[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / IfConversion.cpp
blobe8e276a8558d8a79f7783f237b4e7405d9072523
1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
12 //===----------------------------------------------------------------------===//
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MBFIWrapper.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSchedule.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <functional>
51 #include <iterator>
52 #include <memory>
53 #include <utility>
54 #include <vector>
56 using namespace llvm;
58 #define DEBUG_TYPE "if-converter"
60 // Hidden options for help debugging.
61 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
62 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
63 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
64 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
65 cl::init(false), cl::Hidden);
66 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
67 cl::init(false), cl::Hidden);
68 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
69 cl::init(false), cl::Hidden);
70 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
71 cl::init(false), cl::Hidden);
72 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
73 cl::init(false), cl::Hidden);
74 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
75 cl::init(false), cl::Hidden);
76 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
77 cl::init(false), cl::Hidden);
78 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
79 cl::init(true), cl::Hidden);
81 STATISTIC(NumSimple, "Number of simple if-conversions performed");
82 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
83 STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
84 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
85 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
86 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
87 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
88 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
89 STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
90 STATISTIC(NumDupBBs, "Number of duplicated blocks");
91 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
93 namespace {
95 class IfConverter : public MachineFunctionPass {
96 enum IfcvtKind {
97 ICNotClassfied, // BB data valid, but not classified.
98 ICSimpleFalse, // Same as ICSimple, but on the false path.
99 ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
100 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
101 ICTriangleRev, // Same as ICTriangle, but true path rev condition.
102 ICTriangleFalse, // Same as ICTriangle, but on the false path.
103 ICTriangle, // BB is entry of a triangle sub-CFG.
104 ICDiamond, // BB is entry of a diamond sub-CFG.
105 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
106 // common tail that can be shared.
109 /// One per MachineBasicBlock, this is used to cache the result
110 /// if-conversion feasibility analysis. This includes results from
111 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
112 /// classification, and common tail block of its successors (if it's a
113 /// diamond shape), its size, whether it's predicable, and whether any
114 /// instruction can clobber the 'would-be' predicate.
116 /// IsDone - True if BB is not to be considered for ifcvt.
117 /// IsBeingAnalyzed - True if BB is currently being analyzed.
118 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
119 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
120 /// IsBrAnalyzable - True if analyzeBranch() returns false.
121 /// HasFallThrough - True if BB may fallthrough to the following BB.
122 /// IsUnpredicable - True if BB is known to be unpredicable.
123 /// ClobbersPred - True if BB could modify predicates (e.g. has
124 /// cmp, call, etc.)
125 /// NonPredSize - Number of non-predicated instructions.
126 /// ExtraCost - Extra cost for multi-cycle instructions.
127 /// ExtraCost2 - Some instructions are slower when predicated
128 /// BB - Corresponding MachineBasicBlock.
129 /// TrueBB / FalseBB- See analyzeBranch().
130 /// BrCond - Conditions for end of block conditional branches.
131 /// Predicate - Predicate used in the BB.
132 struct BBInfo {
133 bool IsDone : 1;
134 bool IsBeingAnalyzed : 1;
135 bool IsAnalyzed : 1;
136 bool IsEnqueued : 1;
137 bool IsBrAnalyzable : 1;
138 bool IsBrReversible : 1;
139 bool HasFallThrough : 1;
140 bool IsUnpredicable : 1;
141 bool CannotBeCopied : 1;
142 bool ClobbersPred : 1;
143 unsigned NonPredSize = 0;
144 unsigned ExtraCost = 0;
145 unsigned ExtraCost2 = 0;
146 MachineBasicBlock *BB = nullptr;
147 MachineBasicBlock *TrueBB = nullptr;
148 MachineBasicBlock *FalseBB = nullptr;
149 SmallVector<MachineOperand, 4> BrCond;
150 SmallVector<MachineOperand, 4> Predicate;
152 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
153 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
154 IsBrReversible(false), HasFallThrough(false),
155 IsUnpredicable(false), CannotBeCopied(false),
156 ClobbersPred(false) {}
159 /// Record information about pending if-conversions to attempt:
160 /// BBI - Corresponding BBInfo.
161 /// Kind - Type of block. See IfcvtKind.
162 /// NeedSubsumption - True if the to-be-predicated BB has already been
163 /// predicated.
164 /// NumDups - Number of instructions that would be duplicated due
165 /// to this if-conversion. (For diamonds, the number of
166 /// identical instructions at the beginnings of both
167 /// paths).
168 /// NumDups2 - For diamonds, the number of identical instructions
169 /// at the ends of both paths.
170 struct IfcvtToken {
171 BBInfo &BBI;
172 IfcvtKind Kind;
173 unsigned NumDups;
174 unsigned NumDups2;
175 bool NeedSubsumption : 1;
176 bool TClobbersPred : 1;
177 bool FClobbersPred : 1;
179 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
180 bool tc = false, bool fc = false)
181 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
182 TClobbersPred(tc), FClobbersPred(fc) {}
185 /// Results of if-conversion feasibility analysis indexed by basic block
186 /// number.
