[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / LegalizerHelper.cpp
blobc0c22e36004f72588c62505ee902fb90665dcfde
1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
21 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
22 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RuntimeLibcalls.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <numeric>
40 #include <optional>
42 #define DEBUG_TYPE "legalizer"
44 using namespace llvm;
45 using namespace LegalizeActions;
46 using namespace MIPatternMatch;
48 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
49 ///
50 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
51 /// with any leftover piece as type \p LeftoverTy
52 ///
53 /// Returns -1 in the first element of the pair if the breakdown is not
54 /// satisfiable.
55 static std::pair<int, int>
56 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
57 assert(!LeftoverTy.isValid() && "this is an out argument");
59 unsigned Size = OrigTy.getSizeInBits();
60 unsigned NarrowSize = NarrowTy.getSizeInBits();
61 unsigned NumParts = Size / NarrowSize;
62 unsigned LeftoverSize = Size - NumParts * NarrowSize;
63 assert(Size > NarrowSize);
65 if (LeftoverSize == 0)
66 return {NumParts, 0};
68 if (NarrowTy.isVector()) {
69 unsigned EltSize = OrigTy.getScalarSizeInBits();
70 if (LeftoverSize % EltSize != 0)
71 return {-1, -1};
72 LeftoverTy = LLT::scalarOrVector(
73 ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
74 } else {
75 LeftoverTy = LLT::scalar(LeftoverSize);
78 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
79 return std::make_pair(NumParts, NumLeftover);
82 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
84 if (!Ty.isScalar())
85 return nullptr;
87 switch (Ty.getSizeInBits()) {
88 case 16:
89 return Type::getHalfTy(Ctx);
90 case 32:
91 return Type::getFloatTy(Ctx);
92 case 64:
93 return Type::getDoubleTy(Ctx);
94 case 80:
95 return Type::getX86_FP80Ty(Ctx);
96 case 128:
97 return Type::getFP128Ty(Ctx);
98 default:
99 return nullptr;
103 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
104 GISelChangeObserver &Observer,
105 MachineIRBuilder &Builder)
106 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
107 LI(*MF.getSubtarget().getLegalizerInfo()),
108 TLI(*MF.getSubtarget().getTargetLowering()), KB(nullptr) {}
110 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
111 GISelChangeObserver &Observer,
112 MachineIRBuilder &B, GISelKnownBits *KB)
113 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
114 TLI(*MF.getSubtarget().getTargetLowering()), KB(KB) {}
116 LegalizerHelper::LegalizeResult
117 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
118 LostDebugLocObserver &LocObserver) {
119 LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
121 MIRBuilder.setInstrAndDebugLoc(MI);
123 if (isa<GIntrinsic>(MI))
124 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
125 auto Step = LI.getAction(MI, MRI);
126 switch (Step.Action) {
127 case Legal:
128 LLVM_DEBUG(dbgs() << ".. Already legal\n");
129 return AlreadyLegal;
130 case Libcall:
131 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
132 return libcall(MI, LocObserver);
133 case NarrowScalar:
134 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
135 return narrowScalar(MI, Step.TypeIdx, Step.NewType);
136 case WidenScalar:
137 LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
138 return widenScalar(MI, Step.TypeIdx, Step.NewType);
139 case Bitcast:
140 LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
141 return bitcast(MI, Step.TypeIdx, Step.NewType);
142 case Lower:
143 LLVM_DEBUG(dbgs() << ".. Lower\n");
144 return lower(MI, Step.TypeIdx, Step.NewType);
145 case FewerElements:
146 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
147 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
148 case MoreElements:
149 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
150 return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
151 case Custom:
152 LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
153 return LI.legalizeCustom(*this, MI, LocObserver) ? Legalized
154 : UnableToLegalize;
155 default:
156 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
157 return UnableToLegalize;
161 void LegalizerHelper::insertParts(Register DstReg,
162 LLT ResultTy, LLT PartTy,
163 ArrayRef<Register> PartRegs,
164 LLT LeftoverTy,
165 ArrayRef<Register> LeftoverRegs) {
166 if (!LeftoverTy.isValid()) {
167 assert(LeftoverRegs.empty());
169 if (!ResultTy.isVector()) {
170 MIRBuilder.buildMergeLikeInstr(DstReg, PartRegs);
171 return;
174 if (PartTy.isVector())
175 MIRBuilder.buildConcatVectors(DstReg, PartRegs);
176 else
177 MIRBuilder.buildBuildVector(DstReg, PartRegs);
178 return;
181 // Merge sub-vectors with different number of elements and insert into DstReg.
182 if (ResultTy.isVector()) {
183 assert(LeftoverRegs.size() == 1 && "Expected one leftover register");
184 SmallVector<Register, 8> AllRegs;
185 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs))
186 AllRegs.push_back(Reg);
187 return mergeMixedSubvectors(DstReg, AllRegs);
190 SmallVector<Register> GCDRegs;
191 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
192 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
193 extractGCDType(GCDRegs, GCDTy, PartReg);
194 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
195 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
198 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts,
199 Register Reg) {
200 LLT Ty = MRI.getType(Reg);
201 SmallVector<Register, 8> RegElts;
202 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts,
203 MIRBuilder, MRI);
204 Elts.append(RegElts);
207 /// Merge \p PartRegs with different types into \p DstReg.
208 void LegalizerHelper::mergeMixedSubvectors(Register DstReg,
209 ArrayRef<Register> PartRegs) {
210 SmallVector<Register, 8> AllElts;
211 for (unsigned i = 0; i < PartRegs.size() - 1; ++i)
212 appendVectorElts(AllElts, PartRegs[i]);
214 Register Leftover = PartRegs[PartRegs.size() - 1];
215 if (MRI.getType(Leftover).isScalar())
216 AllElts.push_back(Leftover);
217 else
218 appendVectorElts(AllElts, Leftover);
220 MIRBuilder.buildMergeLikeInstr(DstReg, AllElts);
223 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
224 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
225 const MachineInstr &MI) {
226 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
228 const int StartIdx = Regs.size();
229 const int NumResults = MI.getNumOperands() - 1;
230 Regs.resize(Regs.size() + NumResults);
231 for (int I = 0; I != NumResults; ++I)
232 Regs[StartIdx + I] = MI.getOperand(I).getReg();
235 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
236 LLT GCDTy, Register SrcReg) {
237 LLT SrcTy = MRI.getType(SrcReg);
238 if (SrcTy == GCDTy) {
239 // If the source already evenly divides the result type, we don't need to do
240 // anything.
241 Parts.push_back(SrcReg);
242 } else {
243 // Need to split into common type sized pieces.
244 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
245 getUnmergeResults(Parts, *Unmerge);
249 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
250 LLT NarrowTy, Register SrcReg) {
251 LLT SrcTy = MRI.getType(SrcReg);
252 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
253 extractGCDType(Parts, GCDTy, SrcReg);
254 return GCDTy;
257 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
258 SmallVectorImpl<Register> &VRegs,
259 unsigned PadStrategy) {
260 LLT LCMTy = getLCMType(DstTy, NarrowTy);
262 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
263 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
264 int NumOrigSrc = VRegs.size();
266 Register PadReg;
268 // Get a value we can use to pad the source value if the sources won't evenly
269 // cover the result type.
270 if (NumOrigSrc < NumParts * NumSubParts) {
271 if (PadStrategy == TargetOpcode::G_ZEXT)
272 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
273 else if (PadStrategy == TargetOpcode::G_ANYEXT)
274 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
275 else {
276 assert(PadStrategy == TargetOpcode::G_SEXT);
278 // Shift the sign bit of the low register through the high register.
279 auto ShiftAmt =
280 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
281 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
285 // Registers for the final merge to be produced.
286 SmallVector<Register, 4> Remerge(NumParts);
288 // Registers needed for intermediate merges, which will be merged into a
289 // source for Remerge.
290 SmallVector<Register, 4> SubMerge(NumSubParts);
292 // Once we've fully read off the end of the original source bits, we can reuse
293 // the same high bits for remaining padding elements.
294 Register AllPadReg;
296 // Build merges to the LCM type to cover the original result type.
297 for (int I = 0; I != NumParts; ++I) {
298 bool AllMergePartsArePadding = true;
300 // Build the requested merges to the requested type.
301 for (int J = 0; J != NumSubParts; ++J) {
302 int Idx = I * NumSubParts + J;
303 if (Idx >= NumOrigSrc) {
304 SubMerge[J] = PadReg;
305 continue;
308 SubMerge[J] = VRegs[Idx];
310 // There are meaningful bits here we can't reuse later.
311 AllMergePartsArePadding = false;
314 // If we've filled up a complete piece with padding bits, we can directly
315 // emit the natural sized constant if applicable, rather than a merge of
316 // smaller constants.
317 if (AllMergePartsArePadding && !AllPadReg) {
318 if (PadStrategy == TargetOpcode::G_ANYEXT)
319 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
320 else if (PadStrategy == TargetOpcode::G_ZEXT)
321 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
323 // If this is a sign extension, we can't materialize a trivial constant
324 // with the right type and have to produce a merge.
327 if (AllPadReg) {
328 // Avoid creating additional instructions if we're just adding additional
329 // copies of padding bits.
330 Remerge[I] = AllPadReg;
331 continue;
334 if (NumSubParts == 1)
335 Remerge[I] = SubMerge[0];
336 else
337 Remerge[I] = MIRBuilder.buildMergeLikeInstr(NarrowTy, SubMerge).getReg(0);
339 // In the sign extend padding case, re-use the first all-signbit merge.
340 if (AllMergePartsArePadding && !AllPadReg)
341 AllPadReg = Remerge[I];
344 VRegs = std::move(Remerge);
345 return LCMTy;
348 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
349 ArrayRef<Register> RemergeRegs) {
350 LLT DstTy = MRI.getType(DstReg);
352 // Create the merge to the widened source, and extract the relevant bits into
353 // the result.
355 if (DstTy == LCMTy) {
356 MIRBuilder.buildMergeLikeInstr(DstReg, RemergeRegs);
357 return;
360 auto Remerge = MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs);
361 if (DstTy.isScalar() && LCMTy.isScalar()) {
362 MIRBuilder.buildTrunc(DstReg, Remerge);
363 return;
366 if (LCMTy.isVector()) {
367 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
368 SmallVector<Register, 8> UnmergeDefs(NumDefs);
369 UnmergeDefs[0] = DstReg;
370 for (unsigned I = 1; I != NumDefs; ++I)
371 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
373 MIRBuilder.buildUnmerge(UnmergeDefs,
374 MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs));
375 return;
378 llvm_unreachable("unhandled case");
381 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
382 #define RTLIBCASE_INT(LibcallPrefix) \
383 do { \
384 switch (Size) { \
385 case 32: \
386 return RTLIB::LibcallPrefix##32; \
387 case 64: \
388 return RTLIB::LibcallPrefix##64; \
389 case 128: \
390 return RTLIB::LibcallPrefix##128; \
391 default: \
392 llvm_unreachable("unexpected size"); \
394 } while (0)
396 #define RTLIBCASE(LibcallPrefix) \
397 do { \
398 switch (Size) { \
399 case 32: \
400 return RTLIB::LibcallPrefix##32; \
401 case 64: \
402 return RTLIB::LibcallPrefix##64; \
403 case 80: \
404 return RTLIB::LibcallPrefix##80; \
405 case 128: \
406 return RTLIB::LibcallPrefix##128; \
407 default: \
408 llvm_unreachable("unexpected size"); \
410 } while (0)
412 switch (Opcode) {
413 case TargetOpcode::G_MUL:
414 RTLIBCASE_INT(MUL_I);
415 case TargetOpcode::G_SDIV:
416 RTLIBCASE_INT(SDIV_I);
417 case TargetOpcode::G_UDIV:
418 RTLIBCASE_INT(UDIV_I);
419 case TargetOpcode::G_SREM:
420 RTLIBCASE_INT(SREM_I);
421 case TargetOpcode::G_UREM:
422 RTLIBCASE_INT(UREM_I);
423 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
424 RTLIBCASE_INT(CTLZ_I);
425 case TargetOpcode::G_FADD:
426 RTLIBCASE(ADD_F);
427 case TargetOpcode::G_FSUB:
428 RTLIBCASE(SUB_F);
429 case TargetOpcode::G_FMUL:
430 RTLIBCASE(MUL_F);
431 case TargetOpcode::G_FDIV:
432 RTLIBCASE(DIV_F);
433 case TargetOpcode::G_FEXP:
434 RTLIBCASE(EXP_F);
435 case TargetOpcode::G_FEXP2:
436 RTLIBCASE(EXP2_F);
437 case TargetOpcode::G_FEXP10:
438 RTLIBCASE(EXP10_F);
439 case TargetOpcode::G_FREM:
440 RTLIBCASE(REM_F);
441 case TargetOpcode::G_FPOW:
442 RTLIBCASE(POW_F);
443 case TargetOpcode::G_FPOWI:
444 RTLIBCASE(POWI_F);
445 case TargetOpcode::G_FMA:
446 RTLIBCASE(FMA_F);
447 case TargetOpcode::G_FSIN:
448 RTLIBCASE(SIN_F);
449 case TargetOpcode::G_FCOS:
450 RTLIBCASE(COS_F);
451 case TargetOpcode::G_FLOG10:
452 RTLIBCASE(LOG10_F);
453 case TargetOpcode::G_FLOG:
454 RTLIBCASE(LOG_F);
455 case TargetOpcode::G_FLOG2:
456 RTLIBCASE(LOG2_F);
457 case TargetOpcode::G_FLDEXP:
458 RTLIBCASE(LDEXP_F);
459 case TargetOpcode::G_FCEIL:
460 RTLIBCASE(CEIL_F);
461 case TargetOpcode::G_FFLOOR:
462 RTLIBCASE(FLOOR_F);
463 case TargetOpcode::G_FMINNUM:
464 RTLIBCASE(FMIN_F);
465 case TargetOpcode::G_FMAXNUM:
466 RTLIBCASE(FMAX_F);
467 case TargetOpcode::G_FSQRT:
468 RTLIBCASE(SQRT_F);
469 case TargetOpcode::G_FRINT:
470 RTLIBCASE(RINT_F);
471 case TargetOpcode::G_FNEARBYINT:
472 RTLIBCASE(NEARBYINT_F);
473 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
474 RTLIBCASE(ROUNDEVEN_F);
476 llvm_unreachable("Unknown libcall function");
479 /// True if an instruction is in tail position in its caller. Intended for
480 /// legalizing libcalls as tail calls when possible.
481 static bool isLibCallInTailPosition(const CallLowering::ArgInfo &Result,
482 MachineInstr &MI,
483 const TargetInstrInfo &TII,
484 MachineRegisterInfo &MRI) {
485 MachineBasicBlock &MBB = *MI.getParent();
486 const Function &F = MBB.getParent()->getFunction();
488 // Conservatively require the attributes of the call to match those of
489 // the return. Ignore NoAlias and NonNull because they don't affect the
490 // call sequence.
491 AttributeList CallerAttrs = F.getAttributes();
492 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs())
493 .removeAttribute(Attribute::NoAlias)
494 .removeAttribute(Attribute::NonNull)
495 .hasAttributes())
496 return false;
498 // It's not safe to eliminate the sign / zero extension of the return value.
499 if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
500 CallerAttrs.hasRetAttr(Attribute::SExt))
501 return false;
503 // Only tail call if the following instruction is a standard return or if we
504 // have a `thisreturn` callee, and a sequence like:
506 // G_MEMCPY %0, %1, %2
507 // $x0 = COPY %0
508 // RET_ReallyLR implicit $x0
509 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
510 if (Next != MBB.instr_end() && Next->isCopy()) {
511 if (MI.getOpcode() == TargetOpcode::G_BZERO)
512 return false;
514 // For MEMCPY/MOMMOVE/MEMSET these will be the first use (the dst), as the
515 // mempy/etc routines return the same parameter. For other it will be the
516 // returned value.
517 Register VReg = MI.getOperand(0).getReg();
518 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
519 return false;
521 Register PReg = Next->getOperand(0).getReg();
522 if (!PReg.isPhysical())
523 return false;
525 auto Ret = next_nodbg(Next, MBB.instr_end());
526 if (Ret == MBB.instr_end() || !Ret->isReturn())
527 return false;
529 if (Ret->getNumImplicitOperands() != 1)
530 return false;
532 if (!Ret->getOperand(0).isReg() || PReg != Ret->getOperand(0).getReg())
533 return false;
535 // Skip over the COPY that we just validated.
536 Next = Ret;
539 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
540 return false;
542 return true;
545 LegalizerHelper::LegalizeResult
546 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
547 const CallLowering::ArgInfo &Result,
548 ArrayRef<CallLowering::ArgInfo> Args,
549 const CallingConv::ID CC, LostDebugLocObserver &LocObserver,
550 MachineInstr *MI) {
551 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
553 CallLowering::CallLoweringInfo Info;
554 Info.CallConv = CC;
555 Info.Callee = MachineOperand::CreateES(Name);
556 Info.OrigRet = Result;
557 if (MI)
558 Info.IsTailCall =
559 (Result.Ty->isVoidTy() ||
560 Result.Ty == MIRBuilder.getMF().getFunction().getReturnType()) &&
561 isLibCallInTailPosition(Result, *MI, MIRBuilder.getTII(),
562 *MIRBuilder.getMRI());
564 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
565 if (!CLI.lowerCall(MIRBuilder, Info))
566 return LegalizerHelper::UnableToLegalize;
568 if (MI && Info.LoweredTailCall) {
569 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
571 // Check debug locations before removing the return.
572 LocObserver.checkpoint(true);
574 // We must have a return following the call (or debug insts) to get past
575 // isLibCallInTailPosition.
576 do {
577 MachineInstr *Next = MI->getNextNode();
578 assert(Next &&
579 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
580 "Expected instr following MI to be return or debug inst?");
581 // We lowered a tail call, so the call is now the return from the block.
582 // Delete the old return.
583 Next->eraseFromParent();
584 } while (MI->getNextNode());
586 // We expect to lose the debug location from the return.
587 LocObserver.checkpoint(false);
589 return LegalizerHelper::Legalized;
592 LegalizerHelper::LegalizeResult
593 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
594 const CallLowering::ArgInfo &Result,
595 ArrayRef<CallLowering::ArgInfo> Args,
596 LostDebugLocObserver &LocObserver, MachineInstr *MI) {
597 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
598 const char *Name = TLI.getLibcallName(Libcall);
599 if (!Name)
600 return LegalizerHelper::UnableToLegalize;
601 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
602 return createLibcall(MIRBuilder, Name, Result, Args, CC, LocObserver, MI);
605 // Useful for libcalls where all operands have the same type.
606 static LegalizerHelper::LegalizeResult
607 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
608 Type *OpType, LostDebugLocObserver &LocObserver) {
609 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
611 // FIXME: What does the original arg index mean here?
612 SmallVector<CallLowering::ArgInfo, 3> Args;
613 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
614 Args.push_back({MO.getReg(), OpType, 0});
615 return createLibcall(MIRBuilder, Libcall,
616 {MI.getOperand(0).getReg(), OpType, 0}, Args,
617 LocObserver, &MI);
620 LegalizerHelper::LegalizeResult
621 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
622 MachineInstr &MI, LostDebugLocObserver &LocObserver) {
623 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
625 SmallVector<CallLowering::ArgInfo, 3> Args;
626 // Add all the args, except for the last which is an imm denoting 'tail'.
627 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
628 Register Reg = MI.getOperand(i).getReg();
630 // Need derive an IR type for call lowering.
631 LLT OpLLT = MRI.getType(Reg);
632 Type *OpTy = nullptr;
633 if (OpLLT.isPointer())
634 OpTy = PointerType::get(Ctx, OpLLT.getAddressSpace());
635 else
636 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
637 Args.push_back({Reg, OpTy, 0});
640 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
641 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
642 RTLIB::Libcall RTLibcall;
643 unsigned Opc = MI.getOpcode();
644 switch (Opc) {
645 case TargetOpcode::G_BZERO:
646 RTLibcall = RTLIB::BZERO;
647 break;
648 case TargetOpcode::G_MEMCPY:
649 RTLibcall = RTLIB::MEMCPY;
650 Args[0].Flags[0].setReturned();
651 break;
652 case TargetOpcode::G_MEMMOVE:
653 RTLibcall = RTLIB::MEMMOVE;
654 Args[0].Flags[0].setReturned();
655 break;
656 case TargetOpcode::G_MEMSET:
657 RTLibcall = RTLIB::MEMSET;
658 Args[0].Flags[0].setReturned();
659 break;
660 default:
661 llvm_unreachable("unsupported opcode");
663 const char *Name = TLI.getLibcallName(RTLibcall);
665 // Unsupported libcall on the target.
666 if (!Name) {
667 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
668 << MIRBuilder.getTII().getName(Opc) << "\n");
669 return LegalizerHelper::UnableToLegalize;
672 CallLowering::CallLoweringInfo Info;
673 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
674 Info.Callee = MachineOperand::CreateES(Name);
675 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
676 Info.IsTailCall =
677 MI.getOperand(MI.getNumOperands() - 1).getImm() &&
678 isLibCallInTailPosition(Info.OrigRet, MI, MIRBuilder.getTII(), MRI);
680 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
681 if (!CLI.lowerCall(MIRBuilder, Info))
682 return LegalizerHelper::UnableToLegalize;
684 if (Info.LoweredTailCall) {
685 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
687 // Check debug locations before removing the return.
688 LocObserver.checkpoint(true);
690 // We must have a return following the call (or debug insts) to get past
691 // isLibCallInTailPosition.
692 do {
693 MachineInstr *Next = MI.getNextNode();
694 assert(Next &&
695 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
696 "Expected instr following MI to be return or debug inst?");
697 // We lowered a tail call, so the call is now the return from the block.
698 // Delete the old return.
699 Next->eraseFromParent();
700 } while (MI.getNextNode());
702 // We expect to lose the debug location from the return.
703 LocObserver.checkpoint(false);
706 return LegalizerHelper::Legalized;
709 static RTLIB::Libcall getOutlineAtomicLibcall(MachineInstr &MI) {
710 unsigned Opc = MI.getOpcode();
711 auto &AtomicMI = cast<GMemOperation>(MI);
712 auto &MMO = AtomicMI.getMMO();
713 auto Ordering = MMO.getMergedOrdering();
714 LLT MemType = MMO.getMemoryType();
715 uint64_t MemSize = MemType.getSizeInBytes();
716 if (MemType.isVector())
717 return RTLIB::UNKNOWN_LIBCALL;
719 #define LCALLS(A, B) \
720 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
721 #define LCALL5(A) \
722 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
723 switch (Opc) {
724 case TargetOpcode::G_ATOMIC_CMPXCHG:
725 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
726 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_CAS)};
727 return getOutlineAtomicHelper(LC, Ordering, MemSize);
729 case TargetOpcode::G_ATOMICRMW_XCHG: {
730 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_SWP)};
731 return getOutlineAtomicHelper(LC, Ordering, MemSize);
733 case TargetOpcode::G_ATOMICRMW_ADD:
734 case TargetOpcode::G_ATOMICRMW_SUB: {
735 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDADD)};
736 return getOutlineAtomicHelper(LC, Ordering, MemSize);
738 case TargetOpcode::G_ATOMICRMW_AND: {
739 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDCLR)};
740 return getOutlineAtomicHelper(LC, Ordering, MemSize);
742 case TargetOpcode::G_ATOMICRMW_OR: {
743 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDSET)};
744 return getOutlineAtomicHelper(LC, Ordering, MemSize);
746 case TargetOpcode::G_ATOMICRMW_XOR: {
747 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDEOR)};
748 return getOutlineAtomicHelper(LC, Ordering, MemSize);
750 default:
751 return RTLIB::UNKNOWN_LIBCALL;
753 #undef LCALLS
754 #undef LCALL5
757 static LegalizerHelper::LegalizeResult
758 createAtomicLibcall(MachineIRBuilder &MIRBuilder, MachineInstr &MI) {
759 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
761 Type *RetTy;
762 SmallVector<Register> RetRegs;
763 SmallVector<CallLowering::ArgInfo, 3> Args;
764 unsigned Opc = MI.getOpcode();
765 switch (Opc) {
766 case TargetOpcode::G_ATOMIC_CMPXCHG:
767 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
768 Register Success;
769 LLT SuccessLLT;
770 auto [Ret, RetLLT, Mem, MemLLT, Cmp, CmpLLT, New, NewLLT] =
771 MI.getFirst4RegLLTs();
772 RetRegs.push_back(Ret);
773 RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits());
774 if (Opc == TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS) {
775 std::tie(Ret, RetLLT, Success, SuccessLLT, Mem, MemLLT, Cmp, CmpLLT, New,
776 NewLLT) = MI.getFirst5RegLLTs();
777 RetRegs.push_back(Success);
778 RetTy = StructType::get(
779 Ctx, {RetTy, IntegerType::get(Ctx, SuccessLLT.getSizeInBits())});
781 Args.push_back({Cmp, IntegerType::get(Ctx, CmpLLT.getSizeInBits()), 0});
782 Args.push_back({New, IntegerType::get(Ctx, NewLLT.getSizeInBits()), 0});
783 Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0});
784 break;
786 case TargetOpcode::G_ATOMICRMW_XCHG:
787 case TargetOpcode::G_ATOMICRMW_ADD:
788 case TargetOpcode::G_ATOMICRMW_SUB:
789 case TargetOpcode::G_ATOMICRMW_AND:
790 case TargetOpcode::G_ATOMICRMW_OR:
791 case TargetOpcode::G_ATOMICRMW_XOR: {
792 auto [Ret, RetLLT, Mem, MemLLT, Val, ValLLT] = MI.getFirst3RegLLTs();
793 RetRegs.push_back(Ret);
794 RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits());
795 if (Opc == TargetOpcode::G_ATOMICRMW_AND)
796 Val =
797 MIRBuilder.buildXor(ValLLT, MIRBuilder.buildConstant(ValLLT, -1), Val)
798 .getReg(0);
799 else if (Opc == TargetOpcode::G_ATOMICRMW_SUB)
800 Val =
801 MIRBuilder.buildSub(ValLLT, MIRBuilder.buildConstant(ValLLT, 0), Val)
802 .getReg(0);
803 Args.push_back({Val, IntegerType::get(Ctx, ValLLT.getSizeInBits()), 0});
804 Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0});
805 break;
807 default:
808 llvm_unreachable("unsupported opcode");
811 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
812 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
813 RTLIB::Libcall RTLibcall = getOutlineAtomicLibcall(MI);
814 const char *Name = TLI.getLibcallName(RTLibcall);
816 // Unsupported libcall on the target.
817 if (!Name) {
818 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
819 << MIRBuilder.getTII().getName(Opc) << "\n");
820 return LegalizerHelper::UnableToLegalize;
823 CallLowering::CallLoweringInfo Info;
824 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
825 Info.Callee = MachineOperand::CreateES(Name);
826 Info.OrigRet = CallLowering::ArgInfo(RetRegs, RetTy, 0);
828 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
829 if (!CLI.lowerCall(MIRBuilder, Info))
830 return LegalizerHelper::UnableToLegalize;
832 return LegalizerHelper::Legalized;
835 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
836 Type *FromType) {
837 auto ToMVT = MVT::getVT(ToType);
838 auto FromMVT = MVT::getVT(FromType);
840 switch (Opcode) {
841 case TargetOpcode::G_FPEXT:
842 return RTLIB::getFPEXT(FromMVT, ToMVT);
843 case TargetOpcode::G_FPTRUNC:
844 return RTLIB::getFPROUND(FromMVT, ToMVT);
845 case TargetOpcode::G_FPTOSI:
846 return RTLIB::getFPTOSINT(FromMVT, ToMVT);
847 case TargetOpcode::G_FPTOUI:
848 return RTLIB::getFPTOUINT(FromMVT, ToMVT);
849 case TargetOpcode::G_SITOFP:
850 return RTLIB::getSINTTOFP(FromMVT, ToMVT);
851 case TargetOpcode::G_UITOFP:
852 return RTLIB::getUINTTOFP(FromMVT, ToMVT);
854 llvm_unreachable("Unsupported libcall function");
857 static LegalizerHelper::LegalizeResult
858 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
859 Type *FromType, LostDebugLocObserver &LocObserver) {
860 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
861 return createLibcall(
862 MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType, 0},
863 {{MI.getOperand(1).getReg(), FromType, 0}}, LocObserver, &MI);
866 static RTLIB::Libcall
867 getStateLibraryFunctionFor(MachineInstr &MI, const TargetLowering &TLI) {
868 RTLIB::Libcall RTLibcall;
869 switch (MI.getOpcode()) {
870 case TargetOpcode::G_GET_FPENV:
871 RTLibcall = RTLIB::FEGETENV;
872 break;
873 case TargetOpcode::G_SET_FPENV:
874 case TargetOpcode::G_RESET_FPENV:
875 RTLibcall = RTLIB::FESETENV;
876 break;
877 case TargetOpcode::G_GET_FPMODE:
878 RTLibcall = RTLIB::FEGETMODE;
879 break;
880 case TargetOpcode::G_SET_FPMODE:
881 case TargetOpcode::G_RESET_FPMODE:
882 RTLibcall = RTLIB::FESETMODE;
883 break;
884 default:
885 llvm_unreachable("Unexpected opcode");
887 return RTLibcall;
890 // Some library functions that read FP state (fegetmode, fegetenv) write the
891 // state into a region in memory. IR intrinsics that do the same operations
892 // (get_fpmode, get_fpenv) return the state as integer value. To implement these
893 // intrinsics via the library functions, we need to use temporary variable,
894 // for example:
896 // %0:_(s32) = G_GET_FPMODE
898 // is transformed to:
900 // %1:_(p0) = G_FRAME_INDEX %stack.0
901 // BL &fegetmode
902 // %0:_(s32) = G_LOAD % 1
904 LegalizerHelper::LegalizeResult
905 LegalizerHelper::createGetStateLibcall(MachineIRBuilder &MIRBuilder,
906 MachineInstr &MI,
907 LostDebugLocObserver &LocObserver) {
908 const DataLayout &DL = MIRBuilder.getDataLayout();
909 auto &MF = MIRBuilder.getMF();
910 auto &MRI = *MIRBuilder.getMRI();
911 auto &Ctx = MF.getFunction().getContext();
913 // Create temporary, where library function will put the read state.
914 Register Dst = MI.getOperand(0).getReg();
915 LLT StateTy = MRI.getType(Dst);
916 TypeSize StateSize = StateTy.getSizeInBytes();
917 Align TempAlign = getStackTemporaryAlignment(StateTy);
918 MachinePointerInfo TempPtrInfo;
919 auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo);
921 // Create a call to library function, with the temporary as an argument.
922 unsigned TempAddrSpace = DL.getAllocaAddrSpace();
923 Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace);
924 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI);
925 auto Res =
926 createLibcall(MIRBuilder, RTLibcall,
927 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0),
928 CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}),
929 LocObserver, nullptr);
930 if (Res != LegalizerHelper::Legalized)
931 return Res;
933 // Create a load from the temporary.
934 MachineMemOperand *MMO = MF.getMachineMemOperand(
935 TempPtrInfo, MachineMemOperand::MOLoad, StateTy, TempAlign);
936 MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, Dst, Temp, *MMO);
938 return LegalizerHelper::Legalized;
941 // Similar to `createGetStateLibcall` the function calls a library function
942 // using transient space in stack. In this case the library function reads
943 // content of memory region.
944 LegalizerHelper::LegalizeResult
945 LegalizerHelper::createSetStateLibcall(MachineIRBuilder &MIRBuilder,
946 MachineInstr &MI,
947 LostDebugLocObserver &LocObserver) {
948 const DataLayout &DL = MIRBuilder.getDataLayout();
949 auto &MF = MIRBuilder.getMF();
950 auto &MRI = *MIRBuilder.getMRI();
951 auto &Ctx = MF.getFunction().getContext();
953 // Create temporary, where library function will get the new state.
954 Register Src = MI.getOperand(0).getReg();
955 LLT StateTy = MRI.getType(Src);
956 TypeSize StateSize = StateTy.getSizeInBytes();
957 Align TempAlign = getStackTemporaryAlignment(StateTy);
958 MachinePointerInfo TempPtrInfo;
959 auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo);
961 // Put the new state into the temporary.
962 MachineMemOperand *MMO = MF.getMachineMemOperand(
963 TempPtrInfo, MachineMemOperand::MOStore, StateTy, TempAlign);
964 MIRBuilder.buildStore(Src, Temp, *MMO);
966 // Create a call to library function, with the temporary as an argument.
967 unsigned TempAddrSpace = DL.getAllocaAddrSpace();
968 Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace);
969 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI);
970 return createLibcall(MIRBuilder, RTLibcall,
971 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0),
972 CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}),
973 LocObserver, nullptr);
976 // The function is used to legalize operations that set default environment
977 // state. In C library a call like `fesetmode(FE_DFL_MODE)` is used for that.
978 // On most targets supported in glibc FE_DFL_MODE is defined as
979 // `((const femode_t *) -1)`. Such assumption is used here. If for some target
980 // it is not true, the target must provide custom lowering.
981 LegalizerHelper::LegalizeResult
982 LegalizerHelper::createResetStateLibcall(MachineIRBuilder &MIRBuilder,
983 MachineInstr &MI,
984 LostDebugLocObserver &LocObserver) {
985 const DataLayout &DL = MIRBuilder.getDataLayout();
986 auto &MF = MIRBuilder.getMF();
987 auto &Ctx = MF.getFunction().getContext();
989 // Create an argument for the library function.
