[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Analysis / InlineOrder.cpp
blob09fc4f9a00f49cdaaa8ee95370292d10159ea039
1 //===- InlineOrder.cpp - Inlining order abstraction -*- C++ ---*-----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/InlineOrder.h"
10 #include "llvm/Analysis/AssumptionCache.h"
11 #include "llvm/Analysis/BlockFrequencyInfo.h"
12 #include "llvm/Analysis/GlobalsModRef.h"
13 #include "llvm/Analysis/InlineAdvisor.h"
14 #include "llvm/Analysis/InlineCost.h"
15 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
16 #include "llvm/Analysis/ProfileSummaryInfo.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/Support/CommandLine.h"
21 using namespace llvm;
23 #define DEBUG_TYPE "inline-order"
25 enum class InlinePriorityMode : int { Size, Cost, CostBenefit, ML };
27 static cl::opt<InlinePriorityMode> UseInlinePriority(
28 "inline-priority-mode", cl::init(InlinePriorityMode::Size), cl::Hidden,
29 cl::desc("Choose the priority mode to use in module inline"),
30 cl::values(clEnumValN(InlinePriorityMode::Size, "size",
31 "Use callee size priority."),
32 clEnumValN(InlinePriorityMode::Cost, "cost",
33 "Use inline cost priority."),
34 clEnumValN(InlinePriorityMode::CostBenefit, "cost-benefit",
35 "Use cost-benefit ratio."),
36 clEnumValN(InlinePriorityMode::ML, "ml", "Use ML.")));
38 static cl::opt<int> ModuleInlinerTopPriorityThreshold(
39 "module-inliner-top-priority-threshold", cl::Hidden, cl::init(0),
40 cl::desc("The cost threshold for call sites that get inlined without the "
41 "cost-benefit analysis"));
43 namespace {
45 llvm::InlineCost getInlineCostWrapper(CallBase &CB,
46 FunctionAnalysisManager &FAM,
47 const InlineParams &Params) {
48 Function &Caller = *CB.getCaller();
49 ProfileSummaryInfo *PSI =
50 FAM.getResult<ModuleAnalysisManagerFunctionProxy>(Caller)
51 .getCachedResult<ProfileSummaryAnalysis>(
52 *CB.getParent()->getParent()->getParent());
54 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
55 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
56 return FAM.getResult<AssumptionAnalysis>(F);
58 auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
59 return FAM.getResult<BlockFrequencyAnalysis>(F);
61 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
62 return FAM.getResult<TargetLibraryAnalysis>(F);
65 Function &Callee = *CB.getCalledFunction();
66 auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
67 bool RemarksEnabled =
68 Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
69 DEBUG_TYPE);
70 return getInlineCost(CB, Params, CalleeTTI, GetAssumptionCache, GetTLI,
71 GetBFI, PSI, RemarksEnabled ? &ORE : nullptr);
74 class SizePriority {
75 public:
76 SizePriority() = default;
77 SizePriority(const CallBase *CB, FunctionAnalysisManager &,
78 const InlineParams &) {
79 Function *Callee = CB->getCalledFunction();
80 Size = Callee->getInstructionCount();
83 static bool isMoreDesirable(const SizePriority &P1, const SizePriority &P2) {
84 return P1.Size < P2.Size;
87 private:
88 unsigned Size = UINT_MAX;
91 class CostPriority {
92 public:
93 CostPriority() = default;
94 CostPriority(const CallBase *CB, FunctionAnalysisManager &FAM,
95 const InlineParams &Params) {
96 auto IC = getInlineCostWrapper(const_cast<CallBase &>(*CB), FAM, Params);
97 if (IC.isVariable())
98 Cost = IC.getCost();
99 else
100 Cost = IC.isNever() ? INT_MAX : INT_MIN;
103 static bool isMoreDesirable(const CostPriority &P1, const CostPriority &P2) {
104 return P1.Cost < P2.Cost;
107 private:
108 int Cost = INT_MAX;
111 class CostBenefitPriority {
112 public:
113 CostBenefitPriority() = default;
114 CostBenefitPriority(const CallBase *CB, FunctionAnalysisManager &FAM,
115 const InlineParams &Params) {
116 auto IC = getInlineCostWrapper(const_cast<CallBase &>(*CB), FAM, Params);
117 Cost = IC.getCost();
118 StaticBonusApplied = IC.getStaticBonusApplied();
119 CostBenefit = IC.getCostBenefit();
122 static bool isMoreDesirable(const CostBenefitPriority &P1,
123 const CostBenefitPriority &P2) {
124 // We prioritize call sites in the dictionary order of the following
125 // priorities:
127 // 1. Those call sites that are expected to reduce the caller size when
128 // inlined. Within them, we prioritize those call sites with bigger
129 // reduction.
