1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Common functionality for different debug information format backends.
10 // LLVM currently supports DWARF and CodeView.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/DebugHandlerBase.h"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineInstr.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/MC/MCStreamer.h"
22 #include "llvm/Support/CommandLine.h"
26 #define DEBUG_TYPE "dwarfdebug"
28 /// If true, we drop variable location ranges which exist entirely outside the
29 /// variable's lexical scope instruction ranges.
30 static cl::opt
<bool> TrimVarLocs("trim-var-locs", cl::Hidden
, cl::init(true));
32 std::optional
<DbgVariableLocation
>
33 DbgVariableLocation::extractFromMachineInstruction(
34 const MachineInstr
&Instruction
) {
35 DbgVariableLocation Location
;
36 // Variables calculated from multiple locations can't be represented here.
37 if (Instruction
.getNumDebugOperands() != 1)
39 if (!Instruction
.getDebugOperand(0).isReg())
41 Location
.Register
= Instruction
.getDebugOperand(0).getReg();
42 Location
.FragmentInfo
.reset();
43 // We only handle expressions generated by DIExpression::appendOffset,
44 // which doesn't require a full stack machine.
46 const DIExpression
*DIExpr
= Instruction
.getDebugExpression();
47 auto Op
= DIExpr
->expr_op_begin();
48 // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
49 // appears exactly once at the start of the expression.
50 if (Instruction
.isDebugValueList()) {
51 if (Instruction
.getNumDebugOperands() == 1 &&
52 Op
->getOp() == dwarf::DW_OP_LLVM_arg
)
57 while (Op
!= DIExpr
->expr_op_end()) {
58 switch (Op
->getOp()) {
59 case dwarf::DW_OP_constu
: {
60 int Value
= Op
->getArg(0);
62 if (Op
!= DIExpr
->expr_op_end()) {
63 switch (Op
->getOp()) {
64 case dwarf::DW_OP_minus
:
67 case dwarf::DW_OP_plus
:
75 case dwarf::DW_OP_plus_uconst
:
76 Offset
+= Op
->getArg(0);
78 case dwarf::DW_OP_LLVM_fragment
:
79 Location
.FragmentInfo
= {Op
->getArg(1), Op
->getArg(0)};
81 case dwarf::DW_OP_deref
:
82 Location
.LoadChain
.push_back(Offset
);
91 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
93 // FIXME: Replace these with DIExpression.
94 if (Instruction
.isIndirectDebugValue())
95 Location
.LoadChain
.push_back(Offset
);
100 DebugHandlerBase::DebugHandlerBase(AsmPrinter
*A
) : Asm(A
), MMI(Asm
->MMI
) {}
102 void DebugHandlerBase::beginModule(Module
*M
) {
103 if (M
->debug_compile_units().empty())
107 // Each LexicalScope has first instruction and last instruction to mark
108 // beginning and end of a scope respectively. Create an inverse map that list
109 // scopes starts (and ends) with an instruction. One instruction may start (or
110 // end) multiple scopes. Ignore scopes that are not reachable.
111 void DebugHandlerBase::identifyScopeMarkers() {
112 SmallVector
<LexicalScope
*, 4> WorkList
;
113 WorkList
.push_back(LScopes
.getCurrentFunctionScope());
114 while (!WorkList
.empty()) {
115 LexicalScope
*S
= WorkList
.pop_back_val();
117 const SmallVectorImpl
<LexicalScope
*> &Children
= S
->getChildren();
118 if (!Children
.empty())
119 WorkList
.append(Children
.begin(), Children
.end());
121 if (S
->isAbstractScope())
124 for (const InsnRange
&R
: S
->getRanges()) {
125 assert(R
.first
&& "InsnRange does not have first instruction!");
126 assert(R
.second
&& "InsnRange does not have second instruction!");
127 requestLabelBeforeInsn(R
.first
);
128 requestLabelAfterInsn(R
.second
);
133 // Return Label preceding the instruction.