990 unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace();
991 Type *StatePtrTy = PointerType::get(Ctx, AddrSpace);
992 unsigned PtrSize = DL.getPointerSizeInBits(AddrSpace);
993 LLT MemTy = LLT::pointer(AddrSpace, PtrSize);
994 auto DefValue = MIRBuilder.buildConstant(LLT::scalar(PtrSize), -1LL);
995 DstOp Dest(MRI.createGenericVirtualRegister(MemTy));
996 MIRBuilder.buildIntToPtr(Dest, DefValue);
998 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI);
999 return createLibcall(MIRBuilder, RTLibcall,
1000 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0),
1001 CallLowering::ArgInfo({Dest.getReg(), StatePtrTy, 0}),
1002 LocObserver, &MI);
1005 LegalizerHelper::LegalizeResult
1006 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
1007 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
1009 switch (MI.getOpcode()) {
1010 default:
1011 return UnableToLegalize;
1012 case TargetOpcode::G_MUL:
1013 case TargetOpcode::G_SDIV:
1014 case TargetOpcode::G_UDIV:
1015 case TargetOpcode::G_SREM:
1016 case TargetOpcode::G_UREM:
1017 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
1018 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
1019 unsigned Size = LLTy.getSizeInBits();
1020 Type *HLTy = IntegerType::get(Ctx, Size);
1021 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver);
1022 if (Status != Legalized)
1023 return Status;
1024 break;
1026 case TargetOpcode::G_FADD:
1027 case TargetOpcode::G_FSUB:
1028 case TargetOpcode::G_FMUL:
1029 case TargetOpcode::G_FDIV:
1030 case TargetOpcode::G_FMA:
1031 case TargetOpcode::G_FPOW:
1032 case TargetOpcode::G_FREM:
1033 case TargetOpcode::G_FCOS:
1034 case TargetOpcode::G_FSIN:
1035 case TargetOpcode::G_FLOG10:
1036 case TargetOpcode::G_FLOG:
1037 case TargetOpcode::G_FLOG2:
1038 case TargetOpcode::G_FLDEXP:
1039 case TargetOpcode::G_FEXP:
1040 case TargetOpcode::G_FEXP2:
1041 case TargetOpcode::G_FEXP10:
1042 case TargetOpcode::G_FCEIL:
1043 case TargetOpcode::G_FFLOOR:
1044 case TargetOpcode::G_FMINNUM:
1045 case TargetOpcode::G_FMAXNUM:
1046 case TargetOpcode::G_FSQRT:
1047 case TargetOpcode::G_FRINT:
1048 case TargetOpcode::G_FNEARBYINT:
1049 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
1050 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
1051 unsigned Size = LLTy.getSizeInBits();
1052 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
1053 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
1054 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
1055 return UnableToLegalize;
1057 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver);
1058 if (Status != Legalized)
1059 return Status;
1060 break;
1062 case TargetOpcode::G_FPOWI: {
1063 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
1064 unsigned Size = LLTy.getSizeInBits();
1065 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
1066 Type *ITy = IntegerType::get(
1067 Ctx, MRI.getType(MI.getOperand(2).getReg()).getSizeInBits());
1068 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
1069 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
1070 return UnableToLegalize;
1072 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
1073 std::initializer_list<CallLowering::ArgInfo> Args = {
1074 {MI.getOperand(1).getReg(), HLTy, 0},
1075 {MI.getOperand(2).getReg(), ITy, 1}};
1076 LegalizeResult Status =
1077 createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), HLTy, 0},
1078 Args, LocObserver, &MI);
1079 if (Status != Legalized)
1080 return Status;
1081 break;
1083 case TargetOpcode::G_FPEXT:
1084 case TargetOpcode::G_FPTRUNC: {
1085 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg()));
1086 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
1087 if (!FromTy || !ToTy)
1088 return UnableToLegalize;
1089 LegalizeResult Status =
1090 conversionLibcall(MI, MIRBuilder, ToTy, FromTy, LocObserver);
1091 if (Status != Legalized)
1092 return Status;
1093 break;
1095 case TargetOpcode::G_FPTOSI:
1096 case TargetOpcode::G_FPTOUI: {
1097 // FIXME: Support other types
1098 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
1099 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
1100 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
1101 return UnableToLegalize;
1102 LegalizeResult Status = conversionLibcall(
1103 MI, MIRBuilder,
1104 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
1105 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
1106 LocObserver);
1107 if (Status != Legalized)
1108 return Status;
1109 break;
1111 case TargetOpcode::G_SITOFP:
1112 case TargetOpcode::G_UITOFP: {
1113 // FIXME: Support other types
1114 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
1115 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
1116 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
1117 return UnableToLegalize;
1118 LegalizeResult Status = conversionLibcall(
1119 MI, MIRBuilder,
1120 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
1121 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
1122 LocObserver);
1123 if (Status != Legalized)
1124 return Status;
1125 break;
1127 case TargetOpcode::G_ATOMICRMW_XCHG:
1128 case TargetOpcode::G_ATOMICRMW_ADD:
1129 case TargetOpcode::G_ATOMICRMW_SUB:
1130 case TargetOpcode::G_ATOMICRMW_AND:
1131 case TargetOpcode::G_ATOMICRMW_OR:
1132 case TargetOpcode::G_ATOMICRMW_XOR:
1133 case TargetOpcode::G_ATOMIC_CMPXCHG:
1134 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
1135 auto Status = createAtomicLibcall(MIRBuilder, MI);
1136 if (Status != Legalized)
1137 return Status;
1138 break;
1140 case TargetOpcode::G_BZERO:
1141 case TargetOpcode::G_MEMCPY:
1142 case TargetOpcode::G_MEMMOVE:
1143 case TargetOpcode::G_MEMSET: {
1144 LegalizeResult Result =
1145 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
1146 if (Result != Legalized)
1147 return Result;
1148 MI.eraseFromParent();
1149 return Result;
1151 case TargetOpcode::G_GET_FPENV:
1152 case TargetOpcode::G_GET_FPMODE: {
1153 LegalizeResult Result = createGetStateLibcall(MIRBuilder, MI, LocObserver);
1154 if (Result != Legalized)
1155 return Result;
1156 break;
1158 case TargetOpcode::G_SET_FPENV:
1159 case TargetOpcode::G_SET_FPMODE: {
1160 LegalizeResult Result = createSetStateLibcall(MIRBuilder, MI, LocObserver);
1161 if (Result != Legalized)
1162 return Result;
1163 break;
1165 case TargetOpcode::G_RESET_FPENV:
1166 case TargetOpcode::G_RESET_FPMODE: {
1167 LegalizeResult Result =
1168 createResetStateLibcall(MIRBuilder, MI, LocObserver);
1169 if (Result != Legalized)
1170 return Result;
1171 break;
1175 MI.eraseFromParent();
1176 return Legalized;
1179 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
1180 unsigned TypeIdx,
1181 LLT NarrowTy) {
1182 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
1183 uint64_t NarrowSize = NarrowTy.getSizeInBits();
1185 switch (MI.getOpcode()) {
1186 default:
1187 return UnableToLegalize;
1188 case TargetOpcode::G_IMPLICIT_DEF: {
1189 Register DstReg = MI.getOperand(0).getReg();
1190 LLT DstTy = MRI.getType(DstReg);
1192 // If SizeOp0 is not an exact multiple of NarrowSize, emit
1193 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
1194 // FIXME: Although this would also be legal for the general case, it causes
1195 // a lot of regressions in the emitted code (superfluous COPYs, artifact
1196 // combines not being hit). This seems to be a problem related to the
1197 // artifact combiner.
1198 if (SizeOp0 % NarrowSize != 0) {
1199 LLT ImplicitTy = NarrowTy;
1200 if (DstTy.isVector())
1201 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
1203 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
1204 MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
1206 MI.eraseFromParent();
1207 return Legalized;
1210 int NumParts = SizeOp0 / NarrowSize;
1212 SmallVector<Register, 2> DstRegs;
1213 for (int i = 0; i < NumParts; ++i)
1214 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
1216 if (DstTy.isVector())
1217 MIRBuilder.buildBuildVector(DstReg, DstRegs);
1218 else
1219 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
1220 MI.eraseFromParent();
1221 return Legalized;
1223 case TargetOpcode::G_CONSTANT: {
1224 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1225 const APInt &Val = MI.getOperand(1).getCImm()->getValue();
1226 unsigned TotalSize = Ty.getSizeInBits();
1227 unsigned NarrowSize = NarrowTy.getSizeInBits();
1228 int NumParts = TotalSize / NarrowSize;
1230 SmallVector<Register, 4> PartRegs;
1231 for (int I = 0; I != NumParts; ++I) {
1232 unsigned Offset = I * NarrowSize;
1233 auto K = MIRBuilder.buildConstant(NarrowTy,
1234 Val.lshr(Offset).trunc(NarrowSize));
1235 PartRegs.push_back(K.getReg(0));
1238 LLT LeftoverTy;
1239 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
1240 SmallVector<Register, 1> LeftoverRegs;
1241 if (LeftoverBits != 0) {
1242 LeftoverTy = LLT::scalar(LeftoverBits);
1243 auto K = MIRBuilder.buildConstant(
1244 LeftoverTy,
1245 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
1246 LeftoverRegs.push_back(K.getReg(0));
1249 insertParts(MI.getOperand(0).getReg(),
1250 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
1252 MI.eraseFromParent();
1253 return Legalized;
1255 case TargetOpcode::G_SEXT:
1256 case TargetOpcode::G_ZEXT:
1257 case TargetOpcode::G_ANYEXT:
1258 return narrowScalarExt(MI, TypeIdx, NarrowTy);
1259 case TargetOpcode::G_TRUNC: {
1260 if (TypeIdx != 1)
1261 return UnableToLegalize;
1263 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
1264 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
1265 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
1266 return UnableToLegalize;
1269 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
1270 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
1271 MI.eraseFromParent();
1272 return Legalized;
1275 case TargetOpcode::G_FREEZE: {
1276 if (TypeIdx != 0)
1277 return UnableToLegalize;
1279 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1280 // Should widen scalar first
1281 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0)
1282 return UnableToLegalize;
1284 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
1285 SmallVector<Register, 8> Parts;
1286 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) {
1287 Parts.push_back(
1288 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0));
1291 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0).getReg(), Parts);
1292 MI.eraseFromParent();
1293 return Legalized;
1295 case TargetOpcode::G_ADD:
1296 case TargetOpcode::G_SUB:
1297 case TargetOpcode::G_SADDO:
1298 case TargetOpcode::G_SSUBO:
1299 case TargetOpcode::G_SADDE:
1300 case TargetOpcode::G_SSUBE:
1301 case TargetOpcode::G_UADDO:
1302 case TargetOpcode::G_USUBO:
1303 case TargetOpcode::G_UADDE:
1304 case TargetOpcode::G_USUBE:
1305 return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
1306 case TargetOpcode::G_MUL:
1307 case TargetOpcode::G_UMULH:
1308 return narrowScalarMul(MI, NarrowTy);
1309 case TargetOpcode::G_EXTRACT:
1310 return narrowScalarExtract(MI, TypeIdx, NarrowTy);
1311 case TargetOpcode::G_INSERT:
1312 return narrowScalarInsert(MI, TypeIdx, NarrowTy);
1313 case TargetOpcode::G_LOAD: {
1314 auto &LoadMI = cast<GLoad>(MI);
1315 Register DstReg = LoadMI.getDstReg();
1316 LLT DstTy = MRI.getType(DstReg);
1317 if (DstTy.isVector())
1318 return UnableToLegalize;
1320 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
1321 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1322 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
1323 MIRBuilder.buildAnyExt(DstReg, TmpReg);
1324 LoadMI.eraseFromParent();
1325 return Legalized;
1328 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
1330 case TargetOpcode::G_ZEXTLOAD:
1331 case TargetOpcode::G_SEXTLOAD: {
1332 auto &LoadMI = cast<GExtLoad>(MI);
1333 Register DstReg = LoadMI.getDstReg();
1334 Register PtrReg = LoadMI.getPointerReg();
1336 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1337 auto &MMO = LoadMI.getMMO();
1338 unsigned MemSize = MMO.getSizeInBits();
1340 if (MemSize == NarrowSize) {
1341 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1342 } else if (MemSize < NarrowSize) {
1343 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
1344 } else if (MemSize > NarrowSize) {
1345 // FIXME: Need to split the load.
1346 return UnableToLegalize;
1349 if (isa<GZExtLoad>(LoadMI))
1350 MIRBuilder.buildZExt(DstReg, TmpReg);
1351 else
1352 MIRBuilder.buildSExt(DstReg, TmpReg);
1354 LoadMI.eraseFromParent();
1355 return Legalized;
1357 case TargetOpcode::G_STORE: {
1358 auto &StoreMI = cast<GStore>(MI);
1360 Register SrcReg = StoreMI.getValueReg();
1361 LLT SrcTy = MRI.getType(SrcReg);
1362 if (SrcTy.isVector())
1363 return UnableToLegalize;
1365 int NumParts = SizeOp0 / NarrowSize;
1366 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
1367 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
1368 if (SrcTy.isVector() && LeftoverBits != 0)
1369 return UnableToLegalize;
1371 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
1372 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1373 MIRBuilder.buildTrunc(TmpReg, SrcReg);
1374 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1375 StoreMI.eraseFromParent();
1376 return Legalized;
1379 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1381 case TargetOpcode::G_SELECT:
1382 return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1383 case TargetOpcode::G_AND:
1384 case TargetOpcode::G_OR:
1385 case TargetOpcode::G_XOR: {
1386 // Legalize bitwise operation:
1387 // A = BinOp<Ty> B, C
1388 // into:
1389 // B1, ..., BN = G_UNMERGE_VALUES B
1390 // C1, ..., CN = G_UNMERGE_VALUES C
1391 // A1 = BinOp<Ty/N> B1, C2
1392 // ...
1393 // AN = BinOp<Ty/N> BN, CN
1394 // A = G_MERGE_VALUES A1, ..., AN
1395 return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1397 case TargetOpcode::G_SHL:
1398 case TargetOpcode::G_LSHR:
1399 case TargetOpcode::G_ASHR:
1400 return narrowScalarShift(MI, TypeIdx, NarrowTy);
1401 case TargetOpcode::G_CTLZ:
1402 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1403 case TargetOpcode::G_CTTZ:
1404 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1405 case TargetOpcode::G_CTPOP:
1406 if (TypeIdx == 1)
1407 switch (MI.getOpcode()) {
1408 case TargetOpcode::G_CTLZ:
1409 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1410 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1411 case TargetOpcode::G_CTTZ:
1412 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1413 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1414 case TargetOpcode::G_CTPOP:
1415 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1416 default:
1417 return UnableToLegalize;
1420 Observer.changingInstr(MI);
1421 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1422 Observer.changedInstr(MI);
1423 return Legalized;
1424 case TargetOpcode::G_INTTOPTR:
1425 if (TypeIdx != 1)
1426 return UnableToLegalize;
1428 Observer.changingInstr(MI);
1429 narrowScalarSrc(MI, NarrowTy, 1);
1430 Observer.changedInstr(MI);
1431 return Legalized;
1432 case TargetOpcode::G_PTRTOINT:
1433 if (TypeIdx != 0)
1434 return UnableToLegalize;
1436 Observer.changingInstr(MI);
1437 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1438 Observer.changedInstr(MI);
1439 return Legalized;
1440 case TargetOpcode::G_PHI: {
1441 // FIXME: add support for when SizeOp0 isn't an exact multiple of
1442 // NarrowSize.
1443 if (SizeOp0 % NarrowSize != 0)
1444 return UnableToLegalize;
1446 unsigned NumParts = SizeOp0 / NarrowSize;
1447 SmallVector<Register, 2> DstRegs(NumParts);
1448 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1449 Observer.changingInstr(MI);
1450 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1451 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1452 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward());
1453 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1454 SrcRegs[i / 2], MIRBuilder, MRI);
1456 MachineBasicBlock &MBB = *MI.getParent();
1457 MIRBuilder.setInsertPt(MBB, MI);
1458 for (unsigned i = 0; i < NumParts; ++i) {
1459 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1460 MachineInstrBuilder MIB =
1461 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1462 for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1463 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1465 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1466 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs);
1467 Observer.changedInstr(MI);
1468 MI.eraseFromParent();
1469 return Legalized;
1471 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1472 case TargetOpcode::G_INSERT_VECTOR_ELT: {
1473 if (TypeIdx != 2)
1474 return UnableToLegalize;
1476 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1477 Observer.changingInstr(MI);
1478 narrowScalarSrc(MI, NarrowTy, OpIdx);
1479 Observer.changedInstr(MI);
1480 return Legalized;
1482 case TargetOpcode::G_ICMP: {
1483 Register LHS = MI.getOperand(2).getReg();
1484 LLT SrcTy = MRI.getType(LHS);
1485 uint64_t SrcSize = SrcTy.getSizeInBits();
1486 CmpInst::Predicate Pred =
1487 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1489 // TODO: Handle the non-equality case for weird sizes.
1490 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1491 return UnableToLegalize;
1493 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1494 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1495 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1496 LHSLeftoverRegs, MIRBuilder, MRI))
1497 return UnableToLegalize;
1499 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1500 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1501 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1502 RHSPartRegs, RHSLeftoverRegs, MIRBuilder, MRI))
1503 return UnableToLegalize;
1505 // We now have the LHS and RHS of the compare split into narrow-type
1506 // registers, plus potentially some leftover type.
1507 Register Dst = MI.getOperand(0).getReg();
1508 LLT ResTy = MRI.getType(Dst);
1509 if (ICmpInst::isEquality(Pred)) {
1510 // For each part on the LHS and RHS, keep track of the result of XOR-ing
1511 // them together. For each equal part, the result should be all 0s. For
1512 // each non-equal part, we'll get at least one 1.
1513 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1514 SmallVector<Register, 4> Xors;
1515 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1516 auto LHS = std::get<0>(LHSAndRHS);
1517 auto RHS = std::get<1>(LHSAndRHS);
1518 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1519 Xors.push_back(Xor);
1522 // Build a G_XOR for each leftover register. Each G_XOR must be widened
1523 // to the desired narrow type so that we can OR them together later.
1524 SmallVector<Register, 4> WidenedXors;
1525 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1526 auto LHS = std::get<0>(LHSAndRHS);
1527 auto RHS = std::get<1>(LHSAndRHS);
1528 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1529 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1530 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1531 /* PadStrategy = */ TargetOpcode::G_ZEXT);
1532 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1535 // Now, for each part we broke up, we know if they are equal/not equal
1536 // based off the G_XOR. We can OR these all together and compare against
1537 // 0 to get the result.
1538 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1539 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1540 for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1541 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1542 MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1543 } else {
1544 // TODO: Handle non-power-of-two types.
1545 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1546 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1547 Register LHSL = LHSPartRegs[0];
1548 Register LHSH = LHSPartRegs[1];
1549 Register RHSL = RHSPartRegs[0];
1550 Register RHSH = RHSPartRegs[1];
1551 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1552 MachineInstrBuilder CmpHEQ =
1553 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1554 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1555 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1556 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1558 MI.eraseFromParent();
1559 return Legalized;
1561 case TargetOpcode::G_SEXT_INREG: {
1562 if (TypeIdx != 0)
1563 return UnableToLegalize;
1565 int64_t SizeInBits = MI.getOperand(2).getImm();
1567 // So long as the new type has more bits than the bits we're extending we
1568 // don't need to break it apart.
1569 if (NarrowTy.getScalarSizeInBits() > SizeInBits) {
1570 Observer.changingInstr(MI);
1571 // We don't lose any non-extension bits by truncating the src and
1572 // sign-extending the dst.
1573 MachineOperand &MO1 = MI.getOperand(1);
1574 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1575 MO1.setReg(TruncMIB.getReg(0));
1577 MachineOperand &MO2 = MI.getOperand(0);
1578 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1579 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1580 MIRBuilder.buildSExt(MO2, DstExt);
1581 MO2.setReg(DstExt);
1582 Observer.changedInstr(MI);
1583 return Legalized;
1586 // Break it apart. Components below the extension point are unmodified. The
1587 // component containing the extension point becomes a narrower SEXT_INREG.
1588 // Components above it are ashr'd from the component containing the
1589 // extension point.
1590 if (SizeOp0 % NarrowSize != 0)
1591 return UnableToLegalize;
1592 int NumParts = SizeOp0 / NarrowSize;
1594 // List the registers where the destination will be scattered.
1595 SmallVector<Register, 2> DstRegs;
1596 // List the registers where the source will be split.
1597 SmallVector<Register, 2> SrcRegs;
1599 // Create all the temporary registers.
1600 for (int i = 0; i < NumParts; ++i) {
1601 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1603 SrcRegs.push_back(SrcReg);
1606 // Explode the big arguments into smaller chunks.
1607 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1609 Register AshrCstReg =
1610 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1611 .getReg(0);
1612 Register FullExtensionReg;
1613 Register PartialExtensionReg;
1615 // Do the operation on each small part.
1616 for (int i = 0; i < NumParts; ++i) {
1617 if ((i + 1) * NarrowTy.getScalarSizeInBits() <= SizeInBits) {
1618 DstRegs.push_back(SrcRegs[i]);
1619 PartialExtensionReg = DstRegs.back();
1620 } else if (i * NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1621 assert(PartialExtensionReg &&
1622 "Expected to visit partial extension before full");
1623 if (FullExtensionReg) {
1624 DstRegs.push_back(FullExtensionReg);
1625 continue;
1627 DstRegs.push_back(
1628 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1629 .getReg(0));
1630 FullExtensionReg = DstRegs.back();
1631 } else {
1632 DstRegs.push_back(
1633 MIRBuilder
1634 .buildInstr(
1635 TargetOpcode::G_SEXT_INREG, {NarrowTy},
1636 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1637 .getReg(0));
1638 PartialExtensionReg = DstRegs.back();
1642 // Gather the destination registers into the final destination.
1643 Register DstReg = MI.getOperand(0).getReg();
1644 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
1645 MI.eraseFromParent();
1646 return Legalized;
1648 case TargetOpcode::G_BSWAP:
1649 case TargetOpcode::G_BITREVERSE: {
1650 if (SizeOp0 % NarrowSize != 0)
1651 return UnableToLegalize;
1653 Observer.changingInstr(MI);
1654 SmallVector<Register, 2> SrcRegs, DstRegs;
1655 unsigned NumParts = SizeOp0 / NarrowSize;
1656 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs,
1657 MIRBuilder, MRI);
1659 for (unsigned i = 0; i < NumParts; ++i) {
1660 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1661 {SrcRegs[NumParts - 1 - i]});
1662 DstRegs.push_back(DstPart.getReg(0));
1665 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs);
1667 Observer.changedInstr(MI);
1668 MI.eraseFromParent();
1669 return Legalized;
1671 case TargetOpcode::G_PTR_ADD:
1672 case TargetOpcode::G_PTRMASK: {
1673 if (TypeIdx != 1)
1674 return UnableToLegalize;
1675 Observer.changingInstr(MI);
1676 narrowScalarSrc(MI, NarrowTy, 2);
1677 Observer.changedInstr(MI);
1678 return Legalized;
1680 case TargetOpcode::G_FPTOUI:
1681 case TargetOpcode::G_FPTOSI:
1682 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1683 case TargetOpcode::G_FPEXT:
1684 if (TypeIdx != 0)
1685 return UnableToLegalize;
1686 Observer.changingInstr(MI);
1687 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1688 Observer.changedInstr(MI);
1689 return Legalized;
1690 case TargetOpcode::G_FLDEXP:
1691 case TargetOpcode::G_STRICT_FLDEXP:
1692 return narrowScalarFLDEXP(MI, TypeIdx, NarrowTy);
1696 Register LegalizerHelper::coerceToScalar(Register Val) {
1697 LLT Ty = MRI.getType(Val);
1698 if (Ty.isScalar())
1699 return Val;
1701 const DataLayout &DL = MIRBuilder.getDataLayout();
1702 LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1703 if (Ty.isPointer()) {
1704 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1705 return Register();
1706 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1709 Register NewVal = Val;
1711 assert(Ty.isVector());
1712 LLT EltTy = Ty.getElementType();
1713 if (EltTy.isPointer())
1714 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1715 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1718 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1719 unsigned OpIdx, unsigned ExtOpcode) {
1720 MachineOperand &MO = MI.getOperand(OpIdx);
1721 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1722 MO.setReg(ExtB.getReg(0));
1725 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1726 unsigned OpIdx) {
1727 MachineOperand &MO = MI.getOperand(OpIdx);
1728 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1729 MO.setReg(ExtB.getReg(0));
1732 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1733 unsigned OpIdx, unsigned TruncOpcode) {
1734 MachineOperand &MO = MI.getOperand(OpIdx);
1735 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1736 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1737 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1738 MO.setReg(DstExt);
1741 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1742 unsigned OpIdx, unsigned ExtOpcode) {
1743 MachineOperand &MO = MI.getOperand(OpIdx);
1744 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1745 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1746 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1747 MO.setReg(DstTrunc);
1750 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1751 unsigned OpIdx) {
1752 MachineOperand &MO = MI.getOperand(OpIdx);
1753 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1754 Register Dst = MO.getReg();
1755 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1756 MO.setReg(DstExt);
1757 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt);
1760 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1761 unsigned OpIdx) {
1762 MachineOperand &MO = MI.getOperand(OpIdx);
1763 SmallVector<Register, 8> Regs;
1764 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0));
1767 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1768 MachineOperand &Op = MI.getOperand(OpIdx);
1769 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1772 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1773 MachineOperand &MO = MI.getOperand(OpIdx);
1774 Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1775 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1776 MIRBuilder.buildBitcast(MO, CastDst);
1777 MO.setReg(CastDst);
1780 LegalizerHelper::LegalizeResult
1781 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1782 LLT WideTy) {
1783 if (TypeIdx != 1)
1784 return UnableToLegalize;
1786 auto [DstReg, DstTy, Src1Reg, Src1Ty] = MI.getFirst2RegLLTs();
1787 if (DstTy.isVector())
1788 return UnableToLegalize;
1790 LLT SrcTy = MRI.getType(Src1Reg);
1791 const int DstSize = DstTy.getSizeInBits();
1792 const int SrcSize = SrcTy.getSizeInBits();
1793 const int WideSize = WideTy.getSizeInBits();
1794 const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1796 unsigned NumOps = MI.getNumOperands();
1797 unsigned NumSrc = MI.getNumOperands() - 1;
1798 unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1800 if (WideSize >= DstSize) {
1801 // Directly pack the bits in the target type.
1802 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1Reg).getReg(0);
1804 for (unsigned I = 2; I != NumOps; ++I) {
1805 const unsigned Offset = (I - 1) * PartSize;
1807 Register SrcReg = MI.getOperand(I).getReg();
1808 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1810 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1812 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1813 MRI.createGenericVirtualRegister(WideTy);
1815 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1816 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1817 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1818 ResultReg = NextResult;
1821 if (WideSize > DstSize)
1822 MIRBuilder.buildTrunc(DstReg, ResultReg);
1823 else if (DstTy.isPointer())
1824 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1826 MI.eraseFromParent();
1827 return Legalized;
1830 // Unmerge the original values to the GCD type, and recombine to the next
1831 // multiple greater than the original type.
1833 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1834 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1835 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1836 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1837 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1838 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1839 // %12:_(s12) = G_MERGE_VALUES %10, %11
1841 // Padding with undef if necessary:
1843 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1844 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1845 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1846 // %7:_(s2) = G_IMPLICIT_DEF
1847 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1848 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1849 // %10:_(s12) = G_MERGE_VALUES %8, %9
1851 const int GCD = std::gcd(SrcSize, WideSize);
1852 LLT GCDTy = LLT::scalar(GCD);
1854 SmallVector<Register, 8> Parts;
1855 SmallVector<Register, 8> NewMergeRegs;
1856 SmallVector<Register, 8> Unmerges;
1857 LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1859 // Decompose the original operands if they don't evenly divide.
1860 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1861 Register SrcReg = MO.getReg();
1862 if (GCD == SrcSize) {
1863 Unmerges.push_back(SrcReg);
1864 } else {
1865 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1866 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1867 Unmerges.push_back(Unmerge.getReg(J));
1871 // Pad with undef to the next size that is a multiple of the requested size.
1872 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1873 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1874 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1875 Unmerges.push_back(UndefReg);
1878 const int PartsPerGCD = WideSize / GCD;
1880 // Build merges of each piece.
1881 ArrayRef<Register> Slicer(Unmerges);
1882 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1883 auto Merge =
1884 MIRBuilder.buildMergeLikeInstr(WideTy, Slicer.take_front(PartsPerGCD));
1885 NewMergeRegs.push_back(Merge.getReg(0));
1888 // A truncate may be necessary if the requested type doesn't evenly divide the
1889 // original result type.
1890 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1891 MIRBuilder.buildMergeLikeInstr(DstReg, NewMergeRegs);
1892 } else {
1893 auto FinalMerge = MIRBuilder.buildMergeLikeInstr(WideDstTy, NewMergeRegs);
1894 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1897 MI.eraseFromParent();
1898 return Legalized;
1901 LegalizerHelper::LegalizeResult
1902 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1903 LLT WideTy) {
1904 if (TypeIdx != 0)
1905 return UnableToLegalize;
1907 int NumDst = MI.getNumOperands() - 1;
1908 Register SrcReg = MI.getOperand(NumDst).getReg();
1909 LLT SrcTy = MRI.getType(SrcReg);
1910 if (SrcTy.isVector())
1911 return UnableToLegalize;
1913 Register Dst0Reg = MI.getOperand(0).getReg();
1914 LLT DstTy = MRI.getType(Dst0Reg);
1915 if (!DstTy.isScalar())
1916 return UnableToLegalize;
1918 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1919 if (SrcTy.isPointer()) {
1920 const DataLayout &DL = MIRBuilder.getDataLayout();
1921 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1922 LLVM_DEBUG(
1923 dbgs() << "Not casting non-integral address space integer\n");
1924 return UnableToLegalize;
1927 SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1928 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1931 // Widen SrcTy to WideTy. This does not affect the result, but since the
1932 // user requested this size, it is probably better handled than SrcTy and
1933 // should reduce the total number of legalization artifacts.
1934 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1935 SrcTy = WideTy;
1936 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1939 // Theres no unmerge type to target. Directly extract the bits from the
1940 // source type
1941 unsigned DstSize = DstTy.getSizeInBits();
1943 MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1944 for (int I = 1; I != NumDst; ++I) {
1945 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1946 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1947 MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1950 MI.eraseFromParent();
1951 return Legalized;
1954 // Extend the source to a wider type.
1955 LLT LCMTy = getLCMType(SrcTy, WideTy);
1957 Register WideSrc = SrcReg;
1958 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1959 // TODO: If this is an integral address space, cast to integer and anyext.
1960 if (SrcTy.isPointer()) {
1961 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1962 return UnableToLegalize;
1965 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1968 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1970 // Create a sequence of unmerges and merges to the original results. Since we
1971 // may have widened the source, we will need to pad the results with dead defs
1972 // to cover the source register.
1973 // e.g. widen s48 to s64:
1974 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1976 // =>
1977 // %4:_(s192) = G_ANYEXT %0:_(s96)
1978 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1979 // ; unpack to GCD type, with extra dead defs
1980 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1981 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1982 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1983 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination
1984 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1985 const LLT GCDTy = getGCDType(WideTy, DstTy);
1986 const int NumUnmerge = Unmerge->getNumOperands() - 1;
1987 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1989 // Directly unmerge to the destination without going through a GCD type
1990 // if possible
1991 if (PartsPerRemerge == 1) {
1992 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1994 for (int I = 0; I != NumUnmerge; ++I) {
1995 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1997 for (int J = 0; J != PartsPerUnmerge; ++J) {
1998 int Idx = I * PartsPerUnmerge + J;
1999 if (Idx < NumDst)
2000 MIB.addDef(MI.getOperand(Idx).getReg());
2001 else {
2002 // Create dead def for excess components.
2003 MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
2007 MIB.addUse(Unmerge.getReg(I));
2009 } else {
2010 SmallVector<Register, 16> Parts;
2011 for (int J = 0; J != NumUnmerge; ++J)
2012 extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
2014 SmallVector<Register, 8> RemergeParts;
2015 for (int I = 0; I != NumDst; ++I) {
2016 for (int J = 0; J < PartsPerRemerge; ++J) {
2017 const int Idx = I * PartsPerRemerge + J;
2018 RemergeParts.emplace_back(Parts[Idx]);
2021 MIRBuilder.buildMergeLikeInstr(MI.getOperand(I).getReg(), RemergeParts);
2022 RemergeParts.clear();
2026 MI.eraseFromParent();
2027 return Legalized;
2030 LegalizerHelper::LegalizeResult
2031 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
2032 LLT WideTy) {
2033 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
2034 unsigned Offset = MI.getOperand(2).getImm();
2036 if (TypeIdx == 0) {
2037 if (SrcTy.isVector() || DstTy.isVector())
2038 return UnableToLegalize;
2040 SrcOp Src(SrcReg);
2041 if (SrcTy.isPointer()) {
2042 // Extracts from pointers can be handled only if they are really just
2043 // simple integers.
2044 const DataLayout &DL = MIRBuilder.getDataLayout();
2045 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
2046 return UnableToLegalize;
2048 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
2049 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
2050 SrcTy = SrcAsIntTy;
2053 if (DstTy.isPointer())
2054 return UnableToLegalize;
2056 if (Offset == 0) {
2057 // Avoid a shift in the degenerate case.
2058 MIRBuilder.buildTrunc(DstReg,
2059 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
2060 MI.eraseFromParent();
2061 return Legalized;
2064 // Do a shift in the source type.