131 // 2. Those call sites that have gone through the cost-benefit analysis.
132 // Currently, they are limited to hot call sites. Within them, we
133 // prioritize those call sites with higher benefit-to-cost ratios.
135 // 3. Remaining call sites are prioritized according to their costs.
137 // We add back StaticBonusApplied to determine whether we expect the caller
138 // to shrink (even if we don't delete the callee).
139 bool P1ReducesCallerSize =
140 P1.Cost + P1.StaticBonusApplied < ModuleInlinerTopPriorityThreshold;
141 bool P2ReducesCallerSize =
142 P2.Cost + P2.StaticBonusApplied < ModuleInlinerTopPriorityThreshold;
143 if (P1ReducesCallerSize || P2ReducesCallerSize) {
144 // If one reduces the caller size while the other doesn't, then return
145 // true iff P1 reduces the caller size.
146 if (P1ReducesCallerSize != P2ReducesCallerSize)
147 return P1ReducesCallerSize;
149 // If they both reduce the caller size, pick the one with the smaller
150 // cost.
151 return P1.Cost < P2.Cost;
154 bool P1HasCB = P1.CostBenefit.has_value();
155 bool P2HasCB = P2.CostBenefit.has_value();
156 if (P1HasCB || P2HasCB) {
157 // If one has undergone the cost-benefit analysis while the other hasn't,
158 // then return true iff P1 has.
159 if (P1HasCB != P2HasCB)
160 return P1HasCB;
162 // If they have undergone the cost-benefit analysis, then pick the one
163 // with a higher benefit-to-cost ratio.
164 APInt LHS = P1.CostBenefit->getBenefit() * P2.CostBenefit->getCost();
165 APInt RHS = P2.CostBenefit->getBenefit() * P1.CostBenefit->getCost();
166 return LHS.ugt(RHS);
169 // Remaining call sites are ordered according to their costs.
170 return P1.Cost < P2.Cost;
173 private:
174 int Cost = INT_MAX;
175 int StaticBonusApplied = 0;
176 std::optional<CostBenefitPair> CostBenefit;
179 class MLPriority {
180 public:
181 MLPriority() = default;
182 MLPriority(const CallBase *CB, FunctionAnalysisManager &FAM,
183 const InlineParams &Params) {
184 auto IC = getInlineCostWrapper(const_cast<CallBase &>(*CB), FAM, Params);
185 if (IC.isVariable())
186 Cost = IC.getCost();
187 else
188 Cost = IC.isNever() ? INT_MAX : INT_MIN;
191 static bool isMoreDesirable(const MLPriority &P1, const MLPriority &P2) {
192 return P1.Cost < P2.Cost;
195 private:
196 int Cost = INT_MAX;
199 template <typename PriorityT>
200 class PriorityInlineOrder : public InlineOrder<std::pair<CallBase *, int>> {
201 using T = std::pair<CallBase *, int>;
203 bool hasLowerPriority(const CallBase *L, const CallBase *R) const {
204 const auto I1 = Priorities.find(L);
205 const auto I2 = Priorities.find(R);
206 assert(I1 != Priorities.end() && I2 != Priorities.end());
207 return PriorityT::isMoreDesirable(I2->second, I1->second);
210 bool updateAndCheckDecreased(const CallBase *CB) {
211 auto It = Priorities.find(CB);
212 const auto OldPriority = It->second;
213 It->second = PriorityT(CB, FAM, Params);
214 const auto NewPriority = It->second;
215 return PriorityT::isMoreDesirable(OldPriority, NewPriority);
218 // A call site could become less desirable for inlining because of the size
219 // growth from prior inlining into the callee. This method is used to lazily
220 // update the desirability of a call site if it's decreasing. It is only
221 // called on pop(), not every time the desirability changes. When the
222 // desirability of the front call site decreases, an updated one would be
223 // pushed right back into the heap. For simplicity, those cases where the
224 // desirability of a call site increases are ignored here.
