1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure"). For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/PassManager.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
34 #define DEBUG_TYPE "globalsmodref-aa"
36 STATISTIC(NumNonAddrTakenGlobalVars
,
37 "Number of global vars without address taken");
38 STATISTIC(NumNonAddrTakenFunctions
,"Number of functions without address taken");
39 STATISTIC(NumNoMemFunctions
, "Number of functions that do not access memory");
40 STATISTIC(NumReadMemFunctions
, "Number of functions that only read memory");
41 STATISTIC(NumIndirectGlobalVars
, "Number of indirect global objects");
43 // An option to enable unsafe alias results from the GlobalsModRef analysis.
44 // When enabled, GlobalsModRef will provide no-alias results which in extremely
45 // rare cases may not be conservatively correct. In particular, in the face of
46 // transforms which cause asymmetry between how effective getUnderlyingObject
47 // is for two pointers, it may produce incorrect results.
49 // These unsafe results have been returned by GMR for many years without
50 // causing significant issues in the wild and so we provide a mechanism to
51 // re-enable them for users of LLVM that have a particular performance
52 // sensitivity and no known issues. The option also makes it easy to evaluate
53 // the performance impact of these results.
54 static cl::opt
<bool> EnableUnsafeGlobalsModRefAliasResults(
55 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden
);
57 /// The mod/ref information collected for a particular function.
59 /// We collect information about mod/ref behavior of a function here, both in
60 /// general and as pertains to specific globals. We only have this detailed
61 /// information when we know *something* useful about the behavior. If we
62 /// saturate to fully general mod/ref, we remove the info for the function.
63 class GlobalsAAResult::FunctionInfo
{
64 typedef SmallDenseMap
<const GlobalValue
*, ModRefInfo
, 16> GlobalInfoMapType
;
66 /// Build a wrapper struct that has 8-byte alignment. All heap allocations
67 /// should provide this much alignment at least, but this makes it clear we
68 /// specifically rely on this amount of alignment.
69 struct alignas(8) AlignedMap
{
70 AlignedMap() = default;
71 AlignedMap(const AlignedMap
&Arg
) = default;
72 GlobalInfoMapType Map
;
75 /// Pointer traits for our aligned map.
76 struct AlignedMapPointerTraits
{
77 static inline void *getAsVoidPointer(AlignedMap
*P
) { return P
; }
78 static inline AlignedMap
*getFromVoidPointer(void *P
) {
79 return (AlignedMap
*)P
;
81 static constexpr int NumLowBitsAvailable
= 3;
82 static_assert(alignof(AlignedMap
) >= (1 << NumLowBitsAvailable
),
83 "AlignedMap insufficiently aligned to have enough low bits.");
86 /// The bit that flags that this function may read any global. This is
87 /// chosen to mix together with ModRefInfo bits.
88 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
89 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
90 /// this remains correct.
91 enum { MayReadAnyGlobal
= 4 };
93 /// Checks to document the invariants of the bit packing here.
94 static_assert((MayReadAnyGlobal
& static_cast<int>(ModRefInfo::ModRef
)) == 0,
95 "ModRef and the MayReadAnyGlobal flag bits overlap.");
96 static_assert(((MayReadAnyGlobal
| static_cast<int>(ModRefInfo::ModRef
)) >>
97 AlignedMapPointerTraits::NumLowBitsAvailable
) == 0,
98 "Insufficient low bits to store our flag and ModRef info.");
101 FunctionInfo() = default;
103 delete Info
.getPointer();
105 // Spell out the copy ond move constructors and assignment operators to get
106 // deep copy semantics and correct move semantics in the face of the
108 FunctionInfo(const FunctionInfo
&Arg
)
109 : Info(nullptr, Arg
.Info
.getInt()) {
110 if (const auto *ArgPtr
= Arg
.Info
.getPointer())
111 Info
.setPointer(new AlignedMap(*ArgPtr
));
113 FunctionInfo(FunctionInfo
&&Arg
)
114 : Info(Arg
.Info
.getPointer(), Arg
.Info
.getInt()) {
115 Arg
.Info
.setPointerAndInt(nullptr, 0);
117 FunctionInfo
&operator=(const FunctionInfo
&RHS
) {
118 delete Info
.getPointer();
119 Info
.setPointerAndInt(nullptr, RHS
.Info
.getInt());
120 if (const auto *RHSPtr
= RHS
.Info
.getPointer())
121 Info
.setPointer(new AlignedMap(*RHSPtr
));
124 FunctionInfo
&operator=(FunctionInfo
&&RHS
) {
125 delete Info
.getPointer();
126 Info
.setPointerAndInt(RHS
.Info
.getPointer(), RHS
.Info
.getInt());
127 RHS
.Info
.setPointerAndInt(nullptr, 0);
131 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
132 /// the corresponding ModRefInfo.
133 ModRefInfo
globalClearMayReadAnyGlobal(int I
) const {
134 return ModRefInfo(I
& static_cast<int>(ModRefInfo::ModRef
));
137 /// Returns the \c ModRefInfo info for this function.
138 ModRefInfo
getModRefInfo() const {
139 return globalClearMayReadAnyGlobal(Info
.getInt());
142 /// Adds new \c ModRefInfo for this function to its state.
