1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements bookkeeping for "interesting" users of expressions
10 // computed from induction variables.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/IVUsers.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/CodeMetrics.h"
17 #include "llvm/Analysis/LoopAnalysisManager.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
32 #define DEBUG_TYPE "iv-users"
34 AnalysisKey
IVUsersAnalysis::Key
;
36 IVUsers
IVUsersAnalysis::run(Loop
&L
, LoopAnalysisManager
&AM
,
37 LoopStandardAnalysisResults
&AR
) {
38 return IVUsers(&L
, &AR
.AC
, &AR
.LI
, &AR
.DT
, &AR
.SE
);
41 char IVUsersWrapperPass::ID
= 0;
42 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass
, "iv-users",
43 "Induction Variable Users", false, true)
44 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
45 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
47 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
48 INITIALIZE_PASS_END(IVUsersWrapperPass
, "iv-users", "Induction Variable Users",
51 Pass
*llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
53 /// isInteresting - Test whether the given expression is "interesting" when
54 /// used by the given expression, within the context of analyzing the
56 static bool isInteresting(const SCEV
*S
, const Instruction
*I
, const Loop
*L
,
57 ScalarEvolution
*SE
, LoopInfo
*LI
) {
58 // An addrec is interesting if it's affine or if it has an interesting start.
59 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
60 // Keep things simple. Don't touch loop-variant strides unless they're
61 // only used outside the loop and we can simplify them.
62 if (AR
->getLoop() == L
)
63 return AR
->isAffine() ||
65 SE
->getSCEVAtScope(AR
, LI
->getLoopFor(I
->getParent())) != AR
);
66 // Otherwise recurse to see if the start value is interesting, and that
67 // the step value is not interesting, since we don't yet know how to
68 // do effective SCEV expansions for addrecs with interesting steps.
69 return isInteresting(AR
->getStart(), I
, L
, SE
, LI
) &&
70 !isInteresting(AR
->getStepRecurrence(*SE
), I
, L
, SE
, LI
);
73 // An add is interesting if exactly one of its operands is interesting.
74 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
75 bool AnyInterestingYet
= false;
76 for (const auto *Op
: Add
->operands())
77 if (isInteresting(Op
, I
, L
, SE
, LI
)) {
78 if (AnyInterestingYet
)
80 AnyInterestingYet
= true;
82 return AnyInterestingYet
;
85 // Nothing else is interesting here.
89 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
90 /// and now we need to decide whether the user should use the preinc or post-inc
91 /// value. If this user should use the post-inc version of the IV, return true.
93 /// Choosing wrong here can break dominance properties (if we choose to use the
94 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
95 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
96 /// should use the post-inc value).
97 static bool IVUseShouldUsePostIncValue(Instruction
*User
, Value
*Operand
,
98 const Loop
*L
, DominatorTree
*DT
) {
99 // If the user is in the loop, use the preinc value.
100 if (L
->contains(User
))
103 BasicBlock
*LatchBlock
= L
->getLoopLatch();
107 // Ok, the user is outside of the loop. If it is dominated by the latch
108 // block, use the post-inc value.
109 if (DT
->dominates(LatchBlock
, User
->getParent()))
112 // There is one case we have to be careful of: PHI nodes. These little guys
113 // can live in blocks that are not dominated by the latch block, but (since
114 // their uses occur in the predecessor block, not the block the PHI lives in)
115 // should still use the post-inc value. Check for this case now.
116 PHINode
*PN
= dyn_cast
<PHINode
>(User
);
118 return false; // not a phi, not dominated by latch block.
120 // Look at all of the uses of Operand by the PHI node. If any use corresponds
121 // to a block that is not dominated by the latch block, give up and use the
122 // preincremented value.
123 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
124 if (PN
->getIncomingValue(i
) == Operand
&&
125 !DT
->dominates(LatchBlock
, PN
->getIncomingBlock(i
)))
128 // Okay, all uses of Operand by PN are in predecessor blocks that really are
129 // dominated by the latch block. Use the post-incremented value.
