1 //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements the LoadStoreOpt optimization pass.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/MemoryLocation.h"
18 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
22 #include "llvm/CodeGen/GlobalISel/Utils.h"
23 #include "llvm/CodeGen/LowLevelTypeUtils.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Register.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Support/AtomicOrdering.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
42 #define DEBUG_TYPE "loadstore-opt"
46 using namespace MIPatternMatch
;
48 STATISTIC(NumStoresMerged
, "Number of stores merged");
50 const unsigned MaxStoreSizeToForm
= 128;
52 char LoadStoreOpt::ID
= 0;
53 INITIALIZE_PASS_BEGIN(LoadStoreOpt
, DEBUG_TYPE
, "Generic memory optimizations",
55 INITIALIZE_PASS_END(LoadStoreOpt
, DEBUG_TYPE
, "Generic memory optimizations",
58 LoadStoreOpt::LoadStoreOpt(std::function
<bool(const MachineFunction
&)> F
)
59 : MachineFunctionPass(ID
), DoNotRunPass(F
) {}
61 LoadStoreOpt::LoadStoreOpt()
62 : LoadStoreOpt([](const MachineFunction
&) { return false; }) {}
64 void LoadStoreOpt::init(MachineFunction
&MF
) {
66 MRI
= &MF
.getRegInfo();
67 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
68 TLI
= MF
.getSubtarget().getTargetLowering();
69 LI
= MF
.getSubtarget().getLegalizerInfo();
71 IsPreLegalizer
= !MF
.getProperties().hasProperty(
72 MachineFunctionProperties::Property::Legalized
);
76 void LoadStoreOpt::getAnalysisUsage(AnalysisUsage
&AU
) const {
77 AU
.addRequired
<AAResultsWrapperPass
>();
79 getSelectionDAGFallbackAnalysisUsage(AU
);
80 MachineFunctionPass::getAnalysisUsage(AU
);
83 BaseIndexOffset
GISelAddressing::getPointerInfo(Register Ptr
,
84 MachineRegisterInfo
&MRI
) {
87 if (!mi_match(Ptr
, MRI
, m_GPtrAdd(m_Reg(Info
.BaseReg
), m_Reg(PtrAddRHS
)))) {
89 Info
.IndexReg
= Register();
90 Info
.IsIndexSignExt
= false;
94 auto RHSCst
= getIConstantVRegValWithLookThrough(PtrAddRHS
, MRI
);
96 Info
.Offset
= RHSCst
->Value
.getSExtValue();
98 // Just recognize a simple case for now. In future we'll need to match
99 // indexing patterns for base + index + constant.
100 Info
.IndexReg
= PtrAddRHS
;
101 Info
.IsIndexSignExt
= false;
105 bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr
&MI1
,
106 const MachineInstr
&MI2
,
108 MachineRegisterInfo
&MRI
) {
109 auto *LdSt1
= dyn_cast
<GLoadStore
>(&MI1
);
110 auto *LdSt2
= dyn_cast
<GLoadStore
>(&MI2
);
111 if (!LdSt1
|| !LdSt2
)
114 BaseIndexOffset BasePtr0
= getPointerInfo(LdSt1
->getPointerReg(), MRI
);
115 BaseIndexOffset BasePtr1
= getPointerInfo(LdSt2
->getPointerReg(), MRI
);
117 if (!BasePtr0
.BaseReg
.isValid() || !BasePtr1
.BaseReg
.isValid())
120 int64_t Size1
= LdSt1
->getMemSize();
121 int64_t Size2
= LdSt2
->getMemSize();
124 if (BasePtr0
.BaseReg
== BasePtr1
.BaseReg
) {
125 PtrDiff
= BasePtr1
.Offset
- BasePtr0
.Offset
;
126 // If the size of memory access is unknown, do not use it to do analysis.
127 // One example of unknown size memory access is to load/store scalable
128 // vector objects on the stack.
129 // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the
130 // following situations arise:
132 Size1
!= static_cast<int64_t>(MemoryLocation::UnknownSize
)) {
133 // [----BasePtr0----]
135 // ========PtrDiff========>
136 IsAlias
= !(Size1
<= PtrDiff
);
140 Size2
!= static_cast<int64_t>(MemoryLocation::UnknownSize
)) {
141 // [----BasePtr0----]
143 // =====(-PtrDiff)====>
144 IsAlias
= !((PtrDiff
+ Size2
) <= 0);
150 // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be
151 // able to calculate their relative offset if at least one arises
152 // from an alloca. However, these allocas cannot overlap and we
153 // can infer there is no alias.
