[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / GISelKnownBits.cpp
blobea8c20cdcd45d66f4d3f5aaebc1ff07a53fd6019
1 //===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// Provides analysis for querying information about KnownBits during GISel
10 /// passes.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
14 #include "llvm/ADT/StringExtras.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/CodeGen/TargetOpcodes.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/Target/TargetMachine.h"
24 #define DEBUG_TYPE "gisel-known-bits"
26 using namespace llvm;
28 char llvm::GISelKnownBitsAnalysis::ID = 0;
30 INITIALIZE_PASS(GISelKnownBitsAnalysis, DEBUG_TYPE,
31 "Analysis for ComputingKnownBits", false, true)
33 GISelKnownBits::GISelKnownBits(MachineFunction &MF, unsigned MaxDepth)
34 : MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
35 DL(MF.getFunction().getParent()->getDataLayout()), MaxDepth(MaxDepth) {}
37 Align GISelKnownBits::computeKnownAlignment(Register R, unsigned Depth) {
38 const MachineInstr *MI = MRI.getVRegDef(R);
39 switch (MI->getOpcode()) {
40 case TargetOpcode::COPY:
41 return computeKnownAlignment(MI->getOperand(1).getReg(), Depth);
42 case TargetOpcode::G_ASSERT_ALIGN: {
43 // TODO: Min with source
44 return Align(MI->getOperand(2).getImm());
46 case TargetOpcode::G_FRAME_INDEX: {
47 int FrameIdx = MI->getOperand(1).getIndex();
48 return MF.getFrameInfo().getObjectAlign(FrameIdx);
50 case TargetOpcode::G_INTRINSIC:
51 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
52 case TargetOpcode::G_INTRINSIC_CONVERGENT:
53 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
54 default:
55 return TL.computeKnownAlignForTargetInstr(*this, R, MRI, Depth + 1);
59 KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) {
60 assert(MI.getNumExplicitDefs() == 1 &&
61 "expected single return generic instruction");
62 return getKnownBits(MI.getOperand(0).getReg());
65 KnownBits GISelKnownBits::getKnownBits(Register R) {
66 const LLT Ty = MRI.getType(R);
67 APInt DemandedElts =
68 Ty.isVector() ? APInt::getAllOnes(Ty.getNumElements()) : APInt(1, 1);
69 return getKnownBits(R, DemandedElts);
72 KnownBits GISelKnownBits::getKnownBits(Register R, const APInt &DemandedElts,
73 unsigned Depth) {
74 // For now, we only maintain the cache during one request.
75 assert(ComputeKnownBitsCache.empty() && "Cache should have been cleared");
77 KnownBits Known;
78 computeKnownBitsImpl(R, Known, DemandedElts, Depth);
79 ComputeKnownBitsCache.clear();
80 return Known;
83 bool GISelKnownBits::signBitIsZero(Register R) {
84 LLT Ty = MRI.getType(R);
85 unsigned BitWidth = Ty.getScalarSizeInBits();
86 return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
89 APInt GISelKnownBits::getKnownZeroes(Register R) {
90 return getKnownBits(R).Zero;
93 APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; }
95 LLVM_ATTRIBUTE_UNUSED static void
96 dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth) {
97 dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" << Depth
98 << "] Computed for: " << MI << "[" << Depth << "] Known: 0x"
99 << toString(Known.Zero | Known.One, 16, false) << "\n"
100 << "[" << Depth << "] Zero: 0x" << toString(Known.Zero, 16, false)
101 << "\n"
102 << "[" << Depth << "] One: 0x" << toString(Known.One, 16, false)
103 << "\n";
106 /// Compute known bits for the intersection of \p Src0 and \p Src1
107 void GISelKnownBits::computeKnownBitsMin(Register Src0, Register Src1,
108 KnownBits &Known,
109 const APInt &DemandedElts,
110 unsigned Depth) {
111 // Test src1 first, since we canonicalize simpler expressions to the RHS.
112 computeKnownBitsImpl(Src1, Known, DemandedElts, Depth);
114 // If we don't know any bits, early out.
115 if (Known.isUnknown())
116 return;
118 KnownBits Known2;
119 computeKnownBitsImpl(Src0, Known2, DemandedElts, Depth);
121 // Only known if known in both the LHS and RHS.
