[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / LoadStoreOpt.cpp
blob246aa88b09acf611b940fc2e9f12b6817bf832e9
1 //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the LoadStoreOpt optimization pass.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/MemoryLocation.h"
18 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
22 #include "llvm/CodeGen/GlobalISel/Utils.h"
23 #include "llvm/CodeGen/LowLevelTypeUtils.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Register.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Support/AtomicOrdering.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <algorithm>
42 #define DEBUG_TYPE "loadstore-opt"
44 using namespace llvm;
45 using namespace ore;
46 using namespace MIPatternMatch;
48 STATISTIC(NumStoresMerged, "Number of stores merged");
50 const unsigned MaxStoreSizeToForm = 128;
52 char LoadStoreOpt::ID = 0;
53 INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
54 false, false)
55 INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
56 false, false)
58 LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F)
59 : MachineFunctionPass(ID), DoNotRunPass(F) {}
61 LoadStoreOpt::LoadStoreOpt()
62 : LoadStoreOpt([](const MachineFunction &) { return false; }) {}
64 void LoadStoreOpt::init(MachineFunction &MF) {
65 this->MF = &MF;
66 MRI = &MF.getRegInfo();
67 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
68 TLI = MF.getSubtarget().getTargetLowering();
69 LI = MF.getSubtarget().getLegalizerInfo();
70 Builder.setMF(MF);
71 IsPreLegalizer = !MF.getProperties().hasProperty(
72 MachineFunctionProperties::Property::Legalized);
73 InstsToErase.clear();
76 void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const {
77 AU.addRequired<AAResultsWrapperPass>();
78 AU.setPreservesAll();
79 getSelectionDAGFallbackAnalysisUsage(AU);
80 MachineFunctionPass::getAnalysisUsage(AU);
83 BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr,
84 MachineRegisterInfo &MRI) {
85 BaseIndexOffset Info;
86 Register PtrAddRHS;
87 if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(Info.BaseReg), m_Reg(PtrAddRHS)))) {
88 Info.BaseReg = Ptr;
89 Info.IndexReg = Register();
90 Info.IsIndexSignExt = false;
91 return Info;
94 auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI);
95 if (RHSCst)
96 Info.Offset = RHSCst->Value.getSExtValue();
98 // Just recognize a simple case for now. In future we'll need to match
99 // indexing patterns for base + index + constant.
100 Info.IndexReg = PtrAddRHS;
101 Info.IsIndexSignExt = false;
102 return Info;
105 bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1,
106 const MachineInstr &MI2,
107 bool &IsAlias,
108 MachineRegisterInfo &MRI) {
109 auto *LdSt1 = dyn_cast<GLoadStore>(&MI1);
110 auto *LdSt2 = dyn_cast<GLoadStore>(&MI2);
111 if (!LdSt1 || !LdSt2)
112 return false;
114 BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI);
115 BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI);
117 if (!BasePtr0.BaseReg.isValid() || !BasePtr1.BaseReg.isValid())
118 return false;
120 int64_t Size1 = LdSt1->getMemSize();
121 int64_t Size2 = LdSt2->getMemSize();
123 int64_t PtrDiff;
124 if (BasePtr0.BaseReg == BasePtr1.BaseReg) {
125 PtrDiff = BasePtr1.Offset - BasePtr0.Offset;
126 // If the size of memory access is unknown, do not use it to do analysis.
127 // One example of unknown size memory access is to load/store scalable
128 // vector objects on the stack.
129 // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the
130 // following situations arise:
131 if (PtrDiff >= 0 &&
132 Size1 != static_cast<int64_t>(MemoryLocation::UnknownSize)) {
133 // [----BasePtr0----]
134 // [---BasePtr1--]
135 // ========PtrDiff========>
136 IsAlias = !(Size1 <= PtrDiff);
137 return true;
139 if (PtrDiff < 0 &&
140 Size2 != static_cast<int64_t>(MemoryLocation::UnknownSize)) {
141 // [----BasePtr0----]
142 // [---BasePtr1--]
143 // =====(-PtrDiff)====>
144 IsAlias = !((PtrDiff + Size2) <= 0);
145 return true;
147 return false;
150 // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be
151 // able to calculate their relative offset if at least one arises
152 // from an alloca. However, these allocas cannot overlap and we
153 // can infer there is no alias.