187 std::vector<BBInfo> BBAnalysis;
188 TargetSchedModel SchedModel;
190 const TargetLoweringBase *TLI = nullptr;
191 const TargetInstrInfo *TII = nullptr;
192 const TargetRegisterInfo *TRI = nullptr;
193 const MachineBranchProbabilityInfo *MBPI = nullptr;
194 MachineRegisterInfo *MRI = nullptr;
196 LivePhysRegs Redefs;
198 bool PreRegAlloc = true;
199 bool MadeChange = false;
200 int FnNum = -1;
201 std::function<bool(const MachineFunction &)> PredicateFtor;
203 public:
204 static char ID;
206 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
207 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
208 initializeIfConverterPass(*PassRegistry::getPassRegistry());
211 void getAnalysisUsage(AnalysisUsage &AU) const override {
212 AU.addRequired<MachineBlockFrequencyInfo>();
213 AU.addRequired<MachineBranchProbabilityInfo>();
214 AU.addRequired<ProfileSummaryInfoWrapperPass>();
215 MachineFunctionPass::getAnalysisUsage(AU);
218 bool runOnMachineFunction(MachineFunction &MF) override;
220 MachineFunctionProperties getRequiredProperties() const override {
221 return MachineFunctionProperties().set(
222 MachineFunctionProperties::Property::NoVRegs);
225 private:
226 bool reverseBranchCondition(BBInfo &BBI) const;
227 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
228 BranchProbability Prediction) const;
229 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
230 bool FalseBranch, unsigned &Dups,
231 BranchProbability Prediction) const;
232 bool CountDuplicatedInstructions(
233 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
234 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
235 unsigned &Dups1, unsigned &Dups2,
236 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
237 bool SkipUnconditionalBranches) const;
238 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
239 unsigned &Dups1, unsigned &Dups2,
240 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
241 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
242 unsigned &Dups1, unsigned &Dups2,
243 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
244 void AnalyzeBranches(BBInfo &BBI);
245 void ScanInstructions(BBInfo &BBI,
246 MachineBasicBlock::iterator &Begin,
247 MachineBasicBlock::iterator &End,
248 bool BranchUnpredicable = false) const;
249 bool RescanInstructions(
250 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
251 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
252 BBInfo &TrueBBI, BBInfo &FalseBBI) const;
253 void AnalyzeBlock(MachineBasicBlock &MBB,
254 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
255 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
256 bool isTriangle = false, bool RevBranch = false,
257 bool hasCommonTail = false);
258 void AnalyzeBlocks(MachineFunction &MF,
259 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
260 void InvalidatePreds(MachineBasicBlock &MBB);
261 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
262 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
263 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
264 unsigned NumDups1, unsigned NumDups2,
265 bool TClobbersPred, bool FClobbersPred,
266 bool RemoveBranch, bool MergeAddEdges);
267 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
268 unsigned NumDups1, unsigned NumDups2,
269 bool TClobbers, bool FClobbers);
270 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
271 unsigned NumDups1, unsigned NumDups2,
272 bool TClobbers, bool FClobbers);
273 void PredicateBlock(BBInfo &BBI,
274 MachineBasicBlock::iterator E,
275 SmallVectorImpl<MachineOperand> &Cond,
276 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
277 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
278 SmallVectorImpl<MachineOperand> &Cond,
279 bool IgnoreBr = false);
280 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
282 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
283 unsigned Cycle, unsigned Extra,
284 BranchProbability Prediction) const {
285 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
286 Prediction);
289 bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo,
290 MachineBasicBlock &CommBB, unsigned Dups,
291 BranchProbability Prediction, bool Forked) const {
292 const MachineFunction &MF = *TBBInfo.BB->getParent();
293 if (MF.getFunction().hasMinSize()) {
294 MachineBasicBlock::iterator TIB = TBBInfo.BB->begin();
295 MachineBasicBlock::iterator FIB = FBBInfo.BB->begin();
296 MachineBasicBlock::iterator TIE = TBBInfo.BB->end();
297 MachineBasicBlock::iterator FIE = FBBInfo.BB->end();
299 unsigned Dups1 = 0, Dups2 = 0;
300 if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
301 *TBBInfo.BB, *FBBInfo.BB,
302 /*SkipUnconditionalBranches*/ true))
303 llvm_unreachable("should already have been checked by ValidDiamond");
305 unsigned BranchBytes = 0;
306 unsigned CommonBytes = 0;
308 // Count common instructions at the start of the true and false blocks.
309 for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) {
310 LLVM_DEBUG(dbgs() << "Common inst: " << I);
311 CommonBytes += TII->getInstSizeInBytes(I);
313 for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) {
314 LLVM_DEBUG(dbgs() << "Common inst: " << I);
315 CommonBytes += TII->getInstSizeInBytes(I);
318 // Count instructions at the end of the true and false blocks, after
319 // the ones we plan to predicate. Analyzable branches will be removed
320 // (unless this is a forked diamond), and all other instructions are
321 // common between the two blocks.
322 for (auto &I : make_range(TIE, TBBInfo.BB->end())) {
323 if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) {
324 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
325 BranchBytes += TII->predictBranchSizeForIfCvt(I);
326 } else {
327 LLVM_DEBUG(dbgs() << "Common inst: " << I);
328 CommonBytes += TII->getInstSizeInBytes(I);
331 for (auto &I : make_range(FIE, FBBInfo.BB->end())) {
332 if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) {
333 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
334 BranchBytes += TII->predictBranchSizeForIfCvt(I);
335 } else {
336 LLVM_DEBUG(dbgs() << "Common inst: " << I);
337 CommonBytes += TII->getInstSizeInBytes(I);
340 for (auto &I : CommBB.terminators()) {
341 if (I.isBranch()) {
342 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
343 BranchBytes += TII->predictBranchSizeForIfCvt(I);
347 // The common instructions in one branch will be eliminated, halving
348 // their code size.
349 CommonBytes /= 2;
351 // Count the instructions which we need to predicate.
352 unsigned NumPredicatedInstructions = 0;
353 for (auto &I : make_range(TIB, TIE)) {
354 if (!I.isDebugInstr()) {
355 LLVM_DEBUG(dbgs() << "Predicating: " << I);
356 NumPredicatedInstructions++;
359 for (auto &I : make_range(FIB, FIE)) {
360 if (!I.isDebugInstr()) {
361 LLVM_DEBUG(dbgs() << "Predicating: " << I);
362 NumPredicatedInstructions++;
366 // Even though we're optimising for size at the expense of performance,
367 // avoid creating really long predicated blocks.
368 if (NumPredicatedInstructions > 15)
369 return false;
371 // Some targets (e.g. Thumb2) need to insert extra instructions to
372 // start predicated blocks.
373 unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions(
374 MF, NumPredicatedInstructions);
376 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
377 << ", CommonBytes=" << CommonBytes
378 << ", NumPredicatedInstructions="
379 << NumPredicatedInstructions
380 << ", ExtraPredicateBytes=" << ExtraPredicateBytes
381 << ")\n");
382 return (BranchBytes + CommonBytes) > ExtraPredicateBytes;
383 } else {
384 unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups;
385 unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups;
386 bool Res = TCycle > 0 && FCycle > 0 &&
387 TII->isProfitableToIfCvt(
388 *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB,
389 FCycle, FBBInfo.ExtraCost2, Prediction);
390 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
391 << ", FCycle=" << FCycle
392 << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra="
393 << FBBInfo.ExtraCost2 << ") = " << Res << "\n");
394 return Res;
398 /// Returns true if Block ends without a terminator.
399 bool blockAlwaysFallThrough(BBInfo &BBI) const {
400 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
403 /// Used to sort if-conversion candidates.
404 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
405 const std::unique_ptr<IfcvtToken> &C2) {
406 int Incr1 = (C1->Kind == ICDiamond)
407 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
408 int Incr2 = (C2->Kind == ICDiamond)
409 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
410 if (Incr1 > Incr2)
411 return true;
412 else if (Incr1 == Incr2) {
413 // Favors subsumption.
414 if (!C1->NeedSubsumption && C2->NeedSubsumption)
415 return true;
416 else if (C1->NeedSubsumption == C2->NeedSubsumption) {
417 // Favors diamond over triangle, etc.