154 auto *Base0Def
= getDefIgnoringCopies(BasePtr0
.BaseReg
, MRI
);
155 auto *Base1Def
= getDefIgnoringCopies(BasePtr1
.BaseReg
, MRI
);
156 if (!Base0Def
|| !Base1Def
)
157 return false; // Couldn't tell anything.
160 if (Base0Def
->getOpcode() != Base1Def
->getOpcode())
163 if (Base0Def
->getOpcode() == TargetOpcode::G_FRAME_INDEX
) {
164 MachineFrameInfo
&MFI
= Base0Def
->getMF()->getFrameInfo();
165 // If the bases have the same frame index but we couldn't find a
166 // constant offset, (indices are different) be conservative.
167 if (Base0Def
!= Base1Def
&&
168 (!MFI
.isFixedObjectIndex(Base0Def
->getOperand(1).getIndex()) ||
169 !MFI
.isFixedObjectIndex(Base1Def
->getOperand(1).getIndex()))) {
175 // This implementation is a lot more primitive than the SDAG one for now.
176 // FIXME: what about constant pools?
177 if (Base0Def
->getOpcode() == TargetOpcode::G_GLOBAL_VALUE
) {
178 auto GV0
= Base0Def
->getOperand(1).getGlobal();
179 auto GV1
= Base1Def
->getOperand(1).getGlobal();
186 // Can't tell anything about aliasing.
190 bool GISelAddressing::instMayAlias(const MachineInstr
&MI
,
191 const MachineInstr
&Other
,
192 MachineRegisterInfo
&MRI
,
194 struct MemUseCharacteristics
{
200 MachineMemOperand
*MMO
;
203 auto getCharacteristics
=
204 [&](const MachineInstr
*MI
) -> MemUseCharacteristics
{
205 if (const auto *LS
= dyn_cast
<GLoadStore
>(MI
)) {
208 // No pre/post-inc addressing modes are considered here, unlike in SDAG.
209 if (!mi_match(LS
->getPointerReg(), MRI
,
210 m_GPtrAdd(m_Reg(BaseReg
), m_ICst(Offset
)))) {
211 BaseReg
= LS
->getPointerReg();
215 uint64_t Size
= MemoryLocation::getSizeOrUnknown(
216 LS
->getMMO().getMemoryType().getSizeInBytes());
217 return {LS
->isVolatile(), LS
->isAtomic(), BaseReg
,
218 Offset
/*base offset*/, Size
, &LS
->getMMO()};
220 // FIXME: support recognizing lifetime instructions.
222 return {false /*isvolatile*/,
223 /*isAtomic*/ false, Register(),
224 (int64_t)0 /*offset*/, 0 /*size*/,
225 (MachineMemOperand
*)nullptr};
227 MemUseCharacteristics MUC0
= getCharacteristics(&MI
),
228 MUC1
= getCharacteristics(&Other
);
230 // If they are to the same address, then they must be aliases.
231 if (MUC0
.BasePtr
.isValid() && MUC0
.BasePtr
== MUC1
.BasePtr
&&
232 MUC0
.Offset
== MUC1
.Offset
)
235 // If they are both volatile then they cannot be reordered.
236 if (MUC0
.IsVolatile
&& MUC1
.IsVolatile
)
239 // Be conservative about atomics for the moment
240 // TODO: This is way overconservative for unordered atomics (see D66309)
241 if (MUC0
.IsAtomic
&& MUC1
.IsAtomic
)
244 // If one operation reads from invariant memory, and the other may store, they
246 if (MUC0
.MMO
&& MUC1
.MMO
) {
247 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
248 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
252 // Try to prove that there is aliasing, or that there is no aliasing. Either
253 // way, we can return now. If nothing can be proved, proceed with more tests.
255 if (GISelAddressing::aliasIsKnownForLoadStore(MI
, Other
, IsAlias
, MRI
))
258 // The following all rely on MMO0 and MMO1 being valid.
259 if (!MUC0
.MMO
|| !MUC1
.MMO
)
262 // FIXME: port the alignment based alias analysis from SDAG's isAlias().
263 int64_t SrcValOffset0
= MUC0
.MMO
->getOffset();
264 int64_t SrcValOffset1
= MUC1
.MMO
->getOffset();
265 uint64_t Size0
= MUC0
.NumBytes
;
266 uint64_t Size1
= MUC1
.NumBytes
;
267 if (AA
&& MUC0
.MMO
->getValue() && MUC1
.MMO
->getValue() &&
268 Size0
!= MemoryLocation::UnknownSize
&&
269 Size1
!= MemoryLocation::UnknownSize
) {
270 // Use alias analysis information.
