[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / CallLowering.cpp
blobccd9b13d730b60c4fa9a4d7b6f059eaeb7313aad
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
28 #define DEBUG_TYPE "call-lowering"
30 using namespace llvm;
32 void CallLowering::anchor() {}
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37 const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38 if (AttrFn(Attribute::SExt))
39 Flags.setSExt();
40 if (AttrFn(Attribute::ZExt))
41 Flags.setZExt();
42 if (AttrFn(Attribute::InReg))
43 Flags.setInReg();
44 if (AttrFn(Attribute::StructRet))
45 Flags.setSRet();
46 if (AttrFn(Attribute::Nest))
47 Flags.setNest();
48 if (AttrFn(Attribute::ByVal))
49 Flags.setByVal();
50 if (AttrFn(Attribute::Preallocated))
51 Flags.setPreallocated();
52 if (AttrFn(Attribute::InAlloca))
53 Flags.setInAlloca();
54 if (AttrFn(Attribute::Returned))
55 Flags.setReturned();
56 if (AttrFn(Attribute::SwiftSelf))
57 Flags.setSwiftSelf();
58 if (AttrFn(Attribute::SwiftAsync))
59 Flags.setSwiftAsync();
60 if (AttrFn(Attribute::SwiftError))
61 Flags.setSwiftError();
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65 unsigned ArgIdx) const {
66 ISD::ArgFlagsTy Flags;
67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68 return Call.paramHasAttr(ArgIdx, Attr);
69 });
70 return Flags;
73 ISD::ArgFlagsTy
74 CallLowering::getAttributesForReturn(const CallBase &Call) const {
75 ISD::ArgFlagsTy Flags;
76 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
77 return Call.hasRetAttr(Attr);
78 });
79 return Flags;
82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
83 const AttributeList &Attrs,
84 unsigned OpIdx) const {
85 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
86 return Attrs.hasAttributeAtIndex(OpIdx, Attr);
87 });
90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
91 ArrayRef<Register> ResRegs,
92 ArrayRef<ArrayRef<Register>> ArgRegs,
93 Register SwiftErrorVReg,
94 std::function<unsigned()> GetCalleeReg) const {
95 CallLoweringInfo Info;
96 const DataLayout &DL = MIRBuilder.getDataLayout();
97 MachineFunction &MF = MIRBuilder.getMF();
98 MachineRegisterInfo &MRI = MF.getRegInfo();
99 bool CanBeTailCalled = CB.isTailCall() &&
100 isInTailCallPosition(CB, MF.getTarget()) &&
101 (MF.getFunction()
102 .getFnAttribute("disable-tail-calls")
103 .getValueAsString() != "true");
105 CallingConv::ID CallConv = CB.getCallingConv();
106 Type *RetTy = CB.getType();
107 bool IsVarArg = CB.getFunctionType()->isVarArg();
109 SmallVector<BaseArgInfo, 4> SplitArgs;
110 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
111 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
113 Info.IsConvergent = CB.isConvergent();
115 if (!Info.CanLowerReturn) {
116 // Callee requires sret demotion.
117 insertSRetOutgoingArgument(MIRBuilder, CB, Info);
119 // The sret demotion isn't compatible with tail-calls, since the sret
120 // argument points into the caller's stack frame.
121 CanBeTailCalled = false;
125 // First step is to marshall all the function's parameters into the correct
126 // physregs and memory locations. Gather the sequence of argument types that
127 // we'll pass to the assigner function.
128 unsigned i = 0;
129 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
130 for (const auto &Arg : CB.args()) {
131 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
132 i < NumFixedArgs};
133 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
135 // If we have an explicit sret argument that is an Instruction, (i.e., it
136 // might point to function-local memory), we can't meaningfully tail-call.
137 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
138 CanBeTailCalled = false;
140 Info.OrigArgs.push_back(OrigArg);
141 ++i;
144 // Try looking through a bitcast from one function type to another.
145 // Commonly happens with calls to objc_msgSend().
146 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
147 if (const Function *F = dyn_cast<Function>(CalleeV))
148 Info.Callee = MachineOperand::CreateGA(F, 0);
149 else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
150 // IR IFuncs and Aliases can't be forward declared (only defined), so the
151 // callee must be in the same TU and therefore we can direct-call it without
152 // worrying about it being out of range.