418 if ((unsigned)C1->Kind < (unsigned)C2->Kind)
419 return true;
420 else if (C1->Kind == C2->Kind)
421 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
424 return false;
428 } // end anonymous namespace
430 char IfConverter::ID = 0;
432 char &llvm::IfConverterID = IfConverter::ID;
434 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
435 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
436 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
437 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
439 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
440 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
441 return false;
443 const TargetSubtargetInfo &ST = MF.getSubtarget();
444 TLI = ST.getTargetLowering();
445 TII = ST.getInstrInfo();
446 TRI = ST.getRegisterInfo();
447 MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
448 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
449 ProfileSummaryInfo *PSI =
450 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
451 MRI = &MF.getRegInfo();
452 SchedModel.init(&ST);
454 if (!TII) return false;
456 PreRegAlloc = MRI->isSSA();
458 bool BFChange = false;
459 if (!PreRegAlloc) {
460 // Tail merge tend to expose more if-conversion opportunities.
461 BranchFolder BF(true, false, MBFI, *MBPI, PSI);
462 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo());
465 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
466 << MF.getName() << "\'");
468 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
469 LLVM_DEBUG(dbgs() << " skipped\n");
470 return false;
472 LLVM_DEBUG(dbgs() << "\n");
474 MF.RenumberBlocks();
475 BBAnalysis.resize(MF.getNumBlockIDs());
477 std::vector<std::unique_ptr<IfcvtToken>> Tokens;
478 MadeChange = false;
479 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
480 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
481 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
482 // Do an initial analysis for each basic block and find all the potential
483 // candidates to perform if-conversion.
484 bool Change = false;
485 AnalyzeBlocks(MF, Tokens);
486 while (!Tokens.empty()) {
487 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
488 Tokens.pop_back();
489 BBInfo &BBI = Token->BBI;
490 IfcvtKind Kind = Token->Kind;
491 unsigned NumDups = Token->NumDups;
492 unsigned NumDups2 = Token->NumDups2;
494 // If the block has been evicted out of the queue or it has already been
495 // marked dead (due to it being predicated), then skip it.
496 if (BBI.IsDone)
497 BBI.IsEnqueued = false;
498 if (!BBI.IsEnqueued)
499 continue;
501 BBI.IsEnqueued = false;
503 bool RetVal = false;
504 switch (Kind) {
505 default: llvm_unreachable("Unexpected!");
506 case ICSimple:
507 case ICSimpleFalse: {
508 bool isFalse = Kind == ICSimpleFalse;
509 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
510 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
511 << (Kind == ICSimpleFalse ? " false" : "")
512 << "): " << printMBBReference(*BBI.BB) << " ("
513 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
514 : BBI.TrueBB->getNumber())
515 << ") ");
516 RetVal = IfConvertSimple(BBI, Kind);
517 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
518 if (RetVal) {
519 if (isFalse) ++NumSimpleFalse;
520 else ++NumSimple;
522 break;
524 case ICTriangle:
525 case ICTriangleRev:
526 case ICTriangleFalse:
527 case ICTriangleFRev: {
528 bool isFalse = Kind == ICTriangleFalse;
529 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
530 if (DisableTriangle && !isFalse && !isRev) break;
531 if (DisableTriangleR && !isFalse && isRev) break;
532 if (DisableTriangleF && isFalse && !isRev) break;
533 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
534 if (isFalse)
535 LLVM_DEBUG(dbgs() << " false");
536 if (isRev)
537 LLVM_DEBUG(dbgs() << " rev");
538 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
539 << " (T:" << BBI.TrueBB->getNumber()
540 << ",F:" << BBI.FalseBB->getNumber() << ") ");
541 RetVal = IfConvertTriangle(BBI, Kind);
542 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
543 if (RetVal) {
544 if (isFalse)
545 ++NumTriangleFalse;
546 else if (isRev)
547 ++NumTriangleRev;
548 else
549 ++NumTriangle;
551 break;
553 case ICDiamond:
554 if (DisableDiamond) break;
555 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
556 << " (T:" << BBI.TrueBB->getNumber()
557 << ",F:" << BBI.FalseBB->getNumber() << ") ");
558 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
559 Token->TClobbersPred,
560 Token->FClobbersPred);
561 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
562 if (RetVal) ++NumDiamonds;
563 break;
564 case ICForkedDiamond:
565 if (DisableForkedDiamond) break;
566 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
567 << printMBBReference(*BBI.BB)
568 << " (T:" << BBI.TrueBB->getNumber()
569 << ",F:" << BBI.FalseBB->getNumber() << ") ");
570 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
571 Token->TClobbersPred,
572 Token->FClobbersPred);
573 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
574 if (RetVal) ++NumForkedDiamonds;
575 break;
578 if (RetVal && MRI->tracksLiveness())
579 recomputeLivenessFlags(*BBI.BB);
581 Change |= RetVal;
583 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
584 NumTriangleFalse + NumTriangleFRev + NumDiamonds;
585 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
586 break;
589 if (!Change)
590 break;
591 MadeChange |= Change;
594 Tokens.clear();
595 BBAnalysis.clear();
597 if (MadeChange && IfCvtBranchFold) {
598 BranchFolder BF(false, false, MBFI, *MBPI, PSI);
599 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo());
602 MadeChange |= BFChange;
603 return MadeChange;
606 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
607 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
608 MachineBasicBlock *TrueBB) {
609 for (MachineBasicBlock *SuccBB : BB->successors()) {
610 if (SuccBB != TrueBB)
611 return SuccBB;
613 return nullptr;
616 /// Reverse the condition of the end of the block branch. Swap block's 'true'
617 /// and 'false' successors.
618 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
619 DebugLoc dl; // FIXME: this is nowhere
620 if (!TII->reverseBranchCondition(BBI.BrCond)) {
621 TII->removeBranch(*BBI.BB);
622 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
623 std::swap(BBI.TrueBB, BBI.FalseBB);
624 return true;
626 return false;
629 /// Returns the next block in the function blocks ordering. If it is the end,
630 /// returns NULL.
631 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
632 MachineFunction::iterator I = MBB.getIterator();
633 MachineFunction::iterator E = MBB.getParent()->end();
634 if (++I == E)
635 return nullptr;
636 return &*I;
639 /// Returns true if the 'true' block (along with its predecessor) forms a valid
640 /// simple shape for ifcvt. It also returns the number of instructions that the
641 /// ifcvt would need to duplicate if performed in Dups.