271 int64_t MinOffset
= std::min(SrcValOffset0
, SrcValOffset1
);
272 int64_t Overlap0
= Size0
+ SrcValOffset0
- MinOffset
;
273 int64_t Overlap1
= Size1
+ SrcValOffset1
- MinOffset
;
274 if (AA
->isNoAlias(MemoryLocation(MUC0
.MMO
->getValue(), Overlap0
,
275 MUC0
.MMO
->getAAInfo()),
276 MemoryLocation(MUC1
.MMO
->getValue(), Overlap1
,
277 MUC1
.MMO
->getAAInfo())))
281 // Otherwise we have to assume they alias.
285 /// Returns true if the instruction creates an unavoidable hazard that
286 /// forces a boundary between store merge candidates.
287 static bool isInstHardMergeHazard(MachineInstr
&MI
) {
288 return MI
.hasUnmodeledSideEffects() || MI
.hasOrderedMemoryRef();
291 bool LoadStoreOpt::mergeStores(SmallVectorImpl
<GStore
*> &StoresToMerge
) {
292 // Try to merge all the stores in the vector, splitting into separate segments
294 assert(StoresToMerge
.size() > 1 && "Expected multiple stores to merge");
295 LLT OrigTy
= MRI
->getType(StoresToMerge
[0]->getValueReg());
296 LLT PtrTy
= MRI
->getType(StoresToMerge
[0]->getPointerReg());
297 unsigned AS
= PtrTy
.getAddressSpace();
298 // Ensure the legal store info is computed for this address space.
299 initializeStoreMergeTargetInfo(AS
);
300 const auto &LegalSizes
= LegalStoreSizes
[AS
];
303 for (auto *StoreMI
: StoresToMerge
)
304 assert(MRI
->getType(StoreMI
->getValueReg()) == OrigTy
);
307 const auto &DL
= MF
->getFunction().getParent()->getDataLayout();
308 bool AnyMerged
= false;
310 unsigned NumPow2
= llvm::bit_floor(StoresToMerge
.size());
311 unsigned MaxSizeBits
= NumPow2
* OrigTy
.getSizeInBits().getFixedValue();
312 // Compute the biggest store we can generate to handle the number of stores.
313 unsigned MergeSizeBits
;
314 for (MergeSizeBits
= MaxSizeBits
; MergeSizeBits
> 1; MergeSizeBits
/= 2) {
315 LLT StoreTy
= LLT::scalar(MergeSizeBits
);
317 getApproximateEVTForLLT(StoreTy
, DL
, MF
->getFunction().getContext());
318 if (LegalSizes
.size() > MergeSizeBits
&& LegalSizes
[MergeSizeBits
] &&
319 TLI
->canMergeStoresTo(AS
, StoreEVT
, *MF
) &&
320 (TLI
->isTypeLegal(StoreEVT
)))
321 break; // We can generate a MergeSize bits store.
323 if (MergeSizeBits
<= OrigTy
.getSizeInBits())
324 return AnyMerged
; // No greater merge.
326 unsigned NumStoresToMerge
= MergeSizeBits
/ OrigTy
.getSizeInBits();
327 // Perform the actual merging.
328 SmallVector
<GStore
*, 8> SingleMergeStores(
329 StoresToMerge
.begin(), StoresToMerge
.begin() + NumStoresToMerge
);
330 AnyMerged
|= doSingleStoreMerge(SingleMergeStores
);
331 StoresToMerge
.erase(StoresToMerge
.begin(),
332 StoresToMerge
.begin() + NumStoresToMerge
);
333 } while (StoresToMerge
.size() > 1);
337 bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery
&Query
,
338 MachineFunction
&MF
) const {
339 auto Action
= LI
->getAction(Query
).Action
;
340 // If the instruction is unsupported, it can't be legalized at all.
341 if (Action
== LegalizeActions::Unsupported
)
343 return IsPreLegalizer
|| Action
== LegalizeAction::Legal
;
346 bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl
<GStore
*> &Stores
) {
347 assert(Stores
.size() > 1);
348 // We know that all the stores are consecutive and there are no aliasing
349 // operations in the range. However, the values that are being stored may be
350 // generated anywhere before each store. To ensure we have the values
351 // available, we materialize the wide value and new store at the place of the
352 // final store in the merge sequence.
353 GStore
*FirstStore
= Stores
[0];
354 const unsigned NumStores
= Stores
.size();
355 LLT SmallTy
= MRI
->getType(FirstStore
->getValueReg());
357 LLT::scalar(NumStores
* SmallTy
.getSizeInBits().getFixedValue());
359 // For each store, compute pairwise merged debug locs.