143 void addModRefInfo(ModRefInfo NewMRI
) {
144 Info
.setInt(Info
.getInt() | static_cast<int>(NewMRI
));
147 /// Returns whether this function may read any global variable, and we don't
148 /// know which global.
149 bool mayReadAnyGlobal() const { return Info
.getInt() & MayReadAnyGlobal
; }
151 /// Sets this function as potentially reading from any global.
152 void setMayReadAnyGlobal() { Info
.setInt(Info
.getInt() | MayReadAnyGlobal
); }
154 /// Returns the \c ModRefInfo info for this function w.r.t. a particular
155 /// global, which may be more precise than the general information above.
156 ModRefInfo
getModRefInfoForGlobal(const GlobalValue
&GV
) const {
157 ModRefInfo GlobalMRI
=
158 mayReadAnyGlobal() ? ModRefInfo::Ref
: ModRefInfo::NoModRef
;
159 if (AlignedMap
*P
= Info
.getPointer()) {
160 auto I
= P
->Map
.find(&GV
);
161 if (I
!= P
->Map
.end())
162 GlobalMRI
|= I
->second
;
167 /// Add mod/ref info from another function into ours, saturating towards
169 void addFunctionInfo(const FunctionInfo
&FI
) {
170 addModRefInfo(FI
.getModRefInfo());
172 if (FI
.mayReadAnyGlobal())
173 setMayReadAnyGlobal();
175 if (AlignedMap
*P
= FI
.Info
.getPointer())
176 for (const auto &G
: P
->Map
)
177 addModRefInfoForGlobal(*G
.first
, G
.second
);
180 void addModRefInfoForGlobal(const GlobalValue
&GV
, ModRefInfo NewMRI
) {
181 AlignedMap
*P
= Info
.getPointer();
183 P
= new AlignedMap();
186 auto &GlobalMRI
= P
->Map
[&GV
];
190 /// Clear a global's ModRef info. Should be used when a global is being
192 void eraseModRefInfoForGlobal(const GlobalValue
&GV
) {
193 if (AlignedMap
*P
= Info
.getPointer())
198 /// All of the information is encoded into a single pointer, with a three bit
199 /// integer in the low three bits. The high bit provides a flag for when this
200 /// function may read any global. The low two bits are the ModRefInfo. And
201 /// the pointer, when non-null, points to a map from GlobalValue to
202 /// ModRefInfo specific to that GlobalValue.
203 PointerIntPair
<AlignedMap
*, 3, unsigned, AlignedMapPointerTraits
> Info
;
206 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
207 Value
*V
= getValPtr();
208 if (auto *F
= dyn_cast
<Function
>(V
))
209 GAR
->FunctionInfos
.erase(F
);
211 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
212 if (GAR
->NonAddressTakenGlobals
.erase(GV
)) {
213 // This global might be an indirect global. If so, remove it and
214 // remove any AllocRelatedValues for it.
215 if (GAR
->IndirectGlobals
.erase(GV
)) {
216 // Remove any entries in AllocsForIndirectGlobals for this global.
217 for (auto I
= GAR
->AllocsForIndirectGlobals
.begin(),
218 E
= GAR
->AllocsForIndirectGlobals
.end();
221 GAR
->AllocsForIndirectGlobals
.erase(I
);
224 // Scan the function info we have collected and remove this global
226 for (auto &FIPair
: GAR
->FunctionInfos
)
227 FIPair
.second
.eraseModRefInfoForGlobal(*GV
);
231 // If this is an allocation related to an indirect global, remove it.
232 GAR
->AllocsForIndirectGlobals
.erase(V
);
234 // And clear out the handle.
236 GAR
->Handles
.erase(I
);
237 // This object is now destroyed!
240 MemoryEffects
GlobalsAAResult::getMemoryEffects(const Function
*F
) {
241 if (FunctionInfo
*FI
= getFunctionInfo(F
))
242 return MemoryEffects(FI
->getModRefInfo());
244 return MemoryEffects::unknown();
247 /// Returns the function info for the function, or null if we don't have
248 /// anything useful to say about it.
249 GlobalsAAResult::FunctionInfo
*
250 GlobalsAAResult::getFunctionInfo(const Function
*F
) {
251 auto I
= FunctionInfos
.find(F
);
252 if (I
!= FunctionInfos
.end())
257 /// AnalyzeGlobals - Scan through the users of all of the internal
258 /// GlobalValue's in the program. If none of them have their "address taken"
259 /// (really, their address passed to something nontrivial), record this fact,
260 /// and record the functions that they are used directly in.
261 void GlobalsAAResult::AnalyzeGlobals(Module
&M
) {
262 SmallPtrSet
<Function
*, 32> TrackedFunctions
;
263 for (Function
&F
: M
)
264 if (F
.hasLocalLinkage()) {
265 if (!AnalyzeUsesOfPointer(&F
)) {
266 // Remember that we are tracking this global.