134 MCSymbol
*DebugHandlerBase::getLabelBeforeInsn(const MachineInstr
*MI
) {
135 MCSymbol
*Label
= LabelsBeforeInsn
.lookup(MI
);
136 assert(Label
&& "Didn't insert label before instruction");
140 // Return Label immediately following the instruction.
141 MCSymbol
*DebugHandlerBase::getLabelAfterInsn(const MachineInstr
*MI
) {
142 return LabelsAfterInsn
.lookup(MI
);
145 /// If this type is derived from a base type then return base type size.
146 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType
*Ty
) {
148 const DIDerivedType
*DDTy
= dyn_cast
<DIDerivedType
>(Ty
);
150 return Ty
->getSizeInBits();
152 unsigned Tag
= DDTy
->getTag();
154 if (Tag
!= dwarf::DW_TAG_member
&& Tag
!= dwarf::DW_TAG_typedef
&&
155 Tag
!= dwarf::DW_TAG_const_type
&& Tag
!= dwarf::DW_TAG_volatile_type
&&
156 Tag
!= dwarf::DW_TAG_restrict_type
&& Tag
!= dwarf::DW_TAG_atomic_type
&&
157 Tag
!= dwarf::DW_TAG_immutable_type
)
158 return DDTy
->getSizeInBits();
160 DIType
*BaseType
= DDTy
->getBaseType();
165 // If this is a derived type, go ahead and get the base type, unless it's a
166 // reference then it's just the size of the field. Pointer types have no need
167 // of this since they're a different type of qualification on the type.
168 if (BaseType
->getTag() == dwarf::DW_TAG_reference_type
||
169 BaseType
->getTag() == dwarf::DW_TAG_rvalue_reference_type
)
170 return Ty
->getSizeInBits();
172 return getBaseTypeSize(BaseType
);
175 bool DebugHandlerBase::isUnsignedDIType(const DIType
*Ty
) {
176 if (isa
<DIStringType
>(Ty
)) {
177 // Some transformations (e.g. instcombine) may decide to turn a Fortran
178 // character object into an integer, and later ones (e.g. SROA) may
179 // further inject a constant integer in a llvm.dbg.value call to track
180 // the object's value. Here we trust the transformations are doing the
181 // right thing, and treat the constant as unsigned to preserve that value
182 // (i.e. avoid sign extension).
186 if (auto *CTy
= dyn_cast
<DICompositeType
>(Ty
)) {
187 if (CTy
->getTag() == dwarf::DW_TAG_enumeration_type
) {
188 if (!(Ty
= CTy
->getBaseType()))
189 // FIXME: Enums without a fixed underlying type have unknown signedness
190 // here, leading to incorrectly emitted constants.
193 // (Pieces of) aggregate types that get hacked apart by SROA may be
194 // represented by a constant. Encode them as unsigned bytes.
198 if (auto *DTy
= dyn_cast
<DIDerivedType
>(Ty
)) {
199 dwarf::Tag T
= (dwarf::Tag
)Ty
->getTag();
200 // Encode pointer constants as unsigned bytes. This is used at least for
201 // null pointer constant emission.