2065 LLT ShiftTy = SrcTy;
2066 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
2067 Src = MIRBuilder.buildAnyExt(WideTy, Src);
2068 ShiftTy = WideTy;
2071 auto LShr = MIRBuilder.buildLShr(
2072 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
2073 MIRBuilder.buildTrunc(DstReg, LShr);
2074 MI.eraseFromParent();
2075 return Legalized;
2078 if (SrcTy.isScalar()) {
2079 Observer.changingInstr(MI);
2080 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2081 Observer.changedInstr(MI);
2082 return Legalized;
2085 if (!SrcTy.isVector())
2086 return UnableToLegalize;
2088 if (DstTy != SrcTy.getElementType())
2089 return UnableToLegalize;
2091 if (Offset % SrcTy.getScalarSizeInBits() != 0)
2092 return UnableToLegalize;
2094 Observer.changingInstr(MI);
2095 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2097 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
2098 Offset);
2099 widenScalarDst(MI, WideTy.getScalarType(), 0);
2100 Observer.changedInstr(MI);
2101 return Legalized;
2104 LegalizerHelper::LegalizeResult
2105 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
2106 LLT WideTy) {
2107 if (TypeIdx != 0 || WideTy.isVector())
2108 return UnableToLegalize;
2109 Observer.changingInstr(MI);
2110 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2111 widenScalarDst(MI, WideTy);
2112 Observer.changedInstr(MI);
2113 return Legalized;
2116 LegalizerHelper::LegalizeResult
2117 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
2118 LLT WideTy) {
2119 unsigned Opcode;
2120 unsigned ExtOpcode;
2121 std::optional<Register> CarryIn;
2122 switch (MI.getOpcode()) {
2123 default:
2124 llvm_unreachable("Unexpected opcode!");
2125 case TargetOpcode::G_SADDO:
2126 Opcode = TargetOpcode::G_ADD;
2127 ExtOpcode = TargetOpcode::G_SEXT;
2128 break;
2129 case TargetOpcode::G_SSUBO:
2130 Opcode = TargetOpcode::G_SUB;
2131 ExtOpcode = TargetOpcode::G_SEXT;
2132 break;
2133 case TargetOpcode::G_UADDO:
2134 Opcode = TargetOpcode::G_ADD;
2135 ExtOpcode = TargetOpcode::G_ZEXT;
2136 break;
2137 case TargetOpcode::G_USUBO:
2138 Opcode = TargetOpcode::G_SUB;
2139 ExtOpcode = TargetOpcode::G_ZEXT;
2140 break;
2141 case TargetOpcode::G_SADDE:
2142 Opcode = TargetOpcode::G_UADDE;
2143 ExtOpcode = TargetOpcode::G_SEXT;
2144 CarryIn = MI.getOperand(4).getReg();
2145 break;
2146 case TargetOpcode::G_SSUBE:
2147 Opcode = TargetOpcode::G_USUBE;
2148 ExtOpcode = TargetOpcode::G_SEXT;
2149 CarryIn = MI.getOperand(4).getReg();
2150 break;
2151 case TargetOpcode::G_UADDE:
2152 Opcode = TargetOpcode::G_UADDE;
2153 ExtOpcode = TargetOpcode::G_ZEXT;
2154 CarryIn = MI.getOperand(4).getReg();
2155 break;
2156 case TargetOpcode::G_USUBE:
2157 Opcode = TargetOpcode::G_USUBE;
2158 ExtOpcode = TargetOpcode::G_ZEXT;
2159 CarryIn = MI.getOperand(4).getReg();
2160 break;
2163 if (TypeIdx == 1) {
2164 unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false);
2166 Observer.changingInstr(MI);
2167 if (CarryIn)
2168 widenScalarSrc(MI, WideTy, 4, BoolExtOp);
2169 widenScalarDst(MI, WideTy, 1);
2171 Observer.changedInstr(MI);
2172 return Legalized;
2175 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
2176 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
2177 // Do the arithmetic in the larger type.
2178 Register NewOp;
2179 if (CarryIn) {
2180 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
2181 NewOp = MIRBuilder
2182 .buildInstr(Opcode, {WideTy, CarryOutTy},
2183 {LHSExt, RHSExt, *CarryIn})
2184 .getReg(0);
2185 } else {
2186 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
2188 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
2189 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
2190 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
2191 // There is no overflow if the ExtOp is the same as NewOp.
2192 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
2193 // Now trunc the NewOp to the original result.
2194 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
2195 MI.eraseFromParent();
2196 return Legalized;
2199 LegalizerHelper::LegalizeResult
2200 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
2201 LLT WideTy) {
2202 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
2203 MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
2204 MI.getOpcode() == TargetOpcode::G_SSHLSAT;
2205 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
2206 MI.getOpcode() == TargetOpcode::G_USHLSAT;
2207 // We can convert this to:
2208 // 1. Any extend iN to iM
2209 // 2. SHL by M-N
2210 // 3. [US][ADD|SUB|SHL]SAT
2211 // 4. L/ASHR by M-N
2213 // It may be more efficient to lower this to a min and a max operation in
2214 // the higher precision arithmetic if the promoted operation isn't legal,
2215 // but this decision is up to the target's lowering request.
2216 Register DstReg = MI.getOperand(0).getReg();
2218 unsigned NewBits = WideTy.getScalarSizeInBits();
2219 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
2221 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
2222 // must not left shift the RHS to preserve the shift amount.
2223 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
2224 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
2225 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
2226 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
2227 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
2228 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
2230 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
2231 {ShiftL, ShiftR}, MI.getFlags());
2233 // Use a shift that will preserve the number of sign bits when the trunc is
2234 // folded away.
2235 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
2236 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
2238 MIRBuilder.buildTrunc(DstReg, Result);
2239 MI.eraseFromParent();
2240 return Legalized;
2243 LegalizerHelper::LegalizeResult
2244 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
2245 LLT WideTy) {
2246 if (TypeIdx == 1) {
2247 Observer.changingInstr(MI);
2248 widenScalarDst(MI, WideTy, 1);
2249 Observer.changedInstr(MI);
2250 return Legalized;
2253 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
2254 auto [Result, OriginalOverflow, LHS, RHS] = MI.getFirst4Regs();
2255 LLT SrcTy = MRI.getType(LHS);
2256 LLT OverflowTy = MRI.getType(OriginalOverflow);
2257 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
2259 // To determine if the result overflowed in the larger type, we extend the
2260 // input to the larger type, do the multiply (checking if it overflows),
2261 // then also check the high bits of the result to see if overflow happened
2262 // there.
2263 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2264 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
2265 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
2267 // Multiplication cannot overflow if the WideTy is >= 2 * original width,
2268 // so we don't need to check the overflow result of larger type Mulo.
2269 bool WideMulCanOverflow = WideTy.getScalarSizeInBits() < 2 * SrcBitWidth;
2271 unsigned MulOpc =
2272 WideMulCanOverflow ? MI.getOpcode() : (unsigned)TargetOpcode::G_MUL;
2274 MachineInstrBuilder Mulo;
2275 if (WideMulCanOverflow)
2276 Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy, OverflowTy},
2277 {LeftOperand, RightOperand});
2278 else
2279 Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy}, {LeftOperand, RightOperand});
2281 auto Mul = Mulo->getOperand(0);
2282 MIRBuilder.buildTrunc(Result, Mul);
2284 MachineInstrBuilder ExtResult;
2285 // Overflow occurred if it occurred in the larger type, or if the high part
2286 // of the result does not zero/sign-extend the low part. Check this second
2287 // possibility first.
2288 if (IsSigned) {
2289 // For signed, overflow occurred when the high part does not sign-extend
2290 // the low part.
2291 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
2292 } else {
2293 // Unsigned overflow occurred when the high part does not zero-extend the
2294 // low part.
2295 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
2298 if (WideMulCanOverflow) {
2299 auto Overflow =
2300 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
2301 // Finally check if the multiplication in the larger type itself overflowed.
2302 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
2303 } else {
2304 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
2306 MI.eraseFromParent();
2307 return Legalized;
2310 LegalizerHelper::LegalizeResult
2311 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
2312 switch (MI.getOpcode()) {
2313 default:
2314 return UnableToLegalize;
2315 case TargetOpcode::G_ATOMICRMW_XCHG:
2316 case TargetOpcode::G_ATOMICRMW_ADD:
2317 case TargetOpcode::G_ATOMICRMW_SUB:
2318 case TargetOpcode::G_ATOMICRMW_AND:
2319 case TargetOpcode::G_ATOMICRMW_OR:
2320 case TargetOpcode::G_ATOMICRMW_XOR:
2321 case TargetOpcode::G_ATOMICRMW_MIN:
2322 case TargetOpcode::G_ATOMICRMW_MAX:
2323 case TargetOpcode::G_ATOMICRMW_UMIN:
2324 case TargetOpcode::G_ATOMICRMW_UMAX:
2325 assert(TypeIdx == 0 && "atomicrmw with second scalar type");
2326 Observer.changingInstr(MI);
2327 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2328 widenScalarDst(MI, WideTy, 0);
2329 Observer.changedInstr(MI);
2330 return Legalized;
2331 case TargetOpcode::G_ATOMIC_CMPXCHG:
2332 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
2333 Observer.changingInstr(MI);
2334 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2335 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2336 widenScalarDst(MI, WideTy, 0);
2337 Observer.changedInstr(MI);
2338 return Legalized;
2339 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
2340 if (TypeIdx == 0) {
2341 Observer.changingInstr(MI);
2342 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2343 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2344 widenScalarDst(MI, WideTy, 0);
2345 Observer.changedInstr(MI);
2346 return Legalized;
2348 assert(TypeIdx == 1 &&
2349 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2350 Observer.changingInstr(MI);
2351 widenScalarDst(MI, WideTy, 1);
2352 Observer.changedInstr(MI);
2353 return Legalized;
2354 case TargetOpcode::G_EXTRACT:
2355 return widenScalarExtract(MI, TypeIdx, WideTy);
2356 case TargetOpcode::G_INSERT:
2357 return widenScalarInsert(MI, TypeIdx, WideTy);
2358 case TargetOpcode::G_MERGE_VALUES:
2359 return widenScalarMergeValues(MI, TypeIdx, WideTy);
2360 case TargetOpcode::G_UNMERGE_VALUES:
2361 return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2362 case TargetOpcode::G_SADDO:
2363 case TargetOpcode::G_SSUBO:
2364 case TargetOpcode::G_UADDO:
2365 case TargetOpcode::G_USUBO:
2366 case TargetOpcode::G_SADDE:
2367 case TargetOpcode::G_SSUBE:
2368 case TargetOpcode::G_UADDE:
2369 case TargetOpcode::G_USUBE:
2370 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2371 case TargetOpcode::G_UMULO:
2372 case TargetOpcode::G_SMULO:
2373 return widenScalarMulo(MI, TypeIdx, WideTy);
2374 case TargetOpcode::G_SADDSAT:
2375 case TargetOpcode::G_SSUBSAT:
2376 case TargetOpcode::G_SSHLSAT:
2377 case TargetOpcode::G_UADDSAT:
2378 case TargetOpcode::G_USUBSAT:
2379 case TargetOpcode::G_USHLSAT:
2380 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2381 case TargetOpcode::G_CTTZ:
2382 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2383 case TargetOpcode::G_CTLZ:
2384 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2385 case TargetOpcode::G_CTPOP: {
2386 if (TypeIdx == 0) {
2387 Observer.changingInstr(MI);
2388 widenScalarDst(MI, WideTy, 0);
2389 Observer.changedInstr(MI);
2390 return Legalized;
2393 Register SrcReg = MI.getOperand(1).getReg();
2395 // First extend the input.
2396 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2397 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2398 ? TargetOpcode::G_ANYEXT
2399 : TargetOpcode::G_ZEXT;
2400 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2401 LLT CurTy = MRI.getType(SrcReg);
2402 unsigned NewOpc = MI.getOpcode();
2403 if (NewOpc == TargetOpcode::G_CTTZ) {
2404 // The count is the same in the larger type except if the original
2405 // value was zero. This can be handled by setting the bit just off
2406 // the top of the original type.
2407 auto TopBit =
2408 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2409 MIBSrc = MIRBuilder.buildOr(
2410 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2411 // Now we know the operand is non-zero, use the more relaxed opcode.
2412 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2415 // Perform the operation at the larger size.
2416 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2417 // This is already the correct result for CTPOP and CTTZs
2418 if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2419 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2420 // The correct result is NewOp - (Difference in widety and current ty).
2421 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2422 MIBNewOp = MIRBuilder.buildSub(
2423 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2426 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2427 MI.eraseFromParent();
2428 return Legalized;
2430 case TargetOpcode::G_BSWAP: {
2431 Observer.changingInstr(MI);
2432 Register DstReg = MI.getOperand(0).getReg();
2434 Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2435 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2436 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2437 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2439 MI.getOperand(0).setReg(DstExt);
2441 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2443 LLT Ty = MRI.getType(DstReg);
2444 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2445 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2446 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2448 MIRBuilder.buildTrunc(DstReg, ShrReg);
2449 Observer.changedInstr(MI);
2450 return Legalized;
2452 case TargetOpcode::G_BITREVERSE: {
2453 Observer.changingInstr(MI);
2455 Register DstReg = MI.getOperand(0).getReg();
2456 LLT Ty = MRI.getType(DstReg);
2457 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2459 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2460 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2461 MI.getOperand(0).setReg(DstExt);
2462 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2464 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2465 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2466 MIRBuilder.buildTrunc(DstReg, Shift);
2467 Observer.changedInstr(MI);
2468 return Legalized;
2470 case TargetOpcode::G_FREEZE:
2471 Observer.changingInstr(MI);
2472 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2473 widenScalarDst(MI, WideTy);
2474 Observer.changedInstr(MI);
2475 return Legalized;
2477 case TargetOpcode::G_ABS:
2478 Observer.changingInstr(MI);
2479 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2480 widenScalarDst(MI, WideTy);
2481 Observer.changedInstr(MI);
2482 return Legalized;
2484 case TargetOpcode::G_ADD:
2485 case TargetOpcode::G_AND:
2486 case TargetOpcode::G_MUL:
2487 case TargetOpcode::G_OR:
2488 case TargetOpcode::G_XOR:
2489 case TargetOpcode::G_SUB:
2490 // Perform operation at larger width (any extension is fines here, high bits
2491 // don't affect the result) and then truncate the result back to the
2492 // original type.
2493 Observer.changingInstr(MI);
2494 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2495 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2496 widenScalarDst(MI, WideTy);
2497 Observer.changedInstr(MI);
2498 return Legalized;
2500 case TargetOpcode::G_SBFX:
2501 case TargetOpcode::G_UBFX:
2502 Observer.changingInstr(MI);
2504 if (TypeIdx == 0) {
2505 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2506 widenScalarDst(MI, WideTy);
2507 } else {
2508 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2509 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2512 Observer.changedInstr(MI);
2513 return Legalized;
2515 case TargetOpcode::G_SHL:
2516 Observer.changingInstr(MI);
2518 if (TypeIdx == 0) {
2519 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2520 widenScalarDst(MI, WideTy);
2521 } else {
2522 assert(TypeIdx == 1);
2523 // The "number of bits to shift" operand must preserve its value as an
2524 // unsigned integer:
2525 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2528 Observer.changedInstr(MI);
2529 return Legalized;
2531 case TargetOpcode::G_ROTR:
2532 case TargetOpcode::G_ROTL:
2533 if (TypeIdx != 1)
2534 return UnableToLegalize;
2536 Observer.changingInstr(MI);
2537 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2538 Observer.changedInstr(MI);
2539 return Legalized;
2541 case TargetOpcode::G_SDIV:
2542 case TargetOpcode::G_SREM:
2543 case TargetOpcode::G_SMIN:
2544 case TargetOpcode::G_SMAX:
2545 Observer.changingInstr(MI);
2546 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2547 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2548 widenScalarDst(MI, WideTy);
2549 Observer.changedInstr(MI);
2550 return Legalized;
2552 case TargetOpcode::G_SDIVREM:
2553 Observer.changingInstr(MI);
2554 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2555 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2556 widenScalarDst(MI, WideTy);
2557 widenScalarDst(MI, WideTy, 1);
2558 Observer.changedInstr(MI);
2559 return Legalized;
2561 case TargetOpcode::G_ASHR:
2562 case TargetOpcode::G_LSHR:
2563 Observer.changingInstr(MI);
2565 if (TypeIdx == 0) {
2566 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2567 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2569 widenScalarSrc(MI, WideTy, 1, CvtOp);
2570 widenScalarDst(MI, WideTy);
2571 } else {
2572 assert(TypeIdx == 1);
2573 // The "number of bits to shift" operand must preserve its value as an
2574 // unsigned integer:
2575 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2578 Observer.changedInstr(MI);
2579 return Legalized;
2580 case TargetOpcode::G_UDIV:
2581 case TargetOpcode::G_UREM:
2582 case TargetOpcode::G_UMIN:
2583 case TargetOpcode::G_UMAX:
2584 Observer.changingInstr(MI);
2585 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2586 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2587 widenScalarDst(MI, WideTy);
2588 Observer.changedInstr(MI);
2589 return Legalized;
2591 case TargetOpcode::G_UDIVREM:
2592 Observer.changingInstr(MI);
2593 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2594 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2595 widenScalarDst(MI, WideTy);
2596 widenScalarDst(MI, WideTy, 1);
2597 Observer.changedInstr(MI);
2598 return Legalized;
2600 case TargetOpcode::G_SELECT:
2601 Observer.changingInstr(MI);
2602 if (TypeIdx == 0) {
2603 // Perform operation at larger width (any extension is fine here, high
2604 // bits don't affect the result) and then truncate the result back to the
2605 // original type.
2606 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2607 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2608 widenScalarDst(MI, WideTy);
2609 } else {
2610 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2611 // Explicit extension is required here since high bits affect the result.
2612 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2614 Observer.changedInstr(MI);
2615 return Legalized;
2617 case TargetOpcode::G_FPTOSI:
2618 case TargetOpcode::G_FPTOUI:
2619 case TargetOpcode::G_IS_FPCLASS:
2620 Observer.changingInstr(MI);
2622 if (TypeIdx == 0)
2623 widenScalarDst(MI, WideTy);
2624 else
2625 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2627 Observer.changedInstr(MI);
2628 return Legalized;
2629 case TargetOpcode::G_SITOFP:
2630 Observer.changingInstr(MI);
2632 if (TypeIdx == 0)
2633 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2634 else
2635 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2637 Observer.changedInstr(MI);
2638 return Legalized;
2639 case TargetOpcode::G_UITOFP:
2640 Observer.changingInstr(MI);
2642 if (TypeIdx == 0)
2643 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2644 else
2645 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2647 Observer.changedInstr(MI);
2648 return Legalized;
2649 case TargetOpcode::G_LOAD:
2650 case TargetOpcode::G_SEXTLOAD:
2651 case TargetOpcode::G_ZEXTLOAD:
2652 Observer.changingInstr(MI);
2653 widenScalarDst(MI, WideTy);
2654 Observer.changedInstr(MI);
2655 return Legalized;
2657 case TargetOpcode::G_STORE: {
2658 if (TypeIdx != 0)
2659 return UnableToLegalize;
2661 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2662 if (!Ty.isScalar())
2663 return UnableToLegalize;
2665 Observer.changingInstr(MI);
2667 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2668 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2669 widenScalarSrc(MI, WideTy, 0, ExtType);
2671 Observer.changedInstr(MI);
2672 return Legalized;
2674 case TargetOpcode::G_CONSTANT: {
2675 MachineOperand &SrcMO = MI.getOperand(1);
2676 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2677 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2678 MRI.getType(MI.getOperand(0).getReg()));
2679 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2680 ExtOpc == TargetOpcode::G_ANYEXT) &&
2681 "Illegal Extend");
2682 const APInt &SrcVal = SrcMO.getCImm()->getValue();
2683 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2684 ? SrcVal.sext(WideTy.getSizeInBits())
2685 : SrcVal.zext(WideTy.getSizeInBits());
2686 Observer.changingInstr(MI);
2687 SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2689 widenScalarDst(MI, WideTy);
2690 Observer.changedInstr(MI);
2691 return Legalized;
2693 case TargetOpcode::G_FCONSTANT: {
2694 // To avoid changing the bits of the constant due to extension to a larger
2695 // type and then using G_FPTRUNC, we simply convert to a G_CONSTANT.
2696 MachineOperand &SrcMO = MI.getOperand(1);
2697 APInt Val = SrcMO.getFPImm()->getValueAPF().bitcastToAPInt();
2698 MIRBuilder.setInstrAndDebugLoc(MI);
2699 auto IntCst = MIRBuilder.buildConstant(MI.getOperand(0).getReg(), Val);
2700 widenScalarDst(*IntCst, WideTy, 0, TargetOpcode::G_TRUNC);
2701 MI.eraseFromParent();
2702 return Legalized;
2704 case TargetOpcode::G_IMPLICIT_DEF: {
2705 Observer.changingInstr(MI);
2706 widenScalarDst(MI, WideTy);
2707 Observer.changedInstr(MI);
2708 return Legalized;
2710 case TargetOpcode::G_BRCOND:
2711 Observer.changingInstr(MI);
2712 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2713 Observer.changedInstr(MI);
2714 return Legalized;
2716 case TargetOpcode::G_FCMP:
2717 Observer.changingInstr(MI);
2718 if (TypeIdx == 0)
2719 widenScalarDst(MI, WideTy);
2720 else {
2721 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2722 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2724 Observer.changedInstr(MI);
2725 return Legalized;
2727 case TargetOpcode::G_ICMP:
2728 Observer.changingInstr(MI);
2729 if (TypeIdx == 0)
2730 widenScalarDst(MI, WideTy);
2731 else {
2732 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2733 MI.getOperand(1).getPredicate()))
2734 ? TargetOpcode::G_SEXT
2735 : TargetOpcode::G_ZEXT;
2736 widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2737 widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2739 Observer.changedInstr(MI);
2740 return Legalized;
2742 case TargetOpcode::G_PTR_ADD:
2743 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2744 Observer.changingInstr(MI);
2745 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2746 Observer.changedInstr(MI);
2747 return Legalized;
2749 case TargetOpcode::G_PHI: {
2750 assert(TypeIdx == 0 && "Expecting only Idx 0");
2752 Observer.changingInstr(MI);
2753 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2754 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2755 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward());
2756 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2759 MachineBasicBlock &MBB = *MI.getParent();
2760 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2761 widenScalarDst(MI, WideTy);
2762 Observer.changedInstr(MI);
2763 return Legalized;
2765 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2766 if (TypeIdx == 0) {
2767 Register VecReg = MI.getOperand(1).getReg();
2768 LLT VecTy = MRI.getType(VecReg);
2769 Observer.changingInstr(MI);
2771 widenScalarSrc(
2772 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2773 TargetOpcode::G_ANYEXT);
2775 widenScalarDst(MI, WideTy, 0);
2776 Observer.changedInstr(MI);
2777 return Legalized;
2780 if (TypeIdx != 2)
2781 return UnableToLegalize;
2782 Observer.changingInstr(MI);
2783 // TODO: Probably should be zext
2784 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2785 Observer.changedInstr(MI);
2786 return Legalized;
2788 case TargetOpcode::G_INSERT_VECTOR_ELT: {
2789 if (TypeIdx == 0) {
2790 Observer.changingInstr(MI);
2791 const LLT WideEltTy = WideTy.getElementType();
2793 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2794 widenScalarSrc(MI, WideEltTy, 2, TargetOpcode::G_ANYEXT);
2795 widenScalarDst(MI, WideTy, 0);
2796 Observer.changedInstr(MI);
2797 return Legalized;
2800 if (TypeIdx == 1) {
2801 Observer.changingInstr(MI);
2803 Register VecReg = MI.getOperand(1).getReg();
2804 LLT VecTy = MRI.getType(VecReg);
2805 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2807 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2808 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2809 widenScalarDst(MI, WideVecTy, 0);
2810 Observer.changedInstr(MI);
2811 return Legalized;
2814 if (TypeIdx == 2) {
2815 Observer.changingInstr(MI);
2816 // TODO: Probably should be zext
2817 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2818 Observer.changedInstr(MI);
2819 return Legalized;
2822 return UnableToLegalize;
2824 case TargetOpcode::G_FADD:
2825 case TargetOpcode::G_FMUL:
2826 case TargetOpcode::G_FSUB:
2827 case TargetOpcode::G_FMA:
2828 case TargetOpcode::G_FMAD:
2829 case TargetOpcode::G_FNEG:
2830 case TargetOpcode::G_FABS:
2831 case TargetOpcode::G_FCANONICALIZE:
2832 case TargetOpcode::G_FMINNUM:
2833 case TargetOpcode::G_FMAXNUM:
2834 case TargetOpcode::G_FMINNUM_IEEE:
2835 case TargetOpcode::G_FMAXNUM_IEEE:
2836 case TargetOpcode::G_FMINIMUM:
2837 case TargetOpcode::G_FMAXIMUM:
2838 case TargetOpcode::G_FDIV:
2839 case TargetOpcode::G_FREM:
2840 case TargetOpcode::G_FCEIL:
2841 case TargetOpcode::G_FFLOOR:
2842 case TargetOpcode::G_FCOS:
2843 case TargetOpcode::G_FSIN:
2844 case TargetOpcode::G_FLOG10:
2845 case TargetOpcode::G_FLOG:
2846 case TargetOpcode::G_FLOG2:
2847 case TargetOpcode::G_FRINT:
2848 case TargetOpcode::G_FNEARBYINT:
2849 case TargetOpcode::G_FSQRT:
2850 case TargetOpcode::G_FEXP:
2851 case TargetOpcode::G_FEXP2:
2852 case TargetOpcode::G_FEXP10:
2853 case TargetOpcode::G_FPOW:
2854 case TargetOpcode::G_INTRINSIC_TRUNC:
2855 case TargetOpcode::G_INTRINSIC_ROUND:
2856 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2857 assert(TypeIdx == 0);
2858 Observer.changingInstr(MI);
2860 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2861 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2863 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2864 Observer.changedInstr(MI);
2865 return Legalized;
2866 case TargetOpcode::G_FPOWI:
2867 case TargetOpcode::G_FLDEXP:
2868 case TargetOpcode::G_STRICT_FLDEXP: {
2869 if (TypeIdx == 0) {
2870 if (MI.getOpcode() == TargetOpcode::G_STRICT_FLDEXP)
2871 return UnableToLegalize;
2873 Observer.changingInstr(MI);
2874 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2875 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2876 Observer.changedInstr(MI);
2877 return Legalized;
2880 if (TypeIdx == 1) {
2881 // For some reason SelectionDAG tries to promote to a libcall without
2882 // actually changing the integer type for promotion.
2883 Observer.changingInstr(MI);
2884 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2885 Observer.changedInstr(MI);
2886 return Legalized;
2889 return UnableToLegalize;
2891 case TargetOpcode::G_FFREXP: {
2892 Observer.changingInstr(MI);
2894 if (TypeIdx == 0) {
2895 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2896 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2897 } else {
2898 widenScalarDst(MI, WideTy, 1);
2901 Observer.changedInstr(MI);
2902 return Legalized;
2904 case TargetOpcode::G_INTTOPTR:
2905 if (TypeIdx != 1)
2906 return UnableToLegalize;
2908 Observer.changingInstr(MI);
2909 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2910 Observer.changedInstr(MI);
2911 return Legalized;
2912 case TargetOpcode::G_PTRTOINT:
2913 if (TypeIdx != 0)
2914 return UnableToLegalize;
2916 Observer.changingInstr(MI);
2917 widenScalarDst(MI, WideTy, 0);
2918 Observer.changedInstr(MI);
2919 return Legalized;
2920 case TargetOpcode::G_BUILD_VECTOR: {
2921 Observer.changingInstr(MI);
2923 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2924 for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2925 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2927 // Avoid changing the result vector type if the source element type was
2928 // requested.
2929 if (TypeIdx == 1) {
2930 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2931 } else {
2932 widenScalarDst(MI, WideTy, 0);
2935 Observer.changedInstr(MI);
2936 return Legalized;
2938 case TargetOpcode::G_SEXT_INREG:
2939 if (TypeIdx != 0)
2940 return UnableToLegalize;
2942 Observer.changingInstr(MI);
2943 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2944 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2945 Observer.changedInstr(MI);
2946 return Legalized;
2947 case TargetOpcode::G_PTRMASK: {
2948 if (TypeIdx != 1)
2949 return UnableToLegalize;
2950 Observer.changingInstr(MI);
2951 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2952 Observer.changedInstr(MI);
2953 return Legalized;
2955 case TargetOpcode::G_VECREDUCE_FADD:
2956 case TargetOpcode::G_VECREDUCE_FMUL:
2957 case TargetOpcode::G_VECREDUCE_FMIN:
2958 case TargetOpcode::G_VECREDUCE_FMAX:
2959 case TargetOpcode::G_VECREDUCE_FMINIMUM:
2960 case TargetOpcode::G_VECREDUCE_FMAXIMUM:
2961 if (TypeIdx != 0)
2962 return UnableToLegalize;
2963 Observer.changingInstr(MI);
2964 Register VecReg = MI.getOperand(1).getReg();
2965 LLT VecTy = MRI.getType(VecReg);
2966 LLT WideVecTy = VecTy.isVector()
2967 ? LLT::vector(VecTy.getElementCount(), WideTy)
2968 : WideTy;
2969 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_FPEXT);
2970 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2971 Observer.changedInstr(MI);
2972 return Legalized;
2976 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2977 MachineIRBuilder &B, Register Src, LLT Ty) {
2978 auto Unmerge = B.buildUnmerge(Ty, Src);
2979 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2980 Pieces.push_back(Unmerge.getReg(I));
2983 LegalizerHelper::LegalizeResult
2984 LegalizerHelper::lowerFConstant(MachineInstr &MI) {
2985 Register Dst = MI.getOperand(0).getReg();
2987 MachineFunction &MF = MIRBuilder.getMF();
2988 const DataLayout &DL = MIRBuilder.getDataLayout();
2990 unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace();
2991 LLT AddrPtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
2992 Align Alignment = Align(DL.getABITypeAlign(
2993 getFloatTypeForLLT(MF.getFunction().getContext(), MRI.getType(Dst))));
2995 auto Addr = MIRBuilder.buildConstantPool(
2996 AddrPtrTy, MF.getConstantPool()->getConstantPoolIndex(
2997 MI.getOperand(1).getFPImm(), Alignment));
2999 MachineMemOperand *MMO = MF.getMachineMemOperand(
3000 MachinePointerInfo::getConstantPool(MF), MachineMemOperand::MOLoad,
3001 MRI.getType(Dst), Alignment);
3003 MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, Dst, Addr, *MMO);
3004 MI.eraseFromParent();
3006 return Legalized;
3009 LegalizerHelper::LegalizeResult
3010 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
3011 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
3012 if (SrcTy.isVector()) {
3013 LLT SrcEltTy = SrcTy.getElementType();
3014 SmallVector<Register, 8> SrcRegs;
3016 if (DstTy.isVector()) {
3017 int NumDstElt = DstTy.getNumElements();
3018 int NumSrcElt = SrcTy.getNumElements();
3020 LLT DstEltTy = DstTy.getElementType();
3021 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
3022 LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
3024 // If there's an element size mismatch, insert intermediate casts to match
3025 // the result element type.
3026 if (NumSrcElt < NumDstElt) { // Source element type is larger.
3027 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
3029 // =>
3031 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
3032 // %3:_(<2 x s8>) = G_BITCAST %2
3033 // %4:_(<2 x s8>) = G_BITCAST %3
3034 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
3035 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
3036 SrcPartTy = SrcEltTy;
3037 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
3039 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
3041 // =>
3043 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
3044 // %3:_(s16) = G_BITCAST %2
3045 // %4:_(s16) = G_BITCAST %3
3046 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
3047 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
3048 DstCastTy = DstEltTy;
3051 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
3052 for (Register &SrcReg : SrcRegs)
3053 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
3054 } else
3055 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
3057 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs);
3058 MI.eraseFromParent();
3059 return Legalized;
3062 if (DstTy.isVector()) {
3063 SmallVector<Register, 8> SrcRegs;
3064 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
3065 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs);
3066 MI.eraseFromParent();
3067 return Legalized;
3070 return UnableToLegalize;
3073 /// Figure out the bit offset into a register when coercing a vector index for
3074 /// the wide element type. This is only for the case when promoting vector to
3075 /// one with larger elements.
3078 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
3079 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
3080 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
3081 Register Idx,
3082 unsigned NewEltSize,
3083 unsigned OldEltSize) {
3084 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
3085 LLT IdxTy = B.getMRI()->getType(Idx);
3087 // Now figure out the amount we need to shift to get the target bits.
3088 auto OffsetMask = B.buildConstant(
3089 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio));
3090 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
3091 return B.buildShl(IdxTy, OffsetIdx,
3092 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
3095 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
3096 /// is casting to a vector with a smaller element size, perform multiple element
3097 /// extracts and merge the results. If this is coercing to a vector with larger
3098 /// elements, index the bitcasted vector and extract the target element with bit
3099 /// operations. This is intended to force the indexing in the native register
3100 /// size for architectures that can dynamically index the register file.
3101 LegalizerHelper::LegalizeResult
3102 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
3103 LLT CastTy) {
3104 if (TypeIdx != 1)
3105 return UnableToLegalize;
3107 auto [Dst, DstTy, SrcVec, SrcVecTy, Idx, IdxTy] = MI.getFirst3RegLLTs();
3109 LLT SrcEltTy = SrcVecTy.getElementType();
3110 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
3111 unsigned OldNumElts = SrcVecTy.getNumElements();
3113 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
3114 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
3116 const unsigned NewEltSize = NewEltTy.getSizeInBits();
3117 const unsigned OldEltSize = SrcEltTy.getSizeInBits();
3118 if (NewNumElts > OldNumElts) {
3119 // Decreasing the vector element size
3121 // e.g. i64 = extract_vector_elt x:v2i64, y:i32
3122 // =>
3123 // v4i32:castx = bitcast x:v2i64
3125 // i64 = bitcast
3126 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
3127 // (i32 (extract_vector_elt castx, (2 * y + 1)))
3129 if (NewNumElts % OldNumElts != 0)
3130 return UnableToLegalize;
3132 // Type of the intermediate result vector.
3133 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
3134 LLT MidTy =
3135 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
3137 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
3139 SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
3140 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
3142 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
3143 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
3144 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
3145 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
3146 NewOps[I] = Elt.getReg(0);
3149 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
3150 MIRBuilder.buildBitcast(Dst, NewVec);
3151 MI.eraseFromParent();
3152 return Legalized;
3155 if (NewNumElts < OldNumElts) {
3156 if (NewEltSize % OldEltSize != 0)
3157 return UnableToLegalize;
3159 // This only depends on powers of 2 because we use bit tricks to figure out
3160 // the bit offset we need to shift to get the target element. A general
3161 // expansion could emit division/multiply.
3162 if (!isPowerOf2_32(NewEltSize / OldEltSize))
3163 return UnableToLegalize;
3165 // Increasing the vector element size.
3166 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
3168 // =>
3170 // %cast = G_BITCAST %vec
3171 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
3172 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
3173 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
3174 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
3175 // %elt_bits = G_LSHR %wide_elt, %offset_bits
3176 // %elt = G_TRUNC %elt_bits
3178 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
3179 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
3181 // Divide to get the index in the wider element type.
3182 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
3184 Register WideElt = CastVec;
3185 if (CastTy.isVector()) {
3186 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
3187 ScaledIdx).getReg(0);
3190 // Compute the bit offset into the register of the target element.
3191 Register OffsetBits = getBitcastWiderVectorElementOffset(
3192 MIRBuilder, Idx, NewEltSize, OldEltSize);
3194 // Shift the wide element to get the target element.
3195 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
3196 MIRBuilder.buildTrunc(Dst, ExtractedBits);
3197 MI.eraseFromParent();
3198 return Legalized;
3201 return UnableToLegalize;
3204 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
3205 /// TargetReg, while preserving other bits in \p TargetReg.