154 auto *Base0Def = getDefIgnoringCopies(BasePtr0.BaseReg, MRI);
155 auto *Base1Def = getDefIgnoringCopies(BasePtr1.BaseReg, MRI);
156 if (!Base0Def || !Base1Def)
157 return false; // Couldn't tell anything.
160 if (Base0Def->getOpcode() != Base1Def->getOpcode())
161 return false;
163 if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
164 MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo();
165 // If the bases have the same frame index but we couldn't find a
166 // constant offset, (indices are different) be conservative.
167 if (Base0Def != Base1Def &&
168 (!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) ||
169 !MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) {
170 IsAlias = false;
171 return true;
175 // This implementation is a lot more primitive than the SDAG one for now.
176 // FIXME: what about constant pools?
177 if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
178 auto GV0 = Base0Def->getOperand(1).getGlobal();
179 auto GV1 = Base1Def->getOperand(1).getGlobal();
180 if (GV0 != GV1) {
181 IsAlias = false;
182 return true;
186 // Can't tell anything about aliasing.
187 return false;
190 bool GISelAddressing::instMayAlias(const MachineInstr &MI,
191 const MachineInstr &Other,
192 MachineRegisterInfo &MRI,
193 AliasAnalysis *AA) {
194 struct MemUseCharacteristics {
195 bool IsVolatile;
196 bool IsAtomic;
197 Register BasePtr;
198 int64_t Offset;
199 uint64_t NumBytes;
200 MachineMemOperand *MMO;
203 auto getCharacteristics =
204 [&](const MachineInstr *MI) -> MemUseCharacteristics {
205 if (const auto *LS = dyn_cast<GLoadStore>(MI)) {
206 Register BaseReg;
207 int64_t Offset = 0;
208 // No pre/post-inc addressing modes are considered here, unlike in SDAG.
209 if (!mi_match(LS->getPointerReg(), MRI,
210 m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) {
211 BaseReg = LS->getPointerReg();
212 Offset = 0;
215 uint64_t Size = MemoryLocation::getSizeOrUnknown(
216 LS->getMMO().getMemoryType().getSizeInBytes());
217 return {LS->isVolatile(), LS->isAtomic(), BaseReg,
218 Offset /*base offset*/, Size, &LS->getMMO()};
220 // FIXME: support recognizing lifetime instructions.
221 // Default.
222 return {false /*isvolatile*/,
223 /*isAtomic*/ false, Register(),
224 (int64_t)0 /*offset*/, 0 /*size*/,
225 (MachineMemOperand *)nullptr};
227 MemUseCharacteristics MUC0 = getCharacteristics(&MI),
228 MUC1 = getCharacteristics(&Other);
230 // If they are to the same address, then they must be aliases.
231 if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr &&
232 MUC0.Offset == MUC1.Offset)
233 return true;
235 // If they are both volatile then they cannot be reordered.
236 if (MUC0.IsVolatile && MUC1.IsVolatile)
237 return true;
239 // Be conservative about atomics for the moment
240 // TODO: This is way overconservative for unordered atomics (see D66309)
241 if (MUC0.IsAtomic && MUC1.IsAtomic)
242 return true;
244 // If one operation reads from invariant memory, and the other may store, they
245 // cannot alias.
246 if (MUC0.MMO && MUC1.MMO) {
247 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
248 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
249 return false;
252 // Try to prove that there is aliasing, or that there is no aliasing. Either
253 // way, we can return now. If nothing can be proved, proceed with more tests.
254 bool IsAlias;
255 if (GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI))
256 return IsAlias;
258 // The following all rely on MMO0 and MMO1 being valid.
259 if (!MUC0.MMO || !MUC1.MMO)
260 return true;
262 // FIXME: port the alignment based alias analysis from SDAG's isAlias().