202 // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
203 // here, but accept them for now due to a bug in SROA producing bogus
205 if (T
== dwarf::DW_TAG_pointer_type
||
206 T
== dwarf::DW_TAG_ptr_to_member_type
||
207 T
== dwarf::DW_TAG_reference_type
||
208 T
== dwarf::DW_TAG_rvalue_reference_type
)
210 assert(T
== dwarf::DW_TAG_typedef
|| T
== dwarf::DW_TAG_const_type
||
211 T
== dwarf::DW_TAG_volatile_type
||
212 T
== dwarf::DW_TAG_restrict_type
|| T
== dwarf::DW_TAG_atomic_type
||
213 T
== dwarf::DW_TAG_immutable_type
);
214 assert(DTy
->getBaseType() && "Expected valid base type");
215 return isUnsignedDIType(DTy
->getBaseType());
218 auto *BTy
= cast
<DIBasicType
>(Ty
);
219 unsigned Encoding
= BTy
->getEncoding();
220 assert((Encoding
== dwarf::DW_ATE_unsigned
||
221 Encoding
== dwarf::DW_ATE_unsigned_char
||
222 Encoding
== dwarf::DW_ATE_signed
||
223 Encoding
== dwarf::DW_ATE_signed_char
||
224 Encoding
== dwarf::DW_ATE_float
|| Encoding
== dwarf::DW_ATE_UTF
||
225 Encoding
== dwarf::DW_ATE_boolean
||
226 Encoding
== dwarf::DW_ATE_complex_float
||
227 (Ty
->getTag() == dwarf::DW_TAG_unspecified_type
&&
228 Ty
->getName() == "decltype(nullptr)")) &&
229 "Unsupported encoding");
230 return Encoding
== dwarf::DW_ATE_unsigned
||
231 Encoding
== dwarf::DW_ATE_unsigned_char
||
232 Encoding
== dwarf::DW_ATE_UTF
|| Encoding
== dwarf::DW_ATE_boolean
||
233 Ty
->getTag() == dwarf::DW_TAG_unspecified_type
;
236 static bool hasDebugInfo(const MachineModuleInfo
*MMI
,
237 const MachineFunction
*MF
) {
238 if (!MMI
->hasDebugInfo())
240 auto *SP
= MF
->getFunction().getSubprogram();
243 assert(SP
->getUnit());
244 auto EK
= SP
->getUnit()->getEmissionKind();
245 if (EK
== DICompileUnit::NoDebug
)
250 void DebugHandlerBase::beginFunction(const MachineFunction
*MF
) {
251 PrevInstBB
= nullptr;
253 if (!Asm
|| !hasDebugInfo(MMI
, MF
)) {
254 skippedNonDebugFunction();
258 // Grab the lexical scopes for the function, if we don't have any of those
259 // then we're not going to be able to do anything.
260 LScopes
.initialize(*MF
);
261 if (LScopes
.empty()) {
262 beginFunctionImpl(MF
);
266 // Make sure that each lexical scope will have a begin/end label.
267 identifyScopeMarkers();
269 // Calculate history for local variables.
270 assert(DbgValues
.empty() && "DbgValues map wasn't cleaned!");
271 assert(DbgLabels
.empty() && "DbgLabels map wasn't cleaned!");
272 calculateDbgEntityHistory(MF
, Asm
->MF
->getSubtarget().getRegisterInfo(),
273 DbgValues
, DbgLabels
);
274 InstOrdering
.initialize(*MF
);
276 DbgValues
.trimLocationRanges(*MF
, LScopes
, InstOrdering
);
277 LLVM_DEBUG(DbgValues
.dump(MF
->getName()));
279 // Request labels for the full history.
280 for (const auto &I
: DbgValues
) {
281 const auto &Entries
= I
.second
;
285 auto IsDescribedByReg
= [](const MachineInstr
*MI
) {
286 return any_of(MI
->debug_operands(),
287 [](auto &MO
) { return MO
.isReg() && MO
.getReg(); });
290 // The first mention of a function argument gets the CurrentFnBegin label,
291 // so arguments are visible when breaking at function entry.
293 // We do not change the label for values that are described by registers,
294 // as that could place them above their defining instructions. We should
295 // ideally not change the labels for constant debug values either, since
296 // doing that violates the ranges that are calculated in the history map.
297 // However, we currently do not emit debug values for constant arguments
298 // directly at the start of the function, so this code is still useful.
299 const DILocalVariable
*DIVar
=
300 Entries
.front().getInstr()->getDebugVariable();
301 if (DIVar
->isParameter() &&
302 getDISubprogram(DIVar
->getScope())->describes(&MF
->getFunction())) {
303 if (!IsDescribedByReg(Entries
.front().getInstr()))
304 LabelsBeforeInsn
[Entries
.front().getInstr()] = Asm
->getFunctionBegin();
305 if (Entries
.front().getInstr()->getDebugExpression()->isFragment()) {
306 // Mark all non-overlapping initial fragments.