122 Known = Known.intersectWith(Known2);
125 // Bitfield extract is computed as (Src >> Offset) & Mask, where Mask is
126 // created using Width. Use this function when the inputs are KnownBits
127 // objects. TODO: Move this KnownBits.h if this is usable in more cases.
128 static KnownBits extractBits(unsigned BitWidth, const KnownBits &SrcOpKnown,
129 const KnownBits &OffsetKnown,
130 const KnownBits &WidthKnown) {
131 KnownBits Mask(BitWidth);
132 Mask.Zero = APInt::getBitsSetFrom(
133 BitWidth, WidthKnown.getMaxValue().getLimitedValue(BitWidth));
134 Mask.One = APInt::getLowBitsSet(
135 BitWidth, WidthKnown.getMinValue().getLimitedValue(BitWidth));
136 return KnownBits::lshr(SrcOpKnown, OffsetKnown) & Mask;
139 void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known,
140 const APInt &DemandedElts,
141 unsigned Depth) {
142 MachineInstr &MI = *MRI.getVRegDef(R);
143 unsigned Opcode = MI.getOpcode();
144 LLT DstTy = MRI.getType(R);
146 // Handle the case where this is called on a register that does not have a
147 // type constraint (i.e. it has a register class constraint instead). This is
148 // unlikely to occur except by looking through copies but it is possible for
149 // the initial register being queried to be in this state.
150 if (!DstTy.isValid()) {
151 Known = KnownBits();
152 return;
155 unsigned BitWidth = DstTy.getScalarSizeInBits();
156 auto CacheEntry = ComputeKnownBitsCache.find(R);
157 if (CacheEntry != ComputeKnownBitsCache.end()) {
158 Known = CacheEntry->second;
159 LLVM_DEBUG(dbgs() << "Cache hit at ");
160 LLVM_DEBUG(dumpResult(MI, Known, Depth));
161 assert(Known.getBitWidth() == BitWidth && "Cache entry size doesn't match");
162 return;
164 Known = KnownBits(BitWidth); // Don't know anything
166 // Depth may get bigger than max depth if it gets passed to a different
167 // GISelKnownBits object.
168 // This may happen when say a generic part uses a GISelKnownBits object
169 // with some max depth, but then we hit TL.computeKnownBitsForTargetInstr
170 // which creates a new GISelKnownBits object with a different and smaller
171 // depth. If we just check for equality, we would never exit if the depth
172 // that is passed down to the target specific GISelKnownBits object is
173 // already bigger than its max depth.
174 if (Depth >= getMaxDepth())
175 return;
177 if (!DemandedElts)
178 return; // No demanded elts, better to assume we don't know anything.
180 KnownBits Known2;
182 switch (Opcode) {
183 default:
184 TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI,
185 Depth);
186 break;
187 case TargetOpcode::G_BUILD_VECTOR: {
188 // Collect the known bits that are shared by every demanded vector element.
189 Known.Zero.setAllBits(); Known.One.setAllBits();
190 for (unsigned i = 0, e = MI.getNumOperands() - 1; i < e; ++i) {
191 if (!DemandedElts[i])
192 continue;
194 computeKnownBitsImpl(MI.getOperand(i + 1).getReg(), Known2, DemandedElts,
195 Depth + 1);
197 // Known bits are the values that are shared by every demanded element.
198 Known = Known.intersectWith(Known2);
200 // If we don't know any bits, early out.
201 if (Known.isUnknown())
202 break;
204 break;
206 case TargetOpcode::COPY:
207 case TargetOpcode::G_PHI:
208 case TargetOpcode::PHI: {
209 Known.One = APInt::getAllOnes(BitWidth);
210 Known.Zero = APInt::getAllOnes(BitWidth);
211 // Destination registers should not have subregisters at this
212 // point of the pipeline, otherwise the main live-range will be
213 // defined more than once, which is against SSA.
214 assert(MI.getOperand(0).getSubReg() == 0 && "Is this code in SSA?");
215 // Record in the cache that we know nothing for MI.
216 // This will get updated later and in the meantime, if we reach that
217 // phi again, because of a loop, we will cut the search thanks to this
218 // cache entry.
