[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Analysis / GlobalsModRef.cpp
blob527f19b194eeb91821aa6b76e8d61ed983608df5
1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure"). For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/PassManager.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
32 using namespace llvm;
34 #define DEBUG_TYPE "globalsmodref-aa"
36 STATISTIC(NumNonAddrTakenGlobalVars,
37 "Number of global vars without address taken");
38 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
39 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
40 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
41 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
43 // An option to enable unsafe alias results from the GlobalsModRef analysis.
44 // When enabled, GlobalsModRef will provide no-alias results which in extremely
45 // rare cases may not be conservatively correct. In particular, in the face of
46 // transforms which cause asymmetry between how effective getUnderlyingObject
47 // is for two pointers, it may produce incorrect results.
49 // These unsafe results have been returned by GMR for many years without
50 // causing significant issues in the wild and so we provide a mechanism to
51 // re-enable them for users of LLVM that have a particular performance
52 // sensitivity and no known issues. The option also makes it easy to evaluate
53 // the performance impact of these results.
54 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
55 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
57 /// The mod/ref information collected for a particular function.
58 ///
59 /// We collect information about mod/ref behavior of a function here, both in
60 /// general and as pertains to specific globals. We only have this detailed
61 /// information when we know *something* useful about the behavior. If we
62 /// saturate to fully general mod/ref, we remove the info for the function.
63 class GlobalsAAResult::FunctionInfo {
64 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
66 /// Build a wrapper struct that has 8-byte alignment. All heap allocations
67 /// should provide this much alignment at least, but this makes it clear we
68 /// specifically rely on this amount of alignment.
69 struct alignas(8) AlignedMap {
70 AlignedMap() = default;
71 AlignedMap(const AlignedMap &Arg) = default;
72 GlobalInfoMapType Map;
75 /// Pointer traits for our aligned map.
76 struct AlignedMapPointerTraits {
77 static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
78 static inline AlignedMap *getFromVoidPointer(void *P) {
79 return (AlignedMap *)P;
81 static constexpr int NumLowBitsAvailable = 3;
82 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
83 "AlignedMap insufficiently aligned to have enough low bits.");
86 /// The bit that flags that this function may read any global. This is
87 /// chosen to mix together with ModRefInfo bits.
88 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
89 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
90 /// this remains correct.
91 enum { MayReadAnyGlobal = 4 };
93 /// Checks to document the invariants of the bit packing here.
94 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::ModRef)) == 0,
95 "ModRef and the MayReadAnyGlobal flag bits overlap.");
96 static_assert(((MayReadAnyGlobal | static_cast<int>(ModRefInfo::ModRef)) >>
97 AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
98 "Insufficient low bits to store our flag and ModRef info.");
100 public:
101 FunctionInfo() = default;
102 ~FunctionInfo() {
103 delete Info.getPointer();
105 // Spell out the copy ond move constructors and assignment operators to get
106 // deep copy semantics and correct move semantics in the face of the
107 // pointer-int pair.
108 FunctionInfo(const FunctionInfo &Arg)
109 : Info(nullptr, Arg.Info.getInt()) {
110 if (const auto *ArgPtr = Arg.Info.getPointer())
111 Info.setPointer(new AlignedMap(*ArgPtr));
113 FunctionInfo(FunctionInfo &&Arg)
114 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
115 Arg.Info.setPointerAndInt(nullptr, 0);
117 FunctionInfo &operator=(const FunctionInfo &RHS) {
118 delete Info.getPointer();
119 Info.setPointerAndInt(nullptr, RHS.Info.getInt());
120 if (const auto *RHSPtr = RHS.Info.getPointer())
121 Info.setPointer(new AlignedMap(*RHSPtr));
122 return *this;
124 FunctionInfo &operator=(FunctionInfo &&RHS) {
125 delete Info.getPointer();
126 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
127 RHS.Info.setPointerAndInt(nullptr, 0);
128 return *this;
131 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
132 /// the corresponding ModRefInfo.
133 ModRefInfo globalClearMayReadAnyGlobal(int I) const {
134 return ModRefInfo(I & static_cast<int>(ModRefInfo::ModRef));
137 /// Returns the \c ModRefInfo info for this function.
138 ModRefInfo getModRefInfo() const {
139 return globalClearMayReadAnyGlobal(Info.getInt());
142 /// Adds new \c ModRefInfo for this function to its state.
143 void addModRefInfo(ModRefInfo NewMRI) {
144 Info.setInt(Info.getInt() | static_cast<int>(NewMRI));
147 /// Returns whether this function may read any global variable, and we don't
148 /// know which global.