307 for (const auto *I
= Entries
.begin(); I
!= Entries
.end(); ++I
) {
308 if (!I
->isDbgValue())
310 const DIExpression
*Fragment
= I
->getInstr()->getDebugExpression();
311 if (std::any_of(Entries
.begin(), I
,
312 [&](DbgValueHistoryMap::Entry Pred
) {
313 return Pred
.isDbgValue() &&
314 Fragment
->fragmentsOverlap(
315 Pred
.getInstr()->getDebugExpression());
318 // The code that generates location lists for DWARF assumes that the
319 // entries' start labels are monotonically increasing, and since we
320 // don't change the label for fragments that are described by
321 // registers, we must bail out when encountering such a fragment.
322 if (IsDescribedByReg(I
->getInstr()))
324 LabelsBeforeInsn
[I
->getInstr()] = Asm
->getFunctionBegin();
329 for (const auto &Entry
: Entries
) {
330 if (Entry
.isDbgValue())
331 requestLabelBeforeInsn(Entry
.getInstr());
333 requestLabelAfterInsn(Entry
.getInstr());
337 // Ensure there is a symbol before DBG_LABEL.
338 for (const auto &I
: DbgLabels
) {
339 const MachineInstr
*MI
= I
.second
;
340 requestLabelBeforeInsn(MI
);
343 PrevInstLoc
= DebugLoc();
344 PrevLabel
= Asm
->getFunctionBegin();
345 beginFunctionImpl(MF
);
348 void DebugHandlerBase::beginInstruction(const MachineInstr
*MI
) {
349 if (!Asm
|| !MMI
->hasDebugInfo())
352 assert(CurMI
== nullptr);
355 // Insert labels where requested.
356 DenseMap
<const MachineInstr
*, MCSymbol
*>::iterator I
=
357 LabelsBeforeInsn
.find(MI
);
360 if (I
== LabelsBeforeInsn
.end())
363 // Label already assigned.
368 PrevLabel
= MMI
->getContext().createTempSymbol();
369 Asm
->OutStreamer
->emitLabel(PrevLabel
);
371 I
->second
= PrevLabel
;
374 void DebugHandlerBase::endInstruction() {
375 if (!Asm
|| !MMI
->hasDebugInfo())
378 assert(CurMI
!= nullptr);
379 // Don't create a new label after DBG_VALUE and other instructions that don't
381 if (!CurMI
->isMetaInstruction()) {
383 PrevInstBB
= CurMI
->getParent();
386 DenseMap
<const MachineInstr
*, MCSymbol
*>::iterator I
=
387 LabelsAfterInsn
.find(CurMI
);
389 // No label needed or label already assigned.
390 if (I
== LabelsAfterInsn
.end() || I
->second
) {
395 // We need a label after this instruction. With basic block sections, just
396 // use the end symbol of the section if this is the last instruction of the
397 // section. This reduces the need for an additional label and also helps
399 if (CurMI
->getParent()->isEndSection() && CurMI
->getNextNode() == nullptr) {
400 PrevLabel
= CurMI
->getParent()->getEndSymbol();
401 } else if (!PrevLabel
) {
402 PrevLabel
= MMI
->getContext().createTempSymbol();
403 Asm
->OutStreamer
->emitLabel(PrevLabel
);
405 I
->second
= PrevLabel
;
409 void DebugHandlerBase::endFunction(const MachineFunction
*MF
) {
410 if (Asm
&& hasDebugInfo(MMI
, MF
))
414 LabelsBeforeInsn
.clear();
415 LabelsAfterInsn
.clear();
416 InstOrdering
.clear();
419 void DebugHandlerBase::beginBasicBlockSection(const MachineBasicBlock
&MBB
) {
420 EpilogBeginBlock
= nullptr;
421 if (!MBB
.isEntryBlock())
422 PrevLabel
= MBB
.getSymbol();
425 void DebugHandlerBase::endBasicBlockSection(const MachineBasicBlock
&MBB
) {