[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / Utils.cpp
blobaed826a9cbc547b8591e17fb094ff0e640233d60
1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file This file implements the utility functions used by the GlobalISel
9 /// pipeline.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/Utils.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/CodeGen/CodeGenCommonISel.h"
16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/MachineSizeOpts.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/StackProtector.h"
29 #include "llvm/CodeGen/TargetInstrInfo.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/CodeGen/TargetPassConfig.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Transforms/Utils/SizeOpts.h"
36 #include <numeric>
37 #include <optional>
39 #define DEBUG_TYPE "globalisel-utils"
41 using namespace llvm;
42 using namespace MIPatternMatch;
44 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
45 const TargetInstrInfo &TII,
46 const RegisterBankInfo &RBI, Register Reg,
47 const TargetRegisterClass &RegClass) {
48 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
49 return MRI.createVirtualRegister(&RegClass);
51 return Reg;
54 Register llvm::constrainOperandRegClass(
55 const MachineFunction &MF, const TargetRegisterInfo &TRI,
56 MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
57 const RegisterBankInfo &RBI, MachineInstr &InsertPt,
58 const TargetRegisterClass &RegClass, MachineOperand &RegMO) {
59 Register Reg = RegMO.getReg();
60 // Assume physical registers are properly constrained.
61 assert(Reg.isVirtual() && "PhysReg not implemented");
63 // Save the old register class to check whether
64 // the change notifications will be required.
65 // TODO: A better approach would be to pass
66 // the observers to constrainRegToClass().
67 auto *OldRegClass = MRI.getRegClassOrNull(Reg);
68 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
69 // If we created a new virtual register because the class is not compatible
70 // then create a copy between the new and the old register.
71 if (ConstrainedReg != Reg) {
72 MachineBasicBlock::iterator InsertIt(&InsertPt);
73 MachineBasicBlock &MBB = *InsertPt.getParent();
74 // FIXME: The copy needs to have the classes constrained for its operands.
75 // Use operand's regbank to get the class for old register (Reg).
76 if (RegMO.isUse()) {
77 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
78 TII.get(TargetOpcode::COPY), ConstrainedReg)
79 .addReg(Reg);
80 } else {
81 assert(RegMO.isDef() && "Must be a definition");
82 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
83 TII.get(TargetOpcode::COPY), Reg)
84 .addReg(ConstrainedReg);
86 if (GISelChangeObserver *Observer = MF.getObserver()) {
87 Observer->changingInstr(*RegMO.getParent());
89 RegMO.setReg(ConstrainedReg);
90 if (GISelChangeObserver *Observer = MF.getObserver()) {
91 Observer->changedInstr(*RegMO.getParent());
93 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) {
94 if (GISelChangeObserver *Observer = MF.getObserver()) {
95 if (!RegMO.isDef()) {
96 MachineInstr *RegDef = MRI.getVRegDef(Reg);
97 Observer->changedInstr(*RegDef);
99 Observer->changingAllUsesOfReg(MRI, Reg);
100 Observer->finishedChangingAllUsesOfReg();
103 return ConstrainedReg;
106 Register llvm::constrainOperandRegClass(
107 const MachineFunction &MF, const TargetRegisterInfo &TRI,
108 MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
109 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
110 MachineOperand &RegMO, unsigned OpIdx) {
111 Register Reg = RegMO.getReg();
112 // Assume physical registers are properly constrained.
113 assert(Reg.isVirtual() && "PhysReg not implemented");
115 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF);
116 // Some of the target independent instructions, like COPY, may not impose any
117 // register class constraints on some of their operands: If it's a use, we can
118 // skip constraining as the instruction defining the register would constrain
119 // it.
121 if (OpRC) {
122 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands
123 // can have multiple regbanks for a superclass that combine different
124 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity
125 // resolved by targets during regbankselect should not be overridden.
126 if (const auto *SubRC = TRI.getCommonSubClass(
127 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI)))
128 OpRC = SubRC;
130 OpRC = TRI.getAllocatableClass(OpRC);
133 if (!OpRC) {
134 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
135 "Register class constraint is required unless either the "
136 "instruction is target independent or the operand is a use");
137 // FIXME: Just bailing out like this here could be not enough, unless we
138 // expect the users of this function to do the right thing for PHIs and
139 // COPY:
140 // v1 = COPY v0
141 // v2 = COPY v1
142 // v1 here may end up not being constrained at all. Please notice that to
143 // reproduce the issue we likely need a destination pattern of a selection
144 // rule producing such extra copies, not just an input GMIR with them as
145 // every existing target using selectImpl handles copies before calling it
146 // and they never reach this function.
147 return Reg;
149 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC,
150 RegMO);
153 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
154 const TargetInstrInfo &TII,
155 const TargetRegisterInfo &TRI,
156 const RegisterBankInfo &RBI) {
157 assert(!isPreISelGenericOpcode(I.getOpcode()) &&
158 "A selected instruction is expected");
159 MachineBasicBlock &MBB = *I.getParent();
160 MachineFunction &MF = *MBB.getParent();
161 MachineRegisterInfo &MRI = MF.getRegInfo();
163 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
164 MachineOperand &MO = I.getOperand(OpI);
166 // There's nothing to be done on non-register operands.
167 if (!MO.isReg())
168 continue;
170 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
171 assert(MO.isReg() && "Unsupported non-reg operand");
173 Register Reg = MO.getReg();
174 // Physical registers don't need to be constrained.
175 if (Reg.isPhysical())
176 continue;
178 // Register operands with a value of 0 (e.g. predicate operands) don't need
179 // to be constrained.
180 if (Reg == 0)
181 continue;
183 // If the operand is a vreg, we should constrain its regclass, and only
184 // insert COPYs if that's impossible.
185 // constrainOperandRegClass does that for us.
186 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI);
188 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
189 // done.
190 if (MO.isUse()) {
191 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
192 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
193 I.tieOperands(DefIdx, OpI);
196 return true;
199 bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
200 MachineRegisterInfo &MRI) {
201 // Give up if either DstReg or SrcReg is a physical register.