267 NonAddressTakenGlobals
.insert(&F
);
268 TrackedFunctions
.insert(&F
);
269 Handles
.emplace_front(*this, &F
);
270 Handles
.front().I
= Handles
.begin();
271 ++NumNonAddrTakenFunctions
;
273 UnknownFunctionsWithLocalLinkage
= true;
276 SmallPtrSet
<Function
*, 16> Readers
, Writers
;
277 for (GlobalVariable
&GV
: M
.globals())
278 if (GV
.hasLocalLinkage()) {
279 if (!AnalyzeUsesOfPointer(&GV
, &Readers
,
280 GV
.isConstant() ? nullptr : &Writers
)) {
281 // Remember that we are tracking this global, and the mod/ref fns
282 NonAddressTakenGlobals
.insert(&GV
);
283 Handles
.emplace_front(*this, &GV
);
284 Handles
.front().I
= Handles
.begin();
286 for (Function
*Reader
: Readers
) {
287 if (TrackedFunctions
.insert(Reader
).second
) {
288 Handles
.emplace_front(*this, Reader
);
289 Handles
.front().I
= Handles
.begin();
291 FunctionInfos
[Reader
].addModRefInfoForGlobal(GV
, ModRefInfo::Ref
);
294 if (!GV
.isConstant()) // No need to keep track of writers to constants
295 for (Function
*Writer
: Writers
) {
296 if (TrackedFunctions
.insert(Writer
).second
) {
297 Handles
.emplace_front(*this, Writer
);
298 Handles
.front().I
= Handles
.begin();
300 FunctionInfos
[Writer
].addModRefInfoForGlobal(GV
, ModRefInfo::Mod
);
302 ++NumNonAddrTakenGlobalVars
;
304 // If this global holds a pointer type, see if it is an indirect global.
305 if (GV
.getValueType()->isPointerTy() &&
306 AnalyzeIndirectGlobalMemory(&GV
))
307 ++NumIndirectGlobalVars
;
314 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
315 /// If this is used by anything complex (i.e., the address escapes), return
316 /// true. Also, while we are at it, keep track of those functions that read and
317 /// write to the value.
319 /// If OkayStoreDest is non-null, stores into this global are allowed.
320 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value
*V
,
321 SmallPtrSetImpl
<Function
*> *Readers
,
322 SmallPtrSetImpl
<Function
*> *Writers
,
323 GlobalValue
*OkayStoreDest
) {
324 if (!V
->getType()->isPointerTy())
327 for (Use
&U
: V
->uses()) {
328 User
*I
= U
.getUser();
329 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
331 Readers
->insert(LI
->getParent()->getParent());
332 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
333 if (V
== SI
->getOperand(1)) {
335 Writers
->insert(SI
->getParent()->getParent());
336 } else if (SI
->getOperand(1) != OkayStoreDest
) {
337 return true; // Storing the pointer
339 } else if (Operator::getOpcode(I
) == Instruction::GetElementPtr
) {
340 if (AnalyzeUsesOfPointer(I
, Readers
, Writers
))
342 } else if (Operator::getOpcode(I
) == Instruction::BitCast
||
343 Operator::getOpcode(I
) == Instruction::AddrSpaceCast
) {
344 if (AnalyzeUsesOfPointer(I
, Readers
, Writers
, OkayStoreDest
))
346 } else if (auto *Call
= dyn_cast
<CallBase
>(I
)) {
347 // Make sure that this is just the function being called, not that it is
348 // passing into the function.
349 if (Call
->isDataOperand(&U
)) {
350 // Detect calls to free.
351 if (Call
->isArgOperand(&U
) &&
352 getFreedOperand(Call
, &GetTLI(*Call
->getFunction())) == U
) {
354 Writers
->insert(Call
->getParent()->getParent());
356 // In general, we return true for unknown calls, but there are
357 // some simple checks that we can do for functions that
358 // will never call back into the module.
359 auto *F
= Call
->getCalledFunction();
360 // TODO: we should be able to remove isDeclaration() check
361 // and let the function body analysis check for captures,
362 // and collect the mod-ref effects. This information will
363 // be later propagated via the call graph.
364 if (!F
|| !F
->isDeclaration())
366 // Note that the NoCallback check here is a little bit too
367 // conservative. If there are no captures of the global
368 // in the module, then this call may not be a capture even
369 // if it does not have NoCallback.
370 if (!Call
->hasFnAttr(Attribute::NoCallback
) ||
371 !Call
->isArgOperand(&U
) ||
372 !Call
->doesNotCapture(Call
->getArgOperandNo(&U
)))
375 // Conservatively, assume the call reads and writes the global.
376 // We could use memory attributes to make it more precise.
378 Readers
->insert(Call
->getParent()->getParent());
380 Writers
->insert(Call
->getParent()->getParent());
383 } else if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
)) {
384 if (!isa
<ConstantPointerNull
>(ICI
->getOperand(1)))
385 return true; // Allow comparison against null.
386 } else if (Constant
*C
= dyn_cast
<Constant
>(I
)) {
387 // Ignore constants which don't have any live uses.
388 if (isa
<GlobalValue
>(C
) || C
->isConstantUsed())
398 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
399 /// which holds a pointer type. See if the global always points to non-aliased
400 /// heap memory: that is, all initializers of the globals store a value known
401 /// to be obtained via a noalias return function call which have no other use.