263 int64_t SrcValOffset0 = MUC0.MMO->getOffset();
264 int64_t SrcValOffset1 = MUC1.MMO->getOffset();
265 uint64_t Size0 = MUC0.NumBytes;
266 uint64_t Size1 = MUC1.NumBytes;
267 if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
268 Size0 != MemoryLocation::UnknownSize &&
269 Size1 != MemoryLocation::UnknownSize) {
270 // Use alias analysis information.
271 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
272 int64_t Overlap0 = Size0 + SrcValOffset0 - MinOffset;
273 int64_t Overlap1 = Size1 + SrcValOffset1 - MinOffset;
274 if (AA->isNoAlias(MemoryLocation(MUC0.MMO->getValue(), Overlap0,
275 MUC0.MMO->getAAInfo()),
276 MemoryLocation(MUC1.MMO->getValue(), Overlap1,
277 MUC1.MMO->getAAInfo())))
278 return false;
281 // Otherwise we have to assume they alias.
282 return true;
285 /// Returns true if the instruction creates an unavoidable hazard that
286 /// forces a boundary between store merge candidates.
287 static bool isInstHardMergeHazard(MachineInstr &MI) {
288 return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef();
291 bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) {
292 // Try to merge all the stores in the vector, splitting into separate segments
293 // as necessary.
294 assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge");
295 LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg());
296 LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg());
297 unsigned AS = PtrTy.getAddressSpace();
298 // Ensure the legal store info is computed for this address space.
299 initializeStoreMergeTargetInfo(AS);
300 const auto &LegalSizes = LegalStoreSizes[AS];
302 #ifndef NDEBUG
303 for (auto *StoreMI : StoresToMerge)
304 assert(MRI->getType(StoreMI->getValueReg()) == OrigTy);
305 #endif
307 const auto &DL = MF->getFunction().getParent()->getDataLayout();
308 bool AnyMerged = false;
309 do {
310 unsigned NumPow2 = llvm::bit_floor(StoresToMerge.size());
311 unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedValue();
312 // Compute the biggest store we can generate to handle the number of stores.
313 unsigned MergeSizeBits;
314 for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) {
315 LLT StoreTy = LLT::scalar(MergeSizeBits);
316 EVT StoreEVT =
317 getApproximateEVTForLLT(StoreTy, DL, MF->getFunction().getContext());
318 if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] &&
319 TLI->canMergeStoresTo(AS, StoreEVT, *MF) &&
320 (TLI->isTypeLegal(StoreEVT)))
321 break; // We can generate a MergeSize bits store.
323 if (MergeSizeBits <= OrigTy.getSizeInBits())
324 return AnyMerged; // No greater merge.
326 unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits();
327 // Perform the actual merging.
328 SmallVector<GStore *, 8> SingleMergeStores(
329 StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge);
330 AnyMerged |= doSingleStoreMerge(SingleMergeStores);
331 StoresToMerge.erase(StoresToMerge.begin(),
332 StoresToMerge.begin() + NumStoresToMerge);
333 } while (StoresToMerge.size() > 1);
334 return AnyMerged;
337 bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query,
338 MachineFunction &MF) const {
339 auto Action = LI->getAction(Query).Action;
340 // If the instruction is unsupported, it can't be legalized at all.
341 if (Action == LegalizeActions::Unsupported)
342 return false;
343 return IsPreLegalizer || Action == LegalizeAction::Legal;
346 bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) {
347 assert(Stores.size() > 1);
348 // We know that all the stores are consecutive and there are no aliasing
349 // operations in the range. However, the values that are being stored may be
350 // generated anywhere before each store. To ensure we have the values
351 // available, we materialize the wide value and new store at the place of the
352 // final store in the merge sequence.
353 GStore *FirstStore = Stores[0];
354 const unsigned NumStores = Stores.size();
355 LLT SmallTy = MRI->getType(FirstStore->getValueReg());
356 LLT WideValueTy =
357 LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedValue());
359 // For each store, compute pairwise merged debug locs.