202 if (DstReg.isPhysical() || SrcReg.isPhysical())
203 return false;
204 // Give up if the types don't match.
205 if (MRI.getType(DstReg) != MRI.getType(SrcReg))
206 return false;
207 // Replace if either DstReg has no constraints or the register
208 // constraints match.
209 const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg);
210 if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg))
211 return true;
213 // Otherwise match if the Src is already a regclass that is covered by the Dst
214 // RegBank.
215 return DstRBC.is<const RegisterBank *>() && MRI.getRegClassOrNull(SrcReg) &&
216 DstRBC.get<const RegisterBank *>()->covers(
217 *MRI.getRegClassOrNull(SrcReg));
220 bool llvm::isTriviallyDead(const MachineInstr &MI,
221 const MachineRegisterInfo &MRI) {
222 // FIXME: This logical is mostly duplicated with
223 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in
224 // MachineInstr::isLabel?
226 // Don't delete frame allocation labels.
227 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE)
228 return false;
229 // LIFETIME markers should be preserved even if they seem dead.
230 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
231 MI.getOpcode() == TargetOpcode::LIFETIME_END)
232 return false;
234 // If we can move an instruction, we can remove it. Otherwise, it has
235 // a side-effect of some sort.
236 bool SawStore = false;
237 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
238 return false;
240 // Instructions without side-effects are dead iff they only define dead vregs.
241 for (const auto &MO : MI.all_defs()) {
242 Register Reg = MO.getReg();
243 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
244 return false;
246 return true;
249 static void reportGISelDiagnostic(DiagnosticSeverity Severity,
250 MachineFunction &MF,
251 const TargetPassConfig &TPC,
252 MachineOptimizationRemarkEmitter &MORE,
253 MachineOptimizationRemarkMissed &R) {
254 bool IsFatal = Severity == DS_Error &&
255 TPC.isGlobalISelAbortEnabled();
256 // Print the function name explicitly if we don't have a debug location (which
257 // makes the diagnostic less useful) or if we're going to emit a raw error.
258 if (!R.getLocation().isValid() || IsFatal)
259 R << (" (in function: " + MF.getName() + ")").str();
261 if (IsFatal)
262 report_fatal_error(Twine(R.getMsg()));
263 else
264 MORE.emit(R);
267 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
268 MachineOptimizationRemarkEmitter &MORE,
269 MachineOptimizationRemarkMissed &R) {
270 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
273 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
274 MachineOptimizationRemarkEmitter &MORE,
275 MachineOptimizationRemarkMissed &R) {
276 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
277 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
280 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
281 MachineOptimizationRemarkEmitter &MORE,
282 const char *PassName, StringRef Msg,
283 const MachineInstr &MI) {
284 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
285 MI.getDebugLoc(), MI.getParent());
286 R << Msg;
287 // Printing MI is expensive; only do it if expensive remarks are enabled.
288 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
289 R << ": " << ore::MNV("Inst", MI);
290 reportGISelFailure(MF, TPC, MORE, R);
293 std::optional<APInt> llvm::getIConstantVRegVal(Register VReg,
294 const MachineRegisterInfo &MRI) {
295 std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough(
296 VReg, MRI, /*LookThroughInstrs*/ false);
297 assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
298 "Value found while looking through instrs");
299 if (!ValAndVReg)
300 return std::nullopt;
301 return ValAndVReg->Value;
304 std::optional<int64_t>
305 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) {
306 std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI);
307 if (Val && Val->getBitWidth() <= 64)
308 return Val->getSExtValue();
309 return std::nullopt;
312 namespace {
314 typedef std::function<bool(const MachineInstr *)> IsOpcodeFn;
315 typedef std::function<std::optional<APInt>(const MachineInstr *MI)> GetAPCstFn;
317 std::optional<ValueAndVReg> getConstantVRegValWithLookThrough(
318 Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode,
319 GetAPCstFn getAPCstValue, bool LookThroughInstrs = true,
320 bool LookThroughAnyExt = false) {
321 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
322 MachineInstr *MI;
324 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) &&
325 LookThroughInstrs) {
326 switch (MI->getOpcode()) {
327 case TargetOpcode::G_ANYEXT:
328 if (!LookThroughAnyExt)
329 return std::nullopt;
330 [[fallthrough]];
331 case TargetOpcode::G_TRUNC:
332 case TargetOpcode::G_SEXT:
333 case TargetOpcode::G_ZEXT:
334 SeenOpcodes.push_back(std::make_pair(
335 MI->getOpcode(),
336 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
337 VReg = MI->getOperand(1).getReg();
338 break;
339 case TargetOpcode::COPY:
340 VReg = MI->getOperand(1).getReg();
341 if (VReg.isPhysical())
342 return std::nullopt;
343 break;
344 case TargetOpcode::G_INTTOPTR:
345 VReg = MI->getOperand(1).getReg();
346 break;
347 default:
348 return std::nullopt;
351 if (!MI || !IsConstantOpcode(MI))
352 return std::nullopt;
354 std::optional<APInt> MaybeVal = getAPCstValue(MI);
355 if (!MaybeVal)
356 return std::nullopt;
357 APInt &Val = *MaybeVal;
358 while (!SeenOpcodes.empty()) {
359 std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
360 switch (OpcodeAndSize.first) {
361 case TargetOpcode::G_TRUNC:
362 Val = Val.trunc(OpcodeAndSize.second);
363 break;
364 case TargetOpcode::G_ANYEXT:
365 case TargetOpcode::G_SEXT:
366 Val = Val.sext(OpcodeAndSize.second);
367 break;
368 case TargetOpcode::G_ZEXT:
369 Val = Val.zext(OpcodeAndSize.second);
370 break;
374 return ValueAndVReg{Val, VReg};
377 bool isIConstant(const MachineInstr *MI) {
378 if (!MI)
379 return false;
380 return MI->getOpcode() == TargetOpcode::G_CONSTANT;