153 Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
154 } else
155 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
157 Register ReturnHintAlignReg;
158 Align ReturnHintAlign;
160 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
162 if (!Info.OrigRet.Ty->isVoidTy()) {
163 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
165 if (MaybeAlign Alignment = CB.getRetAlign()) {
166 if (*Alignment > Align(1)) {
167 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
168 Info.OrigRet.Regs[0] = ReturnHintAlignReg;
169 ReturnHintAlign = *Alignment;
174 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
175 if (Bundle && CB.isIndirectCall()) {
176 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
177 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
180 Info.CB = &CB;
181 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
182 Info.CallConv = CallConv;
183 Info.SwiftErrorVReg = SwiftErrorVReg;
184 Info.IsMustTailCall = CB.isMustTailCall();
185 Info.IsTailCall = CanBeTailCalled;
186 Info.IsVarArg = IsVarArg;
187 if (!lowerCall(MIRBuilder, Info))
188 return false;
190 if (ReturnHintAlignReg && !Info.IsTailCall) {
191 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
192 ReturnHintAlign);
195 return true;
198 template <typename FuncInfoTy>
199 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
200 const DataLayout &DL,
201 const FuncInfoTy &FuncInfo) const {
202 auto &Flags = Arg.Flags[0];
203 const AttributeList &Attrs = FuncInfo.getAttributes();
204 addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
206 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
207 if (PtrTy) {
208 Flags.setPointer();
209 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
212 Align MemAlign = DL.getABITypeAlign(Arg.Ty);
213 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
214 assert(OpIdx >= AttributeList::FirstArgIndex);
215 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
217 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
218 if (!ElementTy)
219 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
220 if (!ElementTy)
221 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
222 assert(ElementTy && "Must have byval, inalloca or preallocated type");
223 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
225 // For ByVal, alignment should be passed from FE. BE will guess if
226 // this info is not there but there are cases it cannot get right.
227 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
228 MemAlign = *ParamAlign;
229 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
230 MemAlign = *ParamAlign;
231 else
232 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
233 } else if (OpIdx >= AttributeList::FirstArgIndex) {
234 if (auto ParamAlign =
235 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
236 MemAlign = *ParamAlign;
238 Flags.setMemAlign(MemAlign);
239 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
241 // Don't try to use the returned attribute if the argument is marked as
242 // swiftself, since it won't be passed in x0.
243 if (Flags.isSwiftSelf())
244 Flags.setReturned(false);
247 template void
248 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
249 const DataLayout &DL,
250 const Function &FuncInfo) const;
252 template void
253 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
254 const DataLayout &DL,
255 const CallBase &FuncInfo) const;
257 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
258 SmallVectorImpl<ArgInfo> &SplitArgs,
259 const DataLayout &DL,
260 CallingConv::ID CallConv,
261 SmallVectorImpl<uint64_t> *Offsets) const {
262 LLVMContext &Ctx = OrigArg.Ty->getContext();
264 SmallVector<EVT, 4> SplitVTs;
265 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
267 if (SplitVTs.size() == 0)
268 return;
270 if (SplitVTs.size() == 1) {
271 // No splitting to do, but we want to replace the original type (e.g. [1 x
272 // double] -> double).
273 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
274 OrigArg.OrigArgIndex, OrigArg.Flags[0],
275 OrigArg.IsFixed, OrigArg.OrigValue);
276 return;
279 // Create one ArgInfo for each virtual register in the original ArgInfo.
280 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
282 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
283 OrigArg.Ty, CallConv, false, DL);
284 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
285 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
286 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
287 OrigArg.Flags[0], OrigArg.IsFixed);
288 if (NeedsRegBlock)
289 SplitArgs.back().Flags[0].setInConsecutiveRegs();
292 SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
295 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
296 static MachineInstrBuilder
297 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
298 ArrayRef<Register> SrcRegs) {
299 MachineRegisterInfo &MRI = *B.getMRI();
300 LLT LLTy = MRI.getType(DstRegs[0]);
301 LLT PartLLT = MRI.getType(SrcRegs[0]);
303 // Deal with v3s16 split into v2s16
304 LLT LCMTy = getCoverTy(LLTy, PartLLT);
305 if (LCMTy == LLTy) {
306 // Common case where no padding is needed.
307 assert(DstRegs.size() == 1);
308 return B.buildConcatVectors(DstRegs[0], SrcRegs);
311 // We need to create an unmerge to the result registers, which may require
312 // widening the original value.
313 Register UnmergeSrcReg;
314 if (LCMTy != PartLLT) {
315 assert(DstRegs.size() == 1);
316 return B.buildDeleteTrailingVectorElements(
317 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
318 } else {
319 // We don't need to widen anything if we're extracting a scalar which was
320 // promoted to a vector e.g. s8 -> v4s8 -> s8
321 assert(SrcRegs.size() == 1);
322 UnmergeSrcReg = SrcRegs[0];
325 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
327 SmallVector<Register, 8> PadDstRegs(NumDst);
328 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
330 // Create the excess dead defs for the unmerge.