360 DebugLoc MergedLoc
= Stores
.front()->getDebugLoc();
361 for (auto *Store
: drop_begin(Stores
))
362 MergedLoc
= DILocation::getMergedLocation(MergedLoc
, Store
->getDebugLoc());
364 Builder
.setInstr(*Stores
.back());
365 Builder
.setDebugLoc(MergedLoc
);
367 // If all of the store values are constants, then create a wide constant
368 // directly. Otherwise, we need to generate some instructions to merge the
369 // existing values together into a wider type.
370 SmallVector
<APInt
, 8> ConstantVals
;
371 for (auto *Store
: Stores
) {
373 getIConstantVRegValWithLookThrough(Store
->getValueReg(), *MRI
);
375 ConstantVals
.clear();
378 ConstantVals
.emplace_back(MaybeCst
->Value
);
383 MF
->getMachineMemOperand(&FirstStore
->getMMO(), 0, WideValueTy
);
384 if (ConstantVals
.empty()) {
385 // Mimic the SDAG behaviour here and don't try to do anything for unknown
386 // values. In future, we should also support the cases of loads and
387 // extracted vector elements.
391 assert(ConstantVals
.size() == NumStores
);
392 // Check if our wide constant is legal.
393 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT
, {WideValueTy
}}, *MF
))
395 APInt
WideConst(WideValueTy
.getSizeInBits(), 0);
396 for (unsigned Idx
= 0; Idx
< ConstantVals
.size(); ++Idx
) {
397 // Insert the smaller constant into the corresponding position in the
399 WideConst
.insertBits(ConstantVals
[Idx
], Idx
* SmallTy
.getSizeInBits());
401 WideReg
= Builder
.buildConstant(WideValueTy
, WideConst
).getReg(0);
403 Builder
.buildStore(WideReg
, FirstStore
->getPointerReg(), *WideMMO
);
405 LLVM_DEBUG(dbgs() << "Merged " << Stores
.size()
406 << " stores into merged store: " << *NewStore
);
407 LLVM_DEBUG(for (auto *MI
: Stores
) dbgs() << " " << *MI
;);
408 NumStoresMerged
+= Stores
.size();
410 MachineOptimizationRemarkEmitter
MORE(*MF
, nullptr);
412 MachineOptimizationRemark
R(DEBUG_TYPE
, "MergedStore",
413 FirstStore
->getDebugLoc(),
414 FirstStore
->getParent());
415 R
<< "Merged " << NV("NumMerged", Stores
.size()) << " stores of "
416 << NV("OrigWidth", SmallTy
.getSizeInBytes())
417 << " bytes into a single store of "
418 << NV("NewWidth", WideValueTy
.getSizeInBytes()) << " bytes";
422 for (auto *MI
: Stores
)
423 InstsToErase
.insert(MI
);
427 bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate
&C
) {
428 if (C
.Stores
.size() < 2) {
433 LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C
.Stores
.size()
434 << " stores, starting with " << *C
.Stores
[0]);
435 // We know that the stores in the candidate are adjacent.
436 // Now we need to check if any potential aliasing instructions recorded
437 // during the search alias with load/stores added to the candidate after.
438 // For example, if we have the candidate:
439 // C.Stores = [ST1, ST2, ST3, ST4]
440 // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or
441 // ST2, then we would have recorded it into the PotentialAliases structure
442 // with the associated index value of "1". Then we see ST3 and ST4 and add
443 // them to the candidate group. We know that LD1 does not alias with ST1 or
444 // ST2, since we already did that check. However we don't yet know if it
445 // may alias ST3 and ST4, so we perform those checks now.
446 SmallVector
<GStore
*> StoresToMerge
;
448 auto DoesStoreAliasWithPotential
= [&](unsigned Idx
, GStore
&CheckStore
) {
449 for (auto AliasInfo
: reverse(C
.PotentialAliases
)) {
450 MachineInstr
*PotentialAliasOp
= AliasInfo
.first
;
451 unsigned PreCheckedIdx
= AliasInfo
.second
;
452 if (static_cast<unsigned>(Idx
) < PreCheckedIdx
) {
453 // Once our store index is lower than the index associated with the
454 // potential alias, we know that we've already checked for this alias
455 // and all of the earlier potential aliases too.
458 // Need to check this alias.
459 if (GISelAddressing::instMayAlias(CheckStore
, *PotentialAliasOp
, *MRI
,
461 LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp
468 // Start from the last store in the group, and check if it aliases with any
469 // of the potential aliasing operations in the list.