3207 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
3208 static Register buildBitFieldInsert(MachineIRBuilder &B,
3209 Register TargetReg, Register InsertReg,
3210 Register OffsetBits) {
3211 LLT TargetTy = B.getMRI()->getType(TargetReg);
3212 LLT InsertTy = B.getMRI()->getType(InsertReg);
3213 auto ZextVal = B.buildZExt(TargetTy, InsertReg);
3214 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
3216 // Produce a bitmask of the value to insert
3217 auto EltMask = B.buildConstant(
3218 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
3219 InsertTy.getSizeInBits()));
3220 // Shift it into position
3221 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
3222 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
3224 // Clear out the bits in the wide element
3225 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
3227 // The value to insert has all zeros already, so stick it into the masked
3228 // wide element.
3229 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
3232 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
3233 /// is increasing the element size, perform the indexing in the target element
3234 /// type, and use bit operations to insert at the element position. This is
3235 /// intended for architectures that can dynamically index the register file and
3236 /// want to force indexing in the native register size.
3237 LegalizerHelper::LegalizeResult
3238 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
3239 LLT CastTy) {
3240 if (TypeIdx != 0)
3241 return UnableToLegalize;
3243 auto [Dst, DstTy, SrcVec, SrcVecTy, Val, ValTy, Idx, IdxTy] =
3244 MI.getFirst4RegLLTs();
3245 LLT VecTy = DstTy;
3247 LLT VecEltTy = VecTy.getElementType();
3248 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
3249 const unsigned NewEltSize = NewEltTy.getSizeInBits();
3250 const unsigned OldEltSize = VecEltTy.getSizeInBits();
3252 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
3253 unsigned OldNumElts = VecTy.getNumElements();
3255 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
3256 if (NewNumElts < OldNumElts) {
3257 if (NewEltSize % OldEltSize != 0)
3258 return UnableToLegalize;
3260 // This only depends on powers of 2 because we use bit tricks to figure out
3261 // the bit offset we need to shift to get the target element. A general
3262 // expansion could emit division/multiply.
3263 if (!isPowerOf2_32(NewEltSize / OldEltSize))
3264 return UnableToLegalize;
3266 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
3267 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
3269 // Divide to get the index in the wider element type.
3270 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
3272 Register ExtractedElt = CastVec;
3273 if (CastTy.isVector()) {
3274 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
3275 ScaledIdx).getReg(0);
3278 // Compute the bit offset into the register of the target element.
3279 Register OffsetBits = getBitcastWiderVectorElementOffset(
3280 MIRBuilder, Idx, NewEltSize, OldEltSize);
3282 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
3283 Val, OffsetBits);
3284 if (CastTy.isVector()) {
3285 InsertedElt = MIRBuilder.buildInsertVectorElement(
3286 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
3289 MIRBuilder.buildBitcast(Dst, InsertedElt);
3290 MI.eraseFromParent();
3291 return Legalized;
3294 return UnableToLegalize;
3297 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
3298 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
3299 Register DstReg = LoadMI.getDstReg();
3300 Register PtrReg = LoadMI.getPointerReg();
3301 LLT DstTy = MRI.getType(DstReg);
3302 MachineMemOperand &MMO = LoadMI.getMMO();
3303 LLT MemTy = MMO.getMemoryType();
3304 MachineFunction &MF = MIRBuilder.getMF();
3306 unsigned MemSizeInBits = MemTy.getSizeInBits();
3307 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
3309 if (MemSizeInBits != MemStoreSizeInBits) {
3310 if (MemTy.isVector())
3311 return UnableToLegalize;
3313 // Promote to a byte-sized load if not loading an integral number of
3314 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
3315 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
3316 MachineMemOperand *NewMMO =
3317 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
3319 Register LoadReg = DstReg;
3320 LLT LoadTy = DstTy;
3322 // If this wasn't already an extending load, we need to widen the result
3323 // register to avoid creating a load with a narrower result than the source.
3324 if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
3325 LoadTy = WideMemTy;
3326 LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
3329 if (isa<GSExtLoad>(LoadMI)) {
3330 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3331 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
3332 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) {
3333 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3334 // The extra bits are guaranteed to be zero, since we stored them that
3335 // way. A zext load from Wide thus automatically gives zext from MemVT.
3336 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
3337 } else {
3338 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
3341 if (DstTy != LoadTy)
3342 MIRBuilder.buildTrunc(DstReg, LoadReg);
3344 LoadMI.eraseFromParent();
3345 return Legalized;
3348 // Big endian lowering not implemented.
3349 if (MIRBuilder.getDataLayout().isBigEndian())
3350 return UnableToLegalize;
3352 // This load needs splitting into power of 2 sized loads.
3354 // Our strategy here is to generate anyextending loads for the smaller
3355 // types up to next power-2 result type, and then combine the two larger
3356 // result values together, before truncating back down to the non-pow-2
3357 // type.
3358 // E.g. v1 = i24 load =>
3359 // v2 = i32 zextload (2 byte)
3360 // v3 = i32 load (1 byte)
3361 // v4 = i32 shl v3, 16
3362 // v5 = i32 or v4, v2
3363 // v1 = i24 trunc v5
3364 // By doing this we generate the correct truncate which should get
3365 // combined away as an artifact with a matching extend.
3367 uint64_t LargeSplitSize, SmallSplitSize;
3369 if (!isPowerOf2_32(MemSizeInBits)) {
3370 // This load needs splitting into power of 2 sized loads.
3371 LargeSplitSize = llvm::bit_floor(MemSizeInBits);
3372 SmallSplitSize = MemSizeInBits - LargeSplitSize;
3373 } else {
3374 // This is already a power of 2, but we still need to split this in half.
3376 // Assume we're being asked to decompose an unaligned load.
3377 // TODO: If this requires multiple splits, handle them all at once.
3378 auto &Ctx = MF.getFunction().getContext();
3379 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3380 return UnableToLegalize;
3382 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3385 if (MemTy.isVector()) {
3386 // TODO: Handle vector extloads
3387 if (MemTy != DstTy)
3388 return UnableToLegalize;
3390 // TODO: We can do better than scalarizing the vector and at least split it
3391 // in half.
3392 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
3395 MachineMemOperand *LargeMMO =
3396 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3397 MachineMemOperand *SmallMMO =
3398 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3400 LLT PtrTy = MRI.getType(PtrReg);
3401 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
3402 LLT AnyExtTy = LLT::scalar(AnyExtSize);
3403 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
3404 PtrReg, *LargeMMO);
3406 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
3407 LargeSplitSize / 8);
3408 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3409 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3410 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3411 SmallPtr, *SmallMMO);
3413 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3414 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3416 if (AnyExtTy == DstTy)
3417 MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3418 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3419 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3420 MIRBuilder.buildTrunc(DstReg, {Or});
3421 } else {
3422 assert(DstTy.isPointer() && "expected pointer");
3423 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3425 // FIXME: We currently consider this to be illegal for non-integral address
3426 // spaces, but we need still need a way to reinterpret the bits.
3427 MIRBuilder.buildIntToPtr(DstReg, Or);
3430 LoadMI.eraseFromParent();
3431 return Legalized;
3434 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3435 // Lower a non-power of 2 store into multiple pow-2 stores.
3436 // E.g. split an i24 store into an i16 store + i8 store.
3437 // We do this by first extending the stored value to the next largest power
3438 // of 2 type, and then using truncating stores to store the components.
3439 // By doing this, likewise with G_LOAD, generate an extend that can be
3440 // artifact-combined away instead of leaving behind extracts.
3441 Register SrcReg = StoreMI.getValueReg();
3442 Register PtrReg = StoreMI.getPointerReg();
3443 LLT SrcTy = MRI.getType(SrcReg);
3444 MachineFunction &MF = MIRBuilder.getMF();
3445 MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3446 LLT MemTy = MMO.getMemoryType();
3448 unsigned StoreWidth = MemTy.getSizeInBits();
3449 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3451 if (StoreWidth != StoreSizeInBits) {
3452 if (SrcTy.isVector())
3453 return UnableToLegalize;
3455 // Promote to a byte-sized store with upper bits zero if not
3456 // storing an integral number of bytes. For example, promote
3457 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3458 LLT WideTy = LLT::scalar(StoreSizeInBits);
3460 if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3461 // Avoid creating a store with a narrower source than result.
3462 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3463 SrcTy = WideTy;
3466 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3468 MachineMemOperand *NewMMO =
3469 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3470 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3471 StoreMI.eraseFromParent();
3472 return Legalized;
3475 if (MemTy.isVector()) {
3476 // TODO: Handle vector trunc stores
3477 if (MemTy != SrcTy)
3478 return UnableToLegalize;
3480 // TODO: We can do better than scalarizing the vector and at least split it
3481 // in half.
3482 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3485 unsigned MemSizeInBits = MemTy.getSizeInBits();
3486 uint64_t LargeSplitSize, SmallSplitSize;
3488 if (!isPowerOf2_32(MemSizeInBits)) {
3489 LargeSplitSize = llvm::bit_floor<uint64_t>(MemTy.getSizeInBits());
3490 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3491 } else {
3492 auto &Ctx = MF.getFunction().getContext();
3493 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3494 return UnableToLegalize; // Don't know what we're being asked to do.
3496 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3499 // Extend to the next pow-2. If this store was itself the result of lowering,
3500 // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3501 // that's wider than the stored size.
3502 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3503 const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3505 if (SrcTy.isPointer()) {
3506 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3507 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3510 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3512 // Obtain the smaller value by shifting away the larger value.
3513 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3514 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3516 // Generate the PtrAdd and truncating stores.
3517 LLT PtrTy = MRI.getType(PtrReg);
3518 auto OffsetCst = MIRBuilder.buildConstant(
3519 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3520 auto SmallPtr =
3521 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3523 MachineMemOperand *LargeMMO =
3524 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3525 MachineMemOperand *SmallMMO =
3526 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3527 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3528 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3529 StoreMI.eraseFromParent();
3530 return Legalized;
3533 LegalizerHelper::LegalizeResult
3534 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3535 switch (MI.getOpcode()) {
3536 case TargetOpcode::G_LOAD: {
3537 if (TypeIdx != 0)
3538 return UnableToLegalize;
3539 MachineMemOperand &MMO = **MI.memoperands_begin();
3541 // Not sure how to interpret a bitcast of an extending load.
3542 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3543 return UnableToLegalize;
3545 Observer.changingInstr(MI);
3546 bitcastDst(MI, CastTy, 0);
3547 MMO.setType(CastTy);
3548 Observer.changedInstr(MI);
3549 return Legalized;
3551 case TargetOpcode::G_STORE: {
3552 if (TypeIdx != 0)
3553 return UnableToLegalize;
3555 MachineMemOperand &MMO = **MI.memoperands_begin();
3557 // Not sure how to interpret a bitcast of a truncating store.
3558 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3559 return UnableToLegalize;
3561 Observer.changingInstr(MI);
3562 bitcastSrc(MI, CastTy, 0);
3563 MMO.setType(CastTy);
3564 Observer.changedInstr(MI);
3565 return Legalized;
3567 case TargetOpcode::G_SELECT: {
3568 if (TypeIdx != 0)
3569 return UnableToLegalize;
3571 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3572 LLVM_DEBUG(
3573 dbgs() << "bitcast action not implemented for vector select\n");
3574 return UnableToLegalize;
3577 Observer.changingInstr(MI);
3578 bitcastSrc(MI, CastTy, 2);
3579 bitcastSrc(MI, CastTy, 3);
3580 bitcastDst(MI, CastTy, 0);
3581 Observer.changedInstr(MI);
3582 return Legalized;
3584 case TargetOpcode::G_AND:
3585 case TargetOpcode::G_OR:
3586 case TargetOpcode::G_XOR: {
3587 Observer.changingInstr(MI);
3588 bitcastSrc(MI, CastTy, 1);
3589 bitcastSrc(MI, CastTy, 2);
3590 bitcastDst(MI, CastTy, 0);
3591 Observer.changedInstr(MI);
3592 return Legalized;
3594 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3595 return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3596 case TargetOpcode::G_INSERT_VECTOR_ELT:
3597 return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3598 default:
3599 return UnableToLegalize;
3603 // Legalize an instruction by changing the opcode in place.
3604 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3605 Observer.changingInstr(MI);
3606 MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3607 Observer.changedInstr(MI);
3610 LegalizerHelper::LegalizeResult
3611 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3612 using namespace TargetOpcode;
3614 switch(MI.getOpcode()) {
3615 default:
3616 return UnableToLegalize;
3617 case TargetOpcode::G_FCONSTANT:
3618 return lowerFConstant(MI);
3619 case TargetOpcode::G_BITCAST:
3620 return lowerBitcast(MI);
3621 case TargetOpcode::G_SREM:
3622 case TargetOpcode::G_UREM: {
3623 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3624 auto Quot =
3625 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3626 {MI.getOperand(1), MI.getOperand(2)});
3628 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3629 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3630 MI.eraseFromParent();
3631 return Legalized;
3633 case TargetOpcode::G_SADDO:
3634 case TargetOpcode::G_SSUBO:
3635 return lowerSADDO_SSUBO(MI);
3636 case TargetOpcode::G_UMULH:
3637 case TargetOpcode::G_SMULH:
3638 return lowerSMULH_UMULH(MI);
3639 case TargetOpcode::G_SMULO:
3640 case TargetOpcode::G_UMULO: {
3641 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3642 // result.
3643 auto [Res, Overflow, LHS, RHS] = MI.getFirst4Regs();
3644 LLT Ty = MRI.getType(Res);
3646 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3647 ? TargetOpcode::G_SMULH
3648 : TargetOpcode::G_UMULH;
3650 Observer.changingInstr(MI);
3651 const auto &TII = MIRBuilder.getTII();
3652 MI.setDesc(TII.get(TargetOpcode::G_MUL));
3653 MI.removeOperand(1);
3654 Observer.changedInstr(MI);
3656 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3657 auto Zero = MIRBuilder.buildConstant(Ty, 0);
3659 // Move insert point forward so we can use the Res register if needed.
3660 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3662 // For *signed* multiply, overflow is detected by checking:
3663 // (hi != (lo >> bitwidth-1))
3664 if (Opcode == TargetOpcode::G_SMULH) {
3665 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3666 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3667 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3668 } else {
3669 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3671 return Legalized;
3673 case TargetOpcode::G_FNEG: {
3674 auto [Res, SubByReg] = MI.getFirst2Regs();
3675 LLT Ty = MRI.getType(Res);
3677 // TODO: Handle vector types once we are able to
3678 // represent them.
3679 if (Ty.isVector())
3680 return UnableToLegalize;
3681 auto SignMask =
3682 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3683 MIRBuilder.buildXor(Res, SubByReg, SignMask);
3684 MI.eraseFromParent();
3685 return Legalized;
3687 case TargetOpcode::G_FSUB:
3688 case TargetOpcode::G_STRICT_FSUB: {
3689 auto [Res, LHS, RHS] = MI.getFirst3Regs();
3690 LLT Ty = MRI.getType(Res);
3692 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3693 auto Neg = MIRBuilder.buildFNeg(Ty, RHS);
3695 if (MI.getOpcode() == TargetOpcode::G_STRICT_FSUB)
3696 MIRBuilder.buildStrictFAdd(Res, LHS, Neg, MI.getFlags());
3697 else
3698 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3700 MI.eraseFromParent();
3701 return Legalized;
3703 case TargetOpcode::G_FMAD:
3704 return lowerFMad(MI);
3705 case TargetOpcode::G_FFLOOR:
3706 return lowerFFloor(MI);
3707 case TargetOpcode::G_INTRINSIC_ROUND:
3708 return lowerIntrinsicRound(MI);
3709 case TargetOpcode::G_FRINT: {
3710 // Since round even is the assumed rounding mode for unconstrained FP
3711 // operations, rint and roundeven are the same operation.
3712 changeOpcode(MI, TargetOpcode::G_INTRINSIC_ROUNDEVEN);
3713 return Legalized;
3715 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3716 auto [OldValRes, SuccessRes, Addr, CmpVal, NewVal] = MI.getFirst5Regs();
3717 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3718 **MI.memoperands_begin());
3719 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3720 MI.eraseFromParent();
3721 return Legalized;
3723 case TargetOpcode::G_LOAD:
3724 case TargetOpcode::G_SEXTLOAD:
3725 case TargetOpcode::G_ZEXTLOAD:
3726 return lowerLoad(cast<GAnyLoad>(MI));
3727 case TargetOpcode::G_STORE:
3728 return lowerStore(cast<GStore>(MI));
3729 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3730 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3731 case TargetOpcode::G_CTLZ:
3732 case TargetOpcode::G_CTTZ:
3733 case TargetOpcode::G_CTPOP:
3734 return lowerBitCount(MI);
3735 case G_UADDO: {
3736 auto [Res, CarryOut, LHS, RHS] = MI.getFirst4Regs();
3738 MIRBuilder.buildAdd(Res, LHS, RHS);
3739 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3741 MI.eraseFromParent();
3742 return Legalized;
3744 case G_UADDE: {
3745 auto [Res, CarryOut, LHS, RHS, CarryIn] = MI.getFirst5Regs();
3746 const LLT CondTy = MRI.getType(CarryOut);
3747 const LLT Ty = MRI.getType(Res);
3749 // Initial add of the two operands.
3750 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3752 // Initial check for carry.
3753 auto Carry = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, TmpRes, LHS);
3755 // Add the sum and the carry.
3756 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3757 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3759 // Second check for carry. We can only carry if the initial sum is all 1s
3760 // and the carry is set, resulting in a new sum of 0.
3761 auto Zero = MIRBuilder.buildConstant(Ty, 0);
3762 auto ResEqZero = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, Res, Zero);
3763 auto Carry2 = MIRBuilder.buildAnd(CondTy, ResEqZero, CarryIn);
3764 MIRBuilder.buildOr(CarryOut, Carry, Carry2);
3766 MI.eraseFromParent();
3767 return Legalized;
3769 case G_USUBO: {
3770 auto [Res, BorrowOut, LHS, RHS] = MI.getFirst4Regs();
3772 MIRBuilder.buildSub(Res, LHS, RHS);
3773 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3775 MI.eraseFromParent();
3776 return Legalized;
3778 case G_USUBE: {
3779 auto [Res, BorrowOut, LHS, RHS, BorrowIn] = MI.getFirst5Regs();
3780 const LLT CondTy = MRI.getType(BorrowOut);
3781 const LLT Ty = MRI.getType(Res);
3783 // Initial subtract of the two operands.
3784 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3786 // Initial check for borrow.
3787 auto Borrow = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, CondTy, TmpRes, LHS);
3789 // Subtract the borrow from the first subtract.
3790 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3791 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3793 // Second check for borrow. We can only borrow if the initial difference is
3794 // 0 and the borrow is set, resulting in a new difference of all 1s.
3795 auto Zero = MIRBuilder.buildConstant(Ty, 0);
3796 auto TmpResEqZero =
3797 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, TmpRes, Zero);
3798 auto Borrow2 = MIRBuilder.buildAnd(CondTy, TmpResEqZero, BorrowIn);
3799 MIRBuilder.buildOr(BorrowOut, Borrow, Borrow2);
3801 MI.eraseFromParent();
3802 return Legalized;
3804 case G_UITOFP:
3805 return lowerUITOFP(MI);
3806 case G_SITOFP:
3807 return lowerSITOFP(MI);
3808 case G_FPTOUI:
3809 return lowerFPTOUI(MI);
3810 case G_FPTOSI:
3811 return lowerFPTOSI(MI);
3812 case G_FPTRUNC:
3813 return lowerFPTRUNC(MI);
3814 case G_FPOWI:
3815 return lowerFPOWI(MI);
3816 case G_SMIN:
3817 case G_SMAX:
3818 case G_UMIN:
3819 case G_UMAX:
3820 return lowerMinMax(MI);
3821 case G_FCOPYSIGN:
3822 return lowerFCopySign(MI);
3823 case G_FMINNUM:
3824 case G_FMAXNUM:
3825 return lowerFMinNumMaxNum(MI);
3826 case G_MERGE_VALUES:
3827 return lowerMergeValues(MI);
3828 case G_UNMERGE_VALUES:
3829 return lowerUnmergeValues(MI);
3830 case TargetOpcode::G_SEXT_INREG: {
3831 assert(MI.getOperand(2).isImm() && "Expected immediate");
3832 int64_t SizeInBits = MI.getOperand(2).getImm();
3834 auto [DstReg, SrcReg] = MI.getFirst2Regs();
3835 LLT DstTy = MRI.getType(DstReg);
3836 Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3838 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3839 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3840 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3841 MI.eraseFromParent();
3842 return Legalized;
3844 case G_EXTRACT_VECTOR_ELT:
3845 case G_INSERT_VECTOR_ELT:
3846 return lowerExtractInsertVectorElt(MI);
3847 case G_SHUFFLE_VECTOR:
3848 return lowerShuffleVector(MI);
3849 case G_DYN_STACKALLOC:
3850 return lowerDynStackAlloc(MI);
3851 case G_STACKSAVE:
3852 return lowerStackSave(MI);
3853 case G_STACKRESTORE:
3854 return lowerStackRestore(MI);
3855 case G_EXTRACT:
3856 return lowerExtract(MI);
3857 case G_INSERT:
3858 return lowerInsert(MI);
3859 case G_BSWAP:
3860 return lowerBswap(MI);
3861 case G_BITREVERSE:
3862 return lowerBitreverse(MI);
3863 case G_READ_REGISTER:
3864 case G_WRITE_REGISTER:
3865 return lowerReadWriteRegister(MI);
3866 case G_UADDSAT:
3867 case G_USUBSAT: {
3868 // Try to make a reasonable guess about which lowering strategy to use. The
3869 // target can override this with custom lowering and calling the
3870 // implementation functions.
3871 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3872 if (LI.isLegalOrCustom({G_UMIN, Ty}))
3873 return lowerAddSubSatToMinMax(MI);
3874 return lowerAddSubSatToAddoSubo(MI);
3876 case G_SADDSAT:
3877 case G_SSUBSAT: {
3878 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3880 // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3881 // since it's a shorter expansion. However, we would need to figure out the
3882 // preferred boolean type for the carry out for the query.
3883 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3884 return lowerAddSubSatToMinMax(MI);
3885 return lowerAddSubSatToAddoSubo(MI);
3887 case G_SSHLSAT:
3888 case G_USHLSAT:
3889 return lowerShlSat(MI);
3890 case G_ABS:
3891 return lowerAbsToAddXor(MI);
3892 case G_SELECT:
3893 return lowerSelect(MI);
3894 case G_IS_FPCLASS:
3895 return lowerISFPCLASS(MI);
3896 case G_SDIVREM:
3897 case G_UDIVREM:
3898 return lowerDIVREM(MI);
3899 case G_FSHL:
3900 case G_FSHR:
3901 return lowerFunnelShift(MI);
3902 case G_ROTL:
3903 case G_ROTR:
3904 return lowerRotate(MI);
3905 case G_MEMSET:
3906 case G_MEMCPY:
3907 case G_MEMMOVE:
3908 return lowerMemCpyFamily(MI);
3909 case G_MEMCPY_INLINE:
3910 return lowerMemcpyInline(MI);
3911 case G_ZEXT:
3912 case G_SEXT:
3913 case G_ANYEXT:
3914 return lowerEXT(MI);
3915 case G_TRUNC:
3916 return lowerTRUNC(MI);
3917 GISEL_VECREDUCE_CASES_NONSEQ
3918 return lowerVectorReduction(MI);
3919 case G_VAARG:
3920 return lowerVAArg(MI);
3924 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3925 Align MinAlign) const {
3926 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3927 // datalayout for the preferred alignment. Also there should be a target hook
3928 // for this to allow targets to reduce the alignment and ignore the
3929 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3930 // the type.
3931 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3934 MachineInstrBuilder
3935 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3936 MachinePointerInfo &PtrInfo) {
3937 MachineFunction &MF = MIRBuilder.getMF();
3938 const DataLayout &DL = MIRBuilder.getDataLayout();
3939 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3941 unsigned AddrSpace = DL.getAllocaAddrSpace();
3942 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3944 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3945 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3948 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3949 LLT VecTy) {
3950 int64_t IdxVal;
3951 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3952 return IdxReg;
3954 LLT IdxTy = B.getMRI()->getType(IdxReg);
3955 unsigned NElts = VecTy.getNumElements();
3956 if (isPowerOf2_32(NElts)) {
3957 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3958 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3961 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3962 .getReg(0);
3965 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3966 Register Index) {
3967 LLT EltTy = VecTy.getElementType();
3969 // Calculate the element offset and add it to the pointer.
3970 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3971 assert(EltSize * 8 == EltTy.getSizeInBits() &&
3972 "Converting bits to bytes lost precision");
3974 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3976 LLT IdxTy = MRI.getType(Index);
3977 auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3978 MIRBuilder.buildConstant(IdxTy, EltSize));
3980 LLT PtrTy = MRI.getType(VecPtr);
3981 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3984 #ifndef NDEBUG
3985 /// Check that all vector operands have same number of elements. Other operands
3986 /// should be listed in NonVecOp.
3987 static bool hasSameNumEltsOnAllVectorOperands(
3988 GenericMachineInstr &MI, MachineRegisterInfo &MRI,
3989 std::initializer_list<unsigned> NonVecOpIndices) {
3990 if (MI.getNumMemOperands() != 0)
3991 return false;
3993 LLT VecTy = MRI.getType(MI.getReg(0));
3994 if (!VecTy.isVector())
3995 return false;
3996 unsigned NumElts = VecTy.getNumElements();
3998 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
3999 MachineOperand &Op = MI.getOperand(OpIdx);
4000 if (!Op.isReg()) {
4001 if (!is_contained(NonVecOpIndices, OpIdx))
4002 return false;
4003 continue;
4006 LLT Ty = MRI.getType(Op.getReg());
4007 if (!Ty.isVector()) {
4008 if (!is_contained(NonVecOpIndices, OpIdx))
4009 return false;
4010 continue;
4013 if (Ty.getNumElements() != NumElts)
4014 return false;
4017 return true;
4019 #endif
4021 /// Fill \p DstOps with DstOps that have same number of elements combined as
4022 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are
4023 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple
4024 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements.
4025 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty,
4026 unsigned NumElts) {
4027 LLT LeftoverTy;
4028 assert(Ty.isVector() && "Expected vector type");
4029 LLT EltTy = Ty.getElementType();
4030 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
4031 int NumParts, NumLeftover;
4032 std::tie(NumParts, NumLeftover) =
4033 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy);
4035 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown");
4036 for (int i = 0; i < NumParts; ++i) {
4037 DstOps.push_back(NarrowTy);
4040 if (LeftoverTy.isValid()) {
4041 assert(NumLeftover == 1 && "expected exactly one leftover");
4042 DstOps.push_back(LeftoverTy);
4046 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps
4047 /// made from \p Op depending on operand type.
4048 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N,
4049 MachineOperand &Op) {
4050 for (unsigned i = 0; i < N; ++i) {
4051 if (Op.isReg())
4052 Ops.push_back(Op.getReg());
4053 else if (Op.isImm())
4054 Ops.push_back(Op.getImm());
4055 else if (Op.isPredicate())
4056 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate()));
4057 else
4058 llvm_unreachable("Unsupported type");
4062 // Handle splitting vector operations which need to have the same number of
4063 // elements in each type index, but each type index may have a different element
4064 // type.
4066 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
4067 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
4068 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
4070 // Also handles some irregular breakdown cases, e.g.
4071 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
4072 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
4073 // s64 = G_SHL s64, s32
4074 LegalizerHelper::LegalizeResult
4075 LegalizerHelper::fewerElementsVectorMultiEltType(
4076 GenericMachineInstr &MI, unsigned NumElts,
4077 std::initializer_list<unsigned> NonVecOpIndices) {
4078 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) &&
4079 "Non-compatible opcode or not specified non-vector operands");
4080 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
4082 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
4083 unsigned NumDefs = MI.getNumDefs();
4085 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output.
4086 // Build instructions with DstOps to use instruction found by CSE directly.
4087 // CSE copies found instruction into given vreg when building with vreg dest.
4088 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs);
4089 // Output registers will be taken from created instructions.
4090 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs);
4091 for (unsigned i = 0; i < NumDefs; ++i) {
4092 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts);
4095 // Split vector input operands into sub-vectors with NumElts elts + Leftover.
4096 // Operands listed in NonVecOpIndices will be used as is without splitting;
4097 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1
4098 // scalar condition (op 1), immediate in sext_inreg (op 2).
4099 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs);
4100 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
4101 ++UseIdx, ++UseNo) {
4102 if (is_contained(NonVecOpIndices, UseIdx)) {
4103 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(),
4104 MI.getOperand(UseIdx));
4105 } else {
4106 SmallVector<Register, 8> SplitPieces;
4107 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces, MIRBuilder,
4108 MRI);
4109 for (auto Reg : SplitPieces)
4110 InputOpsPieces[UseNo].push_back(Reg);
4114 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
4116 // Take i-th piece of each input operand split and build sub-vector/scalar
4117 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s).
4118 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
4119 SmallVector<DstOp, 2> Defs;
4120 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
4121 Defs.push_back(OutputOpsPieces[DstNo][i]);
4123 SmallVector<SrcOp, 3> Uses;
4124 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo)
4125 Uses.push_back(InputOpsPieces[InputNo][i]);
4127 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags());
4128 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
4129 OutputRegs[DstNo].push_back(I.getReg(DstNo));
4132 // Merge small outputs into MI's output for each def operand.
4133 if (NumLeftovers) {
4134 for (unsigned i = 0; i < NumDefs; ++i)
4135 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]);
4136 } else {
4137 for (unsigned i = 0; i < NumDefs; ++i)
4138 MIRBuilder.buildMergeLikeInstr(MI.getReg(i), OutputRegs[i]);
4141 MI.eraseFromParent();
4142 return Legalized;
4145 LegalizerHelper::LegalizeResult
4146 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI,
4147 unsigned NumElts) {
4148 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
4150 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
4151 unsigned NumDefs = MI.getNumDefs();
4153 SmallVector<DstOp, 8> OutputOpsPieces;
4154 SmallVector<Register, 8> OutputRegs;
4155 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts);
4157 // Instructions that perform register split will be inserted in basic block
4158 // where register is defined (basic block is in the next operand).
4159 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2);
4160 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
4161 UseIdx += 2, ++UseNo) {
4162 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB();
4163 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward());
4164 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo],
4165 MIRBuilder, MRI);
4168 // Build PHIs with fewer elements.
4169 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
4170 MIRBuilder.setInsertPt(*MI.getParent(), MI);
4171 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
4172 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
4173 Phi.addDef(
4174 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI)));
4175 OutputRegs.push_back(Phi.getReg(0));
4177 for (unsigned j = 0; j < NumInputs / 2; ++j) {
4178 Phi.addUse(InputOpsPieces[j][i]);
4179 Phi.add(MI.getOperand(1 + j * 2 + 1));
4183 // Merge small outputs into MI's def.
4184 if (NumLeftovers) {
4185 mergeMixedSubvectors(MI.getReg(0), OutputRegs);
4186 } else {
4187 MIRBuilder.buildMergeLikeInstr(MI.getReg(0), OutputRegs);
4190 MI.eraseFromParent();
4191 return Legalized;
4194 LegalizerHelper::LegalizeResult
4195 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
4196 unsigned TypeIdx,
4197 LLT NarrowTy) {
4198 const int NumDst = MI.getNumOperands() - 1;
4199 const Register SrcReg = MI.getOperand(NumDst).getReg();
4200 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4201 LLT SrcTy = MRI.getType(SrcReg);
4203 if (TypeIdx != 1 || NarrowTy == DstTy)
4204 return UnableToLegalize;
4206 // Requires compatible types. Otherwise SrcReg should have been defined by
4207 // merge-like instruction that would get artifact combined. Most likely
4208 // instruction that defines SrcReg has to perform more/fewer elements
4209 // legalization compatible with NarrowTy.
4210 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types");
4211 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
4213 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
4214 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0))
4215 return UnableToLegalize;
4217 // This is most likely DstTy (smaller then register size) packed in SrcTy
4218 // (larger then register size) and since unmerge was not combined it will be
4219 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy
4220 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy.
4222 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy)
4224 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence
4225 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg
4226 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy)
4227 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg);
4228 const int NumUnmerge = Unmerge->getNumOperands() - 1;
4229 const int PartsPerUnmerge = NumDst / NumUnmerge;
4231 for (int I = 0; I != NumUnmerge; ++I) {
4232 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4234 for (int J = 0; J != PartsPerUnmerge; ++J)
4235 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
4236 MIB.addUse(Unmerge.getReg(I));
4239 MI.eraseFromParent();
4240 return Legalized;
4243 LegalizerHelper::LegalizeResult
4244 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
4245 LLT NarrowTy) {
4246 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
4247 // Requires compatible types. Otherwise user of DstReg did not perform unmerge
4248 // that should have been artifact combined. Most likely instruction that uses
4249 // DstReg has to do more/fewer elements legalization compatible with NarrowTy.
4250 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types");
4251 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
4252 if (NarrowTy == SrcTy)
4253 return UnableToLegalize;
4255 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use
4256 // is for old mir tests. Since the changes to more/fewer elements it should no
4257 // longer be possible to generate MIR like this when starting from llvm-ir
4258 // because LCMTy approach was replaced with merge/unmerge to vector elements.
4259 if (TypeIdx == 1) {
4260 assert(SrcTy.isVector() && "Expected vector types");
4261 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
4262 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
4263 (NarrowTy.getNumElements() >= SrcTy.getNumElements()))
4264 return UnableToLegalize;
4265 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy)
4267 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy)
4268 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy)
4269 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4
4270 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6
4271 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8
4272 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11
4274 SmallVector<Register, 8> Elts;
4275 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType();
4276 for (unsigned i = 1; i < MI.getNumOperands(); ++i) {
4277 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg());
4278 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j)
4279 Elts.push_back(Unmerge.getReg(j));
4282 SmallVector<Register, 8> NarrowTyElts;
4283 unsigned NumNarrowTyElts = NarrowTy.getNumElements();
4284 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts;
4285 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces;
4286 ++i, Offset += NumNarrowTyElts) {
4287 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts);
4288 NarrowTyElts.push_back(
4289 MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0));
4292 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts);
4293 MI.eraseFromParent();
4294 return Legalized;
4297 assert(TypeIdx == 0 && "Bad type index");
4298 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) ||
4299 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0))
4300 return UnableToLegalize;
4302 // This is most likely SrcTy (smaller then register size) packed in DstTy
4303 // (larger then register size) and since merge was not combined it will be
4304 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy
4305 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy.