149 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
151 /// Sets this function as potentially reading from any global.
152 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
154 /// Returns the \c ModRefInfo info for this function w.r.t. a particular
155 /// global, which may be more precise than the general information above.
156 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
157 ModRefInfo GlobalMRI =
158 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
159 if (AlignedMap *P = Info.getPointer()) {
160 auto I = P->Map.find(&GV);
161 if (I != P->Map.end())
162 GlobalMRI |= I->second;
164 return GlobalMRI;
167 /// Add mod/ref info from another function into ours, saturating towards
168 /// ModRef.
169 void addFunctionInfo(const FunctionInfo &FI) {
170 addModRefInfo(FI.getModRefInfo());
172 if (FI.mayReadAnyGlobal())
173 setMayReadAnyGlobal();
175 if (AlignedMap *P = FI.Info.getPointer())
176 for (const auto &G : P->Map)
177 addModRefInfoForGlobal(*G.first, G.second);
180 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
181 AlignedMap *P = Info.getPointer();
182 if (!P) {
183 P = new AlignedMap();
184 Info.setPointer(P);
186 auto &GlobalMRI = P->Map[&GV];
187 GlobalMRI |= NewMRI;
190 /// Clear a global's ModRef info. Should be used when a global is being
191 /// deleted.
192 void eraseModRefInfoForGlobal(const GlobalValue &GV) {
193 if (AlignedMap *P = Info.getPointer())
194 P->Map.erase(&GV);
197 private:
198 /// All of the information is encoded into a single pointer, with a three bit
199 /// integer in the low three bits. The high bit provides a flag for when this
200 /// function may read any global. The low two bits are the ModRefInfo. And
201 /// the pointer, when non-null, points to a map from GlobalValue to
202 /// ModRefInfo specific to that GlobalValue.
203 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
206 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
207 Value *V = getValPtr();
208 if (auto *F = dyn_cast<Function>(V))
209 GAR->FunctionInfos.erase(F);
211 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
212 if (GAR->NonAddressTakenGlobals.erase(GV)) {
213 // This global might be an indirect global. If so, remove it and
214 // remove any AllocRelatedValues for it.
215 if (GAR->IndirectGlobals.erase(GV)) {
216 // Remove any entries in AllocsForIndirectGlobals for this global.
217 for (auto I = GAR->AllocsForIndirectGlobals.begin(),
218 E = GAR->AllocsForIndirectGlobals.end();
219 I != E; ++I)
220 if (I->second == GV)
221 GAR->AllocsForIndirectGlobals.erase(I);
224 // Scan the function info we have collected and remove this global
225 // from all of them.
226 for (auto &FIPair : GAR->FunctionInfos)
227 FIPair.second.eraseModRefInfoForGlobal(*GV);
231 // If this is an allocation related to an indirect global, remove it.
232 GAR->AllocsForIndirectGlobals.erase(V);
234 // And clear out the handle.
235 setValPtr(nullptr);
236 GAR->Handles.erase(I);
237 // This object is now destroyed!
240 MemoryEffects GlobalsAAResult::getMemoryEffects(const Function *F) {
241 if (FunctionInfo *FI = getFunctionInfo(F))
242 return MemoryEffects(FI->getModRefInfo());
244 return MemoryEffects::unknown();
247 /// Returns the function info for the function, or null if we don't have
248 /// anything useful to say about it.
249 GlobalsAAResult::FunctionInfo *
250 GlobalsAAResult::getFunctionInfo(const Function *F) {
251 auto I = FunctionInfos.find(F);
252 if (I != FunctionInfos.end())
253 return &I->second;
254 return nullptr;
257 /// AnalyzeGlobals - Scan through the users of all of the internal
258 /// GlobalValue's in the program. If none of them have their "address taken"
259 /// (really, their address passed to something nontrivial), record this fact,
260 /// and record the functions that they are used directly in.
261 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
262 SmallPtrSet<Function *, 32> TrackedFunctions;
263 for (Function &F : M)
264 if (F.hasLocalLinkage()) {
265 if (!AnalyzeUsesOfPointer(&F)) {
266 // Remember that we are tracking this global.