470 for (int StoreIdx
= C
.Stores
.size() - 1; StoreIdx
>= 0; --StoreIdx
) {
471 auto *CheckStore
= C
.Stores
[StoreIdx
];
472 if (DoesStoreAliasWithPotential(StoreIdx
, *CheckStore
))
474 StoresToMerge
.emplace_back(CheckStore
);
477 LLVM_DEBUG(dbgs() << StoresToMerge
.size()
478 << " stores remaining after alias checks. Merging...\n");
480 // Now we've checked for aliasing hazards, merge any stores left.
482 if (StoresToMerge
.size() < 2)
484 return mergeStores(StoresToMerge
);
487 bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr
&MI
,
488 StoreMergeCandidate
&C
) {
489 if (C
.Stores
.empty())
491 return llvm::any_of(C
.Stores
, [&](MachineInstr
*OtherMI
) {
492 return instMayAlias(MI
, *OtherMI
, *MRI
, AA
);
496 void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr
&MI
) {
497 PotentialAliases
.emplace_back(std::make_pair(&MI
, Stores
.size() - 1));
500 bool LoadStoreOpt::addStoreToCandidate(GStore
&StoreMI
,
501 StoreMergeCandidate
&C
) {
502 // Check if the given store writes to an adjacent address, and other
504 LLT ValueTy
= MRI
->getType(StoreMI
.getValueReg());
505 LLT PtrTy
= MRI
->getType(StoreMI
.getPointerReg());
507 // Only handle scalars.
508 if (!ValueTy
.isScalar())
511 // Don't allow truncating stores for now.
512 if (StoreMI
.getMemSizeInBits() != ValueTy
.getSizeInBits())
515 // Avoid adding volatile or ordered stores to the candidate. We already have a
516 // check for this in instMayAlias() but that only get's called later between
517 // potential aliasing hazards.
518 if (!StoreMI
.isSimple())
521 Register StoreAddr
= StoreMI
.getPointerReg();
522 auto BIO
= getPointerInfo(StoreAddr
, *MRI
);
523 Register StoreBase
= BIO
.BaseReg
;
524 uint64_t StoreOffCst
= BIO
.Offset
;
525 if (C
.Stores
.empty()) {
526 // This is the first store of the candidate.
527 // If the offset can't possibly allow for a lower addressed store with the
528 // same base, don't bother adding it.
529 if (StoreOffCst
< ValueTy
.getSizeInBytes())
531 C
.BasePtr
= StoreBase
;
532 C
.CurrentLowestOffset
= StoreOffCst
;
533 C
.Stores
.emplace_back(&StoreMI
);
534 LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: "
539 // Check the store is the same size as the existing ones in the candidate.
540 if (MRI
->getType(C
.Stores
[0]->getValueReg()).getSizeInBits() !=
541 ValueTy
.getSizeInBits())
544 if (MRI
->getType(C
.Stores
[0]->getPointerReg()).getAddressSpace() !=
545 PtrTy
.getAddressSpace())
548 // There are other stores in the candidate. Check that the store address
549 // writes to the next lowest adjacent address.
550 if (C
.BasePtr
!= StoreBase
)
552 if ((C
.CurrentLowestOffset
- ValueTy
.getSizeInBytes()) !=
553 static_cast<uint64_t>(StoreOffCst
))
556 // This writes to an adjacent address. Allow it.
557 C
.Stores
.emplace_back(&StoreMI
);
558 C
.CurrentLowestOffset
= C
.CurrentLowestOffset
- ValueTy
.getSizeInBytes();
559 LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI
);
563 bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock
&MBB
) {
564 bool Changed
= false;
565 // Walk through the block bottom-up, looking for merging candidates.
566 StoreMergeCandidate Candidate
;
567 for (MachineInstr
&MI
: llvm::reverse(MBB
)) {
568 if (InstsToErase
.contains(&MI
))
571 if (auto *StoreMI
= dyn_cast
<GStore
>(&MI
)) {
572 // We have a G_STORE. Add it to the candidate if it writes to an adjacent
574 if (!addStoreToCandidate(*StoreMI
, Candidate
)) {
575 // Store wasn't eligible to be added. May need to record it as a
577 if (operationAliasesWithCandidate(*StoreMI
, Candidate
)) {
578 Changed
|= processMergeCandidate(Candidate
);
581 Candidate
.addPotentialAlias(*StoreMI
);
586 // If we don't have any stores yet, this instruction can't pose a problem.
587 if (Candidate
.Stores
.empty())
590 // We're dealing with some other kind of instruction.
591 if (isInstHardMergeHazard(MI
)) {
592 Changed
|= processMergeCandidate(Candidate
);
593 Candidate
.Stores
.clear();
597 if (!MI
.mayLoadOrStore())
600 if (operationAliasesWithCandidate(MI
, Candidate
)) {
601 // We have a potential alias, so process the current candidate if we can
602 // and then continue looking for a new candidate.