219 // We could actually build up more information on the phi by not cutting
220 // the search, but that additional information is more a side effect
221 // than an intended choice.
222 // Therefore, for now, save on compile time until we derive a proper way
223 // to derive known bits for PHIs within loops.
224 ComputeKnownBitsCache[R] = KnownBits(BitWidth);
225 // PHI's operand are a mix of registers and basic blocks interleaved.
226 // We only care about the register ones.
227 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
228 const MachineOperand &Src = MI.getOperand(Idx);
229 Register SrcReg = Src.getReg();
230 // Look through trivial copies and phis but don't look through trivial
231 // copies or phis of the form `%1:(s32) = OP %0:gpr32`, known-bits
232 // analysis is currently unable to determine the bit width of a
233 // register class.
235 // We can't use NoSubRegister by name as it's defined by each target but
236 // it's always defined to be 0 by tablegen.
237 if (SrcReg.isVirtual() && Src.getSubReg() == 0 /*NoSubRegister*/ &&
238 MRI.getType(SrcReg).isValid()) {
239 // For COPYs we don't do anything, don't increase the depth.
240 computeKnownBitsImpl(SrcReg, Known2, DemandedElts,
241 Depth + (Opcode != TargetOpcode::COPY));
242 Known = Known.intersectWith(Known2);
243 // If we reach a point where we don't know anything
244 // just stop looking through the operands.
245 if (Known.isUnknown())
246 break;
247 } else {
248 // We know nothing.
249 Known = KnownBits(BitWidth);
250 break;
253 break;
255 case TargetOpcode::G_CONSTANT: {
256 auto CstVal = getIConstantVRegVal(R, MRI);
257 if (!CstVal)
258 break;
259 Known = KnownBits::makeConstant(*CstVal);
260 break;
262 case TargetOpcode::G_FRAME_INDEX: {
263 int FrameIdx = MI.getOperand(1).getIndex();
264 TL.computeKnownBitsForFrameIndex(FrameIdx, Known, MF);
265 break;
267 case TargetOpcode::G_SUB: {
268 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
269 Depth + 1);
270 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
271 Depth + 1);
272 Known = KnownBits::computeForAddSub(/*Add*/ false, /*NSW*/ false, Known,
273 Known2);
274 break;
276 case TargetOpcode::G_XOR: {
277 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
278 Depth + 1);
279 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
280 Depth + 1);
282 Known ^= Known2;
283 break;
285 case TargetOpcode::G_PTR_ADD: {
286 if (DstTy.isVector())
287 break;
288 // G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets?
289 LLT Ty = MRI.getType(MI.getOperand(1).getReg());
290 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
291 break;
292 [[fallthrough]];
294 case TargetOpcode::G_ADD: {
295 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
296 Depth + 1);
297 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
298 Depth + 1);
299 Known =
300 KnownBits::computeForAddSub(/*Add*/ true, /*NSW*/ false, Known, Known2);
301 break;
303 case TargetOpcode::G_AND: {
304 // If either the LHS or the RHS are Zero, the result is zero.
305 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
306 Depth + 1);
307 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
308 Depth + 1);
310 Known &= Known2;
311 break;
313 case TargetOpcode::G_OR: {
314 // If either the LHS or the RHS are Zero, the result is zero.