267 NonAddressTakenGlobals.insert(&F);
268 TrackedFunctions.insert(&F);
269 Handles.emplace_front(*this, &F);
270 Handles.front().I = Handles.begin();
271 ++NumNonAddrTakenFunctions;
272 } else
273 UnknownFunctionsWithLocalLinkage = true;
276 SmallPtrSet<Function *, 16> Readers, Writers;
277 for (GlobalVariable &GV : M.globals())
278 if (GV.hasLocalLinkage()) {
279 if (!AnalyzeUsesOfPointer(&GV, &Readers,
280 GV.isConstant() ? nullptr : &Writers)) {
281 // Remember that we are tracking this global, and the mod/ref fns
282 NonAddressTakenGlobals.insert(&GV);
283 Handles.emplace_front(*this, &GV);
284 Handles.front().I = Handles.begin();
286 for (Function *Reader : Readers) {
287 if (TrackedFunctions.insert(Reader).second) {
288 Handles.emplace_front(*this, Reader);
289 Handles.front().I = Handles.begin();
291 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
294 if (!GV.isConstant()) // No need to keep track of writers to constants
295 for (Function *Writer : Writers) {
296 if (TrackedFunctions.insert(Writer).second) {
297 Handles.emplace_front(*this, Writer);
298 Handles.front().I = Handles.begin();
300 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
302 ++NumNonAddrTakenGlobalVars;
304 // If this global holds a pointer type, see if it is an indirect global.
305 if (GV.getValueType()->isPointerTy() &&
306 AnalyzeIndirectGlobalMemory(&GV))
307 ++NumIndirectGlobalVars;
309 Readers.clear();
310 Writers.clear();
314 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
315 /// If this is used by anything complex (i.e., the address escapes), return
316 /// true. Also, while we are at it, keep track of those functions that read and
317 /// write to the value.
319 /// If OkayStoreDest is non-null, stores into this global are allowed.
320 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
321 SmallPtrSetImpl<Function *> *Readers,
322 SmallPtrSetImpl<Function *> *Writers,
323 GlobalValue *OkayStoreDest) {
324 if (!V->getType()->isPointerTy())
325 return true;
327 for (Use &U : V->uses()) {
328 User *I = U.getUser();
329 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
330 if (Readers)
331 Readers->insert(LI->getParent()->getParent());
332 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
333 if (V == SI->getOperand(1)) {
334 if (Writers)
335 Writers->insert(SI->getParent()->getParent());
336 } else if (SI->getOperand(1) != OkayStoreDest) {
337 return true; // Storing the pointer
339 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
340 if (AnalyzeUsesOfPointer(I, Readers, Writers))
341 return true;
342 } else if (Operator::getOpcode(I) == Instruction::BitCast ||
343 Operator::getOpcode(I) == Instruction::AddrSpaceCast) {
344 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
345 return true;
346 } else if (auto *Call = dyn_cast<CallBase>(I)) {
347 // Make sure that this is just the function being called, not that it is
348 // passing into the function.
349 if (Call->isDataOperand(&U)) {
350 // Detect calls to free.
351 if (Call->isArgOperand(&U) &&
352 getFreedOperand(Call, &GetTLI(*Call->getFunction())) == U) {
353 if (Writers)
354 Writers->insert(Call->getParent()->getParent());
355 } else {
356 // In general, we return true for unknown calls, but there are
357 // some simple checks that we can do for functions that
358 // will never call back into the module.
359 auto *F = Call->getCalledFunction();
360 // TODO: we should be able to remove isDeclaration() check
361 // and let the function body analysis check for captures,
362 // and collect the mod-ref effects. This information will
363 // be later propagated via the call graph.
364 if (!F || !F->isDeclaration())
365 return true;
366 // Note that the NoCallback check here is a little bit too
367 // conservative. If there are no captures of the global
368 // in the module, then this call may not be a capture even
369 // if it does not have NoCallback.
370 if (!Call->hasFnAttr(Attribute::NoCallback) ||
371 !Call->isArgOperand(&U) ||
372 !Call->doesNotCapture(Call->getArgOperandNo(&U)))
373 return true;
375 // Conservatively, assume the call reads and writes the global.
376 // We could use memory attributes to make it more precise.
377 if (Readers)
378 Readers->insert(Call->getParent()->getParent());
379 if (Writers)
380 Writers->insert(Call->getParent()->getParent());
383 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
384 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
385 return true; // Allow comparison against null.
386 } else if (Constant *C = dyn_cast<Constant>(I)) {
387 // Ignore constants which don't have any live uses.
388 if (isa<GlobalValue>(C) || C->isConstantUsed())
389 return true;
390 } else {
391 return true;
395 return false;
398 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
399 /// which holds a pointer type. See if the global always points to non-aliased
400 /// heap memory: that is, all initializers of the globals store a value known
401 /// to be obtained via a noalias return function call which have no other use.
402 /// Further, all loads out of GV must directly use the memory, not store the
403 /// pointer somewhere. If this is true, we consider the memory pointed to by
404 /// GV to be owned by GV and can disambiguate other pointers from it.