360 DebugLoc MergedLoc = Stores.front()->getDebugLoc();
361 for (auto *Store : drop_begin(Stores))
362 MergedLoc = DILocation::getMergedLocation(MergedLoc, Store->getDebugLoc());
364 Builder.setInstr(*Stores.back());
365 Builder.setDebugLoc(MergedLoc);
367 // If all of the store values are constants, then create a wide constant
368 // directly. Otherwise, we need to generate some instructions to merge the
369 // existing values together into a wider type.
370 SmallVector<APInt, 8> ConstantVals;
371 for (auto *Store : Stores) {
372 auto MaybeCst =
373 getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI);
374 if (!MaybeCst) {
375 ConstantVals.clear();
376 break;
378 ConstantVals.emplace_back(MaybeCst->Value);
381 Register WideReg;
382 auto *WideMMO =
383 MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy);
384 if (ConstantVals.empty()) {
385 // Mimic the SDAG behaviour here and don't try to do anything for unknown
386 // values. In future, we should also support the cases of loads and
387 // extracted vector elements.
388 return false;
391 assert(ConstantVals.size() == NumStores);
392 // Check if our wide constant is legal.
393 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF))
394 return false;
395 APInt WideConst(WideValueTy.getSizeInBits(), 0);
396 for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) {
397 // Insert the smaller constant into the corresponding position in the
398 // wider one.
399 WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits());
401 WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0);
402 auto NewStore =
403 Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO);
404 (void) NewStore;
405 LLVM_DEBUG(dbgs() << "Merged " << Stores.size()
406 << " stores into merged store: " << *NewStore);
407 LLVM_DEBUG(for (auto *MI : Stores) dbgs() << " " << *MI;);
408 NumStoresMerged += Stores.size();
410 MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
411 MORE.emit([&]() {
412 MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore",
413 FirstStore->getDebugLoc(),
414 FirstStore->getParent());
415 R << "Merged " << NV("NumMerged", Stores.size()) << " stores of "
416 << NV("OrigWidth", SmallTy.getSizeInBytes())
417 << " bytes into a single store of "
418 << NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes";
419 return R;
422 for (auto *MI : Stores)
423 InstsToErase.insert(MI);
424 return true;
427 bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) {
428 if (C.Stores.size() < 2) {
429 C.reset();
430 return false;
433 LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size()
434 << " stores, starting with " << *C.Stores[0]);
435 // We know that the stores in the candidate are adjacent.
436 // Now we need to check if any potential aliasing instructions recorded
437 // during the search alias with load/stores added to the candidate after.
438 // For example, if we have the candidate:
439 // C.Stores = [ST1, ST2, ST3, ST4]
440 // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or
441 // ST2, then we would have recorded it into the PotentialAliases structure
442 // with the associated index value of "1". Then we see ST3 and ST4 and add
443 // them to the candidate group. We know that LD1 does not alias with ST1 or
444 // ST2, since we already did that check. However we don't yet know if it
445 // may alias ST3 and ST4, so we perform those checks now.
446 SmallVector<GStore *> StoresToMerge;
448 auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) {
449 for (auto AliasInfo : reverse(C.PotentialAliases)) {
450 MachineInstr *PotentialAliasOp = AliasInfo.first;
451 unsigned PreCheckedIdx = AliasInfo.second;
452 if (static_cast<unsigned>(Idx) < PreCheckedIdx) {
453 // Once our store index is lower than the index associated with the
454 // potential alias, we know that we've already checked for this alias
455 // and all of the earlier potential aliases too.
456 return false;
458 // Need to check this alias.
459 if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI,
460 AA)) {
461 LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp
462 << " detected\n");
463 return true;
466 return false;
468 // Start from the last store in the group, and check if it aliases with any
469 // of the potential aliasing operations in the list.
470 for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) {
471 auto *CheckStore = C.Stores[StoreIdx];
472 if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore))
473 continue;
474 StoresToMerge.emplace_back(CheckStore);
477 LLVM_DEBUG(dbgs() << StoresToMerge.size()
478 << " stores remaining after alias checks. Merging...\n");
480 // Now we've checked for aliasing hazards, merge any stores left.