642 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
643 BranchProbability Prediction) const {
644 Dups = 0;
645 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
646 return false;
648 if (TrueBBI.IsBrAnalyzable)
649 return false;
651 if (TrueBBI.BB->pred_size() > 1) {
652 if (TrueBBI.CannotBeCopied ||
653 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
654 Prediction))
655 return false;
656 Dups = TrueBBI.NonPredSize;
659 return true;
662 /// Returns true if the 'true' and 'false' blocks (along with their common
663 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
664 /// true, it checks if 'true' block's false branch branches to the 'false' block
665 /// rather than the other way around. It also returns the number of instructions
666 /// that the ifcvt would need to duplicate if performed in 'Dups'.
667 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
668 bool FalseBranch, unsigned &Dups,
669 BranchProbability Prediction) const {
670 Dups = 0;
671 if (TrueBBI.BB == FalseBBI.BB)
672 return false;
674 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
675 return false;
677 if (TrueBBI.BB->pred_size() > 1) {
678 if (TrueBBI.CannotBeCopied)
679 return false;
681 unsigned Size = TrueBBI.NonPredSize;
682 if (TrueBBI.IsBrAnalyzable) {
683 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
684 // Ends with an unconditional branch. It will be removed.
685 --Size;
686 else {
687 MachineBasicBlock *FExit = FalseBranch
688 ? TrueBBI.TrueBB : TrueBBI.FalseBB;
689 if (FExit)
690 // Require a conditional branch
691 ++Size;
694 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
695 return false;
696 Dups = Size;
699 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
700 if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
701 MachineFunction::iterator I = TrueBBI.BB->getIterator();
702 if (++I == TrueBBI.BB->getParent()->end())
703 return false;
704 TExit = &*I;
706 return TExit && TExit == FalseBBI.BB;
709 /// Count duplicated instructions and move the iterators to show where they
710 /// are.
711 /// @param TIB True Iterator Begin
712 /// @param FIB False Iterator Begin
713 /// These two iterators initially point to the first instruction of the two
714 /// blocks, and finally point to the first non-shared instruction.
715 /// @param TIE True Iterator End
716 /// @param FIE False Iterator End
717 /// These two iterators initially point to End() for the two blocks() and
718 /// finally point to the first shared instruction in the tail.
719 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
720 /// two blocks.
721 /// @param Dups1 count of duplicated instructions at the beginning of the 2
722 /// blocks.
723 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
724 /// @param SkipUnconditionalBranches if true, Don't make sure that
725 /// unconditional branches at the end of the blocks are the same. True is
726 /// passed when the blocks are analyzable to allow for fallthrough to be
727 /// handled.
728 /// @return false if the shared portion prevents if conversion.
729 bool IfConverter::CountDuplicatedInstructions(
730 MachineBasicBlock::iterator &TIB,
731 MachineBasicBlock::iterator &FIB,
732 MachineBasicBlock::iterator &TIE,
733 MachineBasicBlock::iterator &FIE,
734 unsigned &Dups1, unsigned &Dups2,
735 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
736 bool SkipUnconditionalBranches) const {
737 while (TIB != TIE && FIB != FIE) {
738 // Skip dbg_value instructions. These do not count.
739 TIB = skipDebugInstructionsForward(TIB, TIE, false);
740 FIB = skipDebugInstructionsForward(FIB, FIE, false);
741 if (TIB == TIE || FIB == FIE)
742 break;
743 if (!TIB->isIdenticalTo(*FIB))
744 break;
745 // A pred-clobbering instruction in the shared portion prevents
746 // if-conversion.
747 std::vector<MachineOperand> PredDefs;
748 if (TII->ClobbersPredicate(*TIB, PredDefs, false))
749 return false;
750 // If we get all the way to the branch instructions, don't count them.
751 if (!TIB->isBranch())
752 ++Dups1;
753 ++TIB;
754 ++FIB;
757 // Check for already containing all of the block.
758 if (TIB == TIE || FIB == FIE)
759 return true;
760 // Now, in preparation for counting duplicate instructions at the ends of the
761 // blocks, switch to reverse_iterators. Note that getReverse() returns an
762 // iterator that points to the same instruction, unlike std::reverse_iterator.
763 // We have to do our own shifting so that we get the same range.
764 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
765 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
766 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
767 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
769 if (!TBB.succ_empty() || !FBB.succ_empty()) {
770 if (SkipUnconditionalBranches) {
771 while (RTIE != RTIB && RTIE->isUnconditionalBranch())
772 ++RTIE;
773 while (RFIE != RFIB && RFIE->isUnconditionalBranch())
774 ++RFIE;
778 // Count duplicate instructions at the ends of the blocks.
779 while (RTIE != RTIB && RFIE != RFIB) {
780 // Skip dbg_value instructions. These do not count.
781 // Note that these are reverse iterators going forward.
782 RTIE = skipDebugInstructionsForward(RTIE, RTIB, false);
783 RFIE = skipDebugInstructionsForward(RFIE, RFIB, false);
784 if (RTIE == RTIB || RFIE == RFIB)
785 break;
786 if (!RTIE->isIdenticalTo(*RFIE))
787 break;
788 // We have to verify that any branch instructions are the same, and then we
789 // don't count them toward the # of duplicate instructions.
790 if (!RTIE->isBranch())
791 ++Dups2;
792 ++RTIE;
793 ++RFIE;
795 TIE = std::next(RTIE.getReverse());
796 FIE = std::next(RFIE.getReverse());
797 return true;
800 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
801 /// @param TIB - True Iterator Begin, points to first non-shared instruction
802 /// @param FIB - False Iterator Begin, points to first non-shared instruction
803 /// @param TIE - True Iterator End, points past last non-shared instruction
804 /// @param FIE - False Iterator End, points past last non-shared instruction
805 /// @param TrueBBI - BBInfo to update for the true block.
806 /// @param FalseBBI - BBInfo to update for the false block.
807 /// @returns - false if either block cannot be predicated or if both blocks end
808 /// with a predicate-clobbering instruction.
809 bool IfConverter::RescanInstructions(
810 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
811 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
812 BBInfo &TrueBBI, BBInfo &FalseBBI) const {
813 bool BranchUnpredicable = true;
814 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
815 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
816 if (TrueBBI.IsUnpredicable)
817 return false;
818 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
819 if (FalseBBI.IsUnpredicable)
820 return false;
821 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
822 return false;
823 return true;
826 #ifndef NDEBUG
827 static void verifySameBranchInstructions(
828 MachineBasicBlock *MBB1,
829 MachineBasicBlock *MBB2) {
830 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
831 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
832 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
833 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
834 while (E1 != B1 && E2 != B2) {
835 skipDebugInstructionsForward(E1, B1, false);
836 skipDebugInstructionsForward(E2, B2, false);
837 if (E1 == B1 && E2 == B2)
838 break;
840 if (E1 == B1) {
841 assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
842 break;
844 if (E2 == B2) {
845 assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
846 break;
849 if (E1->isBranch() || E2->isBranch())
850 assert(E1->isIdenticalTo(*E2) &&
851 "Branch mis-match, branch instructions don't match.");
852 else
853 break;
854 ++E1;
855 ++E2;
858 #endif
860 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
861 /// with their common predecessor) form a diamond if a common tail block is
862 /// extracted.