402 /// Further, all loads out of GV must directly use the memory, not store the
403 /// pointer somewhere. If this is true, we consider the memory pointed to by
404 /// GV to be owned by GV and can disambiguate other pointers from it.
405 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable
*GV
) {
406 // Keep track of values related to the allocation of the memory, f.e. the
407 // value produced by the noalias call and any casts.
408 std::vector
<Value
*> AllocRelatedValues
;
410 // If the initializer is a valid pointer, bail.
411 if (Constant
*C
= GV
->getInitializer())
412 if (!C
->isNullValue())
415 // Walk the user list of the global. If we find anything other than a direct
416 // load or store, bail out.
417 for (User
*U
: GV
->users()) {
418 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
419 // The pointer loaded from the global can only be used in simple ways:
420 // we allow addressing of it and loading storing to it. We do *not* allow
421 // storing the loaded pointer somewhere else or passing to a function.
422 if (AnalyzeUsesOfPointer(LI
))
423 return false; // Loaded pointer escapes.
424 // TODO: Could try some IP mod/ref of the loaded pointer.
425 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
426 // Storing the global itself.
427 if (SI
->getOperand(0) == GV
)
430 // If storing the null pointer, ignore it.
431 if (isa
<ConstantPointerNull
>(SI
->getOperand(0)))
434 // Check the value being stored.
435 Value
*Ptr
= getUnderlyingObject(SI
->getOperand(0));
437 if (!isNoAliasCall(Ptr
))
438 return false; // Too hard to analyze.
440 // Analyze all uses of the allocation. If any of them are used in a
441 // non-simple way (e.g. stored to another global) bail out.
442 if (AnalyzeUsesOfPointer(Ptr
, /*Readers*/ nullptr, /*Writers*/ nullptr,
444 return false; // Loaded pointer escapes.
446 // Remember that this allocation is related to the indirect global.
447 AllocRelatedValues
.push_back(Ptr
);
449 // Something complex, bail out.
454 // Okay, this is an indirect global. Remember all of the allocations for
455 // this global in AllocsForIndirectGlobals.
456 while (!AllocRelatedValues
.empty()) {
457 AllocsForIndirectGlobals
[AllocRelatedValues
.back()] = GV
;
458 Handles
.emplace_front(*this, AllocRelatedValues
.back());
459 Handles
.front().I
= Handles
.begin();
460 AllocRelatedValues
.pop_back();
462 IndirectGlobals
.insert(GV
);
463 Handles
.emplace_front(*this, GV
);
464 Handles
.front().I
= Handles
.begin();
468 void GlobalsAAResult::CollectSCCMembership(CallGraph
&CG
) {
469 // We do a bottom-up SCC traversal of the call graph. In other words, we
470 // visit all callees before callers (leaf-first).
472 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
); !I
.isAtEnd(); ++I
) {
473 const std::vector
<CallGraphNode
*> &SCC
= *I
;
474 assert(!SCC
.empty() && "SCC with no functions?");
476 for (auto *CGN
: SCC
)
477 if (Function
*F
= CGN
->getFunction())
478 FunctionToSCCMap
[F
] = SCCID
;
483 /// AnalyzeCallGraph - At this point, we know the functions where globals are
484 /// immediately stored to and read from. Propagate this information up the call
485 /// graph to all callers and compute the mod/ref info for all memory for each
487 void GlobalsAAResult::AnalyzeCallGraph(CallGraph
&CG
, Module
&M
) {
488 // We do a bottom-up SCC traversal of the call graph. In other words, we
489 // visit all callees before callers (leaf-first).
490 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
); !I
.isAtEnd(); ++I
) {
491 const std::vector
<CallGraphNode
*> &SCC
= *I
;
492 assert(!SCC
.empty() && "SCC with no functions?");
494 Function
*F
= SCC
[0]->getFunction();
496 if (!F
|| !F
->isDefinitionExact()) {
497 // Calls externally or not exact - can't say anything useful. Remove any
498 // existing function records (may have been created when scanning
500 for (auto *Node
: SCC
)
501 FunctionInfos
.erase(Node
->getFunction());
505 FunctionInfo
&FI
= FunctionInfos
[F
];
506 Handles
.emplace_front(*this, F
);
507 Handles
.front().I
= Handles
.begin();
508 bool KnowNothing
= false;
510 // Intrinsics, like any other synchronizing function, can make effects
511 // of other threads visible. Without nosync we know nothing really.
512 // Similarly, if `nocallback` is missing the function, or intrinsic,
513 // can call into the module arbitrarily. If both are set the function
514 // has an effect but will not interact with accesses of internal
515 // globals inside the module. We are conservative here for optnone
516 // functions, might not be necessary.
517 auto MaySyncOrCallIntoModule
= [](const Function
&F
) {
518 return !F
.isDeclaration() || !F
.hasNoSync() ||
519 !F
.hasFnAttribute(Attribute::NoCallback
);
522 // Collect the mod/ref properties due to called functions. We only compute
524 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
&& !KnowNothing
; ++i
) {
530 if (F
->isDeclaration() || F
->hasOptNone()) {
531 // Try to get mod/ref behaviour from function attributes.