405 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
406 // Keep track of values related to the allocation of the memory, f.e. the
407 // value produced by the noalias call and any casts.
408 std::vector<Value *> AllocRelatedValues;
410 // If the initializer is a valid pointer, bail.
411 if (Constant *C = GV->getInitializer())
412 if (!C->isNullValue())
413 return false;
415 // Walk the user list of the global. If we find anything other than a direct
416 // load or store, bail out.
417 for (User *U : GV->users()) {
418 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
419 // The pointer loaded from the global can only be used in simple ways:
420 // we allow addressing of it and loading storing to it. We do *not* allow
421 // storing the loaded pointer somewhere else or passing to a function.
422 if (AnalyzeUsesOfPointer(LI))
423 return false; // Loaded pointer escapes.
424 // TODO: Could try some IP mod/ref of the loaded pointer.
425 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
426 // Storing the global itself.
427 if (SI->getOperand(0) == GV)
428 return false;
430 // If storing the null pointer, ignore it.
431 if (isa<ConstantPointerNull>(SI->getOperand(0)))
432 continue;
434 // Check the value being stored.
435 Value *Ptr = getUnderlyingObject(SI->getOperand(0));
437 if (!isNoAliasCall(Ptr))
438 return false; // Too hard to analyze.
440 // Analyze all uses of the allocation. If any of them are used in a
441 // non-simple way (e.g. stored to another global) bail out.
442 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
443 GV))
444 return false; // Loaded pointer escapes.
446 // Remember that this allocation is related to the indirect global.
447 AllocRelatedValues.push_back(Ptr);
448 } else {
449 // Something complex, bail out.
450 return false;
454 // Okay, this is an indirect global. Remember all of the allocations for
455 // this global in AllocsForIndirectGlobals.
456 while (!AllocRelatedValues.empty()) {
457 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
458 Handles.emplace_front(*this, AllocRelatedValues.back());
459 Handles.front().I = Handles.begin();
460 AllocRelatedValues.pop_back();
462 IndirectGlobals.insert(GV);
463 Handles.emplace_front(*this, GV);
464 Handles.front().I = Handles.begin();
465 return true;
468 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
469 // We do a bottom-up SCC traversal of the call graph. In other words, we
470 // visit all callees before callers (leaf-first).
471 unsigned SCCID = 0;
472 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
473 const std::vector<CallGraphNode *> &SCC = *I;
474 assert(!SCC.empty() && "SCC with no functions?");
476 for (auto *CGN : SCC)
477 if (Function *F = CGN->getFunction())
478 FunctionToSCCMap[F] = SCCID;
479 ++SCCID;
483 /// AnalyzeCallGraph - At this point, we know the functions where globals are
484 /// immediately stored to and read from. Propagate this information up the call
485 /// graph to all callers and compute the mod/ref info for all memory for each
486 /// function.
487 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
488 // We do a bottom-up SCC traversal of the call graph. In other words, we
489 // visit all callees before callers (leaf-first).
490 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
491 const std::vector<CallGraphNode *> &SCC = *I;
492 assert(!SCC.empty() && "SCC with no functions?");
494 Function *F = SCC[0]->getFunction();
496 if (!F || !F->isDefinitionExact()) {
497 // Calls externally or not exact - can't say anything useful. Remove any
498 // existing function records (may have been created when scanning
499 // globals).
500 for (auto *Node : SCC)
501 FunctionInfos.erase(Node->getFunction());
502 continue;
505 FunctionInfo &FI = FunctionInfos[F];
506 Handles.emplace_front(*this, F);
507 Handles.front().I = Handles.begin();
508 bool KnowNothing = false;
510 // Intrinsics, like any other synchronizing function, can make effects
511 // of other threads visible. Without nosync we know nothing really.
512 // Similarly, if `nocallback` is missing the function, or intrinsic,
513 // can call into the module arbitrarily. If both are set the function
514 // has an effect but will not interact with accesses of internal
515 // globals inside the module. We are conservative here for optnone
516 // functions, might not be necessary.
517 auto MaySyncOrCallIntoModule = [](const Function &F) {
518 return !F.isDeclaration() || !F.hasNoSync() ||
519 !F.hasFnAttribute(Attribute::NoCallback);
522 // Collect the mod/ref properties due to called functions. We only compute
523 // one mod-ref set.
524 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
525 if (!F) {
526 KnowNothing = true;
527 break;
530 if (F->isDeclaration() || F->hasOptNone()) {
531 // Try to get mod/ref behaviour from function attributes.
532 if (F->doesNotAccessMemory()) {
533 // Can't do better than that!