331 for (int I = DstRegs.size(); I != NumDst; ++I)
332 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
334 if (PadDstRegs.size() == 1)
335 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
336 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
339 /// Create a sequence of instructions to combine pieces split into register
340 /// typed values to the original IR value. \p OrigRegs contains the destination
341 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
342 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
343 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
344 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
345 const ISD::ArgFlagsTy Flags) {
346 MachineRegisterInfo &MRI = *B.getMRI();
348 if (PartLLT == LLTy) {
349 // We should have avoided introducing a new virtual register, and just
350 // directly assigned here.
351 assert(OrigRegs[0] == Regs[0]);
352 return;
355 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
356 Regs.size() == 1) {
357 B.buildBitcast(OrigRegs[0], Regs[0]);
358 return;
361 // A vector PartLLT needs extending to LLTy's element size.
362 // E.g. <2 x s64> = G_SEXT <2 x s32>.
363 if (PartLLT.isVector() == LLTy.isVector() &&
364 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
365 (!PartLLT.isVector() ||
366 PartLLT.getElementCount() == LLTy.getElementCount()) &&
367 OrigRegs.size() == 1 && Regs.size() == 1) {
368 Register SrcReg = Regs[0];
370 LLT LocTy = MRI.getType(SrcReg);
372 if (Flags.isSExt()) {
373 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
374 .getReg(0);
375 } else if (Flags.isZExt()) {
376 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
377 .getReg(0);
380 // Sometimes pointers are passed zero extended.
381 LLT OrigTy = MRI.getType(OrigRegs[0]);
382 if (OrigTy.isPointer()) {
383 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
384 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
385 return;
388 B.buildTrunc(OrigRegs[0], SrcReg);
389 return;
392 if (!LLTy.isVector() && !PartLLT.isVector()) {
393 assert(OrigRegs.size() == 1);
394 LLT OrigTy = MRI.getType(OrigRegs[0]);
396 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
397 if (SrcSize == OrigTy.getSizeInBits())
398 B.buildMergeValues(OrigRegs[0], Regs);
399 else {
400 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
401 B.buildTrunc(OrigRegs[0], Widened);
404 return;
407 if (PartLLT.isVector()) {
408 assert(OrigRegs.size() == 1);
409 SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
411 // If PartLLT is a mismatched vector in both number of elements and element
412 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
413 // have the same elt type, i.e. v4s32.
414 // TODO: Extend this coersion to element multiples other than just 2.
415 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
416 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
417 Regs.size() == 1) {
418 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
419 .changeElementCount(PartLLT.getElementCount() * 2);
420 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
421 PartLLT = NewTy;
424 if (LLTy.getScalarType() == PartLLT.getElementType()) {
425 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
426 } else {
427 unsigned I = 0;
428 LLT GCDTy = getGCDType(LLTy, PartLLT);
430 // We are both splitting a vector, and bitcasting its element types. Cast
431 // the source pieces into the appropriate number of pieces with the result
432 // element type.
433 for (Register SrcReg : CastRegs)
434 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
435 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
438 return;
441 assert(LLTy.isVector() && !PartLLT.isVector());
443 LLT DstEltTy = LLTy.getElementType();
445 // Pointer information was discarded. We'll need to coerce some register types
446 // to avoid violating type constraints.
447 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
449 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
451 if (DstEltTy == PartLLT) {
452 // Vector was trivially scalarized.
454 if (RealDstEltTy.isPointer()) {
455 for (Register Reg : Regs)
456 MRI.setType(Reg, RealDstEltTy);
459 B.buildBuildVector(OrigRegs[0], Regs);
460 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
461 // Deal with vector with 64-bit elements decomposed to 32-bit
462 // registers. Need to create intermediate 64-bit elements.
463 SmallVector<Register, 8> EltMerges;
464 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
466 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
468 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
469 auto Merge =
470 B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt));
471 // Fix the type in case this is really a vector of pointers.
472 MRI.setType(Merge.getReg(0), RealDstEltTy);
473 EltMerges.push_back(Merge.getReg(0));
474 Regs = Regs.drop_front(PartsPerElt);
477 B.buildBuildVector(OrigRegs[0], EltMerges);
478 } else {
479 // Vector was split, and elements promoted to a wider type.
480 // FIXME: Should handle floating point promotions.
481 unsigned NumElts = LLTy.getNumElements();
482 LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
484 Register BuildVec;
485 if (NumElts == Regs.size())
486 BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
487 else {
488 // Vector elements are packed in the inputs.
489 // e.g. we have a <4 x s16> but 2 x s32 in regs.
490 assert(NumElts > Regs.size());
491 LLT SrcEltTy = MRI.getType(Regs[0]);
493 LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
495 // Input registers contain packed elements.
496 // Determine how many elements per reg.