383 bool isFConstant(const MachineInstr *MI) {
384 if (!MI)
385 return false;
386 return MI->getOpcode() == TargetOpcode::G_FCONSTANT;
389 bool isAnyConstant(const MachineInstr *MI) {
390 if (!MI)
391 return false;
392 unsigned Opc = MI->getOpcode();
393 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT;
396 std::optional<APInt> getCImmAsAPInt(const MachineInstr *MI) {
397 const MachineOperand &CstVal = MI->getOperand(1);
398 if (CstVal.isCImm())
399 return CstVal.getCImm()->getValue();
400 return std::nullopt;
403 std::optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) {
404 const MachineOperand &CstVal = MI->getOperand(1);
405 if (CstVal.isCImm())
406 return CstVal.getCImm()->getValue();
407 if (CstVal.isFPImm())
408 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
409 return std::nullopt;
412 } // end anonymous namespace
414 std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough(
415 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
416 return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant,
417 getCImmAsAPInt, LookThroughInstrs);
420 std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough(
421 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
422 bool LookThroughAnyExt) {
423 return getConstantVRegValWithLookThrough(
424 VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs,
425 LookThroughAnyExt);
428 std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough(
429 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
430 auto Reg = getConstantVRegValWithLookThrough(
431 VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs);
432 if (!Reg)
433 return std::nullopt;
434 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(),
435 Reg->VReg};
438 const ConstantFP *
439 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
440 MachineInstr *MI = MRI.getVRegDef(VReg);
441 if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
442 return nullptr;
443 return MI->getOperand(1).getFPImm();
446 std::optional<DefinitionAndSourceRegister>
447 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
448 Register DefSrcReg = Reg;
449 auto *DefMI = MRI.getVRegDef(Reg);
450 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
451 if (!DstTy.isValid())
452 return std::nullopt;
453 unsigned Opc = DefMI->getOpcode();
454 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) {
455 Register SrcReg = DefMI->getOperand(1).getReg();
456 auto SrcTy = MRI.getType(SrcReg);
457 if (!SrcTy.isValid())
458 break;
459 DefMI = MRI.getVRegDef(SrcReg);
460 DefSrcReg = SrcReg;
461 Opc = DefMI->getOpcode();
463 return DefinitionAndSourceRegister{DefMI, DefSrcReg};
466 MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
467 const MachineRegisterInfo &MRI) {
468 std::optional<DefinitionAndSourceRegister> DefSrcReg =
469 getDefSrcRegIgnoringCopies(Reg, MRI);
470 return DefSrcReg ? DefSrcReg->MI : nullptr;
473 Register llvm::getSrcRegIgnoringCopies(Register Reg,
474 const MachineRegisterInfo &MRI) {
475 std::optional<DefinitionAndSourceRegister> DefSrcReg =
476 getDefSrcRegIgnoringCopies(Reg, MRI);
477 return DefSrcReg ? DefSrcReg->Reg : Register();
480 void llvm::extractParts(Register Reg, LLT Ty, int NumParts,
481 SmallVectorImpl<Register> &VRegs,
482 MachineIRBuilder &MIRBuilder,
483 MachineRegisterInfo &MRI) {
484 for (int i = 0; i < NumParts; ++i)
485 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
486 MIRBuilder.buildUnmerge(VRegs, Reg);
489 bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy,
490 SmallVectorImpl<Register> &VRegs,
491 SmallVectorImpl<Register> &LeftoverRegs,
492 MachineIRBuilder &MIRBuilder,
493 MachineRegisterInfo &MRI) {
494 assert(!LeftoverTy.isValid() && "this is an out argument");
496 unsigned RegSize = RegTy.getSizeInBits();
497 unsigned MainSize = MainTy.getSizeInBits();
498 unsigned NumParts = RegSize / MainSize;
499 unsigned LeftoverSize = RegSize - NumParts * MainSize;
501 // Use an unmerge when possible.
502 if (LeftoverSize == 0) {
503 for (unsigned I = 0; I < NumParts; ++I)
504 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
505 MIRBuilder.buildUnmerge(VRegs, Reg);
506 return true;
509 // Try to use unmerge for irregular vector split where possible
510 // For example when splitting a <6 x i32> into <4 x i32> with <2 x i32>
511 // leftover, it becomes:
512 // <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1
513 // <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3
514 if (RegTy.isVector() && MainTy.isVector()) {
515 unsigned RegNumElts = RegTy.getNumElements();
516 unsigned MainNumElts = MainTy.getNumElements();
517 unsigned LeftoverNumElts = RegNumElts % MainNumElts;
518 // If can unmerge to LeftoverTy, do it
519 if (MainNumElts % LeftoverNumElts == 0 &&
520 RegNumElts % LeftoverNumElts == 0 &&
521 RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() &&
522 LeftoverNumElts > 1) {
523 LeftoverTy =
524 LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits());
526 // Unmerge the SrcReg to LeftoverTy vectors
527 SmallVector<Register, 4> UnmergeValues;
528 extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues,
529 MIRBuilder, MRI);
531 // Find how many LeftoverTy makes one MainTy
532 unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts;
533 unsigned NumOfLeftoverVal =
534 ((RegNumElts % MainNumElts) / LeftoverNumElts);
536 // Create as many MainTy as possible using unmerged value
537 SmallVector<Register, 4> MergeValues;
538 for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) {
539 MergeValues.push_back(UnmergeValues[I]);
540 if (MergeValues.size() == LeftoverPerMain) {
541 VRegs.push_back(
542 MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0));
543 MergeValues.clear();
546 // Populate LeftoverRegs with the leftovers
547 for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal;
548 I < UnmergeValues.size(); I++) {
549 LeftoverRegs.push_back(UnmergeValues[I]);
551 return true;
554 // Perform irregular split. Leftover is last element of RegPieces.
