc can call functions in safestack-instrumented
184 /// code (like free) after thread-specific data destructors have run.
185 void thread_cleanup_handler(void *_iter
) {
186 SFS_CHECK(unsafe_stack_start
!= nullptr);
187 pthread_setspecific(thread_cleanup_key
, NULL
);
189 pthread_mutex_lock(&thread_stacks_mutex
);
190 // Temporary list to hold the previous threads stacks so we don't hold the
191 // thread_stacks_mutex for long.
192 thread_stack_ll
*temp_stacks
= thread_stacks
;
193 thread_stacks
= nullptr;
194 pthread_mutex_unlock(&thread_stacks_mutex
);
196 pid_t pid
= getpid();
197 ThreadId tid
= GetTid();
199 // Free stacks for dead threads
200 thread_stack_ll
**stackp
= &temp_stacks
;
202 thread_stack_ll
*stack
= *stackp
;
203 if (stack
->pid
!= pid
||
204 (-1 == TgKill(stack
->pid
, stack
->tid
, 0) && errno
== ESRCH
)) {
205 Munmap(stack
->stack_base
, stack
->size
);
206 *stackp
= stack
->next
;
209 stackp
= &stack
->next
;
212 thread_stack_ll
*cur_stack
=
213 (thread_stack_ll
*)malloc(sizeof(thread_stack_ll
));
214 cur_stack
->stack_base
= (char *)unsafe_stack_start
- unsafe_stack_guard
;
215 cur_stack
->size
= unsafe_stack_size
+ unsafe_stack_guard
;
216 cur_stack
->pid
= pid
;
217 cur_stack
->tid
= tid
;
219 pthread_mutex_lock(&thread_stacks_mutex
);
220 // Merge thread_stacks with the current thread's stack and any remaining
222 *stackp
= thread_stacks
;
223 cur_stack
->next
= temp_stacks
;
224 thread_stacks
= cur_stack
;
225 pthread_mutex_unlock(&thread_stacks_mutex
);
227 unsafe_stack_start
= nullptr;
230 void EnsureInterceptorsInitialized();
232 /// Intercept thread creation operation to allocate and setup the unsafe stack
233 INTERCEPTOR(int, pthread_create
, pthread_t
*thread
,
234 const pthread_attr_t
*attr
,
235 void *(*start_routine
)(void*), void *arg
) {
236 EnsureInterceptorsInitialized();
241 pthread_attr_getstacksize(attr
, &size
);
242 pthread_attr_getguardsize(attr
, &guard
);
244 // get pthread default stack size
245 pthread_attr_t tmpattr
;
246 pthread_attr_init(&tmpattr
);
247 pthread_attr_getstacksize(&tmpattr
, &size
);
248 pthread_attr_getguardsize(&tmpattr
, &guard
);
249 pthread_attr_destroy(&tmpattr
);
252 #if SANITIZER_SOLARIS
253 // Solaris pthread_attr_init initializes stacksize to 0 (the default), so
254 // hardcode the actual values as documented in pthread_create(3C).
257 size
= 2 * 1024 * 1024;
264 size
= RoundUpTo(size
, kStackAlign
);
266 void *addr
= unsafe_stack_alloc(size
, guard
);
267 // Put tinfo at the end of the buffer. guard may be not page aligned.
268 // If that is so then some bytes after addr can be mprotected.
269 struct tinfo
*tinfo
=
270 (struct tinfo
*)(((char *)addr
) + size
- sizeof(struct tinfo
));
271 tinfo
->start_routine
= start_routine
;
272 tinfo
->start_routine_arg
= arg
;
273 tinfo
->unsafe_stack_start
= addr
;
274 tinfo
->unsafe_stack_size
= size
;
275 tinfo
->unsafe_stack_guard
= guard
;
277 return REAL(pthread_create
)(thread
, attr
, thread_start
, tinfo
);
280 pthread_mutex_t interceptor_init_mutex
= PTHREAD_MUTEX_INITIALIZER
;
281 bool interceptors_inited
= false;
283 void EnsureInterceptorsInitialized() {
284 MutexLock
lock(interceptor_init_mutex
);
285 if (interceptors_inited
)
288 // Initialize pthread interceptors for thread allocation
289 INTERCEPT_FUNCTION(pthread_create
);
291 interceptors_inited
= true;
296 extern "C" __attribute__((visibility("default")))
297 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
298 // On ELF platforms, the constructor is invoked using .preinit_array (see below)
299 __attribute__((constructor(0)))
301 void __safestack_init() {
302 // Determine the stack size for the main thread.
303 size_t size
= kDefaultUnsafeStackSize
;
307 if (getrlimit(RLIMIT_STACK
, &limit
) == 0 && limit
.rlim_cur
!= RLIM_INFINITY
)
308 size
= limit
.rlim_cur
;
310 // Allocate unsafe stack for main thread
311 void *addr
= unsafe_stack_alloc(size
, guard
);
312 unsafe_stack_setup(addr
, size
, guard
);
314 // Setup the cleanup handler
315 pthread_key_create(&thread_cleanup_key
, thread_cleanup_handler
);
318 #if SANITIZER_CAN_USE_PREINIT_ARRAY
319 // On ELF platforms, run safestack initialization before any other constructors.
320 // On other platforms we use the constructor attribute to arrange to run our
321 // initialization early.
323 __attribute__((section(".preinit_array"),
324 used
)) void (*__safestack_preinit
)(void) = __safestack_init
;
329 __attribute__((visibility("default"))) void *__get_unsafe_stack_bottom() {
330 return unsafe_stack_start
;
334 __attribute__((visibility("default"))) void *__get_unsafe_stack_top() {
335 return (char*)unsafe_stack_start
+ unsafe_stack_size
;
339 __attribute__((visibility("default"))) void *__get_unsafe_stack_start() {
340 return unsafe_stack_start
;
344 __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() {
345 return __safestack_unsafe_stack_ptr
;