863 /// While not strictly a diamond, this pattern would form a diamond if
864 /// tail-merging had merged the shared tails.
865 /// EBB
866 /// _/ \_
867 /// | |
868 /// TBB FBB
869 /// / \ / \
870 /// FalseBB TrueBB FalseBB
871 /// Currently only handles analyzable branches.
872 /// Specifically excludes actual diamonds to avoid overlap.
873 bool IfConverter::ValidForkedDiamond(
874 BBInfo &TrueBBI, BBInfo &FalseBBI,
875 unsigned &Dups1, unsigned &Dups2,
876 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
877 Dups1 = Dups2 = 0;
878 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
879 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
880 return false;
882 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
883 return false;
884 // Don't IfConvert blocks that can't be folded into their predecessor.
885 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
886 return false;
888 // This function is specifically looking for conditional tails, as
889 // unconditional tails are already handled by the standard diamond case.
890 if (TrueBBI.BrCond.size() == 0 ||
891 FalseBBI.BrCond.size() == 0)
892 return false;
894 MachineBasicBlock *TT = TrueBBI.TrueBB;
895 MachineBasicBlock *TF = TrueBBI.FalseBB;
896 MachineBasicBlock *FT = FalseBBI.TrueBB;
897 MachineBasicBlock *FF = FalseBBI.FalseBB;
899 if (!TT)
900 TT = getNextBlock(*TrueBBI.BB);
901 if (!TF)
902 TF = getNextBlock(*TrueBBI.BB);
903 if (!FT)
904 FT = getNextBlock(*FalseBBI.BB);
905 if (!FF)
906 FF = getNextBlock(*FalseBBI.BB);
908 if (!TT || !TF)
909 return false;
911 // Check successors. If they don't match, bail.
912 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
913 return false;
915 bool FalseReversed = false;
916 if (TF == FT && TT == FF) {
917 // If the branches are opposing, but we can't reverse, don't do it.
918 if (!FalseBBI.IsBrReversible)
919 return false;
920 FalseReversed = true;
921 reverseBranchCondition(FalseBBI);
923 auto UnReverseOnExit = make_scope_exit([&]() {
924 if (FalseReversed)
925 reverseBranchCondition(FalseBBI);
928 // Count duplicate instructions at the beginning of the true and false blocks.
929 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
930 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
931 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
932 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
933 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
934 *TrueBBI.BB, *FalseBBI.BB,
935 /* SkipUnconditionalBranches */ true))
936 return false;
938 TrueBBICalc.BB = TrueBBI.BB;
939 FalseBBICalc.BB = FalseBBI.BB;
940 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
941 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
942 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
943 return false;
945 // The size is used to decide whether to if-convert, and the shared portions
946 // are subtracted off. Because of the subtraction, we just use the size that
947 // was calculated by the original ScanInstructions, as it is correct.
948 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
949 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
950 return true;
953 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
954 /// with their common predecessor) forms a valid diamond shape for ifcvt.
955 bool IfConverter::ValidDiamond(
956 BBInfo &TrueBBI, BBInfo &FalseBBI,
957 unsigned &Dups1, unsigned &Dups2,
958 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
959 Dups1 = Dups2 = 0;
960 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
961 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
962 return false;
964 // If the True and False BBs are equal we're dealing with a degenerate case
965 // that we don't treat as a diamond.
966 if (TrueBBI.BB == FalseBBI.BB)
967 return false;
969 MachineBasicBlock *TT = TrueBBI.TrueBB;
970 MachineBasicBlock *FT = FalseBBI.TrueBB;
972 if (!TT && blockAlwaysFallThrough(TrueBBI))
973 TT = getNextBlock(*TrueBBI.BB);
974 if (!FT && blockAlwaysFallThrough(FalseBBI))
975 FT = getNextBlock(*FalseBBI.BB);
976 if (TT != FT)
977 return false;
978 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
979 return false;
980 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
981 return false;
983 // FIXME: Allow true block to have an early exit?
984 if (TrueBBI.FalseBB || FalseBBI.FalseBB)
985 return false;
987 // Count duplicate instructions at the beginning and end of the true and
988 // false blocks.
989 // Skip unconditional branches only if we are considering an analyzable
990 // diamond. Otherwise the branches must be the same.
991 bool SkipUnconditionalBranches =
992 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
993 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
994 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
995 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
996 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
997 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
998 *TrueBBI.BB, *FalseBBI.BB,
999 SkipUnconditionalBranches))
1000 return false;
1002 TrueBBICalc.BB = TrueBBI.BB;
1003 FalseBBICalc.BB = FalseBBI.BB;
1004 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
1005 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
1006 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
1007 return false;
1008 // The size is used to decide whether to if-convert, and the shared portions
1009 // are subtracted off. Because of the subtraction, we just use the size that
1010 // was calculated by the original ScanInstructions, as it is correct.
1011 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
1012 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
1013 return true;
1016 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
1017 /// the block is predicable.
1018 void IfConverter::AnalyzeBranches(BBInfo &BBI) {
1019 if (BBI.IsDone)
1020 return;
1022 BBI.TrueBB = BBI.FalseBB = nullptr;
1023 BBI.BrCond.clear();
1024 BBI.IsBrAnalyzable =
1025 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
1026 if (!BBI.IsBrAnalyzable) {
1027 BBI.TrueBB = nullptr;
1028 BBI.FalseBB = nullptr;
1029 BBI.BrCond.clear();
1032 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1033 BBI.IsBrReversible = (RevCond.size() == 0) ||
1034 !TII->reverseBranchCondition(RevCond);
1035 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
1037 if (BBI.BrCond.size()) {
1038 // No false branch. This BB must end with a conditional branch and a
1039 // fallthrough.
1040 if (!BBI.FalseBB)
1041 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
1042 if (!BBI.FalseBB) {
1043 // Malformed bcc? True and false blocks are the same?
1044 BBI.IsUnpredicable = true;
1049 /// ScanInstructions - Scan all the instructions in the block to determine if
1050 /// the block is predicable. In most cases, that means all the instructions
1051 /// in the block are isPredicable(). Also checks if the block contains any
1052 /// instruction which can clobber a predicate (e.g. condition code register).
1053 /// If so, the block is not predicable unless it's the last instruction.