532 if (F
->doesNotAccessMemory()) {
533 // Can't do better than that!
534 } else if (F
->onlyReadsMemory()) {
535 FI
.addModRefInfo(ModRefInfo::Ref
);
536 if (!F
->onlyAccessesArgMemory() && MaySyncOrCallIntoModule(*F
))
537 // This function might call back into the module and read a global -
538 // consider every global as possibly being read by this function.
539 FI
.setMayReadAnyGlobal();
541 FI
.addModRefInfo(ModRefInfo::ModRef
);
542 if (!F
->onlyAccessesArgMemory())
543 FI
.setMayReadAnyGlobal();
544 if (MaySyncOrCallIntoModule(*F
)) {
552 for (CallGraphNode::iterator CI
= SCC
[i
]->begin(), E
= SCC
[i
]->end();
553 CI
!= E
&& !KnowNothing
; ++CI
)
554 if (Function
*Callee
= CI
->second
->getFunction()) {
555 if (FunctionInfo
*CalleeFI
= getFunctionInfo(Callee
)) {
556 // Propagate function effect up.
557 FI
.addFunctionInfo(*CalleeFI
);
559 // Can't say anything about it. However, if it is inside our SCC,
560 // then nothing needs to be done.
561 CallGraphNode
*CalleeNode
= CG
[Callee
];
562 if (!is_contained(SCC
, CalleeNode
))
570 // If we can't say anything useful about this SCC, remove all SCC functions
571 // from the FunctionInfos map.
573 for (auto *Node
: SCC
)
574 FunctionInfos
.erase(Node
->getFunction());
578 // Scan the function bodies for explicit loads or stores.
579 for (auto *Node
: SCC
) {
580 if (isModAndRefSet(FI
.getModRefInfo()))
581 break; // The mod/ref lattice saturates here.
583 // Don't prove any properties based on the implementation of an optnone
584 // function. Function attributes were already used as a best approximation
586 if (Node
->getFunction()->hasOptNone())
589 for (Instruction
&I
: instructions(Node
->getFunction())) {
590 if (isModAndRefSet(FI
.getModRefInfo()))
591 break; // The mod/ref lattice saturates here.
593 // We handle calls specially because the graph-relevant aspects are
595 if (isa
<CallBase
>(&I
))
598 // All non-call instructions we use the primary predicates for whether
599 // they read or write memory.
600 if (I
.mayReadFromMemory())
601 FI
.addModRefInfo(ModRefInfo::Ref
);
602 if (I
.mayWriteToMemory())
603 FI
.addModRefInfo(ModRefInfo::Mod
);
607 if (!isModSet(FI
.getModRefInfo()))
608 ++NumReadMemFunctions
;
609 if (!isModOrRefSet(FI
.getModRefInfo()))
612 // Finally, now that we know the full effect on this SCC, clone the
613 // information to each function in the SCC.
614 // FI is a reference into FunctionInfos, so copy it now so that it doesn't
615 // get invalidated if DenseMap decides to re-hash.
616 FunctionInfo CachedFI
= FI
;
617 for (unsigned i
= 1, e
= SCC
.size(); i
!= e
; ++i
)
618 FunctionInfos
[SCC
[i
]->getFunction()] = CachedFI
;
622 // GV is a non-escaping global. V is a pointer address that has been loaded from.
623 // If we can prove that V must escape, we can conclude that a load from V cannot
625 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue
*GV
,
628 const DataLayout
&DL
) {
629 SmallPtrSet
<const Value
*, 8> Visited
;
630 SmallVector
<const Value
*, 8> Inputs
;
634 const Value
*Input
= Inputs
.pop_back_val();
636 if (isa
<GlobalValue
>(Input
) || isa
<Argument
>(Input
) || isa
<CallInst
>(Input
) ||
637 isa
<InvokeInst
>(Input
))
638 // Arguments to functions or returns from functions are inherently
639 // escaping, so we can immediately classify those as not aliasing any
640 // non-addr-taken globals.
642 // (Transitive) loads from a global are also safe - if this aliased
643 // another global, its address would escape, so no alias.
646 // Recurse through a limited number of selects, loads and PHIs. This is an
647 // arbitrary depth of 4, lower numbers could be used to fix compile time
648 // issues if needed, but this is generally expected to be only be important
653 if (auto *LI
= dyn_cast
<LoadInst
>(Input
)) {
654 Inputs
.push_back(getUnderlyingObject(LI
->getPointerOperand()));
657 if (auto *SI
= dyn_cast
<SelectInst
>(Input
)) {
658 const Value
*LHS
= getUnderlyingObject(SI
->getTrueValue());
659 const Value
*RHS
= getUnderlyingObject(SI
->getFalseValue());
660 if (Visited
.insert(LHS
).second
)
661 Inputs
.push_back(LHS
);
662 if (Visited
.insert(RHS
).second
)
663 Inputs
.push_back(RHS
);
666 if (auto *PN
= dyn_cast
<PHINode
>(Input
)) {
667 for (const Value
*Op
: PN
->incoming_values()) {
668 Op
= getUnderlyingObject(Op
);
669 if (Visited
.insert(Op
).second
)
670 Inputs
.push_back(Op
);
676 } while (!Inputs
.empty());
678 // All inputs were known to be no-alias.