315 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
316 Depth + 1);
317 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
318 Depth + 1);
320 Known |= Known2;
321 break;
323 case TargetOpcode::G_MUL: {
324 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
325 Depth + 1);
326 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
327 Depth + 1);
328 Known = KnownBits::mul(Known, Known2);
329 break;
331 case TargetOpcode::G_SELECT: {
332 computeKnownBitsMin(MI.getOperand(2).getReg(), MI.getOperand(3).getReg(),
333 Known, DemandedElts, Depth + 1);
334 break;
336 case TargetOpcode::G_SMIN: {
337 // TODO: Handle clamp pattern with number of sign bits
338 KnownBits KnownRHS;
339 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
340 Depth + 1);
341 computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
342 Depth + 1);
343 Known = KnownBits::smin(Known, KnownRHS);
344 break;
346 case TargetOpcode::G_SMAX: {
347 // TODO: Handle clamp pattern with number of sign bits
348 KnownBits KnownRHS;
349 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
350 Depth + 1);
351 computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
352 Depth + 1);
353 Known = KnownBits::smax(Known, KnownRHS);
354 break;
356 case TargetOpcode::G_UMIN: {
357 KnownBits KnownRHS;
358 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known,
359 DemandedElts, Depth + 1);
360 computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS,
361 DemandedElts, Depth + 1);
362 Known = KnownBits::umin(Known, KnownRHS);
363 break;
365 case TargetOpcode::G_UMAX: {
366 KnownBits KnownRHS;
367 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known,
368 DemandedElts, Depth + 1);
369 computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS,
370 DemandedElts, Depth + 1);
371 Known = KnownBits::umax(Known, KnownRHS);
372 break;
374 case TargetOpcode::G_FCMP:
375 case TargetOpcode::G_ICMP: {
376 if (DstTy.isVector())
377 break;
378 if (TL.getBooleanContents(DstTy.isVector(),
379 Opcode == TargetOpcode::G_FCMP) ==
380 TargetLowering::ZeroOrOneBooleanContent &&
381 BitWidth > 1)
382 Known.Zero.setBitsFrom(1);
383 break;
385 case TargetOpcode::G_SEXT: {
386 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
387 Depth + 1);
388 // If the sign bit is known to be zero or one, then sext will extend
389 // it to the top bits, else it will just zext.
390 Known = Known.sext(BitWidth);
391 break;
393 case TargetOpcode::G_ASSERT_SEXT:
394 case TargetOpcode::G_SEXT_INREG: {
395 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
396 Depth + 1);
397 Known = Known.sextInReg(MI.getOperand(2).getImm());
398 break;
400 case TargetOpcode::G_ANYEXT: {
401 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
402 Depth + 1);
403 Known = Known.anyext(BitWidth);
404 break;
406 case TargetOpcode::G_LOAD: {
407 const MachineMemOperand *MMO = *MI.memoperands_begin();
408 if (const MDNode *Ranges = MMO->getRanges()) {
409 computeKnownBitsFromRangeMetadata(*Ranges, Known);
412 break;
414 case TargetOpcode::G_ZEXTLOAD: {
415 if (DstTy.isVector())
416 break;
417 // Everything above the retrieved bits is zero
418 Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits());
419 break;
421 case TargetOpcode::G_ASHR: {
422 KnownBits LHSKnown, RHSKnown;
423 computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
424 Depth + 1);
425 computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
426 Depth + 1);
427 Known = KnownBits::ashr(LHSKnown, RHSKnown);
428 break;
430 case TargetOpcode::G_LSHR: {
431 KnownBits LHSKnown, RHSKnown;
432 computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
433 Depth + 1);
434 computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
435 Depth + 1);
436 Known = KnownBits::lshr(LHSKnown, RHSKnown);
437 break;
439 case TargetOpcode::G_SHL: {
440 KnownBits LHSKnown, RHSKnown;
441 computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
442 Depth + 1);
443 computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
444 Depth + 1);
445 Known = KnownBits::shl(LHSKnown, RHSKnown);
446 break;
448 case TargetOpcode::G_INTTOPTR:
449 case TargetOpcode::G_PTRTOINT:
450 if (DstTy.isVector())
451 break;
452 // Fall through and handle them the same as zext/trunc.
453 [[fallthrough]];
454 case TargetOpcode::G_ASSERT_ZEXT:
455 case TargetOpcode::G_ZEXT:
456 case TargetOpcode::G_TRUNC: {
457 Register SrcReg = MI.getOperand(1).getReg();
458 LLT SrcTy = MRI.getType(SrcReg);
459 unsigned SrcBitWidth;
461 // G_ASSERT_ZEXT stores the original bitwidth in the immediate operand.
462 if (Opcode == TargetOpcode::G_ASSERT_ZEXT)
463 SrcBitWidth = MI.getOperand(2).getImm();
464 else {
465 SrcBitWidth = SrcTy.isPointer()
466 ? DL.getIndexSizeInBits(SrcTy.getAddressSpace())
467 : SrcTy.getSizeInBits();
469 assert(SrcBitWidth && "SrcBitWidth can't be zero");
470 Known = Known.zextOrTrunc(SrcBitWidth);
471 computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
472 Known = Known.zextOrTrunc(BitWidth);
473 if (BitWidth > SrcBitWidth)
474 Known.Zero.setBitsFrom(SrcBitWidth);
475 break;
477 case TargetOpcode::G_ASSERT_ALIGN: {
478 int64_t LogOfAlign = Log2_64(MI.getOperand(2).getImm());
480 // TODO: Should use maximum with source
481 // If a node is guaranteed to be aligned, set low zero bits accordingly as
482 // well as clearing one bits.