497 assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
498 unsigned EltPerReg =
499 (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
501 SmallVector<Register, 0> BVRegs;
502 BVRegs.reserve(Regs.size() * EltPerReg);
503 for (Register R : Regs) {
504 auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
505 for (unsigned K = 0; K < EltPerReg; ++K)
506 BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
509 // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
510 // for a <3 x s16> vector. We should have less than EltPerReg extra items.
511 if (BVRegs.size() > NumElts) {
512 assert((BVRegs.size() - NumElts) < EltPerReg);
513 BVRegs.truncate(NumElts);
515 BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
517 B.buildTrunc(OrigRegs[0], BuildVec);
521 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
522 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
523 /// contain the type of scalar value extension if necessary.
525 /// This is used for outgoing values (vregs to physregs)
526 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
527 Register SrcReg, LLT SrcTy, LLT PartTy,
528 unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
529 // We could just insert a regular copy, but this is unreachable at the moment.
530 assert(SrcTy != PartTy && "identical part types shouldn't reach here");
532 const unsigned PartSize = PartTy.getSizeInBits();
534 if (PartTy.isVector() == SrcTy.isVector() &&
535 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
536 assert(DstRegs.size() == 1);
537 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
538 return;
541 if (SrcTy.isVector() && !PartTy.isVector() &&
542 PartSize > SrcTy.getElementType().getSizeInBits()) {
543 // Vector was scalarized, and the elements extended.
544 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
545 for (int i = 0, e = DstRegs.size(); i != e; ++i)
546 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
547 return;
550 if (SrcTy.isVector() && PartTy.isVector() &&
551 PartTy.getScalarSizeInBits() == SrcTy.getScalarSizeInBits() &&
552 SrcTy.getNumElements() < PartTy.getNumElements()) {
553 // A coercion like: v2f32 -> v4f32.
554 Register DstReg = DstRegs.front();
555 B.buildPadVectorWithUndefElements(DstReg, SrcReg);
556 return;
559 LLT GCDTy = getGCDType(SrcTy, PartTy);
560 if (GCDTy == PartTy) {
561 // If this already evenly divisible, we can create a simple unmerge.
562 B.buildUnmerge(DstRegs, SrcReg);
563 return;
566 MachineRegisterInfo &MRI = *B.getMRI();
567 LLT DstTy = MRI.getType(DstRegs[0]);
568 LLT LCMTy = getCoverTy(SrcTy, PartTy);
570 if (PartTy.isVector() && LCMTy == PartTy) {
571 assert(DstRegs.size() == 1);
572 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
573 return;
576 const unsigned DstSize = DstTy.getSizeInBits();
577 const unsigned SrcSize = SrcTy.getSizeInBits();
578 unsigned CoveringSize = LCMTy.getSizeInBits();
580 Register UnmergeSrc = SrcReg;
582 if (!LCMTy.isVector() && CoveringSize != SrcSize) {
583 // For scalars, it's common to be able to use a simple extension.
584 if (SrcTy.isScalar() && DstTy.isScalar()) {
585 CoveringSize = alignTo(SrcSize, DstSize);
586 LLT CoverTy = LLT::scalar(CoveringSize);
587 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
588 } else {
589 // Widen to the common type.
590 // FIXME: This should respect the extend type
591 Register Undef = B.buildUndef(SrcTy).getReg(0);
592 SmallVector<Register, 8> MergeParts(1, SrcReg);
593 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
594 MergeParts.push_back(Undef);
595 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
599 if (LCMTy.isVector() && CoveringSize != SrcSize)
600 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
602 B.buildUnmerge(DstRegs, UnmergeSrc);
605 bool CallLowering::determineAndHandleAssignments(
606 ValueHandler &Handler, ValueAssigner &Assigner,
607 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
608 CallingConv::ID CallConv, bool IsVarArg,
609 ArrayRef<Register> ThisReturnRegs) const {
610 MachineFunction &MF = MIRBuilder.getMF();
611 const Function &F = MF.getFunction();
612 SmallVector<CCValAssign, 16> ArgLocs;
614 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
615 if (!determineAssignments(Assigner, Args, CCInfo))
616 return false;
618 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
619 ThisReturnRegs);
622 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
623 if (Flags.isSExt())
624 return TargetOpcode::G_SEXT;
625 if (Flags.isZExt())
626 return TargetOpcode::G_ZEXT;
627 return TargetOpcode::G_ANYEXT;
630 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
631 SmallVectorImpl<ArgInfo> &Args,
632 CCState &CCInfo) const {
633 LLVMContext &Ctx = CCInfo.getContext();
634 const CallingConv::ID CallConv = CCInfo.getCallingConv();
636 unsigned NumArgs = Args.size();
637 for (unsigned i = 0; i != NumArgs; ++i) {
638 EVT CurVT = EVT::getEVT(Args[i].Ty);
640 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
642 // If we need to split the type over multiple regs, check it's a scenario
643 // we currently support.