4307 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4
4309 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg
4310 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4
4311 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence
4312 SmallVector<Register, 8> NarrowTyElts;
4313 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
4314 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
4315 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts;
4316 for (unsigned i = 0; i < NumParts; ++i) {
4317 SmallVector<Register, 8> Sources;
4318 for (unsigned j = 0; j < NumElts; ++j)
4319 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg());
4320 NarrowTyElts.push_back(
4321 MIRBuilder.buildMergeLikeInstr(NarrowTy, Sources).getReg(0));
4324 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts);
4325 MI.eraseFromParent();
4326 return Legalized;
4329 LegalizerHelper::LegalizeResult
4330 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
4331 unsigned TypeIdx,
4332 LLT NarrowVecTy) {
4333 auto [DstReg, SrcVec] = MI.getFirst2Regs();
4334 Register InsertVal;
4335 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
4337 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
4338 if (IsInsert)
4339 InsertVal = MI.getOperand(2).getReg();
4341 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
4343 // TODO: Handle total scalarization case.
4344 if (!NarrowVecTy.isVector())
4345 return UnableToLegalize;
4347 LLT VecTy = MRI.getType(SrcVec);
4349 // If the index is a constant, we can really break this down as you would
4350 // expect, and index into the target size pieces.
4351 int64_t IdxVal;
4352 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI);
4353 if (MaybeCst) {
4354 IdxVal = MaybeCst->Value.getSExtValue();
4355 // Avoid out of bounds indexing the pieces.
4356 if (IdxVal >= VecTy.getNumElements()) {
4357 MIRBuilder.buildUndef(DstReg);
4358 MI.eraseFromParent();
4359 return Legalized;
4362 SmallVector<Register, 8> VecParts;
4363 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4365 // Build a sequence of NarrowTy pieces in VecParts for this operand.
4366 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4367 TargetOpcode::G_ANYEXT);
4369 unsigned NewNumElts = NarrowVecTy.getNumElements();
4371 LLT IdxTy = MRI.getType(Idx);
4372 int64_t PartIdx = IdxVal / NewNumElts;
4373 auto NewIdx =
4374 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4376 if (IsInsert) {
4377 LLT PartTy = MRI.getType(VecParts[PartIdx]);
4379 // Use the adjusted index to insert into one of the subvectors.
4380 auto InsertPart = MIRBuilder.buildInsertVectorElement(
4381 PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4382 VecParts[PartIdx] = InsertPart.getReg(0);
4384 // Recombine the inserted subvector with the others to reform the result
4385 // vector.
4386 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4387 } else {
4388 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4391 MI.eraseFromParent();
4392 return Legalized;
4395 // With a variable index, we can't perform the operation in a smaller type, so
4396 // we're forced to expand this.
4398 // TODO: We could emit a chain of compare/select to figure out which piece to
4399 // index.
4400 return lowerExtractInsertVectorElt(MI);
4403 LegalizerHelper::LegalizeResult
4404 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4405 LLT NarrowTy) {
4406 // FIXME: Don't know how to handle secondary types yet.
4407 if (TypeIdx != 0)
4408 return UnableToLegalize;
4410 // This implementation doesn't work for atomics. Give up instead of doing
4411 // something invalid.
4412 if (LdStMI.isAtomic())
4413 return UnableToLegalize;
4415 bool IsLoad = isa<GLoad>(LdStMI);
4416 Register ValReg = LdStMI.getReg(0);
4417 Register AddrReg = LdStMI.getPointerReg();
4418 LLT ValTy = MRI.getType(ValReg);
4420 // FIXME: Do we need a distinct NarrowMemory legalize action?
4421 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4422 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4423 return UnableToLegalize;
4426 int NumParts = -1;
4427 int NumLeftover = -1;
4428 LLT LeftoverTy;
4429 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4430 if (IsLoad) {
4431 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4432 } else {
4433 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4434 NarrowLeftoverRegs, MIRBuilder, MRI)) {
4435 NumParts = NarrowRegs.size();
4436 NumLeftover = NarrowLeftoverRegs.size();
4440 if (NumParts == -1)
4441 return UnableToLegalize;
4443 LLT PtrTy = MRI.getType(AddrReg);
4444 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4446 unsigned TotalSize = ValTy.getSizeInBits();
4448 // Split the load/store into PartTy sized pieces starting at Offset. If this
4449 // is a load, return the new registers in ValRegs. For a store, each elements
4450 // of ValRegs should be PartTy. Returns the next offset that needs to be
4451 // handled.
4452 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian();
4453 auto MMO = LdStMI.getMMO();
4454 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4455 unsigned NumParts, unsigned Offset) -> unsigned {
4456 MachineFunction &MF = MIRBuilder.getMF();
4457 unsigned PartSize = PartTy.getSizeInBits();
4458 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4459 ++Idx) {
4460 unsigned ByteOffset = Offset / 8;
4461 Register NewAddrReg;
4463 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4465 MachineMemOperand *NewMMO =
4466 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4468 if (IsLoad) {
4469 Register Dst = MRI.createGenericVirtualRegister(PartTy);
4470 ValRegs.push_back(Dst);
4471 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4472 } else {
4473 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4475 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize;
4478 return Offset;
4481 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0;
4482 unsigned HandledOffset =
4483 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset);
4485 // Handle the rest of the register if this isn't an even type breakdown.
4486 if (LeftoverTy.isValid())
4487 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset);
4489 if (IsLoad) {
4490 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4491 LeftoverTy, NarrowLeftoverRegs);
4494 LdStMI.eraseFromParent();
4495 return Legalized;
4498 LegalizerHelper::LegalizeResult
4499 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4500 LLT NarrowTy) {
4501 using namespace TargetOpcode;
4502 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI);
4503 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
4505 switch (MI.getOpcode()) {
4506 case G_IMPLICIT_DEF:
4507 case G_TRUNC:
4508 case G_AND:
4509 case G_OR:
4510 case G_XOR:
4511 case G_ADD:
4512 case G_SUB:
4513 case G_MUL:
4514 case G_PTR_ADD:
4515 case G_SMULH:
4516 case G_UMULH:
4517 case G_FADD:
4518 case G_FMUL:
4519 case G_FSUB:
4520 case G_FNEG:
4521 case G_FABS:
4522 case G_FCANONICALIZE:
4523 case G_FDIV:
4524 case G_FREM:
4525 case G_FMA:
4526 case G_FMAD:
4527 case G_FPOW:
4528 case G_FEXP:
4529 case G_FEXP2:
4530 case G_FEXP10:
4531 case G_FLOG:
4532 case G_FLOG2:
4533 case G_FLOG10:
4534 case G_FLDEXP:
4535 case G_FNEARBYINT:
4536 case G_FCEIL:
4537 case G_FFLOOR:
4538 case G_FRINT:
4539 case G_INTRINSIC_ROUND:
4540 case G_INTRINSIC_ROUNDEVEN:
4541 case G_INTRINSIC_TRUNC:
4542 case G_FCOS:
4543 case G_FSIN:
4544 case G_FSQRT:
4545 case G_BSWAP:
4546 case G_BITREVERSE:
4547 case G_SDIV:
4548 case G_UDIV:
4549 case G_SREM:
4550 case G_UREM:
4551 case G_SDIVREM:
4552 case G_UDIVREM:
4553 case G_SMIN:
4554 case G_SMAX:
4555 case G_UMIN:
4556 case G_UMAX:
4557 case G_ABS:
4558 case G_FMINNUM:
4559 case G_FMAXNUM:
4560 case G_FMINNUM_IEEE:
4561 case G_FMAXNUM_IEEE:
4562 case G_FMINIMUM:
4563 case G_FMAXIMUM:
4564 case G_FSHL:
4565 case G_FSHR:
4566 case G_ROTL:
4567 case G_ROTR:
4568 case G_FREEZE:
4569 case G_SADDSAT:
4570 case G_SSUBSAT:
4571 case G_UADDSAT:
4572 case G_USUBSAT:
4573 case G_UMULO:
4574 case G_SMULO:
4575 case G_SHL:
4576 case G_LSHR:
4577 case G_ASHR:
4578 case G_SSHLSAT:
4579 case G_USHLSAT:
4580 case G_CTLZ:
4581 case G_CTLZ_ZERO_UNDEF:
4582 case G_CTTZ:
4583 case G_CTTZ_ZERO_UNDEF:
4584 case G_CTPOP:
4585 case G_FCOPYSIGN:
4586 case G_ZEXT:
4587 case G_SEXT:
4588 case G_ANYEXT:
4589 case G_FPEXT:
4590 case G_FPTRUNC:
4591 case G_SITOFP:
4592 case G_UITOFP:
4593 case G_FPTOSI:
4594 case G_FPTOUI:
4595 case G_INTTOPTR:
4596 case G_PTRTOINT:
4597 case G_ADDRSPACE_CAST:
4598 case G_UADDO:
4599 case G_USUBO:
4600 case G_UADDE:
4601 case G_USUBE:
4602 case G_SADDO:
4603 case G_SSUBO:
4604 case G_SADDE:
4605 case G_SSUBE:
4606 case G_STRICT_FADD:
4607 case G_STRICT_FSUB:
4608 case G_STRICT_FMUL:
4609 case G_STRICT_FMA:
4610 case G_STRICT_FLDEXP:
4611 case G_FFREXP:
4612 return fewerElementsVectorMultiEltType(GMI, NumElts);
4613 case G_ICMP:
4614 case G_FCMP:
4615 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/});
4616 case G_IS_FPCLASS:
4617 return fewerElementsVectorMultiEltType(GMI, NumElts, {2, 3 /*mask,fpsem*/});
4618 case G_SELECT:
4619 if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4620 return fewerElementsVectorMultiEltType(GMI, NumElts);
4621 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/});
4622 case G_PHI:
4623 return fewerElementsVectorPhi(GMI, NumElts);
4624 case G_UNMERGE_VALUES:
4625 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4626 case G_BUILD_VECTOR:
4627 assert(TypeIdx == 0 && "not a vector type index");
4628 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4629 case G_CONCAT_VECTORS:
4630 if (TypeIdx != 1) // TODO: This probably does work as expected already.
4631 return UnableToLegalize;
4632 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4633 case G_EXTRACT_VECTOR_ELT:
4634 case G_INSERT_VECTOR_ELT:
4635 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4636 case G_LOAD:
4637 case G_STORE:
4638 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4639 case G_SEXT_INREG:
4640 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/});
4641 GISEL_VECREDUCE_CASES_NONSEQ
4642 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4643 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
4644 case TargetOpcode::G_VECREDUCE_SEQ_FMUL:
4645 return fewerElementsVectorSeqReductions(MI, TypeIdx, NarrowTy);
4646 case G_SHUFFLE_VECTOR:
4647 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4648 case G_FPOWI:
4649 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*pow*/});
4650 default:
4651 return UnableToLegalize;
4655 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4656 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4657 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4658 if (TypeIdx != 0)
4659 return UnableToLegalize;
4661 auto [DstReg, DstTy, Src1Reg, Src1Ty, Src2Reg, Src2Ty] =
4662 MI.getFirst3RegLLTs();
4663 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4664 // The shuffle should be canonicalized by now.
4665 if (DstTy != Src1Ty)
4666 return UnableToLegalize;
4667 if (DstTy != Src2Ty)
4668 return UnableToLegalize;
4670 if (!isPowerOf2_32(DstTy.getNumElements()))
4671 return UnableToLegalize;
4673 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4674 // Further legalization attempts will be needed to do split further.
4675 NarrowTy =
4676 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4677 unsigned NewElts = NarrowTy.getNumElements();
4679 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4680 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs, MIRBuilder, MRI);
4681 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs, MIRBuilder, MRI);
4682 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4683 SplitSrc2Regs[1]};
4685 Register Hi, Lo;
4687 // If Lo or Hi uses elements from at most two of the four input vectors, then
4688 // express it as a vector shuffle of those two inputs. Otherwise extract the
4689 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4690 SmallVector<int, 16> Ops;
4691 for (unsigned High = 0; High < 2; ++High) {
4692 Register &Output = High ? Hi : Lo;
4694 // Build a shuffle mask for the output, discovering on the fly which
4695 // input vectors to use as shuffle operands (recorded in InputUsed).
4696 // If building a suitable shuffle vector proves too hard, then bail
4697 // out with useBuildVector set.
4698 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4699 unsigned FirstMaskIdx = High * NewElts;
4700 bool UseBuildVector = false;
4701 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4702 // The mask element. This indexes into the input.
4703 int Idx = Mask[FirstMaskIdx + MaskOffset];
4705 // The input vector this mask element indexes into.
4706 unsigned Input = (unsigned)Idx / NewElts;
4708 if (Input >= std::size(Inputs)) {
4709 // The mask element does not index into any input vector.
4710 Ops.push_back(-1);
4711 continue;
4714 // Turn the index into an offset from the start of the input vector.
4715 Idx -= Input * NewElts;
4717 // Find or create a shuffle vector operand to hold this input.
4718 unsigned OpNo;
4719 for (OpNo = 0; OpNo < std::size(InputUsed); ++OpNo) {
4720 if (InputUsed[OpNo] == Input) {
4721 // This input vector is already an operand.
4722 break;
4723 } else if (InputUsed[OpNo] == -1U) {
4724 // Create a new operand for this input vector.
4725 InputUsed[OpNo] = Input;
4726 break;
4730 if (OpNo >= std::size(InputUsed)) {
4731 // More than two input vectors used! Give up on trying to create a
4732 // shuffle vector. Insert all elements into a BUILD_VECTOR instead.
4733 UseBuildVector = true;
4734 break;
4737 // Add the mask index for the new shuffle vector.
4738 Ops.push_back(Idx + OpNo * NewElts);
4741 if (UseBuildVector) {
4742 LLT EltTy = NarrowTy.getElementType();
4743 SmallVector<Register, 16> SVOps;
4745 // Extract the input elements by hand.
4746 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4747 // The mask element. This indexes into the input.
4748 int Idx = Mask[FirstMaskIdx + MaskOffset];
4750 // The input vector this mask element indexes into.
4751 unsigned Input = (unsigned)Idx / NewElts;
4753 if (Input >= std::size(Inputs)) {
4754 // The mask element is "undef" or indexes off the end of the input.
4755 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4756 continue;
4759 // Turn the index into an offset from the start of the input vector.
4760 Idx -= Input * NewElts;
4762 // Extract the vector element by hand.
4763 SVOps.push_back(MIRBuilder
4764 .buildExtractVectorElement(
4765 EltTy, Inputs[Input],
4766 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4767 .getReg(0));
4770 // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4771 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4772 } else if (InputUsed[0] == -1U) {
4773 // No input vectors were used! The result is undefined.
4774 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4775 } else {
4776 Register Op0 = Inputs[InputUsed[0]];
4777 // If only one input was used, use an undefined vector for the other.
4778 Register Op1 = InputUsed[1] == -1U
4779 ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4780 : Inputs[InputUsed[1]];
4781 // At least one input vector was used. Create a new shuffle vector.
4782 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4785 Ops.clear();
4788 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4789 MI.eraseFromParent();
4790 return Legalized;
4793 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4794 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4795 auto &RdxMI = cast<GVecReduce>(MI);
4797 if (TypeIdx != 1)
4798 return UnableToLegalize;
4800 // The semantics of the normal non-sequential reductions allow us to freely
4801 // re-associate the operation.
4802 auto [DstReg, DstTy, SrcReg, SrcTy] = RdxMI.getFirst2RegLLTs();
4804 if (NarrowTy.isVector() &&
4805 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
4806 return UnableToLegalize;
4808 unsigned ScalarOpc = RdxMI.getScalarOpcForReduction();
4809 SmallVector<Register> SplitSrcs;
4810 // If NarrowTy is a scalar then we're being asked to scalarize.
4811 const unsigned NumParts =
4812 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
4813 : SrcTy.getNumElements();
4815 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs, MIRBuilder, MRI);
4816 if (NarrowTy.isScalar()) {
4817 if (DstTy != NarrowTy)
4818 return UnableToLegalize; // FIXME: handle implicit extensions.
4820 if (isPowerOf2_32(NumParts)) {
4821 // Generate a tree of scalar operations to reduce the critical path.
4822 SmallVector<Register> PartialResults;
4823 unsigned NumPartsLeft = NumParts;
4824 while (NumPartsLeft > 1) {
4825 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
4826 PartialResults.emplace_back(
4827 MIRBuilder
4828 .buildInstr(ScalarOpc, {NarrowTy},
4829 {SplitSrcs[Idx], SplitSrcs[Idx + 1]})
4830 .getReg(0));
4832 SplitSrcs = PartialResults;
4833 PartialResults.clear();
4834 NumPartsLeft = SplitSrcs.size();
4836 assert(SplitSrcs.size() == 1);
4837 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
4838 MI.eraseFromParent();
4839 return Legalized;
4841 // If we can't generate a tree, then just do sequential operations.
4842 Register Acc = SplitSrcs[0];
4843 for (unsigned Idx = 1; Idx < NumParts; ++Idx)
4844 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
4845 .getReg(0);
4846 MIRBuilder.buildCopy(DstReg, Acc);
4847 MI.eraseFromParent();
4848 return Legalized;
4850 SmallVector<Register> PartialReductions;
4851 for (unsigned Part = 0; Part < NumParts; ++Part) {
4852 PartialReductions.push_back(
4853 MIRBuilder.buildInstr(RdxMI.getOpcode(), {DstTy}, {SplitSrcs[Part]})
4854 .getReg(0));
4857 // If the types involved are powers of 2, we can generate intermediate vector
4858 // ops, before generating a final reduction operation.
4859 if (isPowerOf2_32(SrcTy.getNumElements()) &&
4860 isPowerOf2_32(NarrowTy.getNumElements())) {
4861 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4864 Register Acc = PartialReductions[0];
4865 for (unsigned Part = 1; Part < NumParts; ++Part) {
4866 if (Part == NumParts - 1) {
4867 MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4868 {Acc, PartialReductions[Part]});
4869 } else {
4870 Acc = MIRBuilder
4871 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4872 .getReg(0);
4875 MI.eraseFromParent();
4876 return Legalized;
4879 LegalizerHelper::LegalizeResult
4880 LegalizerHelper::fewerElementsVectorSeqReductions(MachineInstr &MI,
4881 unsigned int TypeIdx,
4882 LLT NarrowTy) {
4883 auto [DstReg, DstTy, ScalarReg, ScalarTy, SrcReg, SrcTy] =
4884 MI.getFirst3RegLLTs();
4885 if (!NarrowTy.isScalar() || TypeIdx != 2 || DstTy != ScalarTy ||
4886 DstTy != NarrowTy)
4887 return UnableToLegalize;
4889 assert((MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD ||
4890 MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FMUL) &&
4891 "Unexpected vecreduce opcode");
4892 unsigned ScalarOpc = MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD
4893 ? TargetOpcode::G_FADD
4894 : TargetOpcode::G_FMUL;
4896 SmallVector<Register> SplitSrcs;
4897 unsigned NumParts = SrcTy.getNumElements();
4898 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs, MIRBuilder, MRI);
4899 Register Acc = ScalarReg;
4900 for (unsigned i = 0; i < NumParts; i++)
4901 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[i]})
4902 .getReg(0);
4904 MIRBuilder.buildCopy(DstReg, Acc);
4905 MI.eraseFromParent();
4906 return Legalized;
4909 LegalizerHelper::LegalizeResult
4910 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4911 LLT SrcTy, LLT NarrowTy,
4912 unsigned ScalarOpc) {
4913 SmallVector<Register> SplitSrcs;
4914 // Split the sources into NarrowTy size pieces.
4915 extractParts(SrcReg, NarrowTy,
4916 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs,
4917 MIRBuilder, MRI);
4918 // We're going to do a tree reduction using vector operations until we have
4919 // one NarrowTy size value left.
4920 while (SplitSrcs.size() > 1) {
4921 SmallVector<Register> PartialRdxs;
4922 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4923 Register LHS = SplitSrcs[Idx];
4924 Register RHS = SplitSrcs[Idx + 1];
4925 // Create the intermediate vector op.
4926 Register Res =
4927 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4928 PartialRdxs.push_back(Res);
4930 SplitSrcs = std::move(PartialRdxs);
4932 // Finally generate the requested NarrowTy based reduction.
4933 Observer.changingInstr(MI);
4934 MI.getOperand(1).setReg(SplitSrcs[0]);
4935 Observer.changedInstr(MI);
4936 return Legalized;
4939 LegalizerHelper::LegalizeResult
4940 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4941 const LLT HalfTy, const LLT AmtTy) {
4943 Register InL = MRI.createGenericVirtualRegister(HalfTy);
4944 Register InH = MRI.createGenericVirtualRegister(HalfTy);
4945 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4947 if (Amt.isZero()) {
4948 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {InL, InH});
4949 MI.eraseFromParent();
4950 return Legalized;
4953 LLT NVT = HalfTy;
4954 unsigned NVTBits = HalfTy.getSizeInBits();
4955 unsigned VTBits = 2 * NVTBits;
4957 SrcOp Lo(Register(0)), Hi(Register(0));
4958 if (MI.getOpcode() == TargetOpcode::G_SHL) {
4959 if (Amt.ugt(VTBits)) {
4960 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4961 } else if (Amt.ugt(NVTBits)) {
4962 Lo = MIRBuilder.buildConstant(NVT, 0);
4963 Hi = MIRBuilder.buildShl(NVT, InL,
4964 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4965 } else if (Amt == NVTBits) {
4966 Lo = MIRBuilder.buildConstant(NVT, 0);
4967 Hi = InL;
4968 } else {
4969 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4970 auto OrLHS =
4971 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4972 auto OrRHS = MIRBuilder.buildLShr(
4973 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4974 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4976 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4977 if (Amt.ugt(VTBits)) {
4978 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4979 } else if (Amt.ugt(NVTBits)) {
4980 Lo = MIRBuilder.buildLShr(NVT, InH,
4981 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4982 Hi = MIRBuilder.buildConstant(NVT, 0);
4983 } else if (Amt == NVTBits) {
4984 Lo = InH;
4985 Hi = MIRBuilder.buildConstant(NVT, 0);
4986 } else {
4987 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4989 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4990 auto OrRHS = MIRBuilder.buildShl(
4991 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4993 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4994 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4996 } else {
4997 if (Amt.ugt(VTBits)) {
4998 Hi = Lo = MIRBuilder.buildAShr(
4999 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
5000 } else if (Amt.ugt(NVTBits)) {
5001 Lo = MIRBuilder.buildAShr(NVT, InH,
5002 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
5003 Hi = MIRBuilder.buildAShr(NVT, InH,
5004 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
5005 } else if (Amt == NVTBits) {
5006 Lo = InH;
5007 Hi = MIRBuilder.buildAShr(NVT, InH,
5008 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
5009 } else {
5010 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
5012 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
5013 auto OrRHS = MIRBuilder.buildShl(
5014 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
5016 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
5017 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
5021 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {Lo, Hi});
5022 MI.eraseFromParent();
5024 return Legalized;
5027 // TODO: Optimize if constant shift amount.
5028 LegalizerHelper::LegalizeResult
5029 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
5030 LLT RequestedTy) {
5031 if (TypeIdx == 1) {
5032 Observer.changingInstr(MI);
5033 narrowScalarSrc(MI, RequestedTy, 2);
5034 Observer.changedInstr(MI);
5035 return Legalized;
5038 Register DstReg = MI.getOperand(0).getReg();
5039 LLT DstTy = MRI.getType(DstReg);
5040 if (DstTy.isVector())
5041 return UnableToLegalize;
5043 Register Amt = MI.getOperand(2).getReg();
5044 LLT ShiftAmtTy = MRI.getType(Amt);
5045 const unsigned DstEltSize = DstTy.getScalarSizeInBits();
5046 if (DstEltSize % 2 != 0)
5047 return UnableToLegalize;
5049 // Ignore the input type. We can only go to exactly half the size of the
5050 // input. If that isn't small enough, the resulting pieces will be further
5051 // legalized.
5052 const unsigned NewBitSize = DstEltSize / 2;
5053 const LLT HalfTy = LLT::scalar(NewBitSize);
5054 const LLT CondTy = LLT::scalar(1);
5056 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) {
5057 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
5058 ShiftAmtTy);
5061 // TODO: Expand with known bits.
5063 // Handle the fully general expansion by an unknown amount.
5064 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
5066 Register InL = MRI.createGenericVirtualRegister(HalfTy);
5067 Register InH = MRI.createGenericVirtualRegister(HalfTy);
5068 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
5070 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
5071 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
5073 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
5074 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
5075 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
5077 Register ResultRegs[2];
5078 switch (MI.getOpcode()) {
5079 case TargetOpcode::G_SHL: {
5080 // Short: ShAmt < NewBitSize
5081 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
5083 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
5084 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
5085 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
5087 // Long: ShAmt >= NewBitSize
5088 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
5089 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
5091 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
5092 auto Hi = MIRBuilder.buildSelect(
5093 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
5095 ResultRegs[0] = Lo.getReg(0);
5096 ResultRegs[1] = Hi.getReg(0);
5097 break;
5099 case TargetOpcode::G_LSHR:
5100 case TargetOpcode::G_ASHR: {
5101 // Short: ShAmt < NewBitSize
5102 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
5104 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
5105 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
5106 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
5108 // Long: ShAmt >= NewBitSize
5109 MachineInstrBuilder HiL;
5110 if (MI.getOpcode() == TargetOpcode::G_LSHR) {
5111 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
5112 } else {
5113 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
5114 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part.
5116 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
5117 {InH, AmtExcess}); // Lo from Hi part.
5119 auto Lo = MIRBuilder.buildSelect(
5120 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
5122 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
5124 ResultRegs[0] = Lo.getReg(0);
5125 ResultRegs[1] = Hi.getReg(0);
5126 break;
5128 default:
5129 llvm_unreachable("not a shift");
5132 MIRBuilder.buildMergeLikeInstr(DstReg, ResultRegs);
5133 MI.eraseFromParent();
5134 return Legalized;
5137 LegalizerHelper::LegalizeResult
5138 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
5139 LLT MoreTy) {
5140 assert(TypeIdx == 0 && "Expecting only Idx 0");
5142 Observer.changingInstr(MI);
5143 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
5144 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
5145 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
5146 moreElementsVectorSrc(MI, MoreTy, I);
5149 MachineBasicBlock &MBB = *MI.getParent();
5150 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
5151 moreElementsVectorDst(MI, MoreTy, 0);
5152 Observer.changedInstr(MI);
5153 return Legalized;
5156 LegalizerHelper::LegalizeResult
5157 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
5158 LLT MoreTy) {
5159 unsigned Opc = MI.getOpcode();
5160 switch (Opc) {
5161 case TargetOpcode::G_IMPLICIT_DEF:
5162 case TargetOpcode::G_LOAD: {
5163 if (TypeIdx != 0)
5164 return UnableToLegalize;
5165 Observer.changingInstr(MI);
5166 moreElementsVectorDst(MI, MoreTy, 0);
5167 Observer.changedInstr(MI);
5168 return Legalized;
5170 case TargetOpcode::G_STORE:
5171 if (TypeIdx != 0)
5172 return UnableToLegalize;
5173 Observer.changingInstr(MI);
5174 moreElementsVectorSrc(MI, MoreTy, 0);
5175 Observer.changedInstr(MI);
5176 return Legalized;
5177 case TargetOpcode::G_AND:
5178 case TargetOpcode::G_OR:
5179 case TargetOpcode::G_XOR:
5180 case TargetOpcode::G_ADD:
5181 case TargetOpcode::G_SUB:
5182 case TargetOpcode::G_MUL:
5183 case TargetOpcode::G_FADD:
5184 case TargetOpcode::G_FSUB:
5185 case TargetOpcode::G_FMUL:
5186 case TargetOpcode::G_FDIV:
5187 case TargetOpcode::G_UADDSAT:
5188 case TargetOpcode::G_USUBSAT:
5189 case TargetOpcode::G_SADDSAT:
5190 case TargetOpcode::G_SSUBSAT:
5191 case TargetOpcode::G_SMIN:
5192 case TargetOpcode::G_SMAX:
5193 case TargetOpcode::G_UMIN:
5194 case TargetOpcode::G_UMAX:
5195 case TargetOpcode::G_FMINNUM:
5196 case TargetOpcode::G_FMAXNUM:
5197 case TargetOpcode::G_FMINNUM_IEEE:
5198 case TargetOpcode::G_FMAXNUM_IEEE:
5199 case TargetOpcode::G_FMINIMUM:
5200 case TargetOpcode::G_FMAXIMUM:
5201 case TargetOpcode::G_STRICT_FADD:
5202 case TargetOpcode::G_STRICT_FSUB:
5203 case TargetOpcode::G_STRICT_FMUL:
5204 case TargetOpcode::G_SHL:
5205 case TargetOpcode::G_ASHR:
5206 case TargetOpcode::G_LSHR: {
5207 Observer.changingInstr(MI);
5208 moreElementsVectorSrc(MI, MoreTy, 1);
5209 moreElementsVectorSrc(MI, MoreTy, 2);
5210 moreElementsVectorDst(MI, MoreTy, 0);
5211 Observer.changedInstr(MI);
5212 return Legalized;
5214 case TargetOpcode::G_FMA:
5215 case TargetOpcode::G_STRICT_FMA:
5216 case TargetOpcode::G_FSHR:
5217 case TargetOpcode::G_FSHL: {
5218 Observer.changingInstr(MI);
5219 moreElementsVectorSrc(MI, MoreTy, 1);
5220 moreElementsVectorSrc(MI, MoreTy, 2);
5221 moreElementsVectorSrc(MI, MoreTy, 3);
5222 moreElementsVectorDst(MI, MoreTy, 0);
5223 Observer.changedInstr(MI);
5224 return Legalized;
5226 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
5227 case TargetOpcode::G_EXTRACT:
5228 if (TypeIdx != 1)
5229 return UnableToLegalize;
5230 Observer.changingInstr(MI);
5231 moreElementsVectorSrc(MI, MoreTy, 1);
5232 Observer.changedInstr(MI);
5233 return Legalized;
5234 case TargetOpcode::G_INSERT:
5235 case TargetOpcode::G_INSERT_VECTOR_ELT:
5236 case TargetOpcode::G_FREEZE:
5237 case TargetOpcode::G_FNEG:
5238 case TargetOpcode::G_FABS:
5239 case TargetOpcode::G_FSQRT:
5240 case TargetOpcode::G_FCEIL:
5241 case TargetOpcode::G_FFLOOR:
5242 case TargetOpcode::G_FNEARBYINT:
5243 case TargetOpcode::G_FRINT:
5244 case TargetOpcode::G_INTRINSIC_ROUND:
5245 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
5246 case TargetOpcode::G_INTRINSIC_TRUNC:
5247 case TargetOpcode::G_BSWAP:
5248 case TargetOpcode::G_FCANONICALIZE:
5249 case TargetOpcode::G_SEXT_INREG:
5250 if (TypeIdx != 0)
5251 return UnableToLegalize;
5252 Observer.changingInstr(MI);
5253 moreElementsVectorSrc(MI, MoreTy, 1);
5254 moreElementsVectorDst(MI, MoreTy, 0);
5255 Observer.changedInstr(MI);
5256 return Legalized;
5257 case TargetOpcode::G_SELECT: {
5258 auto [DstReg, DstTy, CondReg, CondTy] = MI.getFirst2RegLLTs();
5259 if (TypeIdx == 1) {
5260 if (!CondTy.isScalar() ||
5261 DstTy.getElementCount() != MoreTy.getElementCount())
5262 return UnableToLegalize;
5264 // This is turning a scalar select of vectors into a vector
5265 // select. Broadcast the select condition.
5266 auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg);
5267 Observer.changingInstr(MI);
5268 MI.getOperand(1).setReg(ShufSplat.getReg(0));
5269 Observer.changedInstr(MI);
5270 return Legalized;
5273 if (CondTy.isVector())
5274 return UnableToLegalize;
5276 Observer.changingInstr(MI);
5277 moreElementsVectorSrc(MI, MoreTy, 2);
5278 moreElementsVectorSrc(MI, MoreTy, 3);
5279 moreElementsVectorDst(MI, MoreTy, 0);
5280 Observer.changedInstr(MI);
5281 return Legalized;
5283 case TargetOpcode::G_UNMERGE_VALUES:
5284 return UnableToLegalize;
5285 case TargetOpcode::G_PHI:
5286 return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
5287 case TargetOpcode::G_SHUFFLE_VECTOR:
5288 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
5289 case TargetOpcode::G_BUILD_VECTOR: {
5290 SmallVector<SrcOp, 8> Elts;
5291 for (auto Op : MI.uses()) {
5292 Elts.push_back(Op.getReg());
5295 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) {
5296 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType()));
5299 MIRBuilder.buildDeleteTrailingVectorElements(
5300 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts));
5301 MI.eraseFromParent();
5302 return Legalized;
5304 case TargetOpcode::G_TRUNC:
5305 case TargetOpcode::G_FPTRUNC:
5306 case TargetOpcode::G_FPEXT:
5307 case TargetOpcode::G_FPTOSI:
5308 case TargetOpcode::G_FPTOUI:
5309 case TargetOpcode::G_SITOFP:
5310 case TargetOpcode::G_UITOFP: {
5311 if (TypeIdx != 0)
5312 return UnableToLegalize;
5313 Observer.changingInstr(MI);
5314 LLT SrcTy = LLT::fixed_vector(
5315 MoreTy.getNumElements(),
5316 MRI.getType(MI.getOperand(1).getReg()).getElementType());
5317 moreElementsVectorSrc(MI, SrcTy, 1);
5318 moreElementsVectorDst(MI, MoreTy, 0);
5319 Observer.changedInstr(MI);
5320 return Legalized;
5322 case TargetOpcode::G_ICMP: {
5323 // TODO: the symmetric MoreTy works for targets like, e.g. NEON.
5324 // For targets, like e.g. MVE, the result is a predicated vector (i1).
5325 // This will need some refactoring.
5326 Observer.changingInstr(MI);
5327 moreElementsVectorSrc(MI, MoreTy, 2);
5328 moreElementsVectorSrc(MI, MoreTy, 3);
5329 moreElementsVectorDst(MI, MoreTy, 0);
5330 Observer.changedInstr(MI);
5331 return Legalized;
5333 default:
5334 return UnableToLegalize;
5338 LegalizerHelper::LegalizeResult
5339 LegalizerHelper::equalizeVectorShuffleLengths(MachineInstr &MI) {
5340 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
5341 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5342 unsigned MaskNumElts = Mask.size();
5343 unsigned SrcNumElts = SrcTy.getNumElements();
5344 LLT DestEltTy = DstTy.getElementType();
5346 if (MaskNumElts == SrcNumElts)
5347 return Legalized;
5349 if (MaskNumElts < SrcNumElts) {
5350 // Extend mask to match new destination vector size with
5351 // undef values.