534 } else if (F->onlyReadsMemory()) {
535 FI.addModRefInfo(ModRefInfo::Ref);
536 if (!F->onlyAccessesArgMemory() && MaySyncOrCallIntoModule(*F))
537 // This function might call back into the module and read a global -
538 // consider every global as possibly being read by this function.
539 FI.setMayReadAnyGlobal();
540 } else {
541 FI.addModRefInfo(ModRefInfo::ModRef);
542 if (!F->onlyAccessesArgMemory())
543 FI.setMayReadAnyGlobal();
544 if (MaySyncOrCallIntoModule(*F)) {
545 KnowNothing = true;
546 break;
549 continue;
552 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
553 CI != E && !KnowNothing; ++CI)
554 if (Function *Callee = CI->second->getFunction()) {
555 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
556 // Propagate function effect up.
557 FI.addFunctionInfo(*CalleeFI);
558 } else {
559 // Can't say anything about it. However, if it is inside our SCC,
560 // then nothing needs to be done.
561 CallGraphNode *CalleeNode = CG[Callee];
562 if (!is_contained(SCC, CalleeNode))
563 KnowNothing = true;
565 } else {
566 KnowNothing = true;
570 // If we can't say anything useful about this SCC, remove all SCC functions
571 // from the FunctionInfos map.
572 if (KnowNothing) {
573 for (auto *Node : SCC)
574 FunctionInfos.erase(Node->getFunction());
575 continue;
578 // Scan the function bodies for explicit loads or stores.
579 for (auto *Node : SCC) {
580 if (isModAndRefSet(FI.getModRefInfo()))
581 break; // The mod/ref lattice saturates here.
583 // Don't prove any properties based on the implementation of an optnone
584 // function. Function attributes were already used as a best approximation
585 // above.
586 if (Node->getFunction()->hasOptNone())
587 continue;
589 for (Instruction &I : instructions(Node->getFunction())) {
590 if (isModAndRefSet(FI.getModRefInfo()))
591 break; // The mod/ref lattice saturates here.
593 // We handle calls specially because the graph-relevant aspects are
594 // handled above.
595 if (isa<CallBase>(&I))
596 continue;
598 // All non-call instructions we use the primary predicates for whether
599 // they read or write memory.
600 if (I.mayReadFromMemory())
601 FI.addModRefInfo(ModRefInfo::Ref);
602 if (I.mayWriteToMemory())
603 FI.addModRefInfo(ModRefInfo::Mod);
607 if (!isModSet(FI.getModRefInfo()))
608 ++NumReadMemFunctions;
609 if (!isModOrRefSet(FI.getModRefInfo()))
610 ++NumNoMemFunctions;
612 // Finally, now that we know the full effect on this SCC, clone the
613 // information to each function in the SCC.
614 // FI is a reference into FunctionInfos, so copy it now so that it doesn't
615 // get invalidated if DenseMap decides to re-hash.
616 FunctionInfo CachedFI = FI;
617 for (unsigned i = 1, e = SCC.size(); i != e; ++i)
618 FunctionInfos[SCC[i]->getFunction()] = CachedFI;
622 // GV is a non-escaping global. V is a pointer address that has been loaded from.
623 // If we can prove that V must escape, we can conclude that a load from V cannot
624 // alias GV.
625 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
626 const Value *V,
627 int &Depth,
628 const DataLayout &DL) {
629 SmallPtrSet<const Value *, 8> Visited;
630 SmallVector<const Value *, 8> Inputs;
631 Visited.insert(V);
632 Inputs.push_back(V);
633 do {
634 const Value *Input = Inputs.pop_back_val();
636 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
637 isa<InvokeInst>(Input))
638 // Arguments to functions or returns from functions are inherently
639 // escaping, so we can immediately classify those as not aliasing any
640 // non-addr-taken globals.
642 // (Transitive) loads from a global are also safe - if this aliased
643 // another global, its address would escape, so no alias.
644 continue;
646 // Recurse through a limited number of selects, loads and PHIs. This is an
647 // arbitrary depth of 4, lower numbers could be used to fix compile time
648 // issues if needed, but this is generally expected to be only be important
649 // for small depths.