644 unsigned NumParts =
645 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
647 if (NumParts == 1) {
648 // Try to use the register type if we couldn't assign the VT.
649 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
650 Args[i].Flags[0], CCInfo))
651 return false;
652 continue;
655 // For incoming arguments (physregs to vregs), we could have values in
656 // physregs (or memlocs) which we want to extract and copy to vregs.
657 // During this, we might have to deal with the LLT being split across
658 // multiple regs, so we have to record this information for later.
660 // If we have outgoing args, then we have the opposite case. We have a
661 // vreg with an LLT which we want to assign to a physical location, and
662 // we might have to record that the value has to be split later.
664 // We're handling an incoming arg which is split over multiple regs.
665 // E.g. passing an s128 on AArch64.
666 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
667 Args[i].Flags.clear();
669 for (unsigned Part = 0; Part < NumParts; ++Part) {
670 ISD::ArgFlagsTy Flags = OrigFlags;
671 if (Part == 0) {
672 Flags.setSplit();
673 } else {
674 Flags.setOrigAlign(Align(1));
675 if (Part == NumParts - 1)
676 Flags.setSplitEnd();
679 Args[i].Flags.push_back(Flags);
680 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
681 Args[i].Flags[Part], CCInfo)) {
682 // Still couldn't assign this smaller part type for some reason.
683 return false;
688 return true;
691 bool CallLowering::handleAssignments(ValueHandler &Handler,
692 SmallVectorImpl<ArgInfo> &Args,
693 CCState &CCInfo,
694 SmallVectorImpl<CCValAssign> &ArgLocs,
695 MachineIRBuilder &MIRBuilder,
696 ArrayRef<Register> ThisReturnRegs) const {
697 MachineFunction &MF = MIRBuilder.getMF();
698 MachineRegisterInfo &MRI = MF.getRegInfo();
699 const Function &F = MF.getFunction();
700 const DataLayout &DL = F.getParent()->getDataLayout();
702 const unsigned NumArgs = Args.size();
704 // Stores thunks for outgoing register assignments. This is used so we delay
705 // generating register copies until mem loc assignments are done. We do this
706 // so that if the target is using the delayed stack protector feature, we can
707 // find the split point of the block accurately. E.g. if we have:
708 // G_STORE %val, %memloc
709 // $x0 = COPY %foo
710 // $x1 = COPY %bar
711 // CALL func
712 // ... then the split point for the block will correctly be at, and including,
713 // the copy to $x0. If instead the G_STORE instruction immediately precedes
714 // the CALL, then we'd prematurely choose the CALL as the split point, thus
715 // generating a split block with a CALL that uses undefined physregs.
716 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
718 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
719 assert(j < ArgLocs.size() && "Skipped too many arg locs");
720 CCValAssign &VA = ArgLocs[j];
721 assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
723 if (VA.needsCustom()) {
724 std::function<void()> Thunk;
725 unsigned NumArgRegs = Handler.assignCustomValue(
726 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
727 if (Thunk)
728 DelayedOutgoingRegAssignments.emplace_back(Thunk);
729 if (!NumArgRegs)
730 return false;
731 j += (NumArgRegs - 1);
732 continue;
735 const MVT ValVT = VA.getValVT();
736 const MVT LocVT = VA.getLocVT();
738 const LLT LocTy(LocVT);
739 const LLT ValTy(ValVT);
740 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
741 const EVT OrigVT = EVT::getEVT(Args[i].Ty);
742 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
744 // Expected to be multiple regs for a single incoming arg.
745 // There should be Regs.size() ArgLocs per argument.
746 // This should be the same as getNumRegistersForCallingConv
747 const unsigned NumParts = Args[i].Flags.size();
749 // Now split the registers into the assigned types.
750 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
752 if (NumParts != 1 || NewLLT != OrigTy) {
753 // If we can't directly assign the register, we need one or more
754 // intermediate values.
755 Args[i].Regs.resize(NumParts);
757 // For each split register, create and assign a vreg that will store
758 // the incoming component of the larger value. These will later be
759 // merged to form the final vreg.
760 for (unsigned Part = 0; Part < NumParts; ++Part)
761 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
764 assert((j + (NumParts - 1)) < ArgLocs.size() &&
765 "Too many regs for number of args");
767 // Coerce into outgoing value types before register assignment.
768 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
769 assert(Args[i].OrigRegs.size() == 1);
770 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
771 ValTy, extendOpFromFlags(Args[i].Flags[0]));
774 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
775 for (unsigned Part = 0; Part < NumParts; ++Part) {
776 Register ArgReg = Args[i].Regs[Part];
777 // There should be Regs.size() ArgLocs per argument.