5352 SmallVector<int, 16> NewMask(Mask);
5353 for (unsigned I = MaskNumElts; I < SrcNumElts; ++I)
5354 NewMask.push_back(-1);
5356 moreElementsVectorDst(MI, SrcTy, 0);
5357 MIRBuilder.setInstrAndDebugLoc(MI);
5358 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
5359 MI.getOperand(1).getReg(),
5360 MI.getOperand(2).getReg(), NewMask);
5361 MI.eraseFromParent();
5363 return Legalized;
5366 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
5367 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
5368 LLT PaddedTy = LLT::fixed_vector(PaddedMaskNumElts, DestEltTy);
5370 // Create new source vectors by concatenating the initial
5371 // source vectors with undefined vectors of the same size.
5372 auto Undef = MIRBuilder.buildUndef(SrcTy);
5373 SmallVector<Register, 8> MOps1(NumConcat, Undef.getReg(0));
5374 SmallVector<Register, 8> MOps2(NumConcat, Undef.getReg(0));
5375 MOps1[0] = MI.getOperand(1).getReg();
5376 MOps2[0] = MI.getOperand(2).getReg();
5378 auto Src1 = MIRBuilder.buildConcatVectors(PaddedTy, MOps1);
5379 auto Src2 = MIRBuilder.buildConcatVectors(PaddedTy, MOps2);
5381 // Readjust mask for new input vector length.
5382 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
5383 for (unsigned I = 0; I != MaskNumElts; ++I) {
5384 int Idx = Mask[I];
5385 if (Idx >= static_cast<int>(SrcNumElts))
5386 Idx += PaddedMaskNumElts - SrcNumElts;
5387 MappedOps[I] = Idx;
5390 // If we got more elements than required, extract subvector.
5391 if (MaskNumElts != PaddedMaskNumElts) {
5392 auto Shuffle =
5393 MIRBuilder.buildShuffleVector(PaddedTy, Src1, Src2, MappedOps);
5395 SmallVector<Register, 16> Elts(MaskNumElts);
5396 for (unsigned I = 0; I < MaskNumElts; ++I) {
5397 Elts[I] =
5398 MIRBuilder.buildExtractVectorElementConstant(DestEltTy, Shuffle, I)
5399 .getReg(0);
5401 MIRBuilder.buildBuildVector(DstReg, Elts);
5402 } else {
5403 MIRBuilder.buildShuffleVector(DstReg, Src1, Src2, MappedOps);
5406 MI.eraseFromParent();
5407 return LegalizerHelper::LegalizeResult::Legalized;
5410 LegalizerHelper::LegalizeResult
5411 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
5412 unsigned int TypeIdx, LLT MoreTy) {
5413 auto [DstTy, Src1Ty, Src2Ty] = MI.getFirst3LLTs();
5414 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5415 unsigned NumElts = DstTy.getNumElements();
5416 unsigned WidenNumElts = MoreTy.getNumElements();
5418 if (DstTy.isVector() && Src1Ty.isVector() &&
5419 DstTy.getNumElements() != Src1Ty.getNumElements()) {
5420 return equalizeVectorShuffleLengths(MI);
5423 if (TypeIdx != 0)
5424 return UnableToLegalize;
5426 // Expect a canonicalized shuffle.
5427 if (DstTy != Src1Ty || DstTy != Src2Ty)
5428 return UnableToLegalize;
5430 moreElementsVectorSrc(MI, MoreTy, 1);
5431 moreElementsVectorSrc(MI, MoreTy, 2);
5433 // Adjust mask based on new input vector length.
5434 SmallVector<int, 16> NewMask;
5435 for (unsigned I = 0; I != NumElts; ++I) {
5436 int Idx = Mask[I];
5437 if (Idx < static_cast<int>(NumElts))
5438 NewMask.push_back(Idx);
5439 else
5440 NewMask.push_back(Idx - NumElts + WidenNumElts);
5442 for (unsigned I = NumElts; I != WidenNumElts; ++I)
5443 NewMask.push_back(-1);
5444 moreElementsVectorDst(MI, MoreTy, 0);
5445 MIRBuilder.setInstrAndDebugLoc(MI);
5446 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
5447 MI.getOperand(1).getReg(),
5448 MI.getOperand(2).getReg(), NewMask);
5449 MI.eraseFromParent();
5450 return Legalized;
5453 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
5454 ArrayRef<Register> Src1Regs,
5455 ArrayRef<Register> Src2Regs,
5456 LLT NarrowTy) {
5457 MachineIRBuilder &B = MIRBuilder;
5458 unsigned SrcParts = Src1Regs.size();
5459 unsigned DstParts = DstRegs.size();
5461 unsigned DstIdx = 0; // Low bits of the result.
5462 Register FactorSum =
5463 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
5464 DstRegs[DstIdx] = FactorSum;
5466 unsigned CarrySumPrevDstIdx;
5467 SmallVector<Register, 4> Factors;
5469 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5470 // Collect low parts of muls for DstIdx.
5471 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5472 i <= std::min(DstIdx, SrcParts - 1); ++i) {
5473 MachineInstrBuilder Mul =
5474 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5475 Factors.push_back(Mul.getReg(0));
5477 // Collect high parts of muls from previous DstIdx.
5478 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5479 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5480 MachineInstrBuilder Umulh =
5481 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5482 Factors.push_back(Umulh.getReg(0));
5484 // Add CarrySum from additions calculated for previous DstIdx.
5485 if (DstIdx != 1) {
5486 Factors.push_back(CarrySumPrevDstIdx);
5489 Register CarrySum;
5490 // Add all factors and accumulate all carries into CarrySum.
5491 if (DstIdx != DstParts - 1) {
5492 MachineInstrBuilder Uaddo =
5493 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5494 FactorSum = Uaddo.getReg(0);
5495 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5496 for (unsigned i = 2; i < Factors.size(); ++i) {
5497 MachineInstrBuilder Uaddo =
5498 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5499 FactorSum = Uaddo.getReg(0);
5500 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5501 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5503 } else {
5504 // Since value for the next index is not calculated, neither is CarrySum.
5505 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5506 for (unsigned i = 2; i < Factors.size(); ++i)
5507 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5510 CarrySumPrevDstIdx = CarrySum;
5511 DstRegs[DstIdx] = FactorSum;
5512 Factors.clear();
5516 LegalizerHelper::LegalizeResult
5517 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5518 LLT NarrowTy) {
5519 if (TypeIdx != 0)
5520 return UnableToLegalize;
5522 Register DstReg = MI.getOperand(0).getReg();
5523 LLT DstType = MRI.getType(DstReg);
5524 // FIXME: add support for vector types
5525 if (DstType.isVector())
5526 return UnableToLegalize;
5528 unsigned Opcode = MI.getOpcode();
5529 unsigned OpO, OpE, OpF;
5530 switch (Opcode) {
5531 case TargetOpcode::G_SADDO:
5532 case TargetOpcode::G_SADDE:
5533 case TargetOpcode::G_UADDO:
5534 case TargetOpcode::G_UADDE:
5535 case TargetOpcode::G_ADD:
5536 OpO = TargetOpcode::G_UADDO;
5537 OpE = TargetOpcode::G_UADDE;
5538 OpF = TargetOpcode::G_UADDE;
5539 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5540 OpF = TargetOpcode::G_SADDE;
5541 break;
5542 case TargetOpcode::G_SSUBO:
5543 case TargetOpcode::G_SSUBE:
5544 case TargetOpcode::G_USUBO:
5545 case TargetOpcode::G_USUBE:
5546 case TargetOpcode::G_SUB:
5547 OpO = TargetOpcode::G_USUBO;
5548 OpE = TargetOpcode::G_USUBE;
5549 OpF = TargetOpcode::G_USUBE;
5550 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5551 OpF = TargetOpcode::G_SSUBE;
5552 break;
5553 default:
5554 llvm_unreachable("Unexpected add/sub opcode!");
5557 // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5558 unsigned NumDefs = MI.getNumExplicitDefs();
5559 Register Src1 = MI.getOperand(NumDefs).getReg();
5560 Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5561 Register CarryDst, CarryIn;
5562 if (NumDefs == 2)
5563 CarryDst = MI.getOperand(1).getReg();
5564 if (MI.getNumOperands() == NumDefs + 3)
5565 CarryIn = MI.getOperand(NumDefs + 2).getReg();
5567 LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5568 LLT LeftoverTy, DummyTy;
5569 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5570 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left,
5571 MIRBuilder, MRI);
5572 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left, MIRBuilder,
5573 MRI);
5575 int NarrowParts = Src1Regs.size();
5576 for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5577 Src1Regs.push_back(Src1Left[I]);
5578 Src2Regs.push_back(Src2Left[I]);
5580 DstRegs.reserve(Src1Regs.size());
5582 for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5583 Register DstReg =
5584 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5585 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5586 // Forward the final carry-out to the destination register
5587 if (i == e - 1 && CarryDst)
5588 CarryOut = CarryDst;
5590 if (!CarryIn) {
5591 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5592 {Src1Regs[i], Src2Regs[i]});
5593 } else if (i == e - 1) {
5594 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5595 {Src1Regs[i], Src2Regs[i], CarryIn});
5596 } else {
5597 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5598 {Src1Regs[i], Src2Regs[i], CarryIn});
5601 DstRegs.push_back(DstReg);
5602 CarryIn = CarryOut;
5604 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5605 ArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5606 ArrayRef(DstRegs).drop_front(NarrowParts));
5608 MI.eraseFromParent();
5609 return Legalized;
5612 LegalizerHelper::LegalizeResult
5613 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5614 auto [DstReg, Src1, Src2] = MI.getFirst3Regs();
5616 LLT Ty = MRI.getType(DstReg);
5617 if (Ty.isVector())
5618 return UnableToLegalize;
5620 unsigned Size = Ty.getSizeInBits();
5621 unsigned NarrowSize = NarrowTy.getSizeInBits();
5622 if (Size % NarrowSize != 0)
5623 return UnableToLegalize;
5625 unsigned NumParts = Size / NarrowSize;
5626 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5627 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1);
5629 SmallVector<Register, 2> Src1Parts, Src2Parts;
5630 SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5631 extractParts(Src1, NarrowTy, NumParts, Src1Parts, MIRBuilder, MRI);
5632 extractParts(Src2, NarrowTy, NumParts, Src2Parts, MIRBuilder, MRI);
5633 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5635 // Take only high half of registers if this is high mul.
5636 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts);
5637 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
5638 MI.eraseFromParent();
5639 return Legalized;
5642 LegalizerHelper::LegalizeResult
5643 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5644 LLT NarrowTy) {
5645 if (TypeIdx != 0)
5646 return UnableToLegalize;
5648 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5650 Register Src = MI.getOperand(1).getReg();
5651 LLT SrcTy = MRI.getType(Src);
5653 // If all finite floats fit into the narrowed integer type, we can just swap
5654 // out the result type. This is practically only useful for conversions from
5655 // half to at least 16-bits, so just handle the one case.
5656 if (SrcTy.getScalarType() != LLT::scalar(16) ||
5657 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5658 return UnableToLegalize;
5660 Observer.changingInstr(MI);
5661 narrowScalarDst(MI, NarrowTy, 0,
5662 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5663 Observer.changedInstr(MI);
5664 return Legalized;
5667 LegalizerHelper::LegalizeResult
5668 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5669 LLT NarrowTy) {
5670 if (TypeIdx != 1)
5671 return UnableToLegalize;
5673 uint64_t NarrowSize = NarrowTy.getSizeInBits();
5675 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5676 // FIXME: add support for when SizeOp1 isn't an exact multiple of
5677 // NarrowSize.
5678 if (SizeOp1 % NarrowSize != 0)
5679 return UnableToLegalize;
5680 int NumParts = SizeOp1 / NarrowSize;
5682 SmallVector<Register, 2> SrcRegs, DstRegs;
5683 SmallVector<uint64_t, 2> Indexes;
5684 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs,
5685 MIRBuilder, MRI);
5687 Register OpReg = MI.getOperand(0).getReg();
5688 uint64_t OpStart = MI.getOperand(2).getImm();
5689 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5690 for (int i = 0; i < NumParts; ++i) {
5691 unsigned SrcStart = i * NarrowSize;
5693 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5694 // No part of the extract uses this subregister, ignore it.
5695 continue;
5696 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5697 // The entire subregister is extracted, forward the value.
5698 DstRegs.push_back(SrcRegs[i]);
5699 continue;
5702 // OpSegStart is where this destination segment would start in OpReg if it
5703 // extended infinitely in both directions.
5704 int64_t ExtractOffset;
5705 uint64_t SegSize;
5706 if (OpStart < SrcStart) {
5707 ExtractOffset = 0;
5708 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5709 } else {
5710 ExtractOffset = OpStart - SrcStart;
5711 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5714 Register SegReg = SrcRegs[i];
5715 if (ExtractOffset != 0 || SegSize != NarrowSize) {
5716 // A genuine extract is needed.
5717 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5718 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5721 DstRegs.push_back(SegReg);
5724 Register DstReg = MI.getOperand(0).getReg();
5725 if (MRI.getType(DstReg).isVector())
5726 MIRBuilder.buildBuildVector(DstReg, DstRegs);
5727 else if (DstRegs.size() > 1)
5728 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
5729 else
5730 MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5731 MI.eraseFromParent();
5732 return Legalized;
5735 LegalizerHelper::LegalizeResult
5736 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5737 LLT NarrowTy) {
5738 // FIXME: Don't know how to handle secondary types yet.
5739 if (TypeIdx != 0)
5740 return UnableToLegalize;
5742 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5743 SmallVector<uint64_t, 2> Indexes;
5744 LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5745 LLT LeftoverTy;
5746 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5747 LeftoverRegs, MIRBuilder, MRI);
5749 for (Register Reg : LeftoverRegs)
5750 SrcRegs.push_back(Reg);
5752 uint64_t NarrowSize = NarrowTy.getSizeInBits();
5753 Register OpReg = MI.getOperand(2).getReg();
5754 uint64_t OpStart = MI.getOperand(3).getImm();
5755 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5756 for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5757 unsigned DstStart = I * NarrowSize;
5759 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5760 // The entire subregister is defined by this insert, forward the new
5761 // value.
5762 DstRegs.push_back(OpReg);
5763 continue;
5766 Register SrcReg = SrcRegs[I];
5767 if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5768 // The leftover reg is smaller than NarrowTy, so we need to extend it.
5769 SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5770 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5773 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5774 // No part of the insert affects this subregister, forward the original.
5775 DstRegs.push_back(SrcReg);
5776 continue;
5779 // OpSegStart is where this destination segment would start in OpReg if it
5780 // extended infinitely in both directions.
5781 int64_t ExtractOffset, InsertOffset;
5782 uint64_t SegSize;
5783 if (OpStart < DstStart) {
5784 InsertOffset = 0;
5785 ExtractOffset = DstStart - OpStart;
5786 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5787 } else {
5788 InsertOffset = OpStart - DstStart;
5789 ExtractOffset = 0;
5790 SegSize =
5791 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5794 Register SegReg = OpReg;
5795 if (ExtractOffset != 0 || SegSize != OpSize) {
5796 // A genuine extract is needed.
5797 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5798 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5801 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5802 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5803 DstRegs.push_back(DstReg);
5806 uint64_t WideSize = DstRegs.size() * NarrowSize;
5807 Register DstReg = MI.getOperand(0).getReg();
5808 if (WideSize > RegTy.getSizeInBits()) {
5809 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5810 MIRBuilder.buildMergeLikeInstr(MergeReg, DstRegs);
5811 MIRBuilder.buildTrunc(DstReg, MergeReg);
5812 } else
5813 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
5815 MI.eraseFromParent();
5816 return Legalized;
5819 LegalizerHelper::LegalizeResult
5820 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5821 LLT NarrowTy) {
5822 Register DstReg = MI.getOperand(0).getReg();
5823 LLT DstTy = MRI.getType(DstReg);
5825 assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5827 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5828 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5829 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5830 LLT LeftoverTy;
5831 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5832 Src0Regs, Src0LeftoverRegs, MIRBuilder, MRI))
5833 return UnableToLegalize;
5835 LLT Unused;
5836 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5837 Src1Regs, Src1LeftoverRegs, MIRBuilder, MRI))
5838 llvm_unreachable("inconsistent extractParts result");
5840 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5841 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5842 {Src0Regs[I], Src1Regs[I]});
5843 DstRegs.push_back(Inst.getReg(0));
5846 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5847 auto Inst = MIRBuilder.buildInstr(
5848 MI.getOpcode(),
5849 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5850 DstLeftoverRegs.push_back(Inst.getReg(0));
5853 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5854 LeftoverTy, DstLeftoverRegs);
5856 MI.eraseFromParent();
5857 return Legalized;
5860 LegalizerHelper::LegalizeResult
5861 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5862 LLT NarrowTy) {
5863 if (TypeIdx != 0)
5864 return UnableToLegalize;
5866 auto [DstReg, SrcReg] = MI.getFirst2Regs();
5868 LLT DstTy = MRI.getType(DstReg);
5869 if (DstTy.isVector())
5870 return UnableToLegalize;
5872 SmallVector<Register, 8> Parts;
5873 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5874 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5875 buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5877 MI.eraseFromParent();
5878 return Legalized;
5881 LegalizerHelper::LegalizeResult
5882 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5883 LLT NarrowTy) {
5884 if (TypeIdx != 0)
5885 return UnableToLegalize;
5887 Register CondReg = MI.getOperand(1).getReg();
5888 LLT CondTy = MRI.getType(CondReg);
5889 if (CondTy.isVector()) // TODO: Handle vselect
5890 return UnableToLegalize;
5892 Register DstReg = MI.getOperand(0).getReg();
5893 LLT DstTy = MRI.getType(DstReg);
5895 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5896 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5897 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5898 LLT LeftoverTy;
5899 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5900 Src1Regs, Src1LeftoverRegs, MIRBuilder, MRI))
5901 return UnableToLegalize;
5903 LLT Unused;
5904 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5905 Src2Regs, Src2LeftoverRegs, MIRBuilder, MRI))
5906 llvm_unreachable("inconsistent extractParts result");
5908 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5909 auto Select = MIRBuilder.buildSelect(NarrowTy,
5910 CondReg, Src1Regs[I], Src2Regs[I]);
5911 DstRegs.push_back(Select.getReg(0));
5914 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5915 auto Select = MIRBuilder.buildSelect(
5916 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5917 DstLeftoverRegs.push_back(Select.getReg(0));
5920 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5921 LeftoverTy, DstLeftoverRegs);
5923 MI.eraseFromParent();
5924 return Legalized;
5927 LegalizerHelper::LegalizeResult
5928 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5929 LLT NarrowTy) {
5930 if (TypeIdx != 1)
5931 return UnableToLegalize;
5933 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
5934 unsigned NarrowSize = NarrowTy.getSizeInBits();
5936 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5937 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5939 MachineIRBuilder &B = MIRBuilder;
5940 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5941 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5942 auto C_0 = B.buildConstant(NarrowTy, 0);
5943 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5944 UnmergeSrc.getReg(1), C_0);
5945 auto LoCTLZ = IsUndef ?
5946 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5947 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5948 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5949 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5950 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5951 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5953 MI.eraseFromParent();
5954 return Legalized;
5957 return UnableToLegalize;
5960 LegalizerHelper::LegalizeResult
5961 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5962 LLT NarrowTy) {
5963 if (TypeIdx != 1)
5964 return UnableToLegalize;
5966 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
5967 unsigned NarrowSize = NarrowTy.getSizeInBits();
5969 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5970 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5972 MachineIRBuilder &B = MIRBuilder;
5973 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5974 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5975 auto C_0 = B.buildConstant(NarrowTy, 0);
5976 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5977 UnmergeSrc.getReg(0), C_0);
5978 auto HiCTTZ = IsUndef ?
5979 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5980 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5981 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5982 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5983 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5984 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5986 MI.eraseFromParent();
5987 return Legalized;
5990 return UnableToLegalize;
5993 LegalizerHelper::LegalizeResult
5994 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5995 LLT NarrowTy) {
5996 if (TypeIdx != 1)
5997 return UnableToLegalize;
5999 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
6000 unsigned NarrowSize = NarrowTy.getSizeInBits();
6002 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
6003 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
6005 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
6006 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
6007 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
6009 MI.eraseFromParent();
6010 return Legalized;
6013 return UnableToLegalize;
6016 LegalizerHelper::LegalizeResult
6017 LegalizerHelper::narrowScalarFLDEXP(MachineInstr &MI, unsigned TypeIdx,
6018 LLT NarrowTy) {
6019 if (TypeIdx != 1)
6020 return UnableToLegalize;
6022 MachineIRBuilder &B = MIRBuilder;
6023 Register ExpReg = MI.getOperand(2).getReg();
6024 LLT ExpTy = MRI.getType(ExpReg);
6026 unsigned ClampSize = NarrowTy.getScalarSizeInBits();
6028 // Clamp the exponent to the range of the target type.
6029 auto MinExp = B.buildConstant(ExpTy, minIntN(ClampSize));
6030 auto ClampMin = B.buildSMax(ExpTy, ExpReg, MinExp);
6031 auto MaxExp = B.buildConstant(ExpTy, maxIntN(ClampSize));
6032 auto Clamp = B.buildSMin(ExpTy, ClampMin, MaxExp);
6034 auto Trunc = B.buildTrunc(NarrowTy, Clamp);
6035 Observer.changingInstr(MI);
6036 MI.getOperand(2).setReg(Trunc.getReg(0));
6037 Observer.changedInstr(MI);
6038 return Legalized;
6041 LegalizerHelper::LegalizeResult
6042 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
6043 unsigned Opc = MI.getOpcode();
6044 const auto &TII = MIRBuilder.getTII();
6045 auto isSupported = [this](const LegalityQuery &Q) {
6046 auto QAction = LI.getAction(Q).Action;
6047 return QAction == Legal || QAction == Libcall || QAction == Custom;
6049 switch (Opc) {
6050 default:
6051 return UnableToLegalize;
6052 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
6053 // This trivially expands to CTLZ.
6054 Observer.changingInstr(MI);
6055 MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
6056 Observer.changedInstr(MI);
6057 return Legalized;
6059 case TargetOpcode::G_CTLZ: {
6060 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
6061 unsigned Len = SrcTy.getSizeInBits();
6063 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
6064 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
6065 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
6066 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
6067 auto ICmp = MIRBuilder.buildICmp(
6068 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
6069 auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
6070 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
6071 MI.eraseFromParent();
6072 return Legalized;
6074 // for now, we do this:
6075 // NewLen = NextPowerOf2(Len);
6076 // x = x | (x >> 1);
6077 // x = x | (x >> 2);
6078 // ...
6079 // x = x | (x >>16);
6080 // x = x | (x >>32); // for 64-bit input
6081 // Upto NewLen/2
6082 // return Len - popcount(x);
6084 // Ref: "Hacker's Delight" by Henry Warren
6085 Register Op = SrcReg;
6086 unsigned NewLen = PowerOf2Ceil(Len);
6087 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
6088 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
6089 auto MIBOp = MIRBuilder.buildOr(
6090 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
6091 Op = MIBOp.getReg(0);
6093 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
6094 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
6095 MIBPop);
6096 MI.eraseFromParent();
6097 return Legalized;
6099 case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
6100 // This trivially expands to CTTZ.
6101 Observer.changingInstr(MI);
6102 MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
6103 Observer.changedInstr(MI);
6104 return Legalized;
6106 case TargetOpcode::G_CTTZ: {
6107 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
6109 unsigned Len = SrcTy.getSizeInBits();
6110 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
6111 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
6112 // zero.
6113 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
6114 auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
6115 auto ICmp = MIRBuilder.buildICmp(
6116 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
6117 auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
6118 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
6119 MI.eraseFromParent();
6120 return Legalized;
6122 // for now, we use: { return popcount(~x & (x - 1)); }
6123 // unless the target has ctlz but not ctpop, in which case we use:
6124 // { return 32 - nlz(~x & (x-1)); }
6125 // Ref: "Hacker's Delight" by Henry Warren
6126 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
6127 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
6128 auto MIBTmp = MIRBuilder.buildAnd(
6129 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
6130 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
6131 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
6132 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
6133 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
6134 MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
6135 MI.eraseFromParent();
6136 return Legalized;
6138 Observer.changingInstr(MI);
6139 MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
6140 MI.getOperand(1).setReg(MIBTmp.getReg(0));
6141 Observer.changedInstr(MI);
6142 return Legalized;
6144 case TargetOpcode::G_CTPOP: {
6145 Register SrcReg = MI.getOperand(1).getReg();
6146 LLT Ty = MRI.getType(SrcReg);
6147 unsigned Size = Ty.getSizeInBits();
6148 MachineIRBuilder &B = MIRBuilder;
6150 // Count set bits in blocks of 2 bits. Default approach would be
6151 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
6152 // We use following formula instead:
6153 // B2Count = val - { (val >> 1) & 0x55555555 }
6154 // since it gives same result in blocks of 2 with one instruction less.
6155 auto C_1 = B.buildConstant(Ty, 1);
6156 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
6157 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
6158 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
6159 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
6160 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
6162 // In order to get count in blocks of 4 add values from adjacent block of 2.
6163 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
6164 auto C_2 = B.buildConstant(Ty, 2);
6165 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
6166 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
6167 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
6168 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
6169 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
6170 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
6172 // For count in blocks of 8 bits we don't have to mask high 4 bits before
6173 // addition since count value sits in range {0,...,8} and 4 bits are enough
6174 // to hold such binary values. After addition high 4 bits still hold count
6175 // of set bits in high 4 bit block, set them to zero and get 8 bit result.
6176 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
6177 auto C_4 = B.buildConstant(Ty, 4);
6178 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
6179 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
6180 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
6181 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
6182 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
6184 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
6185 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
6186 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
6187 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
6188 auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
6190 // Shift count result from 8 high bits to low bits.
6191 auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
6192 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
6194 MI.eraseFromParent();
6195 return Legalized;
6200 // Check that (every element of) Reg is undef or not an exact multiple of BW.
6201 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
6202 Register Reg, unsigned BW) {
6203 return matchUnaryPredicate(
6204 MRI, Reg,
6205 [=](const Constant *C) {
6206 // Null constant here means an undef.
6207 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
6208 return !CI || CI->getValue().urem(BW) != 0;
6210 /*AllowUndefs*/ true);
6213 LegalizerHelper::LegalizeResult
6214 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
6215 auto [Dst, X, Y, Z] = MI.getFirst4Regs();
6216 LLT Ty = MRI.getType(Dst);
6217 LLT ShTy = MRI.getType(Z);
6219 unsigned BW = Ty.getScalarSizeInBits();
6221 if (!isPowerOf2_32(BW))
6222 return UnableToLegalize;
6224 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
6225 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
6227 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
6228 // fshl X, Y, Z -> fshr X, Y, -Z
6229 // fshr X, Y, Z -> fshl X, Y, -Z
6230 auto Zero = MIRBuilder.buildConstant(ShTy, 0);
6231 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
6232 } else {
6233 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6234 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6235 auto One = MIRBuilder.buildConstant(ShTy, 1);
6236 if (IsFSHL) {
6237 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
6238 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
6239 } else {
6240 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
6241 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
6244 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
6247 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
6248 MI.eraseFromParent();
6249 return Legalized;
6252 LegalizerHelper::LegalizeResult
6253 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
6254 auto [Dst, X, Y, Z] = MI.getFirst4Regs();
6255 LLT Ty = MRI.getType(Dst);
6256 LLT ShTy = MRI.getType(Z);
6258 const unsigned BW = Ty.getScalarSizeInBits();
6259 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
6261 Register ShX, ShY;
6262 Register ShAmt, InvShAmt;
6264 // FIXME: Emit optimized urem by constant instead of letting it expand later.
6265 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
6266 // fshl: X << C | Y >> (BW - C)
6267 // fshr: X << (BW - C) | Y >> C
6268 // where C = Z % BW is not zero
6269 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
6270 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
6271 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
6272 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
6273 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
6274 } else {
6275 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6276 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6277 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
6278 if (isPowerOf2_32(BW)) {
6279 // Z % BW -> Z & (BW - 1)
6280 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
6281 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6282 auto NotZ = MIRBuilder.buildNot(ShTy, Z);
6283 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
6284 } else {
6285 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
6286 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
6287 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
6290 auto One = MIRBuilder.buildConstant(ShTy, 1);
6291 if (IsFSHL) {
6292 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
6293 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
6294 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
6295 } else {
6296 auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
6297 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
6298 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
6302 MIRBuilder.buildOr(Dst, ShX, ShY);
6303 MI.eraseFromParent();
6304 return Legalized;
6307 LegalizerHelper::LegalizeResult
6308 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
6309 // These operations approximately do the following (while avoiding undefined
6310 // shifts by BW):
6311 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6312 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6313 Register Dst = MI.getOperand(0).getReg();
6314 LLT Ty = MRI.getType(Dst);
6315 LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
6317 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
6318 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
6320 // TODO: Use smarter heuristic that accounts for vector legalization.
6321 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
6322 return lowerFunnelShiftAsShifts(MI);
6324 // This only works for powers of 2, fallback to shifts if it fails.
6325 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
6326 if (Result == UnableToLegalize)
6327 return lowerFunnelShiftAsShifts(MI);
6328 return Result;
6331 LegalizerHelper::LegalizeResult LegalizerHelper::lowerEXT(MachineInstr &MI) {
6332 auto [Dst, Src] = MI.getFirst2Regs();
6333 LLT DstTy = MRI.getType(Dst);
6334 LLT SrcTy = MRI.getType(Src);
6336 uint32_t DstTySize = DstTy.getSizeInBits();
6337 uint32_t DstTyScalarSize = DstTy.getScalarSizeInBits();
6338 uint32_t SrcTyScalarSize = SrcTy.getScalarSizeInBits();
6340 if (!isPowerOf2_32(DstTySize) || !isPowerOf2_32(DstTyScalarSize) ||
6341 !isPowerOf2_32(SrcTyScalarSize))
6342 return UnableToLegalize;
6344 // The step between extend is too large, split it by creating an intermediate
6345 // extend instruction
6346 if (SrcTyScalarSize * 2 < DstTyScalarSize) {
6347 LLT MidTy = SrcTy.changeElementSize(SrcTyScalarSize * 2);
6348 // If the destination type is illegal, split it into multiple statements
6349 // zext x -> zext(merge(zext(unmerge), zext(unmerge)))
6350 auto NewExt = MIRBuilder.buildInstr(MI.getOpcode(), {MidTy}, {Src});
6351 // Unmerge the vector
6352 LLT EltTy = MidTy.changeElementCount(
6353 MidTy.getElementCount().divideCoefficientBy(2));
6354 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, NewExt);
6356 // ZExt the vectors
6357 LLT ZExtResTy = DstTy.changeElementCount(
6358 DstTy.getElementCount().divideCoefficientBy(2));
6359 auto ZExtRes1 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy},
6360 {UnmergeSrc.getReg(0)});
6361 auto ZExtRes2 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy},
6362 {UnmergeSrc.getReg(1)});
6364 // Merge the ending vectors
6365 MIRBuilder.buildMergeLikeInstr(Dst, {ZExtRes1, ZExtRes2});
6367 MI.eraseFromParent();
6368 return Legalized;
6370 return UnableToLegalize;
6373 LegalizerHelper::LegalizeResult LegalizerHelper::lowerTRUNC(MachineInstr &MI) {
6374 // MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
6375 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
6376 // Similar to how operand splitting is done in SelectiondDAG, we can handle
6377 // %res(v8s8) = G_TRUNC %in(v8s32) by generating:
6378 // %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>)
6379 // %lo16(<4 x s16>) = G_TRUNC %inlo
6380 // %hi16(<4 x s16>) = G_TRUNC %inhi
6381 // %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16
6382 // %res(<8 x s8>) = G_TRUNC %in16
6384 assert(MI.getOpcode() == TargetOpcode::G_TRUNC);
6386 Register DstReg = MI.getOperand(0).getReg();
6387 Register SrcReg = MI.getOperand(1).getReg();
6388 LLT DstTy = MRI.getType(DstReg);
6389 LLT SrcTy = MRI.getType(SrcReg);
6391 if (DstTy.isVector() && isPowerOf2_32(DstTy.getNumElements()) &&
6392 isPowerOf2_32(DstTy.getScalarSizeInBits()) &&
6393 isPowerOf2_32(SrcTy.getNumElements()) &&
6394 isPowerOf2_32(SrcTy.getScalarSizeInBits())) {
6395 // Split input type.
6396 LLT SplitSrcTy = SrcTy.changeElementCount(
6397 SrcTy.getElementCount().divideCoefficientBy(2));
6399 // First, split the source into two smaller vectors.
6400 SmallVector<Register, 2> SplitSrcs;
6401 extractParts(SrcReg, SplitSrcTy, 2, SplitSrcs, MIRBuilder, MRI);
6403 // Truncate the splits into intermediate narrower elements.
6404 LLT InterTy;
6405 if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits())
6406 InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2);
6407 else
6408 InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits());
6409 for (unsigned I = 0; I < SplitSrcs.size(); ++I) {
6410 SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0);
6413 // Combine the new truncates into one vector
6414 auto Merge = MIRBuilder.buildMergeLikeInstr(
6415 DstTy.changeElementSize(InterTy.getScalarSizeInBits()), SplitSrcs);
6417 // Truncate the new vector to the final result type
6418 if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits())
6419 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), Merge.getReg(0));
6420 else
6421 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Merge.getReg(0));
6423 MI.eraseFromParent();
6425 return Legalized;
6427 return UnableToLegalize;
6430 LegalizerHelper::LegalizeResult
6431 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
6432 auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs();
6433 auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
6434 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
6435 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
6436 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
6437 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
6438 MI.eraseFromParent();
6439 return Legalized;
6442 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
6443 auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs();
6445 unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
6446 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
6448 MIRBuilder.setInstrAndDebugLoc(MI);
6450 // If a rotate in the other direction is supported, use it.