682 // There are particular cases where we can conclude no-alias between
683 // a non-addr-taken global and some other underlying object. Specifically,
684 // a non-addr-taken global is known to not be escaped from any function. It is
685 // also incorrect for a transformation to introduce an escape of a global in
686 // a way that is observable when it was not there previously. One function
687 // being transformed to introduce an escape which could possibly be observed
688 // (via loading from a global or the return value for example) within another
689 // function is never safe. If the observation is made through non-atomic
690 // operations on different threads, it is a data-race and UB. If the
691 // observation is well defined, by being observed the transformation would have
692 // changed program behavior by introducing the observed escape, making it an
693 // invalid transform.
695 // This property does require that transformations which *temporarily* escape
696 // a global that was not previously escaped, prior to restoring it, cannot rely
697 // on the results of GMR::alias. This seems a reasonable restriction, although
698 // currently there is no way to enforce it. There is also no realistic
699 // optimization pass that would make this mistake. The closest example is
700 // a transformation pass which does reg2mem of SSA values but stores them into
701 // global variables temporarily before restoring the global variable's value.
702 // This could be useful to expose "benign" races for example. However, it seems
703 // reasonable to require that a pass which introduces escapes of global
704 // variables in this way to either not trust AA results while the escape is
705 // active, or to be forced to operate as a module pass that cannot co-exist
706 // with an alias analysis such as GMR.
707 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue
*GV
,
709 // In order to know that the underlying object cannot alias the
710 // non-addr-taken global, we must know that it would have to be an escape.
711 // Thus if the underlying object is a function argument, a load from
712 // a global, or the return of a function, it cannot alias. We can also
713 // recurse through PHI nodes and select nodes provided all of their inputs
714 // resolve to one of these known-escaping roots.
715 SmallPtrSet
<const Value
*, 8> Visited
;
716 SmallVector
<const Value
*, 8> Inputs
;
721 const Value
*Input
= Inputs
.pop_back_val();
723 if (auto *InputGV
= dyn_cast
<GlobalValue
>(Input
)) {
724 // If one input is the very global we're querying against, then we can't
725 // conclude no-alias.
729 // Distinct GlobalVariables never alias, unless overriden or zero-sized.
730 // FIXME: The condition can be refined, but be conservative for now.
731 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
732 auto *InputGVar
= dyn_cast
<GlobalVariable
>(InputGV
);
733 if (GVar
&& InputGVar
&&
734 !GVar
->isDeclaration() && !InputGVar
->isDeclaration() &&
735 !GVar
->isInterposable() && !InputGVar
->isInterposable()) {
736 Type
*GVType
= GVar
->getInitializer()->getType();
737 Type
*InputGVType
= InputGVar
->getInitializer()->getType();
738 if (GVType
->isSized() && InputGVType
->isSized() &&
739 (DL
.getTypeAllocSize(GVType
) > 0) &&
740 (DL
.getTypeAllocSize(InputGVType
) > 0))
744 // Conservatively return false, even though we could be smarter
745 // (e.g. look through GlobalAliases).
749 if (isa
<Argument
>(Input
) || isa
<CallInst
>(Input
) ||
750 isa
<InvokeInst
>(Input
)) {
751 // Arguments to functions or returns from functions are inherently
752 // escaping, so we can immediately classify those as not aliasing any
753 // non-addr-taken globals.
757 // Recurse through a limited number of selects, loads and PHIs. This is an
758 // arbitrary depth of 4, lower numbers could be used to fix compile time
759 // issues if needed, but this is generally expected to be only be important
764 if (auto *LI
= dyn_cast
<LoadInst
>(Input
)) {
765 // A pointer loaded from a global would have been captured, and we know
766 // that the global is non-escaping, so no alias.
767 const Value
*Ptr
= getUnderlyingObject(LI
->getPointerOperand());
768 if (isNonEscapingGlobalNoAliasWithLoad(GV
, Ptr
, Depth
, DL
))
769 // The load does not alias with GV.
771 // Otherwise, a load could come from anywhere, so bail.
774 if (auto *SI
= dyn_cast
<SelectInst
>(Input
)) {
775 const Value
*LHS
= getUnderlyingObject(SI
->getTrueValue());
776 const Value
*RHS
= getUnderlyingObject(SI
->getFalseValue());
777 if (Visited
.insert(LHS
).second
)
778 Inputs
.push_back(LHS
);
779 if (Visited
.insert(RHS
).second
)
780 Inputs
.push_back(RHS
);
783 if (auto *PN
= dyn_cast
<PHINode
>(Input
)) {
784 for (const Value
*Op
: PN
->incoming_values()) {
785 Op
= getUnderlyingObject(Op
);
786 if (Visited
.insert(Op
).second
)
787 Inputs
.push_back(Op
);
792 // FIXME: It would be good to handle other obvious no-alias cases here, but
793 // it isn't clear how to do so reasonably without building a small version
794 // of BasicAA into this code.
796 } while (!Inputs
.empty());
798 // If all the inputs to V were definitively no-alias, then V is no-alias.