483 Known.Zero.setLowBits(LogOfAlign);
484 Known.One.clearLowBits(LogOfAlign);
485 break;
487 case TargetOpcode::G_MERGE_VALUES: {
488 unsigned NumOps = MI.getNumOperands();
489 unsigned OpSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
491 for (unsigned I = 0; I != NumOps - 1; ++I) {
492 KnownBits SrcOpKnown;
493 computeKnownBitsImpl(MI.getOperand(I + 1).getReg(), SrcOpKnown,
494 DemandedElts, Depth + 1);
495 Known.insertBits(SrcOpKnown, I * OpSize);
497 break;
499 case TargetOpcode::G_UNMERGE_VALUES: {
500 if (DstTy.isVector())
501 break;
502 unsigned NumOps = MI.getNumOperands();
503 Register SrcReg = MI.getOperand(NumOps - 1).getReg();
504 if (MRI.getType(SrcReg).isVector())
505 return; // TODO: Handle vectors.
507 KnownBits SrcOpKnown;
508 computeKnownBitsImpl(SrcReg, SrcOpKnown, DemandedElts, Depth + 1);
510 // Figure out the result operand index
511 unsigned DstIdx = 0;
512 for (; DstIdx != NumOps - 1 && MI.getOperand(DstIdx).getReg() != R;
513 ++DstIdx)
516 Known = SrcOpKnown.extractBits(BitWidth, BitWidth * DstIdx);
517 break;
519 case TargetOpcode::G_BSWAP: {
520 Register SrcReg = MI.getOperand(1).getReg();
521 computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
522 Known = Known.byteSwap();
523 break;
525 case TargetOpcode::G_BITREVERSE: {
526 Register SrcReg = MI.getOperand(1).getReg();
527 computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
528 Known = Known.reverseBits();
529 break;
531 case TargetOpcode::G_CTPOP: {
532 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
533 Depth + 1);
534 // We can bound the space the count needs. Also, bits known to be zero can't
535 // contribute to the population.
536 unsigned BitsPossiblySet = Known2.countMaxPopulation();
537 unsigned LowBits = llvm::bit_width(BitsPossiblySet);
538 Known.Zero.setBitsFrom(LowBits);
539 // TODO: we could bound Known.One using the lower bound on the number of
540 // bits which might be set provided by popcnt KnownOne2.
541 break;
543 case TargetOpcode::G_UBFX: {
544 KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
545 computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts,
546 Depth + 1);
547 computeKnownBitsImpl(MI.getOperand(2).getReg(), OffsetKnown, DemandedElts,
548 Depth + 1);
549 computeKnownBitsImpl(MI.getOperand(3).getReg(), WidthKnown, DemandedElts,
550 Depth + 1);
551 Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown);
552 break;
554 case TargetOpcode::G_SBFX: {
555 KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
556 computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts,
557 Depth + 1);
558 computeKnownBitsImpl(MI.getOperand(2).getReg(), OffsetKnown, DemandedElts,
559 Depth + 1);
560 computeKnownBitsImpl(MI.getOperand(3).getReg(), WidthKnown, DemandedElts,
561 Depth + 1);
562 Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown);
563 // Sign extend the extracted value using shift left and arithmetic shift
564 // right.
565 KnownBits ExtKnown = KnownBits::makeConstant(APInt(BitWidth, BitWidth));
566 KnownBits ShiftKnown = KnownBits::computeForAddSub(
567 /*Add*/ false, /*NSW*/ false, ExtKnown, WidthKnown);
568 Known = KnownBits::ashr(KnownBits::shl(Known, ShiftKnown), ShiftKnown);
569 break;
571 case TargetOpcode::G_UADDO:
572 case TargetOpcode::G_UADDE:
573 case TargetOpcode::G_SADDO:
574 case TargetOpcode::G_SADDE:
575 case TargetOpcode::G_USUBO:
576 case TargetOpcode::G_USUBE:
577 case TargetOpcode::G_SSUBO:
578 case TargetOpcode::G_SSUBE:
579 case TargetOpcode::G_UMULO:
580 case TargetOpcode::G_SMULO: {
581 if (MI.getOperand(1).getReg() == R) {
582 // If we know the result of a compare has the top bits zero, use this
583 // info.