603 Changed
|= processMergeCandidate(Candidate
);
607 // Record this instruction as a potential alias for future stores that are
608 // added to the candidate.
609 Candidate
.addPotentialAlias(MI
);
612 // Process any candidate left after finishing searching the entire block.
613 Changed
|= processMergeCandidate(Candidate
);
615 // Erase instructions now that we're no longer iterating over the block.
616 for (auto *MI
: InstsToErase
)
617 MI
->eraseFromParent();
618 InstsToErase
.clear();
622 /// Check if the store \p Store is a truncstore that can be merged. That is,
623 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty
624 /// Register then it does not need to match and SrcVal is set to the source
626 /// On match, returns the start byte offset of the \p SrcVal that is being
628 static std::optional
<int64_t>
629 getTruncStoreByteOffset(GStore
&Store
, Register
&SrcVal
,
630 MachineRegisterInfo
&MRI
) {
632 if (!mi_match(Store
.getValueReg(), MRI
, m_GTrunc(m_Reg(TruncVal
))))
635 // The shift amount must be a constant multiple of the narrow type.
636 // It is translated to the offset address in the wide source value "y".
638 // x = G_LSHR y, ShiftAmtC
641 Register FoundSrcVal
;
643 if (!mi_match(TruncVal
, MRI
,
644 m_any_of(m_GLShr(m_Reg(FoundSrcVal
), m_ICst(ShiftAmt
)),
645 m_GAShr(m_Reg(FoundSrcVal
), m_ICst(ShiftAmt
))))) {
646 if (!SrcVal
.isValid() || TruncVal
== SrcVal
) {
647 if (!SrcVal
.isValid())
649 return 0; // If it's the lowest index store.
654 unsigned NarrowBits
= Store
.getMMO().getMemoryType().getScalarSizeInBits();
655 if (ShiftAmt
% NarrowBits
!= 0)
657 const unsigned Offset
= ShiftAmt
/ NarrowBits
;
659 if (SrcVal
.isValid() && FoundSrcVal
!= SrcVal
)
662 if (!SrcVal
.isValid())
663 SrcVal
= FoundSrcVal
;
664 else if (MRI
.getType(SrcVal
) != MRI
.getType(FoundSrcVal
))
669 /// Match a pattern where a wide type scalar value is stored by several narrow
670 /// stores. Fold it into a single store or a BSWAP and a store if the targets
673 /// Assuming little endian target:
676 /// p[0] = (val >> 0) & 0xFF;
677 /// p[1] = (val >> 8) & 0xFF;
678 /// p[2] = (val >> 16) & 0xFF;
679 /// p[3] = (val >> 24) & 0xFF;
685 /// p[0] = (val >> 24) & 0xFF;
686 /// p[1] = (val >> 16) & 0xFF;
687 /// p[2] = (val >> 8) & 0xFF;
688 /// p[3] = (val >> 0) & 0xFF;
690 /// *((i32)p) = BSWAP(val);
691 bool LoadStoreOpt::mergeTruncStore(GStore
&StoreMI
,
692 SmallPtrSetImpl
<GStore
*> &DeletedStores
) {
693 LLT MemTy
= StoreMI
.getMMO().getMemoryType();
695 // We only handle merging simple stores of 1-4 bytes.
696 if (!MemTy
.isScalar())
698 switch (MemTy
.getSizeInBits()) {
706 if (!StoreMI
.isSimple())
709 // We do a simple search for mergeable stores prior to this one.
710 // Any potential alias hazard along the way terminates the search.
711 SmallVector
<GStore
*> FoundStores
;
713 // We're looking for:
714 // 1) a (store(trunc(...)))
715 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get
716 // the partial value stored.
717 // 3) where the offsets form either a little or big-endian sequence.
719 auto &LastStore
= StoreMI
;
721 // The single base pointer that all stores must use.
724 if (!mi_match(LastStore
.getPointerReg(), *MRI
,
725 m_GPtrAdd(m_Reg(BaseReg
), m_ICst(LastOffset
)))) {
726 BaseReg
= LastStore
.getPointerReg();
730 GStore
*LowestIdxStore
= &LastStore
;
731 int64_t LowestIdxOffset
= LastOffset
;
734 auto LowestShiftAmt
= getTruncStoreByteOffset(LastStore
, WideSrcVal
, *MRI
);
736 return false; // Didn't match a trunc.
737 assert(WideSrcVal
.isValid());
739 LLT WideStoreTy
= MRI
->getType(WideSrcVal
);
740 // The wide type might not be a multiple of the memory type, e.g. s48 and s32.