1054 void IfConverter::ScanInstructions(BBInfo &BBI,
1055 MachineBasicBlock::iterator &Begin,
1056 MachineBasicBlock::iterator &End,
1057 bool BranchUnpredicable) const {
1058 if (BBI.IsDone || BBI.IsUnpredicable)
1059 return;
1061 bool AlreadyPredicated = !BBI.Predicate.empty();
1063 BBI.NonPredSize = 0;
1064 BBI.ExtraCost = 0;
1065 BBI.ExtraCost2 = 0;
1066 BBI.ClobbersPred = false;
1067 for (MachineInstr &MI : make_range(Begin, End)) {
1068 if (MI.isDebugInstr())
1069 continue;
1071 // It's unsafe to duplicate convergent instructions in this context, so set
1072 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
1073 // following CFG, which is subject to our "simple" transformation.
1075 // BB0 // if (c1) goto BB1; else goto BB2;
1076 // / \
1077 // BB1 |
1078 // | BB2 // if (c2) goto TBB; else goto FBB;
1079 // | / |
1080 // | / |
1081 // TBB |
1082 // | |
1083 // | FBB
1084 // |
1085 // exit
1087 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
1088 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
1089 // TBB contains a convergent instruction. This is safe iff doing so does
1090 // not add a control-flow dependency to the convergent instruction -- i.e.,
1091 // it's safe iff the set of control flows that leads us to the convergent
1092 // instruction does not get smaller after the transformation.
1094 // Originally we executed TBB if c1 || c2. After the transformation, there
1095 // are two copies of TBB's instructions. We get to the first if c1, and we
1096 // get to the second if !c1 && c2.
1098 // There are clearly fewer ways to satisfy the condition "c1" than
1099 // "c1 || c2". Since we've shrunk the set of control flows which lead to
1100 // our convergent instruction, the transformation is unsafe.
1101 if (MI.isNotDuplicable() || MI.isConvergent())
1102 BBI.CannotBeCopied = true;
1104 bool isPredicated = TII->isPredicated(MI);
1105 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
1107 if (BranchUnpredicable && MI.isBranch()) {
1108 BBI.IsUnpredicable = true;
1109 return;
1112 // A conditional branch is not predicable, but it may be eliminated.
1113 if (isCondBr)
1114 continue;
1116 if (!isPredicated) {
1117 BBI.NonPredSize++;
1118 unsigned ExtraPredCost = TII->getPredicationCost(MI);
1119 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1120 if (NumCycles > 1)
1121 BBI.ExtraCost += NumCycles-1;
1122 BBI.ExtraCost2 += ExtraPredCost;
1123 } else if (!AlreadyPredicated) {
1124 // FIXME: This instruction is already predicated before the
1125 // if-conversion pass. It's probably something like a conditional move.
1126 // Mark this block unpredicable for now.
1127 BBI.IsUnpredicable = true;
1128 return;
1131 if (BBI.ClobbersPred && !isPredicated) {
1132 // Predicate modification instruction should end the block (except for
1133 // already predicated instructions and end of block branches).
1134 // Predicate may have been modified, the subsequent (currently)
1135 // unpredicated instructions cannot be correctly predicated.
1136 BBI.IsUnpredicable = true;
1137 return;
1140 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1141 // still potentially predicable.
1142 std::vector<MachineOperand> PredDefs;
1143 if (TII->ClobbersPredicate(MI, PredDefs, true))
1144 BBI.ClobbersPred = true;
1146 if (!TII->isPredicable(MI)) {
1147 BBI.IsUnpredicable = true;
1148 return;
1153 /// Determine if the block is a suitable candidate to be predicated by the
1154 /// specified predicate.
1155 /// @param BBI BBInfo for the block to check
1156 /// @param Pred Predicate array for the branch that leads to BBI
1157 /// @param isTriangle true if the Analysis is for a triangle
1158 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1159 /// case
1160 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1161 /// contains any instruction that would make the block unpredicable.
1162 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1163 SmallVectorImpl<MachineOperand> &Pred,
1164 bool isTriangle, bool RevBranch,
1165 bool hasCommonTail) {
1166 // If the block is dead or unpredicable, then it cannot be predicated.
1167 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1168 // them from being if-converted. The non-shared portion is assumed to have
1169 // been checked
1170 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1171 return false;
1173 // If it is already predicated but we couldn't analyze its terminator, the
1174 // latter might fallthrough, but we can't determine where to.
1175 // Conservatively avoid if-converting again.
1176 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1177 return false;
1179 // If it is already predicated, check if the new predicate subsumes
1180 // its predicate.
1181 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1182 return false;
1184 if (!hasCommonTail && BBI.BrCond.size()) {
1185 if (!isTriangle)
1186 return false;
1188 // Test predicate subsumption.
1189 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1190 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1191 if (RevBranch) {
1192 if (TII->reverseBranchCondition(Cond))
1193 return false;
1195 if (TII->reverseBranchCondition(RevPred) ||
1196 !TII->SubsumesPredicate(Cond, RevPred))
1197 return false;
1200 return true;
1203 /// Analyze the structure of the sub-CFG starting from the specified block.
1204 /// Record its successors and whether it looks like an if-conversion candidate.
1205 void IfConverter::AnalyzeBlock(
1206 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1207 struct BBState {
1208 BBState(MachineBasicBlock &MBB) : MBB(&MBB) {}
1209 MachineBasicBlock *MBB;
1211 /// This flag is true if MBB's successors have been analyzed.
1212 bool SuccsAnalyzed = false;
1215 // Push MBB to the stack.
1216 SmallVector<BBState, 16> BBStack(1, MBB);
1218 while (!BBStack.empty()) {
1219 BBState &State = BBStack.back();
1220 MachineBasicBlock *BB = State.MBB;
1221 BBInfo &BBI = BBAnalysis[BB->getNumber()];
1223 if (!State.SuccsAnalyzed) {
1224 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1225 BBStack.pop_back();
1226 continue;
1229 BBI.BB = BB;
1230 BBI.IsBeingAnalyzed = true;
1232 AnalyzeBranches(BBI);
1233 MachineBasicBlock::iterator Begin = BBI.BB->begin();
1234 MachineBasicBlock::iterator End = BBI.BB->end();
1235 ScanInstructions(BBI, Begin, End);
1237 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1238 // not considered for ifcvt anymore.
1239 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1240 BBI.IsBeingAnalyzed = false;
1241 BBI.IsAnalyzed = true;
1242 BBStack.pop_back();
1243 continue;
1246 // Do not ifcvt if either path is a back edge to the entry block.
1247 if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1248 BBI.IsBeingAnalyzed = false;
1249 BBI.IsAnalyzed = true;
1250 BBStack.pop_back();
1251 continue;
1254 // Do not ifcvt if true and false fallthrough blocks are the same.