225 void pop_heap_adjust() {
226 std::pop_heap(Heap.begin(), Heap.end(), isLess);
227 while (updateAndCheckDecreased(Heap.back())) {
228 std::push_heap(Heap.begin(), Heap.end(), isLess);
229 std::pop_heap(Heap.begin(), Heap.end(), isLess);
233 public:
234 PriorityInlineOrder(FunctionAnalysisManager &FAM, const InlineParams &Params)
235 : FAM(FAM), Params(Params) {
236 isLess = [&](const CallBase *L, const CallBase *R) {
237 return hasLowerPriority(L, R);
241 size_t size() override { return Heap.size(); }
243 void push(const T &Elt) override {
244 CallBase *CB = Elt.first;
245 const int InlineHistoryID = Elt.second;
247 Heap.push_back(CB);
248 Priorities[CB] = PriorityT(CB, FAM, Params);
249 std::push_heap(Heap.begin(), Heap.end(), isLess);
250 InlineHistoryMap[CB] = InlineHistoryID;
253 T pop() override {
254 assert(size() > 0);
255 pop_heap_adjust();
257 CallBase *CB = Heap.pop_back_val();
258 T Result = std::make_pair(CB, InlineHistoryMap[CB]);
259 InlineHistoryMap.erase(CB);
260 return Result;
263 void erase_if(function_ref<bool(T)> Pred) override {
264 auto PredWrapper = [=](CallBase *CB) -> bool {
265 return Pred(std::make_pair(CB, InlineHistoryMap[CB]));
267 llvm::erase_if(Heap, PredWrapper);
268 std::make_heap(Heap.begin(), Heap.end(), isLess);
271 private:
272 SmallVector<CallBase *, 16> Heap;
273 std::function<bool(const CallBase *L, const CallBase *R)> isLess;
274 DenseMap<CallBase *, int> InlineHistoryMap;
275 DenseMap<const CallBase *, PriorityT> Priorities;
276 FunctionAnalysisManager &FAM;
277 const InlineParams &Params;
280 } // namespace
282 AnalysisKey llvm::PluginInlineOrderAnalysis::Key;
283 bool llvm::PluginInlineOrderAnalysis::HasBeenRegistered;
285 std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>>
286 llvm::getDefaultInlineOrder(FunctionAnalysisManager &FAM,
287 const InlineParams &Params,
288 ModuleAnalysisManager &MAM, Module &M) {
289 switch (UseInlinePriority) {
290 case InlinePriorityMode::Size:
291 LLVM_DEBUG(dbgs() << " Current used priority: Size priority ---- \n");
292 return std::make_unique<PriorityInlineOrder<SizePriority>>(FAM, Params);
294 case InlinePriorityMode::Cost:
295 LLVM_DEBUG(dbgs() << " Current used priority: Cost priority ---- \n");
296 return std::make_unique<PriorityInlineOrder<CostPriority>>(FAM, Params);
298 case InlinePriorityMode::CostBenefit:
299 LLVM_DEBUG(
300 dbgs() << " Current used priority: cost-benefit priority ---- \n");
301 return std::make_unique<PriorityInlineOrder<CostBenefitPriority>>(FAM,
302 Params);
303 case InlinePriorityMode::ML:
304 LLVM_DEBUG(dbgs() << " Current used priority: ML priority ---- \n");
305 return std::make_unique<PriorityInlineOrder<MLPriority>>(FAM, Params);
307 return nullptr;
310 std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>>
311 llvm::getInlineOrder(FunctionAnalysisManager &FAM, const InlineParams &Params,
312 ModuleAnalysisManager &MAM, Module &M) {
313 if (llvm::PluginInlineOrderAnalysis::isRegistered()) {
314 LLVM_DEBUG(dbgs() << " Current used priority: plugin ---- \n");
315 return MAM.getResult<PluginInlineOrderAnalysis>(M).Factory(FAM, Params, MAM,
318 return getDefaultInlineOrder(FAM, Params, MAM, M);