555 if (MainTy.isVector()) {
556 SmallVector<Register, 8> RegPieces;
557 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder,
558 MRI);
559 for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
560 VRegs.push_back(RegPieces[i]);
561 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
562 LeftoverTy = MRI.getType(LeftoverRegs[0]);
563 return true;
566 LeftoverTy = LLT::scalar(LeftoverSize);
567 // For irregular sizes, extract the individual parts.
568 for (unsigned I = 0; I != NumParts; ++I) {
569 Register NewReg = MRI.createGenericVirtualRegister(MainTy);
570 VRegs.push_back(NewReg);
571 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
574 for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
575 Offset += LeftoverSize) {
576 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
577 LeftoverRegs.push_back(NewReg);
578 MIRBuilder.buildExtract(NewReg, Reg, Offset);
581 return true;
584 void llvm::extractVectorParts(Register Reg, unsigned NumElts,
585 SmallVectorImpl<Register> &VRegs,
586 MachineIRBuilder &MIRBuilder,
587 MachineRegisterInfo &MRI) {
588 LLT RegTy = MRI.getType(Reg);
589 assert(RegTy.isVector() && "Expected a vector type");
591 LLT EltTy = RegTy.getElementType();
592 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
593 unsigned RegNumElts = RegTy.getNumElements();
594 unsigned LeftoverNumElts = RegNumElts % NumElts;
595 unsigned NumNarrowTyPieces = RegNumElts / NumElts;
597 // Perfect split without leftover
598 if (LeftoverNumElts == 0)
599 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder,
600 MRI);
602 // Irregular split. Provide direct access to all elements for artifact
603 // combiner using unmerge to elements. Then build vectors with NumElts
604 // elements. Remaining element(s) will be (used to build vector) Leftover.
605 SmallVector<Register, 8> Elts;
606 extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI);
608 unsigned Offset = 0;
609 // Requested sub-vectors of NarrowTy.
610 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
611 ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
612 VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0));
615 // Leftover element(s).
616 if (LeftoverNumElts == 1) {
617 VRegs.push_back(Elts[Offset]);
618 } else {
619 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
620 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
621 VRegs.push_back(
622 MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0));
626 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
627 const MachineRegisterInfo &MRI) {
628 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
629 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
632 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
633 if (Size == 32)
634 return APFloat(float(Val));
635 if (Size == 64)
636 return APFloat(Val);
637 if (Size != 16)
638 llvm_unreachable("Unsupported FPConstant size");
639 bool Ignored;
640 APFloat APF(Val);
641 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
642 return APF;
645 std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode,
646 const Register Op1,
647 const Register Op2,
648 const MachineRegisterInfo &MRI) {
649 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false);
650 if (!MaybeOp2Cst)
651 return std::nullopt;
653 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false);
654 if (!MaybeOp1Cst)
655 return std::nullopt;
657 const APInt &C1 = MaybeOp1Cst->Value;
658 const APInt &C2 = MaybeOp2Cst->Value;
659 switch (Opcode) {
660 default:
661 break;
662 case TargetOpcode::G_ADD:
663 case TargetOpcode::G_PTR_ADD:
664 return C1 + C2;
665 case TargetOpcode::G_AND:
666 return C1 & C2;
667 case TargetOpcode::G_ASHR:
668 return C1.ashr(C2);
669 case TargetOpcode::G_LSHR:
670 return C1.lshr(C2);
671 case TargetOpcode::G_MUL:
672 return C1 * C2;
673 case TargetOpcode::G_OR:
674 return C1 | C2;
675 case TargetOpcode::G_SHL:
676 return C1 << C2;
677 case TargetOpcode::G_SUB:
678 return C1 - C2;
679 case TargetOpcode::G_XOR:
680 return C1 ^ C2;
681 case TargetOpcode::G_UDIV:
682 if (!C2.getBoolValue())
683 break;
684 return C1.udiv(C2);
685 case TargetOpcode::G_SDIV:
686 if (!C2.getBoolValue())
687 break;
688 return C1.sdiv(C2);
689 case TargetOpcode::G_UREM:
690 if (!C2.getBoolValue())
691 break;
692 return C1.urem(C2);
693 case TargetOpcode::G_SREM:
694 if (!C2.getBoolValue())
695 break;
696 return C1.srem(C2);
697 case TargetOpcode::G_SMIN:
698 return APIntOps::smin(C1, C2);
699 case TargetOpcode::G_SMAX:
700 return APIntOps::smax(C1, C2);
701 case TargetOpcode::G_UMIN:
702 return APIntOps::umin(C1, C2);
703 case TargetOpcode::G_UMAX:
704 return APIntOps::umax(C1, C2);
707 return std::nullopt;
710 std::optional<APFloat>
711 llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1,
712 const Register Op2, const MachineRegisterInfo &MRI) {
713 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
714 if (!Op2Cst)
715 return std::nullopt;
717 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
718 if (!Op1Cst)
719 return std::nullopt;
721 APFloat C1 = Op1Cst->getValueAPF();
722 const APFloat &C2 = Op2Cst->getValueAPF();
723 switch (Opcode) {
724 case TargetOpcode::G_FADD:
725 C1.add(C2, APFloat::rmNearestTiesToEven);
726 return C1;
727 case TargetOpcode::G_FSUB:
728 C1.subtract(C2, APFloat::rmNearestTiesToEven);
729 return C1;
730 case TargetOpcode::G_FMUL:
731 C1.multiply(C2, APFloat::rmNearestTiesToEven);
732 return C1;
733 case TargetOpcode::G_FDIV:
734 C1.divide(C2, APFloat::rmNearestTiesToEven);
735 return C1;
736 case TargetOpcode::G_FREM:
737 C1.mod(C2);
738 return C1;
739 case TargetOpcode::G_FCOPYSIGN:
740 C1.copySign(C2);
741 return C1;
742 case TargetOpcode::G_FMINNUM:
743 return minnum(C1, C2);
744 case TargetOpcode::G_FMAXNUM:
745 return maxnum(C1, C2);
746 case TargetOpcode::G_FMINIMUM:
747 return minimum(C1, C2);
748 case TargetOpcode::G_FMAXIMUM:
749 return maximum(C1, C2);
750 case TargetOpcode::G_FMINNUM_IEEE:
751 case TargetOpcode::G_FMAXNUM_IEEE:
752 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not
753 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax,
754 // and currently there isn't a nice wrapper in APFloat for the version with
755 // correct snan handling.