778 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
779 CCValAssign &VA = ArgLocs[j + Idx];
780 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
782 if (VA.isMemLoc() && !Flags.isByVal()) {
783 // Individual pieces may have been spilled to the stack and others
784 // passed in registers.
786 // TODO: The memory size may be larger than the value we need to
787 // store. We may need to adjust the offset for big endian targets.
788 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
790 MachinePointerInfo MPO;
791 Register StackAddr = Handler.getStackAddress(
792 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
794 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
795 continue;
798 if (VA.isMemLoc() && Flags.isByVal()) {
799 assert(Args[i].Regs.size() == 1 &&
800 "didn't expect split byval pointer");
802 if (Handler.isIncomingArgumentHandler()) {
803 // We just need to copy the frame index value to the pointer.
804 MachinePointerInfo MPO;
805 Register StackAddr = Handler.getStackAddress(
806 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
807 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
808 } else {
809 // For outgoing byval arguments, insert the implicit copy byval
810 // implies, such that writes in the callee do not modify the caller's
811 // value.
812 uint64_t MemSize = Flags.getByValSize();
813 int64_t Offset = VA.getLocMemOffset();
815 MachinePointerInfo DstMPO;
816 Register StackAddr =
817 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
819 MachinePointerInfo SrcMPO(Args[i].OrigValue);
820 if (!Args[i].OrigValue) {
821 // We still need to accurately track the stack address space if we
822 // don't know the underlying value.
823 const LLT PtrTy = MRI.getType(StackAddr);
824 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
827 Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
828 inferAlignFromPtrInfo(MF, DstMPO));
830 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
831 inferAlignFromPtrInfo(MF, SrcMPO));
833 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
834 DstMPO, DstAlign, SrcMPO, SrcAlign,
835 MemSize, VA);
837 continue;
840 assert(!VA.needsCustom() && "custom loc should have been handled already");
842 if (i == 0 && !ThisReturnRegs.empty() &&
843 Handler.isIncomingArgumentHandler() &&
844 isTypeIsValidForThisReturn(ValVT)) {
845 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
846 continue;
849 if (Handler.isIncomingArgumentHandler())
850 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
851 else {
852 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
853 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
858 // Now that all pieces have been assigned, re-pack the register typed values
859 // into the original value typed registers.
860 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
861 // Merge the split registers into the expected larger result vregs of
862 // the original call.
863 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
864 LocTy, Args[i].Flags[0]);
867 j += NumParts - 1;
869 for (auto &Fn : DelayedOutgoingRegAssignments)
870 Fn();
872 return true;
875 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
876 ArrayRef<Register> VRegs, Register DemoteReg,
877 int FI) const {
878 MachineFunction &MF = MIRBuilder.getMF();
879 MachineRegisterInfo &MRI = MF.getRegInfo();
880 const DataLayout &DL = MF.getDataLayout();
882 SmallVector<EVT, 4> SplitVTs;
883 SmallVector<uint64_t, 4> Offsets;
884 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
886 assert(VRegs.size() == SplitVTs.size());
888 unsigned NumValues = SplitVTs.size();
889 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
890 Type *RetPtrTy =
891 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
892 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
894 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
896 for (unsigned I = 0; I < NumValues; ++I) {
897 Register Addr;
898 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
899 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
900 MRI.getType(VRegs[I]),
901 commonAlignment(BaseAlign, Offsets[I]));
902 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
906 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
907 ArrayRef<Register> VRegs,
908 Register DemoteReg) const {
909 MachineFunction &MF = MIRBuilder.getMF();
910 MachineRegisterInfo &MRI = MF.getRegInfo();
911 const DataLayout &DL = MF.getDataLayout();
913 SmallVector<EVT, 4> SplitVTs;
914 SmallVector<uint64_t, 4> Offsets;
915 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
917 assert(VRegs.size() == SplitVTs.size());
919 unsigned NumValues = SplitVTs.size();
920 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
921 unsigned AS = DL.getAllocaAddrSpace();
922 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL);
924 MachinePointerInfo PtrInfo(AS);
926 for (unsigned I = 0; I < NumValues; ++I) {
927 Register Addr;
928 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
929 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
930 MRI.getType(VRegs[I]),
931 commonAlignment(BaseAlign, Offsets[I]));
932 MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
936 void CallLowering::insertSRetIncomingArgument(
937 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
938 MachineRegisterInfo &MRI, const DataLayout &DL) const {
939 unsigned AS = DL.getAllocaAddrSpace();
940 DemoteReg = MRI.createGenericVirtualRegister(
941 LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
943 Type *PtrTy = PointerType::get(F.getReturnType(), AS);
945 SmallVector<EVT, 1> ValueVTs;
946 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
948 // NOTE: Assume that a pointer won't get split into more than one VT.