741 if (WideStoreTy
.getSizeInBits() % MemTy
.getSizeInBits() != 0)
743 const unsigned NumStoresRequired
=
744 WideStoreTy
.getSizeInBits() / MemTy
.getSizeInBits();
746 SmallVector
<int64_t, 8> OffsetMap(NumStoresRequired
, INT64_MAX
);
747 OffsetMap
[*LowestShiftAmt
] = LastOffset
;
748 FoundStores
.emplace_back(&LastStore
);
750 const int MaxInstsToCheck
= 10;
751 int NumInstsChecked
= 0;
752 for (auto II
= ++LastStore
.getReverseIterator();
753 II
!= LastStore
.getParent()->rend() && NumInstsChecked
< MaxInstsToCheck
;
757 if ((NewStore
= dyn_cast
<GStore
>(&*II
))) {
758 if (NewStore
->getMMO().getMemoryType() != MemTy
|| !NewStore
->isSimple())
760 } else if (II
->isLoadFoldBarrier() || II
->mayLoad()) {
763 continue; // This is a safe instruction we can look past.
768 // Check we're storing to the same base + some offset.
769 if (!mi_match(NewStore
->getPointerReg(), *MRI
,
770 m_GPtrAdd(m_Reg(NewBaseReg
), m_ICst(MemOffset
)))) {
771 NewBaseReg
= NewStore
->getPointerReg();
774 if (BaseReg
!= NewBaseReg
)
777 auto ShiftByteOffset
= getTruncStoreByteOffset(*NewStore
, WideSrcVal
, *MRI
);
778 if (!ShiftByteOffset
)
780 if (MemOffset
< LowestIdxOffset
) {
781 LowestIdxOffset
= MemOffset
;
782 LowestIdxStore
= NewStore
;
785 // Map the offset in the store and the offset in the combined value, and
786 // early return if it has been set before.
787 if (*ShiftByteOffset
< 0 || *ShiftByteOffset
>= NumStoresRequired
||
788 OffsetMap
[*ShiftByteOffset
] != INT64_MAX
)
790 OffsetMap
[*ShiftByteOffset
] = MemOffset
;
792 FoundStores
.emplace_back(NewStore
);
793 // Reset counter since we've found a matching inst.
795 if (FoundStores
.size() == NumStoresRequired
)
799 if (FoundStores
.size() != NumStoresRequired
) {
800 if (FoundStores
.size() == 1)
802 // We didn't find enough stores to merge into the size of the original
803 // source value, but we may be able to generate a smaller store if we
804 // truncate the source value.
805 WideStoreTy
= LLT::scalar(FoundStores
.size() * MemTy
.getScalarSizeInBits());
808 unsigned NumStoresFound
= FoundStores
.size();
810 const auto &DL
= LastStore
.getMF()->getDataLayout();
811 auto &C
= LastStore
.getMF()->getFunction().getContext();
812 // Check that a store of the wide type is both allowed and fast on the target
814 bool Allowed
= TLI
->allowsMemoryAccess(
815 C
, DL
, WideStoreTy
, LowestIdxStore
->getMMO(), &Fast
);
816 if (!Allowed
|| !Fast
)
819 // Check if the pieces of the value are going to the expected places in memory
820 // to merge the stores.
821 unsigned NarrowBits
= MemTy
.getScalarSizeInBits();
822 auto checkOffsets
= [&](bool MatchLittleEndian
) {
823 if (MatchLittleEndian
) {
824 for (unsigned i
= 0; i
!= NumStoresFound
; ++i
)
825 if (OffsetMap
[i
] != i
* (NarrowBits
/ 8) + LowestIdxOffset
)
827 } else { // MatchBigEndian by reversing loop counter.
828 for (unsigned i
= 0, j
= NumStoresFound
- 1; i
!= NumStoresFound
;
830 if (OffsetMap
[j
] != i
* (NarrowBits
/ 8) + LowestIdxOffset
)
836 // Check if the offsets line up for the native data layout of this target.
837 bool NeedBswap
= false;
838 bool NeedRotate
= false;
839 if (!checkOffsets(DL
.isLittleEndian())) {
840 // Special-case: check if byte offsets line up for the opposite endian.
