1 //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/PhiValues.h"
10 #include "llvm/ADT/SmallVector.h"
11 #include "llvm/IR/Instructions.h"
12 #include "llvm/InitializePasses.h"
16 void PhiValues::PhiValuesCallbackVH::deleted() {
17 PV
->invalidateValue(getValPtr());
20 void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value
*) {
21 // We could potentially update the cached values we have with the new value,
22 // but it's simpler to just treat the old value as invalidated.
23 PV
->invalidateValue(getValPtr());
26 bool PhiValues::invalidate(Function
&, const PreservedAnalyses
&PA
,
27 FunctionAnalysisManager::Invalidator
&) {
28 // PhiValues is invalidated if it isn't preserved.
29 auto PAC
= PA
.getChecker
<PhiValuesAnalysis
>();
30 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>());
33 // The goal here is to find all of the non-phi values reachable from this phi,
34 // and to do the same for all of the phis reachable from this phi, as doing so
35 // is necessary anyway in order to get the values for this phi. We do this using
36 // Tarjan's algorithm with Nuutila's improvements to find the strongly connected
37 // components of the phi graph rooted in this phi:
38 // * All phis in a strongly connected component will have the same reachable
39 // non-phi values. The SCC may not be the maximal subgraph for that set of
40 // reachable values, but finding out that isn't really necessary (it would
41 // only reduce the amount of memory needed to store the values).
42 // * Tarjan's algorithm completes components in a bottom-up manner, i.e. it
43 // never completes a component before the components reachable from it have
44 // been completed. This means that when we complete a component we have
45 // everything we need to collect the values reachable from that component.
46 // * We collect both the non-phi values reachable from each SCC, as that's what
47 // we're ultimately interested in, and all of the reachable values, i.e.
48 // including phis, as that makes invalidateValue easier.
49 void PhiValues::processPhi(const PHINode
*Phi
,
50 SmallVectorImpl
<const PHINode
*> &Stack
) {
51 // Initialize the phi with the next depth number.
52 assert(DepthMap
.lookup(Phi
) == 0);
53 assert(NextDepthNumber
!= UINT_MAX
);
54 unsigned int RootDepthNumber
= ++NextDepthNumber
;
55 DepthMap
[Phi
] = RootDepthNumber
;
57 // Recursively process the incoming phis of this phi.
58 TrackedValues
.insert(PhiValuesCallbackVH(const_cast<PHINode
*>(Phi
), this));
59 for (Value
*PhiOp
: Phi
->incoming_values()) {
60 if (PHINode
*PhiPhiOp
= dyn_cast
<PHINode
>(PhiOp
)) {
61 // Recurse if the phi has not yet been visited.
62 unsigned int OpDepthNumber
= DepthMap
.lookup(PhiPhiOp
);
63 if (OpDepthNumber
== 0) {
64 processPhi(PhiPhiOp
, Stack
);
65 OpDepthNumber
= DepthMap
.lookup(PhiPhiOp
);
66 assert(OpDepthNumber
!= 0);
68 // If the phi did not become part of a component then this phi and that
69 // phi are part of the same component, so adjust the depth number.
70 if (!ReachableMap
.count(OpDepthNumber
))
71 DepthMap
[Phi
] = std::min(DepthMap
[Phi
], OpDepthNumber
);
73 TrackedValues
.insert(PhiValuesCallbackVH(PhiOp
, this));
77 // Now that incoming phis have been handled, push this phi to the stack.
80 // If the depth number has not changed then we've finished collecting the phis
81 // of a strongly connected component.
82 if (DepthMap
[Phi
] == RootDepthNumber
) {
83 // Collect the reachable values for this component. The phis of this
84 // component will be those on top of the depth stack with the same or
85 // greater depth number.
86 ConstValueSet
&Reachable
= ReachableMap
[RootDepthNumber
];
88 const PHINode
*ComponentPhi
= Stack
.pop_back_val();
89 Reachable
.insert(ComponentPhi
);
91 for (Value
*Op
: ComponentPhi
->incoming_values()) {
92 if (PHINode
*PhiOp
= dyn_cast
<PHINode
>(Op
)) {
93 // If this phi is not part of the same component then that component
94 // is guaranteed to have been completed before this one. Therefore we
95 // can just add its reachable values to the reachable values of this
97 unsigned int OpDepthNumber
= DepthMap
[PhiOp
];
98 if (OpDepthNumber
!= RootDepthNumber
) {
99 auto It
= ReachableMap
.find(OpDepthNumber
);
100 if (It
!= ReachableMap
.end())
101 Reachable
.insert(It
->second
.begin(), It
->second
.end());
104 Reachable
.insert(Op
);
110 unsigned int &ComponentDepthNumber
= DepthMap
[Stack
.back()];
111 if (ComponentDepthNumber
< RootDepthNumber
)
114 ComponentDepthNumber
= RootDepthNumber
;
117 // Filter out phis to get the non-phi reachable values.