481 C.reset();
482 if (StoresToMerge.size() < 2)
483 return false;
484 return mergeStores(StoresToMerge);
487 bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI,
488 StoreMergeCandidate &C) {
489 if (C.Stores.empty())
490 return false;
491 return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) {
492 return instMayAlias(MI, *OtherMI, *MRI, AA);
496 void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) {
497 PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1));
500 bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI,
501 StoreMergeCandidate &C) {
502 // Check if the given store writes to an adjacent address, and other
503 // requirements.
504 LLT ValueTy = MRI->getType(StoreMI.getValueReg());
505 LLT PtrTy = MRI->getType(StoreMI.getPointerReg());
507 // Only handle scalars.
508 if (!ValueTy.isScalar())
509 return false;
511 // Don't allow truncating stores for now.
512 if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits())
513 return false;
515 // Avoid adding volatile or ordered stores to the candidate. We already have a
516 // check for this in instMayAlias() but that only get's called later between
517 // potential aliasing hazards.
518 if (!StoreMI.isSimple())
519 return false;
521 Register StoreAddr = StoreMI.getPointerReg();
522 auto BIO = getPointerInfo(StoreAddr, *MRI);
523 Register StoreBase = BIO.BaseReg;
524 uint64_t StoreOffCst = BIO.Offset;
525 if (C.Stores.empty()) {
526 // This is the first store of the candidate.
527 // If the offset can't possibly allow for a lower addressed store with the
528 // same base, don't bother adding it.
529 if (StoreOffCst < ValueTy.getSizeInBytes())
530 return false;
531 C.BasePtr = StoreBase;
532 C.CurrentLowestOffset = StoreOffCst;
533 C.Stores.emplace_back(&StoreMI);
534 LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: "
535 << StoreMI);
536 return true;
539 // Check the store is the same size as the existing ones in the candidate.
540 if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() !=
541 ValueTy.getSizeInBits())
542 return false;
544 if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() !=
545 PtrTy.getAddressSpace())
546 return false;
548 // There are other stores in the candidate. Check that the store address
549 // writes to the next lowest adjacent address.
550 if (C.BasePtr != StoreBase)
551 return false;
552 if ((C.CurrentLowestOffset - ValueTy.getSizeInBytes()) !=
553 static_cast<uint64_t>(StoreOffCst))
554 return false;
556 // This writes to an adjacent address. Allow it.
557 C.Stores.emplace_back(&StoreMI);
558 C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes();
559 LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI);
560 return true;
563 bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) {
564 bool Changed = false;
565 // Walk through the block bottom-up, looking for merging candidates.
566 StoreMergeCandidate Candidate;
567 for (MachineInstr &MI : llvm::reverse(MBB)) {
568 if (InstsToErase.contains(&MI))
569 continue;
571 if (auto *StoreMI = dyn_cast<GStore>(&MI)) {
572 // We have a G_STORE. Add it to the candidate if it writes to an adjacent
573 // address.
574 if (!addStoreToCandidate(*StoreMI, Candidate)) {
575 // Store wasn't eligible to be added. May need to record it as a
576 // potential alias.
577 if (operationAliasesWithCandidate(*StoreMI, Candidate)) {
578 Changed |= processMergeCandidate(Candidate);
579 continue;
581 Candidate.addPotentialAlias(*StoreMI);
583 continue;
586 // If we don't have any stores yet, this instruction can't pose a problem.
587 if (Candidate.Stores.empty())
588 continue;
590 // We're dealing with some other kind of instruction.
591 if (isInstHardMergeHazard(MI)) {
592 Changed |= processMergeCandidate(Candidate);
593 Candidate.Stores.clear();
594 continue;
597 if (!MI.mayLoadOrStore())
598 continue;
600 if (operationAliasesWithCandidate(MI, Candidate)) {
601 // We have a potential alias, so process the current candidate if we can
602 // and then continue looking for a new candidate.
603 Changed |= processMergeCandidate(Candidate);
604 continue;
607 // Record this instruction as a potential alias for future stores that are
608 // added to the candidate.
609 Candidate.addPotentialAlias(MI);
612 // Process any candidate left after finishing searching the entire block.