841 if (NarrowBits
== 8 && checkOffsets(DL
.isBigEndian()))
843 else if (NumStoresFound
== 2 && checkOffsets(DL
.isBigEndian()))
850 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP
, {WideStoreTy
}}, *MF
))
853 !isLegalOrBeforeLegalizer(
854 {TargetOpcode::G_ROTR
, {WideStoreTy
, WideStoreTy
}}, *MF
))
857 Builder
.setInstrAndDebugLoc(StoreMI
);
859 if (WideStoreTy
!= MRI
->getType(WideSrcVal
))
860 WideSrcVal
= Builder
.buildTrunc(WideStoreTy
, WideSrcVal
).getReg(0);
863 WideSrcVal
= Builder
.buildBSwap(WideStoreTy
, WideSrcVal
).getReg(0);
864 } else if (NeedRotate
) {
865 assert(WideStoreTy
.getSizeInBits() % 2 == 0 &&
866 "Unexpected type for rotate");
868 Builder
.buildConstant(WideStoreTy
, WideStoreTy
.getSizeInBits() / 2);
870 Builder
.buildRotateRight(WideStoreTy
, WideSrcVal
, RotAmt
).getReg(0);
873 Builder
.buildStore(WideSrcVal
, LowestIdxStore
->getPointerReg(),
874 LowestIdxStore
->getMMO().getPointerInfo(),
875 LowestIdxStore
->getMMO().getAlign());
877 // Erase the old stores.
878 for (auto *ST
: FoundStores
) {
879 ST
->eraseFromParent();
880 DeletedStores
.insert(ST
);
885 bool LoadStoreOpt::mergeTruncStoresBlock(MachineBasicBlock
&BB
) {
886 bool Changed
= false;
887 SmallVector
<GStore
*, 16> Stores
;
888 SmallPtrSet
<GStore
*, 8> DeletedStores
;
889 // Walk up the block so we can see the most eligible stores.
890 for (MachineInstr
&MI
: llvm::reverse(BB
))
891 if (auto *StoreMI
= dyn_cast
<GStore
>(&MI
))
892 Stores
.emplace_back(StoreMI
);
894 for (auto *StoreMI
: Stores
) {
895 if (DeletedStores
.count(StoreMI
))
897 if (mergeTruncStore(*StoreMI
, DeletedStores
))
903 bool LoadStoreOpt::mergeFunctionStores(MachineFunction
&MF
) {
904 bool Changed
= false;
906 Changed
|= mergeBlockStores(BB
);
907 Changed
|= mergeTruncStoresBlock(BB
);
910 // Erase all dead instructions left over by the merging.
912 for (auto &BB
: MF
) {
913 for (auto &I
: make_early_inc_range(make_range(BB
.rbegin(), BB
.rend()))) {
914 if (isTriviallyDead(I
, *MRI
))
923 void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace
) {
924 // Query the legalizer info to record what store types are legal.
925 // We record this because we don't want to bother trying to merge stores into
926 // illegal ones, which would just result in being split again.
928 if (LegalStoreSizes
.count(AddrSpace
)) {
929 assert(LegalStoreSizes
[AddrSpace
].any());
930 return; // Already cached sizes for this address space.
933 // Need to reserve at least MaxStoreSizeToForm + 1 bits.
934 BitVector
LegalSizes(MaxStoreSizeToForm
* 2);
935 const auto &LI
= *MF
->getSubtarget().getLegalizerInfo();
936 const auto &DL
= MF
->getFunction().getParent()->getDataLayout();
937 Type
*IRPtrTy
= PointerType::get(MF
->getFunction().getContext(), AddrSpace
);
938 LLT PtrTy
= getLLTForType(*IRPtrTy
, DL
);
939 // We assume that we're not going to be generating any stores wider than
940 // MaxStoreSizeToForm bits for now.
941 for (unsigned Size
= 2; Size
<= MaxStoreSizeToForm
; Size
*= 2) {
942 LLT Ty
= LLT::scalar(Size
);
943 SmallVector
<LegalityQuery::MemDesc
, 2> MemDescrs(
944 {{Ty
, Ty
.getSizeInBits(), AtomicOrdering::NotAtomic
}});
945 SmallVector
<LLT
> StoreTys({Ty
, PtrTy
});
946 LegalityQuery
Q(TargetOpcode::G_STORE
, StoreTys
, MemDescrs
);
947 LegalizeActionStep ActionStep
= LI
.getAction(Q
);
948 if (ActionStep
.Action
== LegalizeActions::Legal
)
949 LegalSizes
.set(Size
);
951 assert(LegalSizes
.any() && "Expected some store sizes to be legal!");
952 LegalStoreSizes
[AddrSpace
] = LegalSizes
;
955 bool LoadStoreOpt::runOnMachineFunction(MachineFunction
&MF
) {
956 // If the ISel pipeline failed, do not bother running that pass.
957 if (MF
.getProperties().hasProperty(
958 MachineFunctionProperties::Property::FailedISel
))
961 LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF
.getName()
965 bool Changed
= false;
966 Changed
|= mergeFunctionStores(MF
);
968 LegalStoreSizes
.clear();