756 break;
757 default:
758 break;
761 return std::nullopt;
764 SmallVector<APInt>
765 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1,
766 const Register Op2,
767 const MachineRegisterInfo &MRI) {
768 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI);
769 if (!SrcVec2)
770 return SmallVector<APInt>();
772 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI);
773 if (!SrcVec1)
774 return SmallVector<APInt>();
776 SmallVector<APInt> FoldedElements;
777 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) {
778 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx),
779 SrcVec2->getSourceReg(Idx), MRI);
780 if (!MaybeCst)
781 return SmallVector<APInt>();
782 FoldedElements.push_back(*MaybeCst);
784 return FoldedElements;
787 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
788 bool SNaN) {
789 const MachineInstr *DefMI = MRI.getVRegDef(Val);
790 if (!DefMI)
791 return false;
793 const TargetMachine& TM = DefMI->getMF()->getTarget();
794 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath)
795 return true;
797 // If the value is a constant, we can obviously see if it is a NaN or not.
798 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) {
799 return !FPVal->getValueAPF().isNaN() ||
800 (SNaN && !FPVal->getValueAPF().isSignaling());
803 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
804 for (const auto &Op : DefMI->uses())
805 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN))
806 return false;
807 return true;
810 switch (DefMI->getOpcode()) {
811 default:
812 break;
813 case TargetOpcode::G_FADD:
814 case TargetOpcode::G_FSUB:
815 case TargetOpcode::G_FMUL:
816 case TargetOpcode::G_FDIV:
817 case TargetOpcode::G_FREM:
818 case TargetOpcode::G_FSIN:
819 case TargetOpcode::G_FCOS:
820 case TargetOpcode::G_FMA:
821 case TargetOpcode::G_FMAD:
822 if (SNaN)
823 return true;
825 // TODO: Need isKnownNeverInfinity
826 return false;
827 case TargetOpcode::G_FMINNUM_IEEE:
828 case TargetOpcode::G_FMAXNUM_IEEE: {
829 if (SNaN)
830 return true;
831 // This can return a NaN if either operand is an sNaN, or if both operands
832 // are NaN.
833 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) &&
834 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) ||
835 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) &&
836 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI));
838 case TargetOpcode::G_FMINNUM:
839 case TargetOpcode::G_FMAXNUM: {
840 // Only one needs to be known not-nan, since it will be returned if the
841 // other ends up being one.
842 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) ||
843 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN);
847 if (SNaN) {
848 // FP operations quiet. For now, just handle the ones inserted during
849 // legalization.
850 switch (DefMI->getOpcode()) {
851 case TargetOpcode::G_FPEXT:
852 case TargetOpcode::G_FPTRUNC:
853 case TargetOpcode::G_FCANONICALIZE:
854 return true;
855 default:
856 return false;
860 return false;
863 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
864 const MachinePointerInfo &MPO) {
865 auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V);
866 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
867 MachineFrameInfo &MFI = MF.getFrameInfo();
868 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
869 MPO.Offset);
872 if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) {
873 const Module *M = MF.getFunction().getParent();
874 return V->getPointerAlignment(M->getDataLayout());
877 return Align(1);
880 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF,
881 const TargetInstrInfo &TII,
882 MCRegister PhysReg,
883 const TargetRegisterClass &RC,
884 const DebugLoc &DL, LLT RegTy) {
885 MachineBasicBlock &EntryMBB = MF.front();
886 MachineRegisterInfo &MRI = MF.getRegInfo();
887 Register LiveIn = MRI.getLiveInVirtReg(PhysReg);
888 if (LiveIn) {
889 MachineInstr *Def = MRI.getVRegDef(LiveIn);
890 if (Def) {
891 // FIXME: Should the verifier check this is in the entry block?
892 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block");
893 return LiveIn;
896 // It's possible the incoming argument register and copy was added during
897 // lowering, but later deleted due to being/becoming dead. If this happens,
898 // re-insert the copy.
899 } else {
900 // The live in register was not present, so add it.
901 LiveIn = MF.addLiveIn(PhysReg, &RC);
902 if (RegTy.isValid())
903 MRI.setType(LiveIn, RegTy);
906 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn)
907 .addReg(PhysReg);
908 if (!EntryMBB.isLiveIn(PhysReg))
909 EntryMBB.addLiveIn(PhysReg);
910 return LiveIn;
913 std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode,
914 const Register Op1, uint64_t Imm,
915 const MachineRegisterInfo &MRI) {
916 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI);
917 if (MaybeOp1Cst) {
918 switch (Opcode) {
919 default:
920 break;
921 case TargetOpcode::G_SEXT_INREG: {
922 LLT Ty = MRI.getType(Op1);
923 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits());
927 return std::nullopt;
930 std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy,
931 const Register Op0,
932 const MachineRegisterInfo &MRI) {
933 std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI);
934 if (!Val)
935 return Val;
937 const unsigned DstSize = DstTy.getScalarSizeInBits();
939 switch (Opcode) {
940 case TargetOpcode::G_SEXT:
941 return Val->sext(DstSize);
942 case TargetOpcode::G_ZEXT:
943 case TargetOpcode::G_ANYEXT:
944 // TODO: DAG considers target preference when constant folding any_extend.
945 return Val->zext(DstSize);
946 default:
947 break;
950 llvm_unreachable("unexpected cast opcode to constant fold");
953 std::optional<APFloat>
954 llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src,
955 const MachineRegisterInfo &MRI) {
956 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP);
957 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) {
958 APFloat DstVal(getFltSemanticForLLT(DstTy));
959 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP,
960 APFloat::rmNearestTiesToEven);
961 return DstVal;
963 return std::nullopt;
966 std::optional<SmallVector<unsigned>>
967 llvm::ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI) {
968 LLT Ty = MRI.getType(Src);
969 SmallVector<unsigned> FoldedCTLZs;
970 auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> {
971 auto MaybeCst = getIConstantVRegVal(R, MRI);
972 if (!MaybeCst)
973 return std::nullopt;
974 return MaybeCst->countl_zero();
976 if (Ty.isVector()) {
977 // Try to constant fold each element.