613 Changed |= processMergeCandidate(Candidate);
615 // Erase instructions now that we're no longer iterating over the block.
616 for (auto *MI : InstsToErase)
617 MI->eraseFromParent();
618 InstsToErase.clear();
619 return Changed;
622 /// Check if the store \p Store is a truncstore that can be merged. That is,
623 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty
624 /// Register then it does not need to match and SrcVal is set to the source
625 /// value found.
626 /// On match, returns the start byte offset of the \p SrcVal that is being
627 /// stored.
628 static std::optional<int64_t>
629 getTruncStoreByteOffset(GStore &Store, Register &SrcVal,
630 MachineRegisterInfo &MRI) {
631 Register TruncVal;
632 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal))))
633 return std::nullopt;
635 // The shift amount must be a constant multiple of the narrow type.
636 // It is translated to the offset address in the wide source value "y".
638 // x = G_LSHR y, ShiftAmtC
639 // s8 z = G_TRUNC x
640 // store z, ...
641 Register FoundSrcVal;
642 int64_t ShiftAmt;
643 if (!mi_match(TruncVal, MRI,
644 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)),
645 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) {
646 if (!SrcVal.isValid() || TruncVal == SrcVal) {
647 if (!SrcVal.isValid())
648 SrcVal = TruncVal;
649 return 0; // If it's the lowest index store.
651 return std::nullopt;
654 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits();
655 if (ShiftAmt % NarrowBits != 0)
656 return std::nullopt;
657 const unsigned Offset = ShiftAmt / NarrowBits;
659 if (SrcVal.isValid() && FoundSrcVal != SrcVal)
660 return std::nullopt;
662 if (!SrcVal.isValid())
663 SrcVal = FoundSrcVal;
664 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal))
665 return std::nullopt;
666 return Offset;
669 /// Match a pattern where a wide type scalar value is stored by several narrow
670 /// stores. Fold it into a single store or a BSWAP and a store if the targets
671 /// supports it.
673 /// Assuming little endian target:
674 /// i8 *p = ...
675 /// i32 val = ...
676 /// p[0] = (val >> 0) & 0xFF;
677 /// p[1] = (val >> 8) & 0xFF;
678 /// p[2] = (val >> 16) & 0xFF;
679 /// p[3] = (val >> 24) & 0xFF;
680 /// =>
681 /// *((i32)p) = val;
683 /// i8 *p = ...
684 /// i32 val = ...
685 /// p[0] = (val >> 24) & 0xFF;
686 /// p[1] = (val >> 16) & 0xFF;
687 /// p[2] = (val >> 8) & 0xFF;
688 /// p[3] = (val >> 0) & 0xFF;
689 /// =>
690 /// *((i32)p) = BSWAP(val);
691 bool LoadStoreOpt::mergeTruncStore(GStore &StoreMI,
692 SmallPtrSetImpl<GStore *> &DeletedStores) {
693 LLT MemTy = StoreMI.getMMO().getMemoryType();
695 // We only handle merging simple stores of 1-4 bytes.
696 if (!MemTy.isScalar())
697 return false;
698 switch (MemTy.getSizeInBits()) {
699 case 8:
700 case 16:
701 case 32:
702 break;
703 default:
704 return false;
706 if (!StoreMI.isSimple())
707 return false;
709 // We do a simple search for mergeable stores prior to this one.
710 // Any potential alias hazard along the way terminates the search.
711 SmallVector<GStore *> FoundStores;
713 // We're looking for:
714 // 1) a (store(trunc(...)))
715 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get
716 // the partial value stored.
717 // 3) where the offsets form either a little or big-endian sequence.
719 auto &LastStore = StoreMI;
721 // The single base pointer that all stores must use.
722 Register BaseReg;
723 int64_t LastOffset;
724 if (!mi_match(LastStore.getPointerReg(), *MRI,
725 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) {
726 BaseReg = LastStore.getPointerReg();
727 LastOffset = 0;
730 GStore *LowestIdxStore = &LastStore;
731 int64_t LowestIdxOffset = LastOffset;
733 Register WideSrcVal;
734 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, *MRI);
735 if (!LowestShiftAmt)
736 return false; // Didn't match a trunc.