949 assert(ValueVTs.size() == 1);
951 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
952 ArgInfo::NoArgIndex);
953 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
954 DemoteArg.Flags[0].setSRet();
955 SplitArgs.insert(SplitArgs.begin(), DemoteArg);
958 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
959 const CallBase &CB,
960 CallLoweringInfo &Info) const {
961 const DataLayout &DL = MIRBuilder.getDataLayout();
962 Type *RetTy = CB.getType();
963 unsigned AS = DL.getAllocaAddrSpace();
964 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
966 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
967 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
969 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
970 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
971 ArgInfo::NoArgIndex);
972 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
973 DemoteArg.Flags[0].setSRet();
975 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
976 Info.DemoteStackIndex = FI;
977 Info.DemoteRegister = DemoteReg;
980 bool CallLowering::checkReturn(CCState &CCInfo,
981 SmallVectorImpl<BaseArgInfo> &Outs,
982 CCAssignFn *Fn) const {
983 for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
984 MVT VT = MVT::getVT(Outs[I].Ty);
985 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
986 return false;
988 return true;
991 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
992 AttributeList Attrs,
993 SmallVectorImpl<BaseArgInfo> &Outs,
994 const DataLayout &DL) const {
995 LLVMContext &Context = RetTy->getContext();
996 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
998 SmallVector<EVT, 4> SplitVTs;
999 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
1000 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
1002 for (EVT VT : SplitVTs) {
1003 unsigned NumParts =
1004 TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1005 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1006 Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
1008 for (unsigned I = 0; I < NumParts; ++I) {
1009 Outs.emplace_back(PartTy, Flags);
1014 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
1015 const auto &F = MF.getFunction();
1016 Type *ReturnType = F.getReturnType();
1017 CallingConv::ID CallConv = F.getCallingConv();
1019 SmallVector<BaseArgInfo, 4> SplitArgs;
1020 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
1021 MF.getDataLayout());
1022 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
1025 bool CallLowering::parametersInCSRMatch(
1026 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
1027 const SmallVectorImpl<CCValAssign> &OutLocs,
1028 const SmallVectorImpl<ArgInfo> &OutArgs) const {
1029 for (unsigned i = 0; i < OutLocs.size(); ++i) {
1030 const auto &ArgLoc = OutLocs[i];
1031 // If it's not a register, it's fine.
1032 if (!ArgLoc.isRegLoc())
1033 continue;
1035 MCRegister PhysReg = ArgLoc.getLocReg();
1037 // Only look at callee-saved registers.
1038 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1039 continue;
1041 LLVM_DEBUG(
1042 dbgs()
1043 << "... Call has an argument passed in a callee-saved register.\n");
1045 // Check if it was copied from.
1046 const ArgInfo &OutInfo = OutArgs[i];
1048 if (OutInfo.Regs.size() > 1) {
1049 LLVM_DEBUG(
1050 dbgs() << "... Cannot handle arguments in multiple registers.\n");
1051 return false;
1054 // Check if we copy the register, walking through copies from virtual
1055 // registers. Note that getDefIgnoringCopies does not ignore copies from
1056 // physical registers.
1057 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1058 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1059 LLVM_DEBUG(
1060 dbgs()
1061 << "... Parameter was not copied into a VReg, cannot tail call.\n");
1062 return false;
1065 // Got a copy. Verify that it's the same as the register we want.
1066 Register CopyRHS = RegDef->getOperand(1).getReg();
1067 if (CopyRHS != PhysReg) {
1068 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1069 "VReg, cannot tail call.\n");
1070 return false;
1074 return true;
1077 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1078 MachineFunction &MF,
1079 SmallVectorImpl<ArgInfo> &InArgs,
1080 ValueAssigner &CalleeAssigner,
1081 ValueAssigner &CallerAssigner) const {
1082 const Function &F = MF.getFunction();
1083 CallingConv::ID CalleeCC = Info.CallConv;
1084 CallingConv::ID CallerCC = F.getCallingConv();
1086 if (CallerCC == CalleeCC)
1087 return true;
1089 SmallVector<CCValAssign, 16> ArgLocs1;
1090 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1091 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1092 return false;
1094 SmallVector<CCValAssign, 16> ArgLocs2;
1095 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1096 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1097 return false;
1099 // We need the argument locations to match up exactly. If there's more in
1100 // one than the other, then we are done.
1101 if (ArgLocs1.size() != ArgLocs2.size())
1102 return false;
1104 // Make sure that each location is passed in exactly the same way.
1105 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1106 const CCValAssign &Loc1 = ArgLocs1[i];
1107 const CCValAssign &Loc2 = ArgLocs2[i];
1109 // We need both of them to be the same. So if one is a register and one
1110 // isn't, we're done.