978 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI);
979 if (!BV)
980 return std::nullopt;
981 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
982 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) {
983 FoldedCTLZs.emplace_back(*MaybeFold);
984 continue;
986 return std::nullopt;
988 return FoldedCTLZs;
990 if (auto MaybeCst = tryFoldScalar(Src)) {
991 FoldedCTLZs.emplace_back(*MaybeCst);
992 return FoldedCTLZs;
994 return std::nullopt;
997 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI,
998 GISelKnownBits *KB) {
999 std::optional<DefinitionAndSourceRegister> DefSrcReg =
1000 getDefSrcRegIgnoringCopies(Reg, MRI);
1001 if (!DefSrcReg)
1002 return false;
1004 const MachineInstr &MI = *DefSrcReg->MI;
1005 const LLT Ty = MRI.getType(Reg);
1007 switch (MI.getOpcode()) {
1008 case TargetOpcode::G_CONSTANT: {
1009 unsigned BitWidth = Ty.getScalarSizeInBits();
1010 const ConstantInt *CI = MI.getOperand(1).getCImm();
1011 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2();
1013 case TargetOpcode::G_SHL: {
1014 // A left-shift of a constant one will have exactly one bit set because
1015 // shifting the bit off the end is undefined.
1017 // TODO: Constant splat
1018 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
1019 if (*ConstLHS == 1)
1020 return true;
1023 break;
1025 case TargetOpcode::G_LSHR: {
1026 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
1027 if (ConstLHS->isSignMask())
1028 return true;
1031 break;
1033 case TargetOpcode::G_BUILD_VECTOR: {
1034 // TODO: Probably should have a recursion depth guard since you could have
1035 // bitcasted vector elements.
1036 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
1037 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB))
1038 return false;
1040 return true;
1042 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1043 // Only handle constants since we would need to know if number of leading
1044 // zeros is greater than the truncation amount.
1045 const unsigned BitWidth = Ty.getScalarSizeInBits();
1046 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1047 auto Const = getIConstantVRegVal(MO.getReg(), MRI);
1048 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2())
1049 return false;
1052 return true;
1054 default:
1055 break;
1058 if (!KB)
1059 return false;
1061 // More could be done here, though the above checks are enough
1062 // to handle some common cases.
1064 // Fall back to computeKnownBits to catch other known cases.
1065 KnownBits Known = KB->getKnownBits(Reg);
1066 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
1069 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
1070 AU.addPreserved<StackProtector>();
1073 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) {
1074 const unsigned OrigSize = OrigTy.getSizeInBits();
1075 const unsigned TargetSize = TargetTy.getSizeInBits();
1077 if (OrigSize == TargetSize)
1078 return OrigTy;
1080 if (OrigTy.isVector()) {
1081 const LLT OrigElt = OrigTy.getElementType();
1083 if (TargetTy.isVector()) {
1084 const LLT TargetElt = TargetTy.getElementType();
1086 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
1087 int GCDElts =
1088 std::gcd(OrigTy.getNumElements(), TargetTy.getNumElements());
1089 // Prefer the original element type.
1090 ElementCount Mul = OrigTy.getElementCount() * TargetTy.getNumElements();
1091 return LLT::vector(Mul.divideCoefficientBy(GCDElts),
1092 OrigTy.getElementType());
1094 } else {
1095 if (OrigElt.getSizeInBits() == TargetSize)
1096 return OrigTy;
1099 unsigned LCMSize = std::lcm(OrigSize, TargetSize);
1100 return LLT::fixed_vector(LCMSize / OrigElt.getSizeInBits(), OrigElt);
1103 if (TargetTy.isVector()) {
1104 unsigned LCMSize = std::lcm(OrigSize, TargetSize);
1105 return LLT::fixed_vector(LCMSize / OrigSize, OrigTy);
1108 unsigned LCMSize = std::lcm(OrigSize, TargetSize);
1110 // Preserve pointer types.
1111 if (LCMSize == OrigSize)
1112 return OrigTy;
1113 if (LCMSize == TargetSize)
1114 return TargetTy;
1116 return LLT::scalar(LCMSize);
1119 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) {
1120 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy ||
1121 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits()))
1122 return getLCMType(OrigTy, TargetTy);
1124 unsigned OrigTyNumElts = OrigTy.getNumElements();
1125 unsigned TargetTyNumElts = TargetTy.getNumElements();
1126 if (OrigTyNumElts % TargetTyNumElts == 0)
1127 return OrigTy;
1129 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts);
1130 return LLT::scalarOrVector(ElementCount::getFixed(NumElts),
1131 OrigTy.getElementType());
1134 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
1135 const unsigned OrigSize = OrigTy.getSizeInBits();
1136 const unsigned TargetSize = TargetTy.getSizeInBits();
1138 if (OrigSize == TargetSize)
1139 return OrigTy;
1141 if (OrigTy.isVector()) {
1142 LLT OrigElt = OrigTy.getElementType();
1143 if (TargetTy.isVector()) {
1144 LLT TargetElt = TargetTy.getElementType();
1145 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
1146 int GCD = std::gcd(OrigTy.getNumElements(), TargetTy.getNumElements());
1147 return LLT::scalarOrVector(ElementCount::getFixed(GCD), OrigElt);
1149 } else {
1150 // If the source is a vector of pointers, return a pointer element.
1151 if (OrigElt.getSizeInBits() == TargetSize)
1152 return OrigElt;
1155 unsigned GCD = std::gcd(OrigSize, TargetSize);
1156 if (GCD == OrigElt.getSizeInBits())
1157 return OrigElt;
1159 // If we can't produce the original element type, we have to use a smaller
1160 // scalar.