133 /// Inspect the specified instruction. If it is a reducible SCEV, recursively
134 /// add its users to the IVUsesByStride set and return true. Otherwise, return
136 bool IVUsers::AddUsersIfInteresting(Instruction
*I
) {
137 const DataLayout
&DL
= I
->getModule()->getDataLayout();
139 // Add this IV user to the Processed set before returning false to ensure that
140 // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
141 if (!Processed
.insert(I
).second
)
142 return true; // Instruction already handled.
144 if (!SE
->isSCEVable(I
->getType()))
145 return false; // Void and FP expressions cannot be reduced.
147 // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
148 // pass to SCEVExpander. Expressions are not safe to expand if they represent
149 // operations that are not safe to speculate, namely integer division.
150 if (!isa
<PHINode
>(I
) && !isSafeToSpeculativelyExecute(I
))
153 // LSR is not APInt clean, do not touch integers bigger than 64-bits.
154 // Also avoid creating IVs of non-native types. For example, we don't want a
155 // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
156 uint64_t Width
= SE
->getTypeSizeInBits(I
->getType());
157 if (Width
> 64 || !DL
.isLegalInteger(Width
))
160 // Don't attempt to promote ephemeral values to indvars. They will be removed
162 if (EphValues
.count(I
))
165 // Get the symbolic expression for this instruction.
166 const SCEV
*ISE
= SE
->getSCEV(I
);
168 // If we've come to an uninteresting expression, stop the traversal and
170 if (!isInteresting(ISE
, I
, L
, SE
, LI
))
173 SmallPtrSet
<Instruction
*, 4> UniqueUsers
;
174 for (Use
&U
: I
->uses()) {
175 Instruction
*User
= cast
<Instruction
>(U
.getUser());
176 if (!UniqueUsers
.insert(User
).second
)
179 // Do not infinitely recurse on PHI nodes.
180 if (isa
<PHINode
>(User
) && Processed
.count(User
))
183 // Descend recursively, but not into PHI nodes outside the current loop.
184 // It's important to see the entire expression outside the loop to get
185 // choices that depend on addressing mode use right, although we won't
186 // consider references outside the loop in all cases.
187 // If User is already in Processed, we don't want to recurse into it again,
188 // but do want to record a second reference in the same instruction.
189 bool AddUserToIVUsers
= false;
190 if (LI
->getLoopFor(User
->getParent()) != L
) {
191 if (isa
<PHINode
>(User
) || Processed
.count(User
) ||
192 !AddUsersIfInteresting(User
)) {
193 LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User
<< '\n'
194 << " OF SCEV: " << *ISE
<< '\n');
195 AddUserToIVUsers
= true;
197 } else if (Processed
.count(User
) || !AddUsersIfInteresting(User
)) {
198 LLVM_DEBUG(dbgs() << "FOUND USER: " << *User
<< '\n'
199 << " OF SCEV: " << *ISE
<< '\n');
200 AddUserToIVUsers
= true;
203 if (AddUserToIVUsers
) {
204 // Okay, we found a user that we cannot reduce.
205 IVStrideUse
&NewUse
= AddUser(User
, I
);
206 // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
207 // The regular return value here is discarded; instead of recording
208 // it, we just recompute it when we need it.
209 const SCEV
*OriginalISE
= ISE
;
211 auto NormalizePred
= [&](const SCEVAddRecExpr
*AR
) {
212 auto *L
= AR
->getLoop();
213 bool Result
= IVUseShouldUsePostIncValue(User
, I
, L
, DT
);
215 NewUse
.PostIncLoops
.insert(L
);
219 ISE
= normalizeForPostIncUseIf(ISE
, NormalizePred
, *SE
);
221 // PostIncNormalization effectively simplifies the expression under
222 // pre-increment assumptions. Those assumptions (no wrapping) might not
223 // hold for the post-inc value. Catch such cases by making sure the
224 // transformation is invertible.
225 if (OriginalISE
!= ISE
) {
226 const SCEV
*DenormalizedISE
=
227 denormalizeForPostIncUse(ISE
, NewUse
.PostIncLoops
, *SE
);
229 // If we normalized the expression, but denormalization doesn't give the
230 // original one, discard this user.