1111 if (Loc1.isRegLoc() != Loc2.isRegLoc())
1112 return false;
1114 if (Loc1.isRegLoc()) {
1115 // If they don't have the same register location, we're done.
1116 if (Loc1.getLocReg() != Loc2.getLocReg())
1117 return false;
1119 // They matched, so we can move to the next ArgLoc.
1120 continue;
1123 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1124 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1125 return false;
1128 return true;
1131 LLT CallLowering::ValueHandler::getStackValueStoreType(
1132 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1133 const MVT ValVT = VA.getValVT();
1134 if (ValVT != MVT::iPTR) {
1135 LLT ValTy(ValVT);
1137 // We lost the pointeriness going through CCValAssign, so try to restore it
1138 // based on the flags.
1139 if (Flags.isPointer()) {
1140 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1141 ValTy.getScalarSizeInBits());
1142 if (ValVT.isVector())
1143 return LLT::vector(ValTy.getElementCount(), PtrTy);
1144 return PtrTy;
1147 return ValTy;
1150 unsigned AddrSpace = Flags.getPointerAddrSpace();
1151 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1154 void CallLowering::ValueHandler::copyArgumentMemory(
1155 const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1156 const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1157 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1158 CCValAssign &VA) const {
1159 MachineFunction &MF = MIRBuilder.getMF();
1160 MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1161 SrcPtrInfo,
1162 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1163 SrcAlign);
1165 MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1166 DstPtrInfo,
1167 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1168 MemSize, DstAlign);
1170 const LLT PtrTy = MRI.getType(DstPtr);
1171 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1173 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1174 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1177 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1178 const CCValAssign &VA,
1179 unsigned MaxSizeBits) {
1180 LLT LocTy{VA.getLocVT()};
1181 LLT ValTy{VA.getValVT()};
1183 if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1184 return ValReg;
1186 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1187 if (MaxSizeBits <= ValTy.getSizeInBits())
1188 return ValReg;
1189 LocTy = LLT::scalar(MaxSizeBits);
1192 const LLT ValRegTy = MRI.getType(ValReg);
1193 if (ValRegTy.isPointer()) {
1194 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1195 // we have to cast to do the extension.
1196 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1197 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1200 switch (VA.getLocInfo()) {
1201 default: break;
1202 case CCValAssign::Full:
1203 case CCValAssign::BCvt:
1204 // FIXME: bitconverting between vector types may or may not be a
1205 // nop in big-endian situations.
1206 return ValReg;
1207 case CCValAssign::AExt: {
1208 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1209 return MIB.getReg(0);
1211 case CCValAssign::SExt: {
1212 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1213 MIRBuilder.buildSExt(NewReg, ValReg);
1214 return NewReg;
1216 case CCValAssign::ZExt: {
1217 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1218 MIRBuilder.buildZExt(NewReg, ValReg);
1219 return NewReg;
1222 llvm_unreachable("unable to extend register");
1225 void CallLowering::ValueAssigner::anchor() {}
1227 Register CallLowering::IncomingValueHandler::buildExtensionHint(
1228 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1229 switch (VA.getLocInfo()) {
1230 case CCValAssign::LocInfo::ZExt: {
1231 return MIRBuilder
1232 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1233 NarrowTy.getScalarSizeInBits())
1234 .getReg(0);
1236 case CCValAssign::LocInfo::SExt: {
1237 return MIRBuilder
1238 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1239 NarrowTy.getScalarSizeInBits())
1240 .getReg(0);
1241 break;
1243 default:
1244 return SrcReg;
1248 /// Check if we can use a basic COPY instruction between the two types.
1250 /// We're currently building on top of the infrastructure using MVT, which loses
1251 /// pointer information in the CCValAssign. We accept copies from physical
1252 /// registers that have been reported as integers if it's to an equivalent sized
1253 /// pointer LLT.
1254 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1255 if (SrcTy == DstTy)
1256 return true;
1258 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1259 return false;
1261 SrcTy = SrcTy.getScalarType();
1262 DstTy = DstTy.getScalarType();
1264 return (SrcTy.isPointer() && DstTy.isScalar()) ||
1265 (DstTy.isPointer() && SrcTy.isScalar());
1268 void CallLowering::IncomingValueHandler::assignValueToReg(
1269 Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1270 const MVT LocVT = VA.getLocVT();
1271 const LLT LocTy(LocVT);
1272 const LLT RegTy = MRI.getType(ValVReg);
1274 if (isCopyCompatibleType(RegTy, LocTy)) {
1275 MIRBuilder.buildCopy(ValVReg, PhysReg);
1276 return;
1279 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1280 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1281 MIRBuilder.buildTrunc(ValVReg, Hint);