1255 if (!BBI.FalseBB) {
1256 BBI.IsBeingAnalyzed = false;
1257 BBI.IsAnalyzed = true;
1258 BBStack.pop_back();
1259 continue;
1262 // Push the False and True blocks to the stack.
1263 State.SuccsAnalyzed = true;
1264 BBStack.push_back(*BBI.FalseBB);
1265 BBStack.push_back(*BBI.TrueBB);
1266 continue;
1269 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1270 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1272 if (TrueBBI.IsDone && FalseBBI.IsDone) {
1273 BBI.IsBeingAnalyzed = false;
1274 BBI.IsAnalyzed = true;
1275 BBStack.pop_back();
1276 continue;
1279 SmallVector<MachineOperand, 4>
1280 RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1281 bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1283 unsigned Dups = 0;
1284 unsigned Dups2 = 0;
1285 bool TNeedSub = !TrueBBI.Predicate.empty();
1286 bool FNeedSub = !FalseBBI.Predicate.empty();
1287 bool Enqueued = false;
1289 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1291 if (CanRevCond) {
1292 BBInfo TrueBBICalc, FalseBBICalc;
1293 auto feasibleDiamond = [&](bool Forked) {
1294 bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB,
1295 Dups + Dups2, Prediction, Forked);
1296 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1297 /* IsTriangle */ false, /* RevCond */ false,
1298 /* hasCommonTail */ true);
1299 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1300 /* IsTriangle */ false, /* RevCond */ false,
1301 /* hasCommonTail */ true);
1302 return MeetsSize && TrueFeasible && FalseFeasible;
1305 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1306 TrueBBICalc, FalseBBICalc)) {
1307 if (feasibleDiamond(false)) {
1308 // Diamond:
1309 // EBB
1310 // / \_
1311 // | |
1312 // TBB FBB
1313 // \ /
1314 // TailBB
1315 // Note TailBB can be empty.
1316 Tokens.push_back(std::make_unique<IfcvtToken>(
1317 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1318 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1319 Enqueued = true;
1321 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1322 TrueBBICalc, FalseBBICalc)) {
1323 if (feasibleDiamond(true)) {
1324 // ForkedDiamond:
1325 // if TBB and FBB have a common tail that includes their conditional
1326 // branch instructions, then we can If Convert this pattern.
1327 // EBB
1328 // _/ \_
1329 // | |
1330 // TBB FBB
1331 // / \ / \
1332 // FalseBB TrueBB FalseBB
1334 Tokens.push_back(std::make_unique<IfcvtToken>(
1335 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1336 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1337 Enqueued = true;
1342 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1343 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1344 TrueBBI.ExtraCost2, Prediction) &&
1345 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1346 // Triangle:
1347 // EBB
1348 // | \_
1349 // | |
1350 // | TBB
1351 // | /
1352 // FBB
1353 Tokens.push_back(
1354 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1355 Enqueued = true;
1358 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1359 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1360 TrueBBI.ExtraCost2, Prediction) &&
1361 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1362 Tokens.push_back(
1363 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1364 Enqueued = true;
1367 if (ValidSimple(TrueBBI, Dups, Prediction) &&
1368 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1369 TrueBBI.ExtraCost2, Prediction) &&
1370 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1371 // Simple (split, no rejoin):
1372 // EBB
1373 // | \_
1374 // | |
1375 // | TBB---> exit
1376 // |
1377 // FBB
1378 Tokens.push_back(
1379 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1380 Enqueued = true;
1383 if (CanRevCond) {
1384 // Try the other path...
1385 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1386 Prediction.getCompl()) &&
1387 MeetIfcvtSizeLimit(*FalseBBI.BB,
1388 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1389 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1390 FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1391 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1392 FNeedSub, Dups));
1393 Enqueued = true;
1396 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1397 Prediction.getCompl()) &&
1398 MeetIfcvtSizeLimit(*FalseBBI.BB,
1399 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1400 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1401 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1402 Tokens.push_back(
1403 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1404 Enqueued = true;
1407 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1408 MeetIfcvtSizeLimit(*FalseBBI.BB,
1409 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1410 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1411 FeasibilityAnalysis(FalseBBI, RevCond)) {
1412 Tokens.push_back(
1413 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1414 Enqueued = true;
1418 BBI.IsEnqueued = Enqueued;
1419 BBI.IsBeingAnalyzed = false;
1420 BBI.IsAnalyzed = true;
1421 BBStack.pop_back();
1425 /// Analyze all blocks and find entries for all if-conversion candidates.
1426 void IfConverter::AnalyzeBlocks(
1427 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1428 for (MachineBasicBlock &MBB : MF)
1429 AnalyzeBlock(MBB, Tokens);
1431 // Sort to favor more complex ifcvt scheme.
1432 llvm::stable_sort(Tokens, IfcvtTokenCmp);
1435 /// Returns true either if ToMBB is the next block after MBB or that all the
1436 /// intervening blocks are empty (given MBB can fall through to its next block).
1437 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1438 MachineFunction::iterator PI = MBB.getIterator();
1439 MachineFunction::iterator I = std::next(PI);
1440 MachineFunction::iterator TI = ToMBB.getIterator();
1441 MachineFunction::iterator E = MBB.getParent()->end();
1442 while (I != TI) {
1443 // Check isSuccessor to avoid case where the next block is empty, but
1444 // it's not a successor.
1445 if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1446 return false;
1447 PI = I++;
1449 // Finally see if the last I is indeed a successor to PI.
1450 return PI->isSuccessor(&*I);
1453 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1454 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1455 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1456 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1457 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1458 if (PBBI.IsDone || PBBI.BB == &MBB)
1459 continue;
1460 PBBI.IsAnalyzed = false;
1461 PBBI.IsEnqueued = false;
1465 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1466 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1467 const TargetInstrInfo *TII) {
1468 DebugLoc dl; // FIXME: this is nowhere
1469 SmallVector<MachineOperand, 0> NoCond;
1470 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1473 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1474 /// values defined in MI which are also live/used by MI.
1475 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1476 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1478 // Before stepping forward past MI, remember which regs were live
1479 // before MI. This is needed to set the Undef flag only when reg is
1480 // dead.
1481 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
1482 LiveBeforeMI.setUniverse(TRI->getNumRegs());
1483 for (unsigned Reg : Redefs)
1484 LiveBeforeMI.insert(Reg);
1486 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
1487 Redefs.stepForward(MI, Clobbers);
1489 // Now add the implicit uses for each of the clobbered values.
1490 for (auto Clobber : Clobbers) {
1491 // FIXME: Const cast here is nasty, but better than making StepForward
1492 // take a mutable instruction instead of const.