737 assert(WideSrcVal.isValid());
739 LLT WideStoreTy = MRI->getType(WideSrcVal);
740 // The wide type might not be a multiple of the memory type, e.g. s48 and s32.
741 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0)
742 return false;
743 const unsigned NumStoresRequired =
744 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits();
746 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX);
747 OffsetMap[*LowestShiftAmt] = LastOffset;
748 FoundStores.emplace_back(&LastStore);
750 const int MaxInstsToCheck = 10;
751 int NumInstsChecked = 0;
752 for (auto II = ++LastStore.getReverseIterator();
753 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck;
754 ++II) {
755 NumInstsChecked++;
756 GStore *NewStore;
757 if ((NewStore = dyn_cast<GStore>(&*II))) {
758 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple())
759 break;
760 } else if (II->isLoadFoldBarrier() || II->mayLoad()) {
761 break;
762 } else {
763 continue; // This is a safe instruction we can look past.
766 Register NewBaseReg;
767 int64_t MemOffset;
768 // Check we're storing to the same base + some offset.
769 if (!mi_match(NewStore->getPointerReg(), *MRI,
770 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) {
771 NewBaseReg = NewStore->getPointerReg();
772 MemOffset = 0;
774 if (BaseReg != NewBaseReg)
775 break;
777 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, *MRI);
778 if (!ShiftByteOffset)
779 break;
780 if (MemOffset < LowestIdxOffset) {
781 LowestIdxOffset = MemOffset;
782 LowestIdxStore = NewStore;
785 // Map the offset in the store and the offset in the combined value, and
786 // early return if it has been set before.
787 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired ||
788 OffsetMap[*ShiftByteOffset] != INT64_MAX)
789 break;
790 OffsetMap[*ShiftByteOffset] = MemOffset;
792 FoundStores.emplace_back(NewStore);
793 // Reset counter since we've found a matching inst.
794 NumInstsChecked = 0;
795 if (FoundStores.size() == NumStoresRequired)
796 break;
799 if (FoundStores.size() != NumStoresRequired) {
800 if (FoundStores.size() == 1)
801 return false;
802 // We didn't find enough stores to merge into the size of the original
803 // source value, but we may be able to generate a smaller store if we
804 // truncate the source value.
805 WideStoreTy = LLT::scalar(FoundStores.size() * MemTy.getScalarSizeInBits());
808 unsigned NumStoresFound = FoundStores.size();
810 const auto &DL = LastStore.getMF()->getDataLayout();
811 auto &C = LastStore.getMF()->getFunction().getContext();
812 // Check that a store of the wide type is both allowed and fast on the target
813 unsigned Fast = 0;
814 bool Allowed = TLI->allowsMemoryAccess(
815 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast);
816 if (!Allowed || !Fast)
817 return false;
819 // Check if the pieces of the value are going to the expected places in memory
820 // to merge the stores.
821 unsigned NarrowBits = MemTy.getScalarSizeInBits();
822 auto checkOffsets = [&](bool MatchLittleEndian) {
823 if (MatchLittleEndian) {
824 for (unsigned i = 0; i != NumStoresFound; ++i)
825 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset)
826 return false;
827 } else { // MatchBigEndian by reversing loop counter.
828 for (unsigned i = 0, j = NumStoresFound - 1; i != NumStoresFound;
829 ++i, --j)
830 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset)
831 return false;
833 return true;
836 // Check if the offsets line up for the native data layout of this target.
837 bool NeedBswap = false;
838 bool NeedRotate = false;
839 if (!checkOffsets(DL.isLittleEndian())) {
840 // Special-case: check if byte offsets line up for the opposite endian.