231 if (OriginalISE
!= DenormalizedISE
) {
233 << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
239 LLVM_DEBUG(if (SE
->getSCEV(I
) != ISE
) dbgs()
240 << " NORMALIZED TO: " << *ISE
<< '\n');
246 IVStrideUse
&IVUsers::AddUser(Instruction
*User
, Value
*Operand
) {
247 IVUses
.push_back(new IVStrideUse(this, User
, Operand
));
248 return IVUses
.back();
251 IVUsers::IVUsers(Loop
*L
, AssumptionCache
*AC
, LoopInfo
*LI
, DominatorTree
*DT
,
253 : L(L
), AC(AC
), LI(LI
), DT(DT
), SE(SE
) {
254 // Collect ephemeral values so that AddUsersIfInteresting skips them.
256 CodeMetrics::collectEphemeralValues(L
, AC
, EphValues
);
258 // Find all uses of induction variables in this loop, and categorize
259 // them by stride. Start by finding all of the PHI nodes in the header for
260 // this loop. If they are induction variables, inspect their uses.
261 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
)
262 (void)AddUsersIfInteresting(&*I
);
265 void IVUsers::print(raw_ostream
&OS
, const Module
*M
) const {
266 OS
<< "IV Users for loop ";
267 L
->getHeader()->printAsOperand(OS
, false);
268 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
269 OS
<< " with backedge-taken count " << *SE
->getBackedgeTakenCount(L
);
273 for (const IVStrideUse
&IVUse
: IVUses
) {
275 IVUse
.getOperandValToReplace()->printAsOperand(OS
, false);
276 OS
<< " = " << *getReplacementExpr(IVUse
);
277 for (const auto *PostIncLoop
: IVUse
.PostIncLoops
) {
278 OS
<< " (post-inc with loop ";
279 PostIncLoop
->getHeader()->printAsOperand(OS
, false);
284 IVUse
.getUser()->print(OS
);
286 OS
<< "Printing <null> User";
291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
292 LLVM_DUMP_METHOD
void IVUsers::dump() const { print(dbgs()); }
295 void IVUsers::releaseMemory() {
300 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID
) {
301 initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
304 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
305 AU
.addRequired
<AssumptionCacheTracker
>();
306 AU
.addRequired
<LoopInfoWrapperPass
>();
307 AU
.addRequired
<DominatorTreeWrapperPass
>();
308 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
309 AU
.setPreservesAll();
312 bool IVUsersWrapperPass::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
313 auto *AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(
314 *L
->getHeader()->getParent());
315 auto *LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
316 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
317 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
319 IU
.reset(new IVUsers(L
, AC
, LI
, DT
, SE
));
323 void IVUsersWrapperPass::print(raw_ostream
&OS
, const Module
*M
) const {
327 void IVUsersWrapperPass::releaseMemory() { IU
->releaseMemory(); }
329 /// getReplacementExpr - Return a SCEV expression which computes the
330 /// value of the OperandValToReplace.
331 const SCEV
*IVUsers::getReplacementExpr(const IVStrideUse
&IU
) const {
332 return SE
->getSCEV(IU
.getOperandValToReplace());
335 /// getExpr - Return the expression for the use.
336 const SCEV
*IVUsers::getExpr(const IVStrideUse
&IU
) const {
337 const SCEV
*Replacement
= getReplacementExpr(IU
);
338 return normalizeForPostIncUse(Replacement
, IU
.getPostIncLoops(), *SE
);
341 static const SCEVAddRecExpr
*findAddRecForLoop(const SCEV
*S
, const Loop
*L
) {
342 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
343 if (AR
->getLoop() == L
)
345 return findAddRecForLoop(AR
->getStart(), L
);
348 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
349 for (const auto *Op
: Add
->operands())
350 if (const SCEVAddRecExpr
*AR
= findAddRecForLoop(Op
, L
))
358 const SCEV
*IVUsers::getStride(const IVStrideUse
&IU
, const Loop
*L
) const {
359 const SCEV
*Expr
= getExpr(IU
);
362 if (const SCEVAddRecExpr
*AR
= findAddRecForLoop(Expr
, L
))
363 return AR
->getStepRecurrence(*SE
);
367 void IVStrideUse::transformToPostInc(const Loop
*L
) {
368 PostIncLoops
.insert(L
);
371 void IVStrideUse::deleted() {
372 // Remove this user from the list.
373 Parent
->Processed
.erase(this->getUser());
374 Parent
->IVUses
.erase(this);