6451 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
6452 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
6453 isPowerOf2_32(EltSizeInBits))
6454 return lowerRotateWithReverseRotate(MI);
6456 // If a funnel shift is supported, use it.
6457 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
6458 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
6459 bool IsFShLegal = false;
6460 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) ||
6461 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) {
6462 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2,
6463 Register R3) {
6464 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3});
6465 MI.eraseFromParent();
6466 return Legalized;
6468 // If a funnel shift in the other direction is supported, use it.
6469 if (IsFShLegal) {
6470 return buildFunnelShift(FShOpc, Dst, Src, Amt);
6471 } else if (isPowerOf2_32(EltSizeInBits)) {
6472 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0);
6473 return buildFunnelShift(RevFsh, Dst, Src, Amt);
6477 auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
6478 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
6479 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
6480 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
6481 Register ShVal;
6482 Register RevShiftVal;
6483 if (isPowerOf2_32(EltSizeInBits)) {
6484 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6485 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6486 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
6487 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
6488 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6489 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
6490 RevShiftVal =
6491 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
6492 } else {
6493 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6494 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6495 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
6496 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
6497 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6498 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
6499 auto One = MIRBuilder.buildConstant(AmtTy, 1);
6500 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
6501 RevShiftVal =
6502 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
6504 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
6505 MI.eraseFromParent();
6506 return Legalized;
6509 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
6510 // representation.
6511 LegalizerHelper::LegalizeResult
6512 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
6513 auto [Dst, Src] = MI.getFirst2Regs();
6514 const LLT S64 = LLT::scalar(64);
6515 const LLT S32 = LLT::scalar(32);
6516 const LLT S1 = LLT::scalar(1);
6518 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
6520 // unsigned cul2f(ulong u) {
6521 // uint lz = clz(u);
6522 // uint e = (u != 0) ? 127U + 63U - lz : 0;
6523 // u = (u << lz) & 0x7fffffffffffffffUL;
6524 // ulong t = u & 0xffffffffffUL;
6525 // uint v = (e << 23) | (uint)(u >> 40);
6526 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
6527 // return as_float(v + r);
6528 // }
6530 auto Zero32 = MIRBuilder.buildConstant(S32, 0);
6531 auto Zero64 = MIRBuilder.buildConstant(S64, 0);
6533 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
6535 auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
6536 auto Sub = MIRBuilder.buildSub(S32, K, LZ);
6538 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
6539 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
6541 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
6542 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
6544 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
6546 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
6547 auto T = MIRBuilder.buildAnd(S64, U, Mask1);
6549 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
6550 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
6551 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
6553 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
6554 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
6555 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
6556 auto One = MIRBuilder.buildConstant(S32, 1);
6558 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
6559 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
6560 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
6561 MIRBuilder.buildAdd(Dst, V, R);
6563 MI.eraseFromParent();
6564 return Legalized;
6567 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6568 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
6570 if (SrcTy == LLT::scalar(1)) {
6571 auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6572 auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6573 MIRBuilder.buildSelect(Dst, Src, True, False);
6574 MI.eraseFromParent();
6575 return Legalized;
6578 if (SrcTy != LLT::scalar(64))
6579 return UnableToLegalize;
6581 if (DstTy == LLT::scalar(32)) {
6582 // TODO: SelectionDAG has several alternative expansions to port which may
6583 // be more reasonble depending on the available instructions. If a target
6584 // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6585 // intermediate type, this is probably worse.
6586 return lowerU64ToF32BitOps(MI);
6589 return UnableToLegalize;
6592 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6593 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
6595 const LLT S64 = LLT::scalar(64);
6596 const LLT S32 = LLT::scalar(32);
6597 const LLT S1 = LLT::scalar(1);
6599 if (SrcTy == S1) {
6600 auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6601 auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6602 MIRBuilder.buildSelect(Dst, Src, True, False);
6603 MI.eraseFromParent();
6604 return Legalized;
6607 if (SrcTy != S64)
6608 return UnableToLegalize;
6610 if (DstTy == S32) {
6611 // signed cl2f(long l) {
6612 // long s = l >> 63;
6613 // float r = cul2f((l + s) ^ s);
6614 // return s ? -r : r;
6615 // }
6616 Register L = Src;
6617 auto SignBit = MIRBuilder.buildConstant(S64, 63);
6618 auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6620 auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6621 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6622 auto R = MIRBuilder.buildUITOFP(S32, Xor);
6624 auto RNeg = MIRBuilder.buildFNeg(S32, R);
6625 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6626 MIRBuilder.buildConstant(S64, 0));
6627 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6628 MI.eraseFromParent();
6629 return Legalized;
6632 return UnableToLegalize;
6635 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6636 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
6637 const LLT S64 = LLT::scalar(64);
6638 const LLT S32 = LLT::scalar(32);
6640 if (SrcTy != S64 && SrcTy != S32)
6641 return UnableToLegalize;
6642 if (DstTy != S32 && DstTy != S64)
6643 return UnableToLegalize;
6645 // FPTOSI gives same result as FPTOUI for positive signed integers.
6646 // FPTOUI needs to deal with fp values that convert to unsigned integers
6647 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6649 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6650 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6651 : APFloat::IEEEdouble(),
6652 APInt::getZero(SrcTy.getSizeInBits()));
6653 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6655 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6657 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6658 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6659 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6660 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6661 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6662 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6663 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6665 const LLT S1 = LLT::scalar(1);
6667 MachineInstrBuilder FCMP =
6668 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6669 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6671 MI.eraseFromParent();
6672 return Legalized;
6675 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6676 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
6677 const LLT S64 = LLT::scalar(64);
6678 const LLT S32 = LLT::scalar(32);
6680 // FIXME: Only f32 to i64 conversions are supported.
6681 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6682 return UnableToLegalize;
6684 // Expand f32 -> i64 conversion
6685 // This algorithm comes from compiler-rt's implementation of fixsfdi:
6686 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6688 unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6690 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6691 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6693 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6694 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6696 auto SignMask = MIRBuilder.buildConstant(SrcTy,
6697 APInt::getSignMask(SrcEltBits));
6698 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6699 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6700 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6701 Sign = MIRBuilder.buildSExt(DstTy, Sign);
6703 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6704 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6705 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6707 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6708 R = MIRBuilder.buildZExt(DstTy, R);
6710 auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6711 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6712 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6713 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6715 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6716 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6718 const LLT S1 = LLT::scalar(1);
6719 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6720 S1, Exponent, ExponentLoBit);
6722 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6724 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6725 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6727 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6729 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6730 S1, Exponent, ZeroSrcTy);
6732 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6733 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6735 MI.eraseFromParent();
6736 return Legalized;
6739 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6740 LegalizerHelper::LegalizeResult
6741 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6742 const LLT S1 = LLT::scalar(1);
6743 const LLT S32 = LLT::scalar(32);
6745 auto [Dst, Src] = MI.getFirst2Regs();
6746 assert(MRI.getType(Dst).getScalarType() == LLT::scalar(16) &&
6747 MRI.getType(Src).getScalarType() == LLT::scalar(64));
6749 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6750 return UnableToLegalize;
6752 if (MIRBuilder.getMF().getTarget().Options.UnsafeFPMath) {
6753 unsigned Flags = MI.getFlags();
6754 auto Src32 = MIRBuilder.buildFPTrunc(S32, Src, Flags);
6755 MIRBuilder.buildFPTrunc(Dst, Src32, Flags);
6756 MI.eraseFromParent();
6757 return Legalized;
6760 const unsigned ExpMask = 0x7ff;
6761 const unsigned ExpBiasf64 = 1023;
6762 const unsigned ExpBiasf16 = 15;
6764 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6765 Register U = Unmerge.getReg(0);
6766 Register UH = Unmerge.getReg(1);
6768 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6769 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6771 // Subtract the fp64 exponent bias (1023) to get the real exponent and
6772 // add the f16 bias (15) to get the biased exponent for the f16 format.
6773 E = MIRBuilder.buildAdd(
6774 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6776 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6777 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6779 auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6780 MIRBuilder.buildConstant(S32, 0x1ff));
6781 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6783 auto Zero = MIRBuilder.buildConstant(S32, 0);
6784 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6785 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6786 M = MIRBuilder.buildOr(S32, M, Lo40Set);
6788 // (M != 0 ? 0x0200 : 0) | 0x7c00;
6789 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6790 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6791 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6793 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6794 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6796 // N = M | (E << 12);
6797 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6798 auto N = MIRBuilder.buildOr(S32, M, EShl12);
6800 // B = clamp(1-E, 0, 13);
6801 auto One = MIRBuilder.buildConstant(S32, 1);
6802 auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6803 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6804 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6806 auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6807 MIRBuilder.buildConstant(S32, 0x1000));
6809 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6810 auto D0 = MIRBuilder.buildShl(S32, D, B);
6812 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6813 D0, SigSetHigh);
6814 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6815 D = MIRBuilder.buildOr(S32, D, D1);
6817 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6818 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6820 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6821 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6823 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6824 MIRBuilder.buildConstant(S32, 3));
6825 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6827 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6828 MIRBuilder.buildConstant(S32, 5));
6829 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6831 V1 = MIRBuilder.buildOr(S32, V0, V1);
6832 V = MIRBuilder.buildAdd(S32, V, V1);
6834 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1,
6835 E, MIRBuilder.buildConstant(S32, 30));
6836 V = MIRBuilder.buildSelect(S32, CmpEGt30,
6837 MIRBuilder.buildConstant(S32, 0x7c00), V);
6839 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6840 E, MIRBuilder.buildConstant(S32, 1039));
6841 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6843 // Extract the sign bit.
6844 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6845 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6847 // Insert the sign bit
6848 V = MIRBuilder.buildOr(S32, Sign, V);
6850 MIRBuilder.buildTrunc(Dst, V);
6851 MI.eraseFromParent();
6852 return Legalized;
6855 LegalizerHelper::LegalizeResult
6856 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6857 auto [DstTy, SrcTy] = MI.getFirst2LLTs();
6858 const LLT S64 = LLT::scalar(64);
6859 const LLT S16 = LLT::scalar(16);
6861 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6862 return lowerFPTRUNC_F64_TO_F16(MI);
6864 return UnableToLegalize;
6867 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6868 // multiplication tree.
6869 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6870 auto [Dst, Src0, Src1] = MI.getFirst3Regs();
6871 LLT Ty = MRI.getType(Dst);
6873 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6874 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6875 MI.eraseFromParent();
6876 return Legalized;
6879 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6880 switch (Opc) {
6881 case TargetOpcode::G_SMIN:
6882 return CmpInst::ICMP_SLT;
6883 case TargetOpcode::G_SMAX:
6884 return CmpInst::ICMP_SGT;
6885 case TargetOpcode::G_UMIN:
6886 return CmpInst::ICMP_ULT;
6887 case TargetOpcode::G_UMAX:
6888 return CmpInst::ICMP_UGT;
6889 default:
6890 llvm_unreachable("not in integer min/max");
6894 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6895 auto [Dst, Src0, Src1] = MI.getFirst3Regs();
6897 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6898 LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6900 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6901 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6903 MI.eraseFromParent();
6904 return Legalized;
6907 LegalizerHelper::LegalizeResult
6908 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6909 auto [Dst, DstTy, Src0, Src0Ty, Src1, Src1Ty] = MI.getFirst3RegLLTs();
6910 const int Src0Size = Src0Ty.getScalarSizeInBits();
6911 const int Src1Size = Src1Ty.getScalarSizeInBits();
6913 auto SignBitMask = MIRBuilder.buildConstant(
6914 Src0Ty, APInt::getSignMask(Src0Size));
6916 auto NotSignBitMask = MIRBuilder.buildConstant(
6917 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6919 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6920 Register And1;
6921 if (Src0Ty == Src1Ty) {
6922 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6923 } else if (Src0Size > Src1Size) {
6924 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6925 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6926 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6927 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6928 } else {
6929 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6930 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6931 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6932 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6935 // Be careful about setting nsz/nnan/ninf on every instruction, since the
6936 // constants are a nan and -0.0, but the final result should preserve
6937 // everything.
6938 unsigned Flags = MI.getFlags();
6939 MIRBuilder.buildOr(Dst, And0, And1, Flags);
6941 MI.eraseFromParent();
6942 return Legalized;
6945 LegalizerHelper::LegalizeResult
6946 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6947 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6948 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6950 auto [Dst, Src0, Src1] = MI.getFirst3Regs();
6951 LLT Ty = MRI.getType(Dst);
6953 if (!MI.getFlag(MachineInstr::FmNoNans)) {
6954 // Insert canonicalizes if it's possible we need to quiet to get correct
6955 // sNaN behavior.
6957 // Note this must be done here, and not as an optimization combine in the
6958 // absence of a dedicate quiet-snan instruction as we're using an
6959 // omni-purpose G_FCANONICALIZE.
6960 if (!isKnownNeverSNaN(Src0, MRI))
6961 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6963 if (!isKnownNeverSNaN(Src1, MRI))
6964 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6967 // If there are no nans, it's safe to simply replace this with the non-IEEE
6968 // version.
6969 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6970 MI.eraseFromParent();
6971 return Legalized;
6974 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6975 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6976 Register DstReg = MI.getOperand(0).getReg();
6977 LLT Ty = MRI.getType(DstReg);
6978 unsigned Flags = MI.getFlags();
6980 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6981 Flags);
6982 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6983 MI.eraseFromParent();
6984 return Legalized;
6987 LegalizerHelper::LegalizeResult
6988 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6989 auto [DstReg, X] = MI.getFirst2Regs();
6990 const unsigned Flags = MI.getFlags();
6991 const LLT Ty = MRI.getType(DstReg);
6992 const LLT CondTy = Ty.changeElementSize(1);
6994 // round(x) =>
6995 // t = trunc(x);
6996 // d = fabs(x - t);
6997 // o = copysign(d >= 0.5 ? 1.0 : 0.0, x);
6998 // return t + o;
7000 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
7002 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
7003 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
7005 auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
7006 auto Cmp =
7007 MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, Flags);
7009 // Could emit G_UITOFP instead
7010 auto One = MIRBuilder.buildFConstant(Ty, 1.0);
7011 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
7012 auto BoolFP = MIRBuilder.buildSelect(Ty, Cmp, One, Zero);
7013 auto SignedOffset = MIRBuilder.buildFCopysign(Ty, BoolFP, X);
7015 MIRBuilder.buildFAdd(DstReg, T, SignedOffset, Flags);
7017 MI.eraseFromParent();
7018 return Legalized;
7021 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFFloor(MachineInstr &MI) {
7022 auto [DstReg, SrcReg] = MI.getFirst2Regs();
7023 unsigned Flags = MI.getFlags();
7024 LLT Ty = MRI.getType(DstReg);
7025 const LLT CondTy = Ty.changeElementSize(1);
7027 // result = trunc(src);
7028 // if (src < 0.0 && src != result)
7029 // result += -1.0.
7031 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
7032 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
7034 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
7035 SrcReg, Zero, Flags);
7036 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
7037 SrcReg, Trunc, Flags);
7038 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
7039 auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
7041 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
7042 MI.eraseFromParent();
7043 return Legalized;
7046 LegalizerHelper::LegalizeResult
7047 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
7048 const unsigned NumOps = MI.getNumOperands();
7049 auto [DstReg, DstTy, Src0Reg, Src0Ty] = MI.getFirst2RegLLTs();
7050 unsigned PartSize = Src0Ty.getSizeInBits();
7052 LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
7053 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
7055 for (unsigned I = 2; I != NumOps; ++I) {
7056 const unsigned Offset = (I - 1) * PartSize;
7058 Register SrcReg = MI.getOperand(I).getReg();
7059 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
7061 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
7062 MRI.createGenericVirtualRegister(WideTy);
7064 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
7065 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
7066 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
7067 ResultReg = NextResult;
7070 if (DstTy.isPointer()) {
7071 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
7072 DstTy.getAddressSpace())) {
7073 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
7074 return UnableToLegalize;
7077 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
7080 MI.eraseFromParent();
7081 return Legalized;
7084 LegalizerHelper::LegalizeResult
7085 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
7086 const unsigned NumDst = MI.getNumOperands() - 1;
7087 Register SrcReg = MI.getOperand(NumDst).getReg();
7088 Register Dst0Reg = MI.getOperand(0).getReg();
7089 LLT DstTy = MRI.getType(Dst0Reg);
7090 if (DstTy.isPointer())
7091 return UnableToLegalize; // TODO
7093 SrcReg = coerceToScalar(SrcReg);
7094 if (!SrcReg)
7095 return UnableToLegalize;
7097 // Expand scalarizing unmerge as bitcast to integer and shift.
7098 LLT IntTy = MRI.getType(SrcReg);
7100 MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
7102 const unsigned DstSize = DstTy.getSizeInBits();
7103 unsigned Offset = DstSize;
7104 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
7105 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
7106 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
7107 MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
7110 MI.eraseFromParent();
7111 return Legalized;
7114 /// Lower a vector extract or insert by writing the vector to a stack temporary
7115 /// and reloading the element or vector.
7117 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
7118 /// =>
7119 /// %stack_temp = G_FRAME_INDEX
7120 /// G_STORE %vec, %stack_temp
7121 /// %idx = clamp(%idx, %vec.getNumElements())
7122 /// %element_ptr = G_PTR_ADD %stack_temp, %idx
7123 /// %dst = G_LOAD %element_ptr
7124 LegalizerHelper::LegalizeResult
7125 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
7126 Register DstReg = MI.getOperand(0).getReg();
7127 Register SrcVec = MI.getOperand(1).getReg();
7128 Register InsertVal;
7129 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
7130 InsertVal = MI.getOperand(2).getReg();
7132 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
7134 LLT VecTy = MRI.getType(SrcVec);
7135 LLT EltTy = VecTy.getElementType();
7136 unsigned NumElts = VecTy.getNumElements();
7138 int64_t IdxVal;
7139 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) {
7140 SmallVector<Register, 8> SrcRegs;
7141 extractParts(SrcVec, EltTy, NumElts, SrcRegs, MIRBuilder, MRI);
7143 if (InsertVal) {
7144 SrcRegs[IdxVal] = MI.getOperand(2).getReg();
7145 MIRBuilder.buildMergeLikeInstr(DstReg, SrcRegs);
7146 } else {
7147 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]);
7150 MI.eraseFromParent();
7151 return Legalized;
7154 if (!EltTy.isByteSized()) { // Not implemented.
7155 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
7156 return UnableToLegalize;
7159 unsigned EltBytes = EltTy.getSizeInBytes();
7160 Align VecAlign = getStackTemporaryAlignment(VecTy);
7161 Align EltAlign;
7163 MachinePointerInfo PtrInfo;
7164 auto StackTemp = createStackTemporary(
7165 TypeSize::getFixed(VecTy.getSizeInBytes()), VecAlign, PtrInfo);
7166 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
7168 // Get the pointer to the element, and be sure not to hit undefined behavior
7169 // if the index is out of bounds.
7170 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
7172 if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
7173 int64_t Offset = IdxVal * EltBytes;
7174 PtrInfo = PtrInfo.getWithOffset(Offset);
7175 EltAlign = commonAlignment(VecAlign, Offset);
7176 } else {
7177 // We lose information with a variable offset.
7178 EltAlign = getStackTemporaryAlignment(EltTy);
7179 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
7182 if (InsertVal) {
7183 // Write the inserted element
7184 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
7186 // Reload the whole vector.
7187 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
7188 } else {
7189 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
7192 MI.eraseFromParent();
7193 return Legalized;
7196 LegalizerHelper::LegalizeResult
7197 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
7198 auto [DstReg, DstTy, Src0Reg, Src0Ty, Src1Reg, Src1Ty] =
7199 MI.getFirst3RegLLTs();
7200 LLT IdxTy = LLT::scalar(32);
7202 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
7203 Register Undef;
7204 SmallVector<Register, 32> BuildVec;
7205 LLT EltTy = DstTy.getScalarType();
7207 for (int Idx : Mask) {
7208 if (Idx < 0) {
7209 if (!Undef.isValid())
7210 Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
7211 BuildVec.push_back(Undef);
7212 continue;
7215 if (Src0Ty.isScalar()) {
7216 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
7217 } else {
7218 int NumElts = Src0Ty.getNumElements();
7219 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
7220 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
7221 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
7222 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
7223 BuildVec.push_back(Extract.getReg(0));
7227 if (DstTy.isScalar())
7228 MIRBuilder.buildCopy(DstReg, BuildVec[0]);
7229 else
7230 MIRBuilder.buildBuildVector(DstReg, BuildVec);
7231 MI.eraseFromParent();
7232 return Legalized;
7235 Register LegalizerHelper::getDynStackAllocTargetPtr(Register SPReg,
7236 Register AllocSize,
7237 Align Alignment,
7238 LLT PtrTy) {
7239 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
7241 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
7242 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
7244 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
7245 // have to generate an extra instruction to negate the alloc and then use
7246 // G_PTR_ADD to add the negative offset.
7247 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
7248 if (Alignment > Align(1)) {
7249 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
7250 AlignMask.negate();
7251 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
7252 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
7255 return MIRBuilder.buildCast(PtrTy, Alloc).getReg(0);
7258 LegalizerHelper::LegalizeResult
7259 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
7260 const auto &MF = *MI.getMF();
7261 const auto &TFI = *MF.getSubtarget().getFrameLowering();
7262 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
7263 return UnableToLegalize;
7265 Register Dst = MI.getOperand(0).getReg();
7266 Register AllocSize = MI.getOperand(1).getReg();
7267 Align Alignment = assumeAligned(MI.getOperand(2).getImm());
7269 LLT PtrTy = MRI.getType(Dst);
7270 Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
7271 Register SPTmp =
7272 getDynStackAllocTargetPtr(SPReg, AllocSize, Alignment, PtrTy);
7274 MIRBuilder.buildCopy(SPReg, SPTmp);
7275 MIRBuilder.buildCopy(Dst, SPTmp);
7277 MI.eraseFromParent();
7278 return Legalized;
7281 LegalizerHelper::LegalizeResult
7282 LegalizerHelper::lowerStackSave(MachineInstr &MI) {
7283 Register StackPtr = TLI.getStackPointerRegisterToSaveRestore();
7284 if (!StackPtr)
7285 return UnableToLegalize;
7287 MIRBuilder.buildCopy(MI.getOperand(0), StackPtr);
7288 MI.eraseFromParent();
7289 return Legalized;
7292 LegalizerHelper::LegalizeResult
7293 LegalizerHelper::lowerStackRestore(MachineInstr &MI) {
7294 Register StackPtr = TLI.getStackPointerRegisterToSaveRestore();
7295 if (!StackPtr)
7296 return UnableToLegalize;
7298 MIRBuilder.buildCopy(StackPtr, MI.getOperand(0));
7299 MI.eraseFromParent();
7300 return Legalized;
7303 LegalizerHelper::LegalizeResult
7304 LegalizerHelper::lowerExtract(MachineInstr &MI) {
7305 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
7306 unsigned Offset = MI.getOperand(2).getImm();
7308 // Extract sub-vector or one element
7309 if (SrcTy.isVector()) {
7310 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
7311 unsigned DstSize = DstTy.getSizeInBits();
7313 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) &&
7314 (Offset + DstSize <= SrcTy.getSizeInBits())) {
7315 // Unmerge and allow access to each Src element for the artifact combiner.
7316 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), SrcReg);
7318 // Take element(s) we need to extract and copy it (merge them).
7319 SmallVector<Register, 8> SubVectorElts;
7320 for (unsigned Idx = Offset / SrcEltSize;
7321 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) {
7322 SubVectorElts.push_back(Unmerge.getReg(Idx));
7324 if (SubVectorElts.size() == 1)
7325 MIRBuilder.buildCopy(DstReg, SubVectorElts[0]);
7326 else
7327 MIRBuilder.buildMergeLikeInstr(DstReg, SubVectorElts);
7329 MI.eraseFromParent();
7330 return Legalized;
7334 if (DstTy.isScalar() &&
7335 (SrcTy.isScalar() ||
7336 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
7337 LLT SrcIntTy = SrcTy;
7338 if (!SrcTy.isScalar()) {
7339 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
7340 SrcReg = MIRBuilder.buildBitcast(SrcIntTy, SrcReg).getReg(0);
7343 if (Offset == 0)
7344 MIRBuilder.buildTrunc(DstReg, SrcReg);
7345 else {
7346 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
7347 auto Shr = MIRBuilder.buildLShr(SrcIntTy, SrcReg, ShiftAmt);
7348 MIRBuilder.buildTrunc(DstReg, Shr);
7351 MI.eraseFromParent();
7352 return Legalized;
7355 return UnableToLegalize;
7358 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
7359 auto [Dst, Src, InsertSrc] = MI.getFirst3Regs();
7360 uint64_t Offset = MI.getOperand(3).getImm();
7362 LLT DstTy = MRI.getType(Src);
7363 LLT InsertTy = MRI.getType(InsertSrc);
7365 // Insert sub-vector or one element
7366 if (DstTy.isVector() && !InsertTy.isPointer()) {
7367 LLT EltTy = DstTy.getElementType();
7368 unsigned EltSize = EltTy.getSizeInBits();
7369 unsigned InsertSize = InsertTy.getSizeInBits();
7371 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) &&
7372 (Offset + InsertSize <= DstTy.getSizeInBits())) {
7373 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src);
7374 SmallVector<Register, 8> DstElts;
7375 unsigned Idx = 0;
7376 // Elements from Src before insert start Offset
7377 for (; Idx < Offset / EltSize; ++Idx) {
7378 DstElts.push_back(UnmergeSrc.getReg(Idx));
7381 // Replace elements in Src with elements from InsertSrc
7382 if (InsertTy.getSizeInBits() > EltSize) {
7383 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc);
7384 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize;
7385 ++Idx, ++i) {
7386 DstElts.push_back(UnmergeInsertSrc.getReg(i));
7388 } else {
7389 DstElts.push_back(InsertSrc);
7390 ++Idx;
7393 // Remaining elements from Src after insert
7394 for (; Idx < DstTy.getNumElements(); ++Idx) {
7395 DstElts.push_back(UnmergeSrc.getReg(Idx));
7398 MIRBuilder.buildMergeLikeInstr(Dst, DstElts);
7399 MI.eraseFromParent();
7400 return Legalized;
7404 if (InsertTy.isVector() ||
7405 (DstTy.isVector() && DstTy.getElementType() != InsertTy))
7406 return UnableToLegalize;
7408 const DataLayout &DL = MIRBuilder.getDataLayout();
7409 if ((DstTy.isPointer() &&
7410 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
7411 (InsertTy.isPointer() &&
7412 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
7413 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
7414 return UnableToLegalize;
7417 LLT IntDstTy = DstTy;
7419 if (!DstTy.isScalar()) {
7420 IntDstTy = LLT::scalar(DstTy.getSizeInBits());
7421 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
7424 if (!InsertTy.isScalar()) {
7425 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
7426 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
7429 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
7430 if (Offset != 0) {
7431 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
7432 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
7435 APInt MaskVal = APInt::getBitsSetWithWrap(
7436 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
7438 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
7439 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
7440 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
7442 MIRBuilder.buildCast(Dst, Or);
7443 MI.eraseFromParent();
7444 return Legalized;
7447 LegalizerHelper::LegalizeResult
7448 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
7449 auto [Dst0, Dst0Ty, Dst1, Dst1Ty, LHS, LHSTy, RHS, RHSTy] =
7450 MI.getFirst4RegLLTs();
7451 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
7453 LLT Ty = Dst0Ty;
7454 LLT BoolTy = Dst1Ty;
7456 if (IsAdd)
7457 MIRBuilder.buildAdd(Dst0, LHS, RHS);
7458 else
7459 MIRBuilder.buildSub(Dst0, LHS, RHS);
7461 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7463 auto Zero = MIRBuilder.buildConstant(Ty, 0);
7465 // For an addition, the result should be less than one of the operands (LHS)
7466 // if and only if the other operand (RHS) is negative, otherwise there will
7467 // be overflow.
7468 // For a subtraction, the result should be less than one of the operands
7469 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7470 // otherwise there will be overflow.
7471 auto ResultLowerThanLHS =
7472 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
7473 auto ConditionRHS = MIRBuilder.buildICmp(
7474 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
7476 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
7477 MI.eraseFromParent();
7478 return Legalized;
7481 LegalizerHelper::LegalizeResult
7482 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
7483 auto [Res, LHS, RHS] = MI.getFirst3Regs();
7484 LLT Ty = MRI.getType(Res);
7485 bool IsSigned;
7486 bool IsAdd;
7487 unsigned BaseOp;
7488 switch (MI.getOpcode()) {
7489 default:
7490 llvm_unreachable("unexpected addsat/subsat opcode");
7491 case TargetOpcode::G_UADDSAT:
7492 IsSigned = false;
7493 IsAdd = true;
7494 BaseOp = TargetOpcode::G_ADD;
7495 break;
7496 case TargetOpcode::G_SADDSAT:
7497 IsSigned = true;
7498 IsAdd = true;
7499 BaseOp = TargetOpcode::G_ADD;
7500 break;
7501 case TargetOpcode::G_USUBSAT:
7502 IsSigned = false;
7503 IsAdd = false;
7504 BaseOp = TargetOpcode::G_SUB;
7505 break;
7506 case TargetOpcode::G_SSUBSAT:
7507 IsSigned = true;
7508 IsAdd = false;
7509 BaseOp = TargetOpcode::G_SUB;
7510 break;
7513 if (IsSigned) {
7514 // sadd.sat(a, b) ->
7515 // hi = 0x7fffffff - smax(a, 0)
7516 // lo = 0x80000000 - smin(a, 0)
7517 // a + smin(smax(lo, b), hi)
7518 // ssub.sat(a, b) ->
7519 // lo = smax(a, -1) - 0x7fffffff
7520 // hi = smin(a, -1) - 0x80000000
7521 // a - smin(smax(lo, b), hi)
7522 // TODO: AMDGPU can use a "median of 3" instruction here:
7523 // a +/- med3(lo, b, hi)
7524 uint64_t NumBits = Ty.getScalarSizeInBits();
7525 auto MaxVal =
7526 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
7527 auto MinVal =
7528 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7529 MachineInstrBuilder Hi, Lo;
7530 if (IsAdd) {
7531 auto Zero = MIRBuilder.buildConstant(Ty, 0);
7532 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
7533 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
7534 } else {
7535 auto NegOne = MIRBuilder.buildConstant(Ty, -1);
7536 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
7537 MaxVal);
7538 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
7539 MinVal);
7541 auto RHSClamped =
7542 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
7543 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
7544 } else {
7545 // uadd.sat(a, b) -> a + umin(~a, b)
7546 // usub.sat(a, b) -> a - umin(a, b)
7547 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
7548 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
7549 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
7552 MI.eraseFromParent();
7553 return Legalized;
7556 LegalizerHelper::LegalizeResult
7557 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
7558 auto [Res, LHS, RHS] = MI.getFirst3Regs();
7559 LLT Ty = MRI.getType(Res);
7560 LLT BoolTy = Ty.changeElementSize(1);
7561 bool IsSigned;
7562 bool IsAdd;
7563 unsigned OverflowOp;
7564 switch (MI.getOpcode()) {
7565 default:
7566 llvm_unreachable("unexpected addsat/subsat opcode");
7567 case TargetOpcode::G_UADDSAT:
7568 IsSigned = false;
7569 IsAdd = true;
7570 OverflowOp = TargetOpcode::G_UADDO;
7571 break;
7572 case TargetOpcode::G_SADDSAT:
7573 IsSigned = true;
7574 IsAdd = true;
7575 OverflowOp = TargetOpcode::G_SADDO;
7576 break;
7577 case TargetOpcode::G_USUBSAT:
7578 IsSigned = false;
7579 IsAdd = false;
7580 OverflowOp = TargetOpcode::G_USUBO;
7581 break;
7582 case TargetOpcode::G_SSUBSAT:
7583 IsSigned = true;
7584 IsAdd = false;
7585 OverflowOp = TargetOpcode::G_SSUBO;
7586 break;
7589 auto OverflowRes =
7590 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7591 Register Tmp = OverflowRes.getReg(0);
7592 Register Ov = OverflowRes.getReg(1);
7593 MachineInstrBuilder Clamp;
7594 if (IsSigned) {
7595 // sadd.sat(a, b) ->
7596 // {tmp, ov} = saddo(a, b)
7597 // ov ? (tmp >>s 31) + 0x80000000 : r
7598 // ssub.sat(a, b) ->
7599 // {tmp, ov} = ssubo(a, b)
7600 // ov ? (tmp >>s 31) + 0x80000000 : r
7601 uint64_t NumBits = Ty.getScalarSizeInBits();
7602 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7603 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7604 auto MinVal =
7605 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7606 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7607 } else {
7608 // uadd.sat(a, b) ->
7609 // {tmp, ov} = uaddo(a, b)
7610 // ov ? 0xffffffff : tmp
7611 // usub.sat(a, b) ->
7612 // {tmp, ov} = usubo(a, b)
7613 // ov ? 0 : tmp
7614 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7616 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7618 MI.eraseFromParent();
7619 return Legalized;
7622 LegalizerHelper::LegalizeResult
7623 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7624 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7625 MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7626 "Expected shlsat opcode!");
7627 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7628 auto [Res, LHS, RHS] = MI.getFirst3Regs();
7629 LLT Ty = MRI.getType(Res);
7630 LLT BoolTy = Ty.changeElementSize(1);
7632 unsigned BW = Ty.getScalarSizeInBits();
7633 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7634 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7635 : MIRBuilder.buildLShr(Ty, Result, RHS);
7637 MachineInstrBuilder SatVal;
7638 if (IsSigned) {
7639 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7640 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7641 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7642 MIRBuilder.buildConstant(Ty, 0));
7643 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7644 } else {
7645 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7647 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7648 MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7650 MI.eraseFromParent();
7651 return Legalized;
7654 LegalizerHelper::LegalizeResult LegalizerHelper::lowerBswap(MachineInstr &MI) {
7655 auto [Dst, Src] = MI.getFirst2Regs();
7656 const LLT Ty = MRI.getType(Src);
7657 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7658 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7660 // Swap most and least significant byte, set remaining bytes in Res to zero.
7661 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7662 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7663 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7664 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7666 // Set i-th high/low byte in Res to i-th low/high byte from Src.