118 ValueSet
&NonPhi
= NonPhiReachableMap
[RootDepthNumber
];
119 for (const Value
*V
: Reachable
)
120 if (!isa
<PHINode
>(V
))
121 NonPhi
.insert(const_cast<Value
*>(V
));
125 const PhiValues::ValueSet
&PhiValues::getValuesForPhi(const PHINode
*PN
) {
126 unsigned int DepthNumber
= DepthMap
.lookup(PN
);
127 if (DepthNumber
== 0) {
128 SmallVector
<const PHINode
*, 8> Stack
;
129 processPhi(PN
, Stack
);
130 DepthNumber
= DepthMap
.lookup(PN
);
131 assert(Stack
.empty());
132 assert(DepthNumber
!= 0);
134 return NonPhiReachableMap
[DepthNumber
];
137 void PhiValues::invalidateValue(const Value
*V
) {
138 // Components that can reach V are invalid.
139 SmallVector
<unsigned int, 8> InvalidComponents
;
140 for (auto &Pair
: ReachableMap
)
141 if (Pair
.second
.count(V
))
142 InvalidComponents
.push_back(Pair
.first
);
144 for (unsigned int N
: InvalidComponents
) {
145 for (const Value
*V
: ReachableMap
[N
])
146 if (const PHINode
*PN
= dyn_cast
<PHINode
>(V
))
148 NonPhiReachableMap
.erase(N
);
149 ReachableMap
.erase(N
);
151 // This value is no longer tracked
152 auto It
= TrackedValues
.find_as(V
);
153 if (It
!= TrackedValues
.end())
154 TrackedValues
.erase(It
);
157 void PhiValues::releaseMemory() {
159 NonPhiReachableMap
.clear();
160 ReachableMap
.clear();
163 void PhiValues::print(raw_ostream
&OS
) const {
164 // Iterate through the phi nodes of the function rather than iterating through
165 // DepthMap in order to get predictable ordering.
166 for (const BasicBlock
&BB
: F
) {
167 for (const PHINode
&PN
: BB
.phis()) {
169 PN
.printAsOperand(OS
, false);
170 OS
<< " has values:\n";
171 unsigned int N
= DepthMap
.lookup(&PN
);
172 auto It
= NonPhiReachableMap
.find(N
);
173 if (It
== NonPhiReachableMap
.end())
175 else if (It
->second
.empty())
178 for (Value
*V
: It
->second
)
179 // Printing of an instruction prints two spaces at the start, so
180 // handle instructions and everything else slightly differently in
181 // order to get consistent indenting.
182 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
185 OS
<< " " << *V
<< "\n";
190 AnalysisKey
PhiValuesAnalysis::Key
;
191 PhiValues
PhiValuesAnalysis::run(Function
&F
, FunctionAnalysisManager
&) {
195 PreservedAnalyses
PhiValuesPrinterPass::run(Function
&F
,
196 FunctionAnalysisManager
&AM
) {
197 OS
<< "PHI Values for function: " << F
.getName() << "\n";
198 PhiValues
&PI
= AM
.getResult
<PhiValuesAnalysis
>(F
);
199 for (const BasicBlock
&BB
: F
)
200 for (const PHINode
&PN
: BB
.phis())
201 PI
.getValuesForPhi(&PN
);
203 return PreservedAnalyses::all();
206 PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID
) {
207 initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry());
210 bool PhiValuesWrapperPass::runOnFunction(Function
&F
) {
211 Result
.reset(new PhiValues(F
));
215 void PhiValuesWrapperPass::releaseMemory() {
216 Result
->releaseMemory();
219 void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
220 AU
.setPreservesAll();
223 char PhiValuesWrapperPass::ID
= 0;
225 INITIALIZE_PASS(PhiValuesWrapperPass
, "phi-values", "Phi Values Analysis", false,