650 if (++Depth > 4)
651 return false;
653 if (auto *LI = dyn_cast<LoadInst>(Input)) {
654 Inputs.push_back(getUnderlyingObject(LI->getPointerOperand()));
655 continue;
657 if (auto *SI = dyn_cast<SelectInst>(Input)) {
658 const Value *LHS = getUnderlyingObject(SI->getTrueValue());
659 const Value *RHS = getUnderlyingObject(SI->getFalseValue());
660 if (Visited.insert(LHS).second)
661 Inputs.push_back(LHS);
662 if (Visited.insert(RHS).second)
663 Inputs.push_back(RHS);
664 continue;
666 if (auto *PN = dyn_cast<PHINode>(Input)) {
667 for (const Value *Op : PN->incoming_values()) {
668 Op = getUnderlyingObject(Op);
669 if (Visited.insert(Op).second)
670 Inputs.push_back(Op);
672 continue;
675 return false;
676 } while (!Inputs.empty());
678 // All inputs were known to be no-alias.
679 return true;
682 // There are particular cases where we can conclude no-alias between
683 // a non-addr-taken global and some other underlying object. Specifically,
684 // a non-addr-taken global is known to not be escaped from any function. It is
685 // also incorrect for a transformation to introduce an escape of a global in
686 // a way that is observable when it was not there previously. One function
687 // being transformed to introduce an escape which could possibly be observed
688 // (via loading from a global or the return value for example) within another
689 // function is never safe. If the observation is made through non-atomic
690 // operations on different threads, it is a data-race and UB. If the
691 // observation is well defined, by being observed the transformation would have
692 // changed program behavior by introducing the observed escape, making it an
693 // invalid transform.
695 // This property does require that transformations which *temporarily* escape
696 // a global that was not previously escaped, prior to restoring it, cannot rely
697 // on the results of GMR::alias. This seems a reasonable restriction, although
698 // currently there is no way to enforce it. There is also no realistic
699 // optimization pass that would make this mistake. The closest example is
700 // a transformation pass which does reg2mem of SSA values but stores them into
701 // global variables temporarily before restoring the global variable's value.
702 // This could be useful to expose "benign" races for example. However, it seems
703 // reasonable to require that a pass which introduces escapes of global
704 // variables in this way to either not trust AA results while the escape is
705 // active, or to be forced to operate as a module pass that cannot co-exist
706 // with an alias analysis such as GMR.
707 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
708 const Value *V) {
709 // In order to know that the underlying object cannot alias the
710 // non-addr-taken global, we must know that it would have to be an escape.
711 // Thus if the underlying object is a function argument, a load from
712 // a global, or the return of a function, it cannot alias. We can also
713 // recurse through PHI nodes and select nodes provided all of their inputs
714 // resolve to one of these known-escaping roots.
715 SmallPtrSet<const Value *, 8> Visited;
716 SmallVector<const Value *, 8> Inputs;
717 Visited.insert(V);
718 Inputs.push_back(V);
719 int Depth = 0;
720 do {
721 const Value *Input = Inputs.pop_back_val();
723 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
724 // If one input is the very global we're querying against, then we can't
725 // conclude no-alias.
726 if (InputGV == GV)
727 return false;
729 // Distinct GlobalVariables never alias, unless overriden or zero-sized.
730 // FIXME: The condition can be refined, but be conservative for now.
731 auto *GVar = dyn_cast<GlobalVariable>(GV);
732 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
733 if (GVar && InputGVar &&
734 !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
735 !GVar->isInterposable() && !InputGVar->isInterposable()) {
736 Type *GVType = GVar->getInitializer()->getType();
737 Type *InputGVType = InputGVar->getInitializer()->getType();
738 if (GVType->isSized() && InputGVType->isSized() &&
739 (DL.getTypeAllocSize(GVType) > 0) &&
740 (DL.getTypeAllocSize(InputGVType) > 0))
741 continue;
744 // Conservatively return false, even though we could be smarter
745 // (e.g. look through GlobalAliases).
746 return false;
749 if (isa<Argument>(Input) || isa<CallInst>(Input) ||
750 isa<InvokeInst>(Input)) {
751 // Arguments to functions or returns from functions are inherently
752 // escaping, so we can immediately classify those as not aliasing any
753 // non-addr-taken globals.
754 continue;
757 // Recurse through a limited number of selects, loads and PHIs. This is an
758 // arbitrary depth of 4, lower numbers could be used to fix compile time
759 // issues if needed, but this is generally expected to be only be important
760 // for small depths.
761 if (++Depth > 4)
762 return false;
764 if (auto *LI = dyn_cast<LoadInst>(Input)) {
765 // A pointer loaded from a global would have been captured, and we know
766 // that the global is non-escaping, so no alias.
767 const Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
768 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
769 // The load does not alias with GV.
770 continue;
771 // Otherwise, a load could come from anywhere, so bail.