584 if (TL.getBooleanContents(DstTy.isVector(), false) ==
585 TargetLowering::ZeroOrOneBooleanContent &&
586 BitWidth > 1)
587 Known.Zero.setBitsFrom(1);
589 break;
593 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
594 LLVM_DEBUG(dumpResult(MI, Known, Depth));
596 // Update the cache.
597 ComputeKnownBitsCache[R] = Known;
600 /// Compute number of sign bits for the intersection of \p Src0 and \p Src1
601 unsigned GISelKnownBits::computeNumSignBitsMin(Register Src0, Register Src1,
602 const APInt &DemandedElts,
603 unsigned Depth) {
604 // Test src1 first, since we canonicalize simpler expressions to the RHS.
605 unsigned Src1SignBits = computeNumSignBits(Src1, DemandedElts, Depth);
606 if (Src1SignBits == 1)
607 return 1;
608 return std::min(computeNumSignBits(Src0, DemandedElts, Depth), Src1SignBits);
611 unsigned GISelKnownBits::computeNumSignBits(Register R,
612 const APInt &DemandedElts,
613 unsigned Depth) {
614 MachineInstr &MI = *MRI.getVRegDef(R);
615 unsigned Opcode = MI.getOpcode();
617 if (Opcode == TargetOpcode::G_CONSTANT)
618 return MI.getOperand(1).getCImm()->getValue().getNumSignBits();
620 if (Depth == getMaxDepth())
621 return 1;
623 if (!DemandedElts)
624 return 1; // No demanded elts, better to assume we don't know anything.
626 LLT DstTy = MRI.getType(R);
627 const unsigned TyBits = DstTy.getScalarSizeInBits();
629 // Handle the case where this is called on a register that does not have a
630 // type constraint. This is unlikely to occur except by looking through copies
631 // but it is possible for the initial register being queried to be in this
632 // state.
633 if (!DstTy.isValid())
634 return 1;
636 unsigned FirstAnswer = 1;
637 switch (Opcode) {
638 case TargetOpcode::COPY: {
639 MachineOperand &Src = MI.getOperand(1);
640 if (Src.getReg().isVirtual() && Src.getSubReg() == 0 &&
641 MRI.getType(Src.getReg()).isValid()) {
642 // Don't increment Depth for this one since we didn't do any work.
643 return computeNumSignBits(Src.getReg(), DemandedElts, Depth);
646 return 1;
648 case TargetOpcode::G_SEXT: {
649 Register Src = MI.getOperand(1).getReg();
650 LLT SrcTy = MRI.getType(Src);
651 unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits();
652 return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp;
654 case TargetOpcode::G_ASSERT_SEXT:
655 case TargetOpcode::G_SEXT_INREG: {
656 // Max of the input and what this extends.
657 Register Src = MI.getOperand(1).getReg();
658 unsigned SrcBits = MI.getOperand(2).getImm();
659 unsigned InRegBits = TyBits - SrcBits + 1;
660 return std::max(computeNumSignBits(Src, DemandedElts, Depth + 1), InRegBits);
662 case TargetOpcode::G_SEXTLOAD: {
663 // FIXME: We need an in-memory type representation.
664 if (DstTy.isVector())
665 return 1;
667 // e.g. i16->i32 = '17' bits known.
668 const MachineMemOperand *MMO = *MI.memoperands_begin();
669 return TyBits - MMO->getSizeInBits() + 1;
671 case TargetOpcode::G_ZEXTLOAD: {
672 // FIXME: We need an in-memory type representation.
673 if (DstTy.isVector())
674 return 1;
676 // e.g. i16->i32 = '16' bits known.