1161 if (GCD < OrigElt.getSizeInBits())
1162 return LLT::scalar(GCD);
1163 return LLT::fixed_vector(GCD / OrigElt.getSizeInBits(), OrigElt);
1166 if (TargetTy.isVector()) {
1167 // Try to preserve the original element type.
1168 LLT TargetElt = TargetTy.getElementType();
1169 if (TargetElt.getSizeInBits() == OrigSize)
1170 return OrigTy;
1173 unsigned GCD = std::gcd(OrigSize, TargetSize);
1174 return LLT::scalar(GCD);
1177 std::optional<int> llvm::getSplatIndex(MachineInstr &MI) {
1178 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
1179 "Only G_SHUFFLE_VECTOR can have a splat index!");
1180 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
1181 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
1183 // If all elements are undefined, this shuffle can be considered a splat.
1184 // Return 0 for better potential for callers to simplify.
1185 if (FirstDefinedIdx == Mask.end())
1186 return 0;
1188 // Make sure all remaining elements are either undef or the same
1189 // as the first non-undef value.
1190 int SplatValue = *FirstDefinedIdx;
1191 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
1192 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
1193 return std::nullopt;
1195 return SplatValue;
1198 static bool isBuildVectorOp(unsigned Opcode) {
1199 return Opcode == TargetOpcode::G_BUILD_VECTOR ||
1200 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC;
1203 namespace {
1205 std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg,
1206 const MachineRegisterInfo &MRI,
1207 bool AllowUndef) {
1208 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI);
1209 if (!MI)
1210 return std::nullopt;
1212 bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS;
1213 if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp)
1214 return std::nullopt;
1216 std::optional<ValueAndVReg> SplatValAndReg;
1217 for (MachineOperand &Op : MI->uses()) {
1218 Register Element = Op.getReg();
1219 // If we have a G_CONCAT_VECTOR, we recursively look into the
1220 // vectors that we're concatenating to see if they're splats.
1221 auto ElementValAndReg =
1222 isConcatVectorsOp
1223 ? getAnyConstantSplat(Element, MRI, AllowUndef)
1224 : getAnyConstantVRegValWithLookThrough(Element, MRI, true, true);
1226 // If AllowUndef, treat undef as value that will result in a constant splat.
1227 if (!ElementValAndReg) {
1228 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element)))
1229 continue;
1230 return std::nullopt;
1233 // Record splat value
1234 if (!SplatValAndReg)
1235 SplatValAndReg = ElementValAndReg;
1237 // Different constant than the one already recorded, not a constant splat.
1238 if (SplatValAndReg->Value != ElementValAndReg->Value)
1239 return std::nullopt;
1242 return SplatValAndReg;
1245 } // end anonymous namespace
1247 bool llvm::isBuildVectorConstantSplat(const Register Reg,
1248 const MachineRegisterInfo &MRI,
1249 int64_t SplatValue, bool AllowUndef) {
1250 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef))
1251 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue));
1252 return false;
1255 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI,
1256 const MachineRegisterInfo &MRI,
1257 int64_t SplatValue, bool AllowUndef) {
1258 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue,
1259 AllowUndef);
1262 std::optional<APInt>
1263 llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) {
1264 if (auto SplatValAndReg =
1265 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) {
1266 if (std::optional<ValueAndVReg> ValAndVReg =
1267 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI))
1268 return ValAndVReg->Value;
1271 return std::nullopt;
1274 std::optional<APInt>
1275 llvm::getIConstantSplatVal(const MachineInstr &MI,
1276 const MachineRegisterInfo &MRI) {
1277 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI);
1280 std::optional<int64_t>
1281 llvm::getIConstantSplatSExtVal(const Register Reg,
1282 const MachineRegisterInfo &MRI) {
1283 if (auto SplatValAndReg =
1284 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false))
1285 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI);
1286 return std::nullopt;
1289 std::optional<int64_t>
1290 llvm::getIConstantSplatSExtVal(const MachineInstr &MI,
1291 const MachineRegisterInfo &MRI) {
1292 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI);
1295 std::optional<FPValueAndVReg>
1296 llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI,
1297 bool AllowUndef) {
1298 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef))
1299 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
1300 return std::nullopt;
1303 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI,
1304 const MachineRegisterInfo &MRI,
1305 bool AllowUndef) {
1306 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef);
1309 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI,
1310 const MachineRegisterInfo &MRI,
1311 bool AllowUndef) {
1312 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef);
1315 std::optional<RegOrConstant>
1316 llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) {
1317 unsigned Opc = MI.getOpcode();
1318 if (!isBuildVectorOp(Opc))
1319 return std::nullopt;
1320 if (auto Splat = getIConstantSplatSExtVal(MI, MRI))
1321 return RegOrConstant(*Splat);
1322 auto Reg = MI.getOperand(1).getReg();
1323 if (any_of(drop_begin(MI.operands(), 2),
1324 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; }))
1325 return std::nullopt;
1326 return RegOrConstant(Reg);
1329 static bool isConstantScalar(const MachineInstr &MI,
1330 const MachineRegisterInfo &MRI,
1331 bool AllowFP = true,
1332 bool AllowOpaqueConstants = true) {
1333 switch (MI.getOpcode()) {
1334 case TargetOpcode::G_CONSTANT:
1335 case TargetOpcode::G_IMPLICIT_DEF:
1336 return true;
1337 case TargetOpcode::G_FCONSTANT:
1338 return AllowFP;
1339 case TargetOpcode::G_GLOBAL_VALUE:
1340 case TargetOpcode::G_FRAME_INDEX:
1341 case TargetOpcode::G_BLOCK_ADDR:
1342 case TargetOpcode::G_JUMP_TABLE:
1343 return AllowOpaqueConstants;
1344 default:
1345 return false;
1349 bool llvm::isConstantOrConstantVector(MachineInstr &MI,
1350 const MachineRegisterInfo &MRI) {
1351 Register Def = MI.getOperand(0).getReg();
1352 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
1353 return true;
1354 GBuildVector *BV = dyn_cast<GBuildVector>(&MI);
1355 if (!BV)
1356 return false;
1357 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