802 bool GlobalsAAResult::invalidate(Module
&, const PreservedAnalyses
&PA
,
803 ModuleAnalysisManager::Invalidator
&) {
804 // Check whether the analysis has been explicitly invalidated. Otherwise, it's
805 // stateless and remains preserved.
806 auto PAC
= PA
.getChecker
<GlobalsAA
>();
807 return !PAC
.preservedWhenStateless();
810 /// alias - If one of the pointers is to a global that we are tracking, and the
811 /// other is some random pointer, we know there cannot be an alias, because the
812 /// address of the global isn't taken.
813 AliasResult
GlobalsAAResult::alias(const MemoryLocation
&LocA
,
814 const MemoryLocation
&LocB
,
815 AAQueryInfo
&AAQI
, const Instruction
*) {
816 // Get the base object these pointers point to.
818 getUnderlyingObject(LocA
.Ptr
->stripPointerCastsForAliasAnalysis());
820 getUnderlyingObject(LocB
.Ptr
->stripPointerCastsForAliasAnalysis());
822 // If either of the underlying values is a global, they may be non-addr-taken
823 // globals, which we can answer queries about.
824 const GlobalValue
*GV1
= dyn_cast
<GlobalValue
>(UV1
);
825 const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(UV2
);
827 // If the global's address is taken, pretend we don't know it's a pointer to
829 if (GV1
&& !NonAddressTakenGlobals
.count(GV1
))
831 if (GV2
&& !NonAddressTakenGlobals
.count(GV2
))
834 // If the two pointers are derived from two different non-addr-taken
835 // globals we know these can't alias.
836 if (GV1
&& GV2
&& GV1
!= GV2
)
837 return AliasResult::NoAlias
;
839 // If one is and the other isn't, it isn't strictly safe but we can fake
840 // this result if necessary for performance. This does not appear to be
841 // a common problem in practice.
842 if (EnableUnsafeGlobalsModRefAliasResults
)
843 if ((GV1
|| GV2
) && GV1
!= GV2
)
844 return AliasResult::NoAlias
;
846 // Check for a special case where a non-escaping global can be used to
847 // conclude no-alias.
848 if ((GV1
|| GV2
) && GV1
!= GV2
) {
849 const GlobalValue
*GV
= GV1
? GV1
: GV2
;
850 const Value
*UV
= GV1
? UV2
: UV1
;
851 if (isNonEscapingGlobalNoAlias(GV
, UV
))
852 return AliasResult::NoAlias
;
855 // Otherwise if they are both derived from the same addr-taken global, we
856 // can't know the two accesses don't overlap.
859 // These pointers may be based on the memory owned by an indirect global. If
860 // so, we may be able to handle this. First check to see if the base pointer
861 // is a direct load from an indirect global.
863 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(UV1
))
864 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getOperand(0)))
865 if (IndirectGlobals
.count(GV
))
867 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(UV2
))
868 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getOperand(0)))
869 if (IndirectGlobals
.count(GV
))
872 // These pointers may also be from an allocation for the indirect global. If
873 // so, also handle them.
875 GV1
= AllocsForIndirectGlobals
.lookup(UV1
);
877 GV2
= AllocsForIndirectGlobals
.lookup(UV2
);
879 // Now that we know whether the two pointers are related to indirect globals,
880 // use this to disambiguate the pointers. If the pointers are based on
881 // different indirect globals they cannot alias.
882 if (GV1
&& GV2
&& GV1
!= GV2
)
883 return AliasResult::NoAlias
;
885 // If one is based on an indirect global and the other isn't, it isn't
886 // strictly safe but we can fake this result if necessary for performance.
887 // This does not appear to be a common problem in practice.
888 if (EnableUnsafeGlobalsModRefAliasResults
)
889 if ((GV1
|| GV2
) && GV1
!= GV2
)
890 return AliasResult::NoAlias
;
892 return AliasResult::MayAlias
;
895 ModRefInfo
GlobalsAAResult::getModRefInfoForArgument(const CallBase
*Call
,
896 const GlobalValue
*GV
,
898 if (Call
->doesNotAccessMemory())
899 return ModRefInfo::NoModRef
;
900 ModRefInfo ConservativeResult
=
901 Call
->onlyReadsMemory() ? ModRefInfo::Ref
: ModRefInfo::ModRef
;
903 // Iterate through all the arguments to the called function. If any argument
904 // is based on GV, return the conservative result.
905 for (const auto &A
: Call
->args()) {
906 SmallVector
<const Value
*, 4> Objects
;
907 getUnderlyingObjects(A
, Objects
);
909 // All objects must be identified.
910 if (!all_of(Objects
, isIdentifiedObject
) &&
911 // Try ::alias to see if all objects are known not to alias GV.
912 !all_of(Objects
, [&](const Value
*V
) {
913 return this->alias(MemoryLocation::getBeforeOrAfter(V
),
914 MemoryLocation::getBeforeOrAfter(GV
), AAQI
,
915 nullptr) == AliasResult::NoAlias
;
917 return ConservativeResult
;
919 if (is_contained(Objects
, GV
))
920 return ConservativeResult
;
923 // We identified all objects in the argument list, and none of them were GV.