841 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian()))
842 NeedBswap = true;
843 else if (NumStoresFound == 2 && checkOffsets(DL.isBigEndian()))
844 NeedRotate = true;
845 else
846 return false;
849 if (NeedBswap &&
850 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}, *MF))
851 return false;
852 if (NeedRotate &&
853 !isLegalOrBeforeLegalizer(
854 {TargetOpcode::G_ROTR, {WideStoreTy, WideStoreTy}}, *MF))
855 return false;
857 Builder.setInstrAndDebugLoc(StoreMI);
859 if (WideStoreTy != MRI->getType(WideSrcVal))
860 WideSrcVal = Builder.buildTrunc(WideStoreTy, WideSrcVal).getReg(0);
862 if (NeedBswap) {
863 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0);
864 } else if (NeedRotate) {
865 assert(WideStoreTy.getSizeInBits() % 2 == 0 &&
866 "Unexpected type for rotate");
867 auto RotAmt =
868 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2);
869 WideSrcVal =
870 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0);
873 Builder.buildStore(WideSrcVal, LowestIdxStore->getPointerReg(),
874 LowestIdxStore->getMMO().getPointerInfo(),
875 LowestIdxStore->getMMO().getAlign());
877 // Erase the old stores.
878 for (auto *ST : FoundStores) {
879 ST->eraseFromParent();
880 DeletedStores.insert(ST);
882 return true;
885 bool LoadStoreOpt::mergeTruncStoresBlock(MachineBasicBlock &BB) {
886 bool Changed = false;
887 SmallVector<GStore *, 16> Stores;
888 SmallPtrSet<GStore *, 8> DeletedStores;
889 // Walk up the block so we can see the most eligible stores.
890 for (MachineInstr &MI : llvm::reverse(BB))
891 if (auto *StoreMI = dyn_cast<GStore>(&MI))
892 Stores.emplace_back(StoreMI);
894 for (auto *StoreMI : Stores) {
895 if (DeletedStores.count(StoreMI))
896 continue;
897 if (mergeTruncStore(*StoreMI, DeletedStores))
898 Changed = true;
900 return Changed;
903 bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) {
904 bool Changed = false;
905 for (auto &BB : MF){
906 Changed |= mergeBlockStores(BB);
907 Changed |= mergeTruncStoresBlock(BB);
910 // Erase all dead instructions left over by the merging.
911 if (Changed) {
912 for (auto &BB : MF) {
913 for (auto &I : make_early_inc_range(make_range(BB.rbegin(), BB.rend()))) {
914 if (isTriviallyDead(I, *MRI))
915 I.eraseFromParent();
920 return Changed;
923 void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) {
924 // Query the legalizer info to record what store types are legal.
925 // We record this because we don't want to bother trying to merge stores into
926 // illegal ones, which would just result in being split again.
928 if (LegalStoreSizes.count(AddrSpace)) {
929 assert(LegalStoreSizes[AddrSpace].any());
930 return; // Already cached sizes for this address space.
933 // Need to reserve at least MaxStoreSizeToForm + 1 bits.
934 BitVector LegalSizes(MaxStoreSizeToForm * 2);
935 const auto &LI = *MF->getSubtarget().getLegalizerInfo();
936 const auto &DL = MF->getFunction().getParent()->getDataLayout();
937 Type *IRPtrTy = PointerType::get(MF->getFunction().getContext(), AddrSpace);
938 LLT PtrTy = getLLTForType(*IRPtrTy, DL);
939 // We assume that we're not going to be generating any stores wider than
940 // MaxStoreSizeToForm bits for now.
941 for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) {
942 LLT Ty = LLT::scalar(Size);
943 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs(
944 {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}});
945 SmallVector<LLT> StoreTys({Ty, PtrTy});
946 LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs);
947 LegalizeActionStep ActionStep = LI.getAction(Q);
948 if (ActionStep.Action == LegalizeActions::Legal)
949 LegalSizes.set(Size);
951 assert(LegalSizes.any() && "Expected some store sizes to be legal!");
952 LegalStoreSizes[AddrSpace] = LegalSizes;
955 bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) {
956 // If the ISel pipeline failed, do not bother running that pass.
957 if (MF.getProperties().hasProperty(
958 MachineFunctionProperties::Property::FailedISel))
959 return false;
961 LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName()
962 << '\n');
964 init(MF);
965 bool Changed = false;
966 Changed |= mergeFunctionStores(MF);
968 LegalStoreSizes.clear();
969 return Changed;