677 const MachineMemOperand *MMO = *MI.memoperands_begin();
678 return TyBits - MMO->getSizeInBits();
680 case TargetOpcode::G_TRUNC: {
681 Register Src = MI.getOperand(1).getReg();
682 LLT SrcTy = MRI.getType(Src);
684 // Check if the sign bits of source go down as far as the truncated value.
685 unsigned DstTyBits = DstTy.getScalarSizeInBits();
686 unsigned NumSrcBits = SrcTy.getScalarSizeInBits();
687 unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1);
688 if (NumSrcSignBits > (NumSrcBits - DstTyBits))
689 return NumSrcSignBits - (NumSrcBits - DstTyBits);
690 break;
692 case TargetOpcode::G_SELECT: {
693 return computeNumSignBitsMin(MI.getOperand(2).getReg(),
694 MI.getOperand(3).getReg(), DemandedElts,
695 Depth + 1);
697 case TargetOpcode::G_SADDO:
698 case TargetOpcode::G_SADDE:
699 case TargetOpcode::G_UADDO:
700 case TargetOpcode::G_UADDE:
701 case TargetOpcode::G_SSUBO:
702 case TargetOpcode::G_SSUBE:
703 case TargetOpcode::G_USUBO:
704 case TargetOpcode::G_USUBE:
705 case TargetOpcode::G_SMULO:
706 case TargetOpcode::G_UMULO: {
707 // If compares returns 0/-1, all bits are sign bits.
708 // We know that we have an integer-based boolean since these operations
709 // are only available for integer.
710 if (MI.getOperand(1).getReg() == R) {
711 if (TL.getBooleanContents(DstTy.isVector(), false) ==
712 TargetLowering::ZeroOrNegativeOneBooleanContent)
713 return TyBits;
716 break;
718 case TargetOpcode::G_FCMP:
719 case TargetOpcode::G_ICMP: {
720 bool IsFP = Opcode == TargetOpcode::G_FCMP;
721 if (TyBits == 1)
722 break;
723 auto BC = TL.getBooleanContents(DstTy.isVector(), IsFP);
724 if (BC == TargetLoweringBase::ZeroOrNegativeOneBooleanContent)
725 return TyBits; // All bits are sign bits.
726 if (BC == TargetLowering::ZeroOrOneBooleanContent)
727 return TyBits - 1; // Every always-zero bit is a sign bit.
728 break;
730 case TargetOpcode::G_INTRINSIC:
731 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
732 case TargetOpcode::G_INTRINSIC_CONVERGENT:
733 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
734 default: {
735 unsigned NumBits =
736 TL.computeNumSignBitsForTargetInstr(*this, R, DemandedElts, MRI, Depth);
737 if (NumBits > 1)
738 FirstAnswer = std::max(FirstAnswer, NumBits);
739 break;
743 // Finally, if we can prove that the top bits of the result are 0's or 1's,
744 // use this information.
745 KnownBits Known = getKnownBits(R, DemandedElts, Depth);
746 APInt Mask;
747 if (Known.isNonNegative()) { // sign bit is 0
748 Mask = Known.Zero;
749 } else if (Known.isNegative()) { // sign bit is 1;
750 Mask = Known.One;
751 } else {
752 // Nothing known.
753 return FirstAnswer;
756 // Okay, we know that the sign bit in Mask is set. Use CLO to determine
757 // the number of identical bits in the top of the input value.
758 Mask <<= Mask.getBitWidth() - TyBits;
759 return std::max(FirstAnswer, Mask.countl_one());
762 unsigned GISelKnownBits::computeNumSignBits(Register R, unsigned Depth) {
763 LLT Ty = MRI.getType(R);
764 APInt DemandedElts =
765 Ty.isVector() ? APInt::getAllOnes(Ty.getNumElements()) : APInt(1, 1);
766 return computeNumSignBits(R, DemandedElts, Depth);
769 void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
770 AU.setPreservesAll();
771 MachineFunctionPass::getAnalysisUsage(AU);
774 bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) {
775 return false;
778 GISelKnownBits &GISelKnownBitsAnalysis::get(MachineFunction &MF) {
779 if (!Info) {
780 unsigned MaxDepth =
781 MF.getTarget().getOptLevel() == CodeGenOptLevel::None ? 2 : 6;
782 Info = std::make_unique<GISelKnownBits>(MF, MaxDepth);
784 return *Info.get();