924 return ModRefInfo::NoModRef
;
927 ModRefInfo
GlobalsAAResult::getModRefInfo(const CallBase
*Call
,
928 const MemoryLocation
&Loc
,
930 ModRefInfo Known
= ModRefInfo::ModRef
;
932 // If we are asking for mod/ref info of a direct call with a pointer to a
933 // global we are tracking, return information if we have it.
934 if (const GlobalValue
*GV
=
935 dyn_cast
<GlobalValue
>(getUnderlyingObject(Loc
.Ptr
)))
936 // If GV is internal to this IR and there is no function with local linkage
937 // that has had their address taken, keep looking for a tighter ModRefInfo.
938 if (GV
->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage
)
939 if (const Function
*F
= Call
->getCalledFunction())
940 if (NonAddressTakenGlobals
.count(GV
))
941 if (const FunctionInfo
*FI
= getFunctionInfo(F
))
942 Known
= FI
->getModRefInfoForGlobal(*GV
) |
943 getModRefInfoForArgument(Call
, GV
, AAQI
);
948 GlobalsAAResult::GlobalsAAResult(
949 const DataLayout
&DL
,
950 std::function
<const TargetLibraryInfo
&(Function
&F
)> GetTLI
)
951 : DL(DL
), GetTLI(std::move(GetTLI
)) {}
953 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult
&&Arg
)
954 : AAResultBase(std::move(Arg
)), DL(Arg
.DL
), GetTLI(std::move(Arg
.GetTLI
)),
955 NonAddressTakenGlobals(std::move(Arg
.NonAddressTakenGlobals
)),
956 IndirectGlobals(std::move(Arg
.IndirectGlobals
)),
957 AllocsForIndirectGlobals(std::move(Arg
.AllocsForIndirectGlobals
)),
958 FunctionInfos(std::move(Arg
.FunctionInfos
)),
959 Handles(std::move(Arg
.Handles
)) {
960 // Update the parent for each DeletionCallbackHandle.
961 for (auto &H
: Handles
) {
962 assert(H
.GAR
== &Arg
);
967 GlobalsAAResult::~GlobalsAAResult() = default;
969 /*static*/ GlobalsAAResult
GlobalsAAResult::analyzeModule(
970 Module
&M
, std::function
<const TargetLibraryInfo
&(Function
&F
)> GetTLI
,
972 GlobalsAAResult
Result(M
.getDataLayout(), GetTLI
);
974 // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
975 Result
.CollectSCCMembership(CG
);
977 // Find non-addr taken globals.
978 Result
.AnalyzeGlobals(M
);
981 Result
.AnalyzeCallGraph(CG
, M
);
986 AnalysisKey
GlobalsAA::Key
;
988 GlobalsAAResult
GlobalsAA::run(Module
&M
, ModuleAnalysisManager
&AM
) {
989 FunctionAnalysisManager
&FAM
=
990 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
991 auto GetTLI
= [&FAM
](Function
&F
) -> TargetLibraryInfo
& {
992 return FAM
.getResult
<TargetLibraryAnalysis
>(F
);
994 return GlobalsAAResult::analyzeModule(M
, GetTLI
,
995 AM
.getResult
<CallGraphAnalysis
>(M
));
998 PreservedAnalyses
RecomputeGlobalsAAPass::run(Module
&M
,
999 ModuleAnalysisManager
&AM
) {
1000 if (auto *G
= AM
.getCachedResult
<GlobalsAA
>(M
)) {
1001 auto &CG
= AM
.getResult
<CallGraphAnalysis
>(M
);
1002 G
->NonAddressTakenGlobals
.clear();
1003 G
->UnknownFunctionsWithLocalLinkage
= false;
1004 G
->IndirectGlobals
.clear();
1005 G
->AllocsForIndirectGlobals
.clear();
1006 G
->FunctionInfos
.clear();
1007 G
->FunctionToSCCMap
.clear();
1009 G
->CollectSCCMembership(CG
);
1010 G
->AnalyzeGlobals(M
);
1011 G
->AnalyzeCallGraph(CG
, M
);
1013 return PreservedAnalyses::all();
1016 char GlobalsAAWrapperPass::ID
= 0;
1017 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass
, "globals-aa",
1018 "Globals Alias Analysis", false, true)
1019 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
1020 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
1021 INITIALIZE_PASS_END(GlobalsAAWrapperPass
, "globals-aa",
1022 "Globals Alias Analysis", false, true)
1024 ModulePass
*llvm::createGlobalsAAWrapperPass() {
1025 return new GlobalsAAWrapperPass();
1028 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID
) {
1029 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1032 bool GlobalsAAWrapperPass::runOnModule(Module
&M
) {
1033 auto GetTLI
= [this](Function
&F
) -> TargetLibraryInfo
& {
1034 return this->getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
1036 Result
.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1037 M
, GetTLI
, getAnalysis
<CallGraphWrapperPass
>().getCallGraph())));
1041 bool GlobalsAAWrapperPass::doFinalization(Module
&M
) {
1046 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1047 AU
.setPreservesAll();
1048 AU
.addRequired
<CallGraphWrapperPass
>();
1049 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();