772 return false;
774 if (auto *SI = dyn_cast<SelectInst>(Input)) {
775 const Value *LHS = getUnderlyingObject(SI->getTrueValue());
776 const Value *RHS = getUnderlyingObject(SI->getFalseValue());
777 if (Visited.insert(LHS).second)
778 Inputs.push_back(LHS);
779 if (Visited.insert(RHS).second)
780 Inputs.push_back(RHS);
781 continue;
783 if (auto *PN = dyn_cast<PHINode>(Input)) {
784 for (const Value *Op : PN->incoming_values()) {
785 Op = getUnderlyingObject(Op);
786 if (Visited.insert(Op).second)
787 Inputs.push_back(Op);
789 continue;
792 // FIXME: It would be good to handle other obvious no-alias cases here, but
793 // it isn't clear how to do so reasonably without building a small version
794 // of BasicAA into this code.
795 return false;
796 } while (!Inputs.empty());
798 // If all the inputs to V were definitively no-alias, then V is no-alias.
799 return true;
802 bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA,
803 ModuleAnalysisManager::Invalidator &) {
804 // Check whether the analysis has been explicitly invalidated. Otherwise, it's
805 // stateless and remains preserved.
806 auto PAC = PA.getChecker<GlobalsAA>();
807 return !PAC.preservedWhenStateless();
810 /// alias - If one of the pointers is to a global that we are tracking, and the
811 /// other is some random pointer, we know there cannot be an alias, because the
812 /// address of the global isn't taken.
813 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
814 const MemoryLocation &LocB,
815 AAQueryInfo &AAQI, const Instruction *) {
816 // Get the base object these pointers point to.
817 const Value *UV1 =
818 getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis());
819 const Value *UV2 =
820 getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis());
822 // If either of the underlying values is a global, they may be non-addr-taken
823 // globals, which we can answer queries about.
824 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
825 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
826 if (GV1 || GV2) {
827 // If the global's address is taken, pretend we don't know it's a pointer to
828 // the global.
829 if (GV1 && !NonAddressTakenGlobals.count(GV1))
830 GV1 = nullptr;
831 if (GV2 && !NonAddressTakenGlobals.count(GV2))
832 GV2 = nullptr;
834 // If the two pointers are derived from two different non-addr-taken
835 // globals we know these can't alias.
836 if (GV1 && GV2 && GV1 != GV2)
837 return AliasResult::NoAlias;
839 // If one is and the other isn't, it isn't strictly safe but we can fake
840 // this result if necessary for performance. This does not appear to be
841 // a common problem in practice.
842 if (EnableUnsafeGlobalsModRefAliasResults)
843 if ((GV1 || GV2) && GV1 != GV2)
844 return AliasResult::NoAlias;
846 // Check for a special case where a non-escaping global can be used to
847 // conclude no-alias.
848 if ((GV1 || GV2) && GV1 != GV2) {
849 const GlobalValue *GV = GV1 ? GV1 : GV2;
850 const Value *UV = GV1 ? UV2 : UV1;
851 if (isNonEscapingGlobalNoAlias(GV, UV))
852 return AliasResult::NoAlias;
855 // Otherwise if they are both derived from the same addr-taken global, we
856 // can't know the two accesses don't overlap.
859 // These pointers may be based on the memory owned by an indirect global. If
860 // so, we may be able to handle this. First check to see if the base pointer
861 // is a direct load from an indirect global.
862 GV1 = GV2 = nullptr;
863 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
864 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
865 if (IndirectGlobals.count(GV))
866 GV1 = GV;
867 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
868 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
869 if (IndirectGlobals.count(GV))
870 GV2 = GV;
872 // These pointers may also be from an allocation for the indirect global. If
873 // so, also handle them.
874 if (!GV1)
875 GV1 = AllocsForIndirectGlobals.lookup(UV1);
876 if (!GV2)
877 GV2 = AllocsForIndirectGlobals.lookup(UV2);
879 // Now that we know whether the two pointers are related to indirect globals,
880 // use this to disambiguate the pointers. If the pointers are based on
881 // different indirect globals they cannot alias.
882 if (GV1 && GV2 && GV1 != GV2)
883 return AliasResult::NoAlias;
885 // If one is based on an indirect global and the other isn't, it isn't
886 // strictly safe but we can fake this result if necessary for performance.
887 // This does not appear to be a common problem in practice.
888 if (EnableUnsafeGlobalsModRefAliasResults)
889 if ((GV1 || GV2) && GV1 != GV2)
890 return AliasResult::NoAlias;
892 return AliasResult::MayAlias;
895 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
896 const GlobalValue *GV,
897 AAQueryInfo &AAQI) {
898 if (Call->doesNotAccessMemory())
899 return ModRefInfo::NoModRef;
900 ModRefInfo ConservativeResult =
901 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
903 // Iterate through all the arguments to the called function. If any argument
904 // is based on GV, return the conservative result.