7667 for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7668 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7669 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7670 auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7671 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7672 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7673 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7674 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7675 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7676 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7677 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7678 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7679 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7681 Res.getInstr()->getOperand(0).setReg(Dst);
7683 MI.eraseFromParent();
7684 return Legalized;
7687 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
7688 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7689 MachineInstrBuilder Src, APInt Mask) {
7690 const LLT Ty = Dst.getLLTTy(*B.getMRI());
7691 MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7692 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7693 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7694 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7695 return B.buildOr(Dst, LHS, RHS);
7698 LegalizerHelper::LegalizeResult
7699 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7700 auto [Dst, Src] = MI.getFirst2Regs();
7701 const LLT Ty = MRI.getType(Src);
7702 unsigned Size = Ty.getSizeInBits();
7704 MachineInstrBuilder BSWAP =
7705 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7707 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7708 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7709 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7710 MachineInstrBuilder Swap4 =
7711 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7713 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7714 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7715 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7716 MachineInstrBuilder Swap2 =
7717 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7719 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7720 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7721 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7722 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7724 MI.eraseFromParent();
7725 return Legalized;
7728 LegalizerHelper::LegalizeResult
7729 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7730 MachineFunction &MF = MIRBuilder.getMF();
7732 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7733 int NameOpIdx = IsRead ? 1 : 0;
7734 int ValRegIndex = IsRead ? 0 : 1;
7736 Register ValReg = MI.getOperand(ValRegIndex).getReg();
7737 const LLT Ty = MRI.getType(ValReg);
7738 const MDString *RegStr = cast<MDString>(
7739 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7741 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7742 if (!PhysReg.isValid())
7743 return UnableToLegalize;
7745 if (IsRead)
7746 MIRBuilder.buildCopy(ValReg, PhysReg);
7747 else
7748 MIRBuilder.buildCopy(PhysReg, ValReg);
7750 MI.eraseFromParent();
7751 return Legalized;
7754 LegalizerHelper::LegalizeResult
7755 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7756 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7757 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7758 Register Result = MI.getOperand(0).getReg();
7759 LLT OrigTy = MRI.getType(Result);
7760 auto SizeInBits = OrigTy.getScalarSizeInBits();
7761 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7763 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7764 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7765 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7766 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7768 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7769 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7770 MIRBuilder.buildTrunc(Result, Shifted);
7772 MI.eraseFromParent();
7773 return Legalized;
7776 LegalizerHelper::LegalizeResult
7777 LegalizerHelper::lowerISFPCLASS(MachineInstr &MI) {
7778 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs();
7779 FPClassTest Mask = static_cast<FPClassTest>(MI.getOperand(2).getImm());
7781 if (Mask == fcNone) {
7782 MIRBuilder.buildConstant(DstReg, 0);
7783 MI.eraseFromParent();
7784 return Legalized;
7786 if (Mask == fcAllFlags) {
7787 MIRBuilder.buildConstant(DstReg, 1);
7788 MI.eraseFromParent();
7789 return Legalized;
7792 // TODO: Try inverting the test with getInvertedFPClassTest like the DAG
7793 // version
7795 unsigned BitSize = SrcTy.getScalarSizeInBits();
7796 const fltSemantics &Semantics = getFltSemanticForLLT(SrcTy.getScalarType());
7798 LLT IntTy = LLT::scalar(BitSize);
7799 if (SrcTy.isVector())
7800 IntTy = LLT::vector(SrcTy.getElementCount(), IntTy);
7801 auto AsInt = MIRBuilder.buildCopy(IntTy, SrcReg);
7803 // Various masks.
7804 APInt SignBit = APInt::getSignMask(BitSize);
7805 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign.
7806 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7807 APInt ExpMask = Inf;
7808 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7809 APInt QNaNBitMask =
7810 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7811 APInt InvertionMask = APInt::getAllOnes(DstTy.getScalarSizeInBits());
7813 auto SignBitC = MIRBuilder.buildConstant(IntTy, SignBit);
7814 auto ValueMaskC = MIRBuilder.buildConstant(IntTy, ValueMask);
7815 auto InfC = MIRBuilder.buildConstant(IntTy, Inf);
7816 auto ExpMaskC = MIRBuilder.buildConstant(IntTy, ExpMask);
7817 auto ZeroC = MIRBuilder.buildConstant(IntTy, 0);
7819 auto Abs = MIRBuilder.buildAnd(IntTy, AsInt, ValueMaskC);
7820 auto Sign =
7821 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_NE, DstTy, AsInt, Abs);
7823 auto Res = MIRBuilder.buildConstant(DstTy, 0);
7824 // Clang doesn't support capture of structured bindings:
7825 LLT DstTyCopy = DstTy;
7826 const auto appendToRes = [&](MachineInstrBuilder ToAppend) {
7827 Res = MIRBuilder.buildOr(DstTyCopy, Res, ToAppend);
7830 // Tests that involve more than one class should be processed first.
7831 if ((Mask & fcFinite) == fcFinite) {
7832 // finite(V) ==> abs(V) u< exp_mask
7833 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs,
7834 ExpMaskC));
7835 Mask &= ~fcFinite;
7836 } else if ((Mask & fcFinite) == fcPosFinite) {
7837 // finite(V) && V > 0 ==> V u< exp_mask
7838 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, AsInt,
7839 ExpMaskC));
7840 Mask &= ~fcPosFinite;
7841 } else if ((Mask & fcFinite) == fcNegFinite) {
7842 // finite(V) && V < 0 ==> abs(V) u< exp_mask && signbit == 1
7843 auto Cmp = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs,
7844 ExpMaskC);
7845 auto And = MIRBuilder.buildAnd(DstTy, Cmp, Sign);
7846 appendToRes(And);
7847 Mask &= ~fcNegFinite;
7850 if (FPClassTest PartialCheck = Mask & (fcZero | fcSubnormal)) {
7851 // fcZero | fcSubnormal => test all exponent bits are 0
7852 // TODO: Handle sign bit specific cases
7853 // TODO: Handle inverted case
7854 if (PartialCheck == (fcZero | fcSubnormal)) {
7855 auto ExpBits = MIRBuilder.buildAnd(IntTy, AsInt, ExpMaskC);
7856 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
7857 ExpBits, ZeroC));
7858 Mask &= ~PartialCheck;
7862 // Check for individual classes.
7863 if (FPClassTest PartialCheck = Mask & fcZero) {
7864 if (PartialCheck == fcPosZero)
7865 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
7866 AsInt, ZeroC));
7867 else if (PartialCheck == fcZero)
7868 appendToRes(
7869 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, ZeroC));
7870 else // fcNegZero
7871 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
7872 AsInt, SignBitC));
7875 if (FPClassTest PartialCheck = Mask & fcSubnormal) {
7876 // issubnormal(V) ==> unsigned(abs(V) - 1) u< (all mantissa bits set)
7877 // issubnormal(V) && V>0 ==> unsigned(V - 1) u< (all mantissa bits set)
7878 auto V = (PartialCheck == fcPosSubnormal) ? AsInt : Abs;
7879 auto OneC = MIRBuilder.buildConstant(IntTy, 1);
7880 auto VMinusOne = MIRBuilder.buildSub(IntTy, V, OneC);
7881 auto SubnormalRes =
7882 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, VMinusOne,
7883 MIRBuilder.buildConstant(IntTy, AllOneMantissa));
7884 if (PartialCheck == fcNegSubnormal)
7885 SubnormalRes = MIRBuilder.buildAnd(DstTy, SubnormalRes, Sign);
7886 appendToRes(SubnormalRes);
7889 if (FPClassTest PartialCheck = Mask & fcInf) {
7890 if (PartialCheck == fcPosInf)
7891 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
7892 AsInt, InfC));
7893 else if (PartialCheck == fcInf)
7894 appendToRes(
7895 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, InfC));
7896 else { // fcNegInf
7897 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7898 auto NegInfC = MIRBuilder.buildConstant(IntTy, NegInf);
7899 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
7900 AsInt, NegInfC));
7904 if (FPClassTest PartialCheck = Mask & fcNan) {
7905 auto InfWithQnanBitC = MIRBuilder.buildConstant(IntTy, Inf | QNaNBitMask);
7906 if (PartialCheck == fcNan) {
7907 // isnan(V) ==> abs(V) u> int(inf)
7908 appendToRes(
7909 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC));
7910 } else if (PartialCheck == fcQNan) {
7911 // isquiet(V) ==> abs(V) u>= (unsigned(Inf) | quiet_bit)
7912 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGE, DstTy, Abs,
7913 InfWithQnanBitC));
7914 } else { // fcSNan
7915 // issignaling(V) ==> abs(V) u> unsigned(Inf) &&
7916 // abs(V) u< (unsigned(Inf) | quiet_bit)
7917 auto IsNan =
7918 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC);
7919 auto IsNotQnan = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy,
7920 Abs, InfWithQnanBitC);
7921 appendToRes(MIRBuilder.buildAnd(DstTy, IsNan, IsNotQnan));
7925 if (FPClassTest PartialCheck = Mask & fcNormal) {
7926 // isnormal(V) ==> (0 u< exp u< max_exp) ==> (unsigned(exp-1) u<
7927 // (max_exp-1))
7928 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7929 auto ExpMinusOne = MIRBuilder.buildSub(
7930 IntTy, Abs, MIRBuilder.buildConstant(IntTy, ExpLSB));
7931 APInt MaxExpMinusOne = ExpMask - ExpLSB;
7932 auto NormalRes =
7933 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, ExpMinusOne,
7934 MIRBuilder.buildConstant(IntTy, MaxExpMinusOne));
7935 if (PartialCheck == fcNegNormal)
7936 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, Sign);
7937 else if (PartialCheck == fcPosNormal) {
7938 auto PosSign = MIRBuilder.buildXor(
7939 DstTy, Sign, MIRBuilder.buildConstant(DstTy, InvertionMask));
7940 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, PosSign);
7942 appendToRes(NormalRes);
7945 MIRBuilder.buildCopy(DstReg, Res);
7946 MI.eraseFromParent();
7947 return Legalized;
7950 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7951 // Implement vector G_SELECT in terms of XOR, AND, OR.
7952 auto [DstReg, DstTy, MaskReg, MaskTy, Op1Reg, Op1Ty, Op2Reg, Op2Ty] =
7953 MI.getFirst4RegLLTs();
7954 if (!DstTy.isVector())
7955 return UnableToLegalize;
7957 bool IsEltPtr = DstTy.getElementType().isPointer();
7958 if (IsEltPtr) {
7959 LLT ScalarPtrTy = LLT::scalar(DstTy.getScalarSizeInBits());
7960 LLT NewTy = DstTy.changeElementType(ScalarPtrTy);
7961 Op1Reg = MIRBuilder.buildPtrToInt(NewTy, Op1Reg).getReg(0);
7962 Op2Reg = MIRBuilder.buildPtrToInt(NewTy, Op2Reg).getReg(0);
7963 DstTy = NewTy;
7966 if (MaskTy.isScalar()) {
7967 // Turn the scalar condition into a vector condition mask.
7969 Register MaskElt = MaskReg;
7971 // The condition was potentially zero extended before, but we want a sign
7972 // extended boolean.
7973 if (MaskTy != LLT::scalar(1))
7974 MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0);
7976 // Continue the sign extension (or truncate) to match the data type.
7977 MaskElt = MIRBuilder.buildSExtOrTrunc(DstTy.getElementType(),
7978 MaskElt).getReg(0);
7980 // Generate a vector splat idiom.
7981 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7982 MaskReg = ShufSplat.getReg(0);
7983 MaskTy = DstTy;
7986 if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) {
7987 return UnableToLegalize;
7990 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7991 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7992 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7993 if (IsEltPtr) {
7994 auto Or = MIRBuilder.buildOr(DstTy, NewOp1, NewOp2);
7995 MIRBuilder.buildIntToPtr(DstReg, Or);
7996 } else {
7997 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7999 MI.eraseFromParent();
8000 return Legalized;
8003 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
8004 // Split DIVREM into individual instructions.
8005 unsigned Opcode = MI.getOpcode();
8007 MIRBuilder.buildInstr(
8008 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
8009 : TargetOpcode::G_UDIV,
8010 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
8011 MIRBuilder.buildInstr(
8012 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
8013 : TargetOpcode::G_UREM,
8014 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
8015 MI.eraseFromParent();
8016 return Legalized;
8019 LegalizerHelper::LegalizeResult
8020 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
8021 // Expand %res = G_ABS %a into:
8022 // %v1 = G_ASHR %a, scalar_size-1
8023 // %v2 = G_ADD %a, %v1
8024 // %res = G_XOR %v2, %v1
8025 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
8026 Register OpReg = MI.getOperand(1).getReg();
8027 auto ShiftAmt =
8028 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
8029 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
8030 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
8031 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
8032 MI.eraseFromParent();
8033 return Legalized;
8036 LegalizerHelper::LegalizeResult
8037 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
8038 // Expand %res = G_ABS %a into:
8039 // %v1 = G_CONSTANT 0
8040 // %v2 = G_SUB %v1, %a
8041 // %res = G_SMAX %a, %v2
8042 Register SrcReg = MI.getOperand(1).getReg();
8043 LLT Ty = MRI.getType(SrcReg);
8044 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
8045 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
8046 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
8047 MI.eraseFromParent();
8048 return Legalized;
8051 LegalizerHelper::LegalizeResult
8052 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
8053 Register SrcReg = MI.getOperand(1).getReg();
8054 LLT SrcTy = MRI.getType(SrcReg);
8055 LLT DstTy = MRI.getType(SrcReg);
8057 // The source could be a scalar if the IR type was <1 x sN>.
8058 if (SrcTy.isScalar()) {
8059 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
8060 return UnableToLegalize; // FIXME: handle extension.
8061 // This can be just a plain copy.
8062 Observer.changingInstr(MI);
8063 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
8064 Observer.changedInstr(MI);
8065 return Legalized;
8067 return UnableToLegalize;
8070 static Type *getTypeForLLT(LLT Ty, LLVMContext &C);
8072 LegalizerHelper::LegalizeResult LegalizerHelper::lowerVAArg(MachineInstr &MI) {
8073 MachineFunction &MF = *MI.getMF();
8074 const DataLayout &DL = MIRBuilder.getDataLayout();
8075 LLVMContext &Ctx = MF.getFunction().getContext();
8076 Register ListPtr = MI.getOperand(1).getReg();
8077 LLT PtrTy = MRI.getType(ListPtr);
8079 // LstPtr is a pointer to the head of the list. Get the address
8080 // of the head of the list.
8081 Align PtrAlignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx));
8082 MachineMemOperand *PtrLoadMMO = MF.getMachineMemOperand(
8083 MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, PtrAlignment);
8084 auto VAList = MIRBuilder.buildLoad(PtrTy, ListPtr, *PtrLoadMMO).getReg(0);
8086 const Align A(MI.getOperand(2).getImm());
8087 LLT PtrTyAsScalarTy = LLT::scalar(PtrTy.getSizeInBits());
8088 if (A > TLI.getMinStackArgumentAlignment()) {
8089 Register AlignAmt =
8090 MIRBuilder.buildConstant(PtrTyAsScalarTy, A.value() - 1).getReg(0);
8091 auto AddDst = MIRBuilder.buildPtrAdd(PtrTy, VAList, AlignAmt);
8092 auto AndDst = MIRBuilder.buildMaskLowPtrBits(PtrTy, AddDst, Log2(A));
8093 VAList = AndDst.getReg(0);
8096 // Increment the pointer, VAList, to the next vaarg
8097 // The list should be bumped by the size of element in the current head of
8098 // list.
8099 Register Dst = MI.getOperand(0).getReg();
8100 LLT LLTTy = MRI.getType(Dst);
8101 Type *Ty = getTypeForLLT(LLTTy, Ctx);
8102 auto IncAmt =
8103 MIRBuilder.buildConstant(PtrTyAsScalarTy, DL.getTypeAllocSize(Ty));
8104 auto Succ = MIRBuilder.buildPtrAdd(PtrTy, VAList, IncAmt);
8106 // Store the increment VAList to the legalized pointer
8107 MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
8108 MachinePointerInfo(), MachineMemOperand::MOStore, PtrTy, PtrAlignment);
8109 MIRBuilder.buildStore(Succ, ListPtr, *StoreMMO);
8110 // Load the actual argument out of the pointer VAList
8111 Align EltAlignment = DL.getABITypeAlign(Ty);
8112 MachineMemOperand *EltLoadMMO = MF.getMachineMemOperand(
8113 MachinePointerInfo(), MachineMemOperand::MOLoad, LLTTy, EltAlignment);
8114 MIRBuilder.buildLoad(Dst, VAList, *EltLoadMMO);
8116 MI.eraseFromParent();
8117 return Legalized;
8120 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
8121 // On Darwin, -Os means optimize for size without hurting performance, so
8122 // only really optimize for size when -Oz (MinSize) is used.
8123 if (MF.getTarget().getTargetTriple().isOSDarwin())
8124 return MF.getFunction().hasMinSize();
8125 return MF.getFunction().hasOptSize();
8128 // Returns a list of types to use for memory op lowering in MemOps. A partial
8129 // port of findOptimalMemOpLowering in TargetLowering.
8130 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
8131 unsigned Limit, const MemOp &Op,
8132 unsigned DstAS, unsigned SrcAS,
8133 const AttributeList &FuncAttributes,
8134 const TargetLowering &TLI) {
8135 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
8136 return false;
8138 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
8140 if (Ty == LLT()) {
8141 // Use the largest scalar type whose alignment constraints are satisfied.
8142 // We only need to check DstAlign here as SrcAlign is always greater or
8143 // equal to DstAlign (or zero).
8144 Ty = LLT::scalar(64);
8145 if (Op.isFixedDstAlign())
8146 while (Op.getDstAlign() < Ty.getSizeInBytes() &&
8147 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
8148 Ty = LLT::scalar(Ty.getSizeInBytes());
8149 assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
8150 // FIXME: check for the largest legal type we can load/store to.
8153 unsigned NumMemOps = 0;
8154 uint64_t Size = Op.size();
8155 while (Size) {
8156 unsigned TySize = Ty.getSizeInBytes();
8157 while (TySize > Size) {
8158 // For now, only use non-vector load / store's for the left-over pieces.
8159 LLT NewTy = Ty;
8160 // FIXME: check for mem op safety and legality of the types. Not all of
8161 // SDAGisms map cleanly to GISel concepts.
8162 if (NewTy.isVector())
8163 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
8164 NewTy = LLT::scalar(llvm::bit_floor(NewTy.getSizeInBits() - 1));
8165 unsigned NewTySize = NewTy.getSizeInBytes();
8166 assert(NewTySize > 0 && "Could not find appropriate type");
8168 // If the new LLT cannot cover all of the remaining bits, then consider
8169 // issuing a (or a pair of) unaligned and overlapping load / store.
8170 unsigned Fast;
8171 // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
8172 MVT VT = getMVTForLLT(Ty);
8173 if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
8174 TLI.allowsMisalignedMemoryAccesses(
8175 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
8176 MachineMemOperand::MONone, &Fast) &&
8177 Fast)
8178 TySize = Size;
8179 else {
8180 Ty = NewTy;
8181 TySize = NewTySize;
8185 if (++NumMemOps > Limit)
8186 return false;
8188 MemOps.push_back(Ty);
8189 Size -= TySize;
8192 return true;
8195 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
8196 if (Ty.isVector())
8197 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
8198 Ty.getNumElements());
8199 return IntegerType::get(C, Ty.getSizeInBits());
8202 // Get a vectorized representation of the memset value operand, GISel edition.
8203 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
8204 MachineRegisterInfo &MRI = *MIB.getMRI();
8205 unsigned NumBits = Ty.getScalarSizeInBits();
8206 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
8207 if (!Ty.isVector() && ValVRegAndVal) {
8208 APInt Scalar = ValVRegAndVal->Value.trunc(8);
8209 APInt SplatVal = APInt::getSplat(NumBits, Scalar);
8210 return MIB.buildConstant(Ty, SplatVal).getReg(0);
8213 // Extend the byte value to the larger type, and then multiply by a magic
8214 // value 0x010101... in order to replicate it across every byte.
8215 // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
8216 if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
8217 return MIB.buildConstant(Ty, 0).getReg(0);
8220 LLT ExtType = Ty.getScalarType();
8221 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
8222 if (NumBits > 8) {
8223 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
8224 auto MagicMI = MIB.buildConstant(ExtType, Magic);
8225 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
8228 // For vector types create a G_BUILD_VECTOR.
8229 if (Ty.isVector())
8230 Val = MIB.buildSplatVector(Ty, Val).getReg(0);
8232 return Val;
8235 LegalizerHelper::LegalizeResult
8236 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val,
8237 uint64_t KnownLen, Align Alignment,
8238 bool IsVolatile) {
8239 auto &MF = *MI.getParent()->getParent();
8240 const auto &TLI = *MF.getSubtarget().getTargetLowering();
8241 auto &DL = MF.getDataLayout();
8242 LLVMContext &C = MF.getFunction().getContext();
8244 assert(KnownLen != 0 && "Have a zero length memset length!");
8246 bool DstAlignCanChange = false;
8247 MachineFrameInfo &MFI = MF.getFrameInfo();
8248 bool OptSize = shouldLowerMemFuncForSize(MF);
8250 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
8251 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
8252 DstAlignCanChange = true;
8254 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
8255 std::vector<LLT> MemOps;
8257 const auto &DstMMO = **MI.memoperands_begin();
8258 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
8260 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
8261 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
8263 if (!findGISelOptimalMemOpLowering(MemOps, Limit,
8264 MemOp::Set(KnownLen, DstAlignCanChange,
8265 Alignment,
8266 /*IsZeroMemset=*/IsZeroVal,
8267 /*IsVolatile=*/IsVolatile),
8268 DstPtrInfo.getAddrSpace(), ~0u,
8269 MF.getFunction().getAttributes(), TLI))
8270 return UnableToLegalize;
8272 if (DstAlignCanChange) {
8273 // Get an estimate of the type from the LLT.
8274 Type *IRTy = getTypeForLLT(MemOps[0], C);
8275 Align NewAlign = DL.getABITypeAlign(IRTy);
8276 if (NewAlign > Alignment) {
8277 Alignment = NewAlign;
8278 unsigned FI = FIDef->getOperand(1).getIndex();
8279 // Give the stack frame object a larger alignment if needed.
8280 if (MFI.getObjectAlign(FI) < Alignment)
8281 MFI.setObjectAlignment(FI, Alignment);
8285 MachineIRBuilder MIB(MI);
8286 // Find the largest store and generate the bit pattern for it.
8287 LLT LargestTy = MemOps[0];
8288 for (unsigned i = 1; i < MemOps.size(); i++)
8289 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
8290 LargestTy = MemOps[i];
8292 // The memset stored value is always defined as an s8, so in order to make it
8293 // work with larger store types we need to repeat the bit pattern across the
8294 // wider type.
8295 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
8297 if (!MemSetValue)
8298 return UnableToLegalize;
8300 // Generate the stores. For each store type in the list, we generate the
8301 // matching store of that type to the destination address.
8302 LLT PtrTy = MRI.getType(Dst);
8303 unsigned DstOff = 0;
8304 unsigned Size = KnownLen;
8305 for (unsigned I = 0; I < MemOps.size(); I++) {
8306 LLT Ty = MemOps[I];
8307 unsigned TySize = Ty.getSizeInBytes();
8308 if (TySize > Size) {
8309 // Issuing an unaligned load / store pair that overlaps with the previous
8310 // pair. Adjust the offset accordingly.
8311 assert(I == MemOps.size() - 1 && I != 0);
8312 DstOff -= TySize - Size;
8315 // If this store is smaller than the largest store see whether we can get
8316 // the smaller value for free with a truncate.
8317 Register Value = MemSetValue;
8318 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
8319 MVT VT = getMVTForLLT(Ty);
8320 MVT LargestVT = getMVTForLLT(LargestTy);
8321 if (!LargestTy.isVector() && !Ty.isVector() &&
8322 TLI.isTruncateFree(LargestVT, VT))
8323 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
8324 else
8325 Value = getMemsetValue(Val, Ty, MIB);
8326 if (!Value)
8327 return UnableToLegalize;
8330 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
8332 Register Ptr = Dst;
8333 if (DstOff != 0) {
8334 auto Offset =
8335 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
8336 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
8339 MIB.buildStore(Value, Ptr, *StoreMMO);
8340 DstOff += Ty.getSizeInBytes();
8341 Size -= TySize;
8344 MI.eraseFromParent();
8345 return Legalized;
8348 LegalizerHelper::LegalizeResult
8349 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) {
8350 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
8352 auto [Dst, Src, Len] = MI.getFirst3Regs();
8354 const auto *MMOIt = MI.memoperands_begin();
8355 const MachineMemOperand *MemOp = *MMOIt;
8356 bool IsVolatile = MemOp->isVolatile();
8358 // See if this is a constant length copy
8359 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
8360 // FIXME: support dynamically sized G_MEMCPY_INLINE
8361 assert(LenVRegAndVal &&
8362 "inline memcpy with dynamic size is not yet supported");
8363 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
8364 if (KnownLen == 0) {
8365 MI.eraseFromParent();
8366 return Legalized;
8369 const auto &DstMMO = **MI.memoperands_begin();
8370 const auto &SrcMMO = **std::next(MI.memoperands_begin());
8371 Align DstAlign = DstMMO.getBaseAlign();
8372 Align SrcAlign = SrcMMO.getBaseAlign();
8374 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
8375 IsVolatile);
8378 LegalizerHelper::LegalizeResult
8379 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
8380 uint64_t KnownLen, Align DstAlign,
8381 Align SrcAlign, bool IsVolatile) {
8382 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
8383 return lowerMemcpy(MI, Dst, Src, KnownLen,
8384 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign,
8385 IsVolatile);
8388 LegalizerHelper::LegalizeResult
8389 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
8390 uint64_t KnownLen, uint64_t Limit, Align DstAlign,
8391 Align SrcAlign, bool IsVolatile) {
8392 auto &MF = *MI.getParent()->getParent();
8393 const auto &TLI = *MF.getSubtarget().getTargetLowering();
8394 auto &DL = MF.getDataLayout();
8395 LLVMContext &C = MF.getFunction().getContext();
8397 assert(KnownLen != 0 && "Have a zero length memcpy length!");
8399 bool DstAlignCanChange = false;
8400 MachineFrameInfo &MFI = MF.getFrameInfo();
8401 Align Alignment = std::min(DstAlign, SrcAlign);
8403 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
8404 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
8405 DstAlignCanChange = true;
8407 // FIXME: infer better src pointer alignment like SelectionDAG does here.
8408 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
8409 // if the memcpy is in a tail call position.
8411 std::vector<LLT> MemOps;
8413 const auto &DstMMO = **MI.memoperands_begin();
8414 const auto &SrcMMO = **std::next(MI.memoperands_begin());
8415 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
8416 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
8418 if (!findGISelOptimalMemOpLowering(
8419 MemOps, Limit,
8420 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
8421 IsVolatile),
8422 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8423 MF.getFunction().getAttributes(), TLI))
8424 return UnableToLegalize;
8426 if (DstAlignCanChange) {
8427 // Get an estimate of the type from the LLT.
8428 Type *IRTy = getTypeForLLT(MemOps[0], C);
8429 Align NewAlign = DL.getABITypeAlign(IRTy);
8431 // Don't promote to an alignment that would require dynamic stack
8432 // realignment.
8433 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
8434 if (!TRI->hasStackRealignment(MF))
8435 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
8436 NewAlign = NewAlign.previous();
8438 if (NewAlign > Alignment) {
8439 Alignment = NewAlign;
8440 unsigned FI = FIDef->getOperand(1).getIndex();
8441 // Give the stack frame object a larger alignment if needed.
8442 if (MFI.getObjectAlign(FI) < Alignment)
8443 MFI.setObjectAlignment(FI, Alignment);
8447 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
8449 MachineIRBuilder MIB(MI);
8450 // Now we need to emit a pair of load and stores for each of the types we've
8451 // collected. I.e. for each type, generate a load from the source pointer of
8452 // that type width, and then generate a corresponding store to the dest buffer
8453 // of that value loaded. This can result in a sequence of loads and stores
8454 // mixed types, depending on what the target specifies as good types to use.
8455 unsigned CurrOffset = 0;
8456 unsigned Size = KnownLen;
8457 for (auto CopyTy : MemOps) {
8458 // Issuing an unaligned load / store pair that overlaps with the previous
8459 // pair. Adjust the offset accordingly.
8460 if (CopyTy.getSizeInBytes() > Size)
8461 CurrOffset -= CopyTy.getSizeInBytes() - Size;
8463 // Construct MMOs for the accesses.
8464 auto *LoadMMO =
8465 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
8466 auto *StoreMMO =
8467 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
8469 // Create the load.
8470 Register LoadPtr = Src;
8471 Register Offset;
8472 if (CurrOffset != 0) {
8473 LLT SrcTy = MRI.getType(Src);
8474 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset)
8475 .getReg(0);
8476 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
8478 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
8480 // Create the store.
8481 Register StorePtr = Dst;
8482 if (CurrOffset != 0) {
8483 LLT DstTy = MRI.getType(Dst);
8484 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
8486 MIB.buildStore(LdVal, StorePtr, *StoreMMO);
8487 CurrOffset += CopyTy.getSizeInBytes();
8488 Size -= CopyTy.getSizeInBytes();
8491 MI.eraseFromParent();
8492 return Legalized;
8495 LegalizerHelper::LegalizeResult
8496 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
8497 uint64_t KnownLen, Align DstAlign, Align SrcAlign,
8498 bool IsVolatile) {
8499 auto &MF = *MI.getParent()->getParent();
8500 const auto &TLI = *MF.getSubtarget().getTargetLowering();
8501 auto &DL = MF.getDataLayout();
8502 LLVMContext &C = MF.getFunction().getContext();
8504 assert(KnownLen != 0 && "Have a zero length memmove length!");
8506 bool DstAlignCanChange = false;
8507 MachineFrameInfo &MFI = MF.getFrameInfo();
8508 bool OptSize = shouldLowerMemFuncForSize(MF);
8509 Align Alignment = std::min(DstAlign, SrcAlign);
8511 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
8512 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
8513 DstAlignCanChange = true;
8515 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
8516 std::vector<LLT> MemOps;
8518 const auto &DstMMO = **MI.memoperands_begin();
8519 const auto &SrcMMO = **std::next(MI.memoperands_begin());
8520 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
8521 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
8523 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
8524 // to a bug in it's findOptimalMemOpLowering implementation. For now do the
8525 // same thing here.
8526 if (!findGISelOptimalMemOpLowering(
8527 MemOps, Limit,
8528 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
8529 /*IsVolatile*/ true),
8530 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8531 MF.getFunction().getAttributes(), TLI))
8532 return UnableToLegalize;
8534 if (DstAlignCanChange) {
8535 // Get an estimate of the type from the LLT.
8536 Type *IRTy = getTypeForLLT(MemOps[0], C);
8537 Align NewAlign = DL.getABITypeAlign(IRTy);
8539 // Don't promote to an alignment that would require dynamic stack
8540 // realignment.
8541 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
8542 if (!TRI->hasStackRealignment(MF))
8543 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
8544 NewAlign = NewAlign.previous();
8546 if (NewAlign > Alignment) {
8547 Alignment = NewAlign;
8548 unsigned FI = FIDef->getOperand(1).getIndex();
8549 // Give the stack frame object a larger alignment if needed.
8550 if (MFI.getObjectAlign(FI) < Alignment)
8551 MFI.setObjectAlignment(FI, Alignment);
8555 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
8557 MachineIRBuilder MIB(MI);
8558 // Memmove requires that we perform the loads first before issuing the stores.
8559 // Apart from that, this loop is pretty much doing the same thing as the
8560 // memcpy codegen function.
8561 unsigned CurrOffset = 0;
8562 SmallVector<Register, 16> LoadVals;
8563 for (auto CopyTy : MemOps) {
8564 // Construct MMO for the load.
8565 auto *LoadMMO =
8566 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
8568 // Create the load.
8569 Register LoadPtr = Src;
8570 if (CurrOffset != 0) {
8571 LLT SrcTy = MRI.getType(Src);
8572 auto Offset =
8573 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset);
8574 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
8576 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
8577 CurrOffset += CopyTy.getSizeInBytes();
8580 CurrOffset = 0;
8581 for (unsigned I = 0; I < MemOps.size(); ++I) {
8582 LLT CopyTy = MemOps[I];
8583 // Now store the values loaded.
8584 auto *StoreMMO =
8585 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
8587 Register StorePtr = Dst;
8588 if (CurrOffset != 0) {
8589 LLT DstTy = MRI.getType(Dst);
8590 auto Offset =
8591 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset);
8592 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
8594 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
8595 CurrOffset += CopyTy.getSizeInBytes();
8597 MI.eraseFromParent();
8598 return Legalized;
8601 LegalizerHelper::LegalizeResult
8602 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
8603 const unsigned Opc = MI.getOpcode();
8604 // This combine is fairly complex so it's not written with a separate
8605 // matcher function.
8606 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
8607 Opc == TargetOpcode::G_MEMSET) &&
8608 "Expected memcpy like instruction");
8610 auto MMOIt = MI.memoperands_begin();
8611 const MachineMemOperand *MemOp = *MMOIt;
8613 Align DstAlign = MemOp->getBaseAlign();
8614 Align SrcAlign;
8615 auto [Dst, Src, Len] = MI.getFirst3Regs();
8617 if (Opc != TargetOpcode::G_MEMSET) {
8618 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
8619 MemOp = *(++MMOIt);
8620 SrcAlign = MemOp->getBaseAlign();
8623 // See if this is a constant length copy
8624 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
8625 if (!LenVRegAndVal)
8626 return UnableToLegalize;
8627 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
8629 if (KnownLen == 0) {
8630 MI.eraseFromParent();
8631 return Legalized;
8634 bool IsVolatile = MemOp->isVolatile();
8635 if (Opc == TargetOpcode::G_MEMCPY_INLINE)
8636 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
8637 IsVolatile);
8639 // Don't try to optimize volatile.
8640 if (IsVolatile)
8641 return UnableToLegalize;
8643 if (MaxLen && KnownLen > MaxLen)
8644 return UnableToLegalize;
8646 if (Opc == TargetOpcode::G_MEMCPY) {
8647 auto &MF = *MI.getParent()->getParent();
8648 const auto &TLI = *MF.getSubtarget().getTargetLowering();
8649 bool OptSize = shouldLowerMemFuncForSize(MF);
8650 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
8651 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
8652 IsVolatile);
8654 if (Opc == TargetOpcode::G_MEMMOVE)
8655 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
8656 if (Opc == TargetOpcode::G_MEMSET)
8657 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
8658 return UnableToLegalize;