1358 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) ||
1359 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI))
1360 continue;
1361 return false;
1363 return true;
1366 bool llvm::isConstantOrConstantVector(const MachineInstr &MI,
1367 const MachineRegisterInfo &MRI,
1368 bool AllowFP, bool AllowOpaqueConstants) {
1369 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants))
1370 return true;
1372 if (!isBuildVectorOp(MI.getOpcode()))
1373 return false;
1375 const unsigned NumOps = MI.getNumOperands();
1376 for (unsigned I = 1; I != NumOps; ++I) {
1377 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg());
1378 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants))
1379 return false;
1382 return true;
1385 std::optional<APInt>
1386 llvm::isConstantOrConstantSplatVector(MachineInstr &MI,
1387 const MachineRegisterInfo &MRI) {
1388 Register Def = MI.getOperand(0).getReg();
1389 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
1390 return C->Value;
1391 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI);
1392 if (!MaybeCst)
1393 return std::nullopt;
1394 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits();
1395 return APInt(ScalarSize, *MaybeCst, true);
1398 bool llvm::isNullOrNullSplat(const MachineInstr &MI,
1399 const MachineRegisterInfo &MRI, bool AllowUndefs) {
1400 switch (MI.getOpcode()) {
1401 case TargetOpcode::G_IMPLICIT_DEF:
1402 return AllowUndefs;
1403 case TargetOpcode::G_CONSTANT:
1404 return MI.getOperand(1).getCImm()->isNullValue();
1405 case TargetOpcode::G_FCONSTANT: {
1406 const ConstantFP *FPImm = MI.getOperand(1).getFPImm();
1407 return FPImm->isZero() && !FPImm->isNegative();
1409 default:
1410 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already
1411 return false;
1412 return isBuildVectorAllZeros(MI, MRI);
1416 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI,
1417 const MachineRegisterInfo &MRI,
1418 bool AllowUndefs) {
1419 switch (MI.getOpcode()) {
1420 case TargetOpcode::G_IMPLICIT_DEF:
1421 return AllowUndefs;
1422 case TargetOpcode::G_CONSTANT:
1423 return MI.getOperand(1).getCImm()->isAllOnesValue();
1424 default:
1425 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already
1426 return false;
1427 return isBuildVectorAllOnes(MI, MRI);
1431 bool llvm::matchUnaryPredicate(
1432 const MachineRegisterInfo &MRI, Register Reg,
1433 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) {
1435 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
1436 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
1437 return Match(nullptr);
1439 // TODO: Also handle fconstant
1440 if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
1441 return Match(Def->getOperand(1).getCImm());
1443 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
1444 return false;
1446 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
1447 Register SrcElt = Def->getOperand(I).getReg();
1448 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI);
1449 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) {
1450 if (!Match(nullptr))
1451 return false;
1452 continue;
1455 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT ||
1456 !Match(SrcDef->getOperand(1).getCImm()))
1457 return false;
1460 return true;
1463 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
1464 bool IsFP) {
1465 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1466 case TargetLowering::UndefinedBooleanContent:
1467 return Val & 0x1;
1468 case TargetLowering::ZeroOrOneBooleanContent:
1469 return Val == 1;
1470 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1471 return Val == -1;
1473 llvm_unreachable("Invalid boolean contents");
1476 bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val,
1477 bool IsVector, bool IsFP) {
1478 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1479 case TargetLowering::UndefinedBooleanContent:
1480 return ~Val & 0x1;
1481 case TargetLowering::ZeroOrOneBooleanContent:
1482 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1483 return Val == 0;
1485 llvm_unreachable("Invalid boolean contents");
1488 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector,
1489 bool IsFP) {
1490 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1491 case TargetLowering::UndefinedBooleanContent:
1492 case TargetLowering::ZeroOrOneBooleanContent:
1493 return 1;
1494 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1495 return -1;
1497 llvm_unreachable("Invalid boolean contents");
1500 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB,
1501 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
1502 const auto &F = MBB.getParent()->getFunction();
1503 return F.hasOptSize() || F.hasMinSize() ||
1504 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI);
1507 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI,
1508 LostDebugLocObserver *LocObserver,
1509 SmallInstListTy &DeadInstChain) {
1510 for (MachineOperand &Op : MI.uses()) {
1511 if (Op.isReg() && Op.getReg().isVirtual())
1512 DeadInstChain.insert(MRI.getVRegDef(Op.getReg()));
1514 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n");
1515 DeadInstChain.remove(&MI);
1516 MI.eraseFromParent();
1517 if (LocObserver)
1518 LocObserver->checkpoint(false);
1521 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs,
1522 MachineRegisterInfo &MRI,
1523 LostDebugLocObserver *LocObserver) {
1524 SmallInstListTy DeadInstChain;
1525 for (MachineInstr *MI : DeadInstrs)
1526 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain);
1528 while (!DeadInstChain.empty()) {
1529 MachineInstr *Inst = DeadInstChain.pop_back_val();
1530 if (!isTriviallyDead(*Inst, MRI))
1531 continue;
1532 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain);
1536 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI,
1537 LostDebugLocObserver *LocObserver) {
1538 return eraseInstrs({&MI}, MRI, LocObserver);
1541 void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) {
1542 for (auto &Def : MI.defs()) {
1543 assert(Def.isReg() && "Must be a reg");
1545 SmallVector<MachineOperand *, 16> DbgUsers;
1546 for (auto &MOUse : MRI.use_operands(Def.getReg())) {
1547 MachineInstr *DbgValue = MOUse.getParent();
1548 // Ignore partially formed DBG_VALUEs.
1549 if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) {
1550 DbgUsers.push_back(&MOUse);
1554 if (!DbgUsers.empty()) {
1555 salvageDebugInfoForDbgValue(MRI, MI, DbgUsers);