905 for (const auto &A : Call->args()) {
906 SmallVector<const Value*, 4> Objects;
907 getUnderlyingObjects(A, Objects);
909 // All objects must be identified.
910 if (!all_of(Objects, isIdentifiedObject) &&
911 // Try ::alias to see if all objects are known not to alias GV.
912 !all_of(Objects, [&](const Value *V) {
913 return this->alias(MemoryLocation::getBeforeOrAfter(V),
914 MemoryLocation::getBeforeOrAfter(GV), AAQI,
915 nullptr) == AliasResult::NoAlias;
917 return ConservativeResult;
919 if (is_contained(Objects, GV))
920 return ConservativeResult;
923 // We identified all objects in the argument list, and none of them were GV.
924 return ModRefInfo::NoModRef;
927 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
928 const MemoryLocation &Loc,
929 AAQueryInfo &AAQI) {
930 ModRefInfo Known = ModRefInfo::ModRef;
932 // If we are asking for mod/ref info of a direct call with a pointer to a
933 // global we are tracking, return information if we have it.
934 if (const GlobalValue *GV =
935 dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr)))
936 // If GV is internal to this IR and there is no function with local linkage
937 // that has had their address taken, keep looking for a tighter ModRefInfo.
938 if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage)
939 if (const Function *F = Call->getCalledFunction())
940 if (NonAddressTakenGlobals.count(GV))
941 if (const FunctionInfo *FI = getFunctionInfo(F))
942 Known = FI->getModRefInfoForGlobal(*GV) |
943 getModRefInfoForArgument(Call, GV, AAQI);
945 return Known;
948 GlobalsAAResult::GlobalsAAResult(
949 const DataLayout &DL,
950 std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
951 : DL(DL), GetTLI(std::move(GetTLI)) {}
953 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
954 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)),
955 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
956 IndirectGlobals(std::move(Arg.IndirectGlobals)),
957 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
958 FunctionInfos(std::move(Arg.FunctionInfos)),
959 Handles(std::move(Arg.Handles)) {
960 // Update the parent for each DeletionCallbackHandle.
961 for (auto &H : Handles) {
962 assert(H.GAR == &Arg);
963 H.GAR = this;
967 GlobalsAAResult::~GlobalsAAResult() = default;
969 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule(
970 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI,
971 CallGraph &CG) {
972 GlobalsAAResult Result(M.getDataLayout(), GetTLI);
974 // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
975 Result.CollectSCCMembership(CG);
977 // Find non-addr taken globals.
978 Result.AnalyzeGlobals(M);
980 // Propagate on CG.
981 Result.AnalyzeCallGraph(CG, M);
983 return Result;
986 AnalysisKey GlobalsAA::Key;
988 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
989 FunctionAnalysisManager &FAM =
990 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
991 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
992 return FAM.getResult<TargetLibraryAnalysis>(F);
994 return GlobalsAAResult::analyzeModule(M, GetTLI,
995 AM.getResult<CallGraphAnalysis>(M));
998 PreservedAnalyses RecomputeGlobalsAAPass::run(Module &M,
999 ModuleAnalysisManager &AM) {
1000 if (auto *G = AM.getCachedResult<GlobalsAA>(M)) {
1001 auto &CG = AM.getResult<CallGraphAnalysis>(M);
1002 G->NonAddressTakenGlobals.clear();
1003 G->UnknownFunctionsWithLocalLinkage = false;
1004 G->IndirectGlobals.clear();
1005 G->AllocsForIndirectGlobals.clear();
1006 G->FunctionInfos.clear();
1007 G->FunctionToSCCMap.clear();
1008 G->Handles.clear();
1009 G->CollectSCCMembership(CG);
1010 G->AnalyzeGlobals(M);
1011 G->AnalyzeCallGraph(CG, M);
1013 return PreservedAnalyses::all();
1016 char GlobalsAAWrapperPass::ID = 0;
1017 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
1018 "Globals Alias Analysis", false, true)
1019 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1020 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1021 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
1022 "Globals Alias Analysis", false, true)
1024 ModulePass *llvm::createGlobalsAAWrapperPass() {
1025 return new GlobalsAAWrapperPass();
1028 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
1029 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1032 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
1033 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
1034 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1036 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1037 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1038 return false;
1041 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1042 Result.reset();
1043 return false;
1046 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1047 AU.setPreservesAll();
1048 AU.addRequired<CallGraphWrapperPass>();
1049 AU.addRequired<TargetLibraryInfoWrapperPass>();