1493 unsigned Reg = Clobber.first;
1494 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1495 MachineInstr *OpMI = Op.getParent();
1496 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1497 if (Op.isRegMask()) {
1498 // First handle regmasks. They clobber any entries in the mask which
1499 // means that we need a def for those registers.
1500 if (LiveBeforeMI.count(Reg))
1501 MIB.addReg(Reg, RegState::Implicit);
1503 // We also need to add an implicit def of this register for the later
1504 // use to read from.
1505 // For the register allocator to have allocated a register clobbered
1506 // by the call which is used later, it must be the case that
1507 // the call doesn't return.
1508 MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1509 continue;
1511 if (any_of(TRI->subregs_inclusive(Reg),
1512 [&](MCPhysReg S) { return LiveBeforeMI.count(S); }))
1513 MIB.addReg(Reg, RegState::Implicit);
1517 /// If convert a simple (split, no rejoin) sub-CFG.
1518 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1519 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1520 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1521 BBInfo *CvtBBI = &TrueBBI;
1522 BBInfo *NextBBI = &FalseBBI;
1524 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1525 if (Kind == ICSimpleFalse)
1526 std::swap(CvtBBI, NextBBI);
1528 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1529 MachineBasicBlock &NextMBB = *NextBBI->BB;
1530 if (CvtBBI->IsDone ||
1531 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1532 // Something has changed. It's no longer safe to predicate this block.
1533 BBI.IsAnalyzed = false;
1534 CvtBBI->IsAnalyzed = false;
1535 return false;
1538 if (CvtMBB.hasAddressTaken())
1539 // Conservatively abort if-conversion if BB's address is taken.
1540 return false;
1542 if (Kind == ICSimpleFalse)
1543 if (TII->reverseBranchCondition(Cond))
1544 llvm_unreachable("Unable to reverse branch condition!");
1546 Redefs.init(*TRI);
1548 if (MRI->tracksLiveness()) {
1549 // Initialize liveins to the first BB. These are potentially redefined by
1550 // predicated instructions.
1551 Redefs.addLiveInsNoPristines(CvtMBB);
1552 Redefs.addLiveInsNoPristines(NextMBB);
1555 // Remove the branches from the entry so we can add the contents of the true
1556 // block to it.
1557 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1559 if (CvtMBB.pred_size() > 1) {
1560 // Copy instructions in the true block, predicate them, and add them to
1561 // the entry block.
1562 CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1564 // Keep the CFG updated.
1565 BBI.BB->removeSuccessor(&CvtMBB, true);
1566 } else {
1567 // Predicate the instructions in the true block.
1568 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1570 // Merge converted block into entry block. The BB to Cvt edge is removed
1571 // by MergeBlocks.
1572 MergeBlocks(BBI, *CvtBBI);
1575 bool IterIfcvt = true;
1576 if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1577 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1578 BBI.HasFallThrough = false;
1579 // Now ifcvt'd block will look like this:
1580 // BB:
1581 // ...
1582 // t, f = cmp
1583 // if t op
1584 // b BBf
1586 // We cannot further ifcvt this block because the unconditional branch
1587 // will have to be predicated on the new condition, that will not be
1588 // available if cmp executes.
1589 IterIfcvt = false;
1592 // Update block info. BB can be iteratively if-converted.
1593 if (!IterIfcvt)
1594 BBI.IsDone = true;
1595 InvalidatePreds(*BBI.BB);
1596 CvtBBI->IsDone = true;
1598 // FIXME: Must maintain LiveIns.
1599 return true;
1602 /// If convert a triangle sub-CFG.
1603 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1604 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1605 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1606 BBInfo *CvtBBI = &TrueBBI;
1607 BBInfo *NextBBI = &FalseBBI;
1608 DebugLoc dl; // FIXME: this is nowhere
1610 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1611 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1612 std::swap(CvtBBI, NextBBI);
1614 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1615 MachineBasicBlock &NextMBB = *NextBBI->BB;
1616 if (CvtBBI->IsDone ||
1617 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1618 // Something has changed. It's no longer safe to predicate this block.
1619 BBI.IsAnalyzed = false;
1620 CvtBBI->IsAnalyzed = false;
1621 return false;
1624 if (CvtMBB.hasAddressTaken())
1625 // Conservatively abort if-conversion if BB's address is taken.
1626 return false;
1628 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1629 if (TII->reverseBranchCondition(Cond))
1630 llvm_unreachable("Unable to reverse branch condition!");
1632 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1633 if (reverseBranchCondition(*CvtBBI)) {
1634 // BB has been changed, modify its predecessors (except for this
1635 // one) so they don't get ifcvt'ed based on bad intel.
1636 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1637 if (PBB == BBI.BB)
1638 continue;
1639 BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1640 if (PBBI.IsEnqueued) {
1641 PBBI.IsAnalyzed = false;
1642 PBBI.IsEnqueued = false;
1648 // Initialize liveins to the first BB. These are potentially redefined by
1649 // predicated instructions.
1650 Redefs.init(*TRI);
1651 if (MRI->tracksLiveness()) {
1652 Redefs.addLiveInsNoPristines(CvtMBB);
1653 Redefs.addLiveInsNoPristines(NextMBB);
1656 bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1657 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1659 if (HasEarlyExit) {
1660 // Get probabilities before modifying CvtMBB and BBI.BB.
1661 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1662 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1663 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1664 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1667 // Remove the branches from the entry so we can add the contents of the true
1668 // block to it.
1669 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1671 if (CvtMBB.pred_size() > 1) {
1672 // Copy instructions in the true block, predicate them, and add them to
1673 // the entry block.
1674 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1675 } else {
1676 // Predicate the 'true' block after removing its branch.
1677 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1678 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1680 // Now merge the entry of the triangle with the true block.
1681 MergeBlocks(BBI, *CvtBBI, false);
1684 // Keep the CFG updated.
1685 BBI.BB->removeSuccessor(&CvtMBB, true);
1687 // If 'true' block has a 'false' successor, add an exit branch to it.
1688 if (HasEarlyExit) {
1689 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1690 CvtBBI->BrCond.end());
1691 if (TII->reverseBranchCondition(RevCond))
1692 llvm_unreachable("Unable to reverse branch condition!");
1694 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1695 // NewNext = New_Prob(BBI.BB, NextMBB) =
1696 // Prob(BBI.BB, NextMBB) +
1697 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1698 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1699 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1700 auto NewTrueBB = getNextBlock(*BBI.BB);
1701 auto NewNext = BBNext + BBCvt * CvtNext;
1702 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1703 if (NewTrueBBIter != BBI.BB->succ_end())
1704 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1706 auto NewFalse = BBCvt * CvtFalse;
1707 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1708 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1711 // Merge in the 'false' block if the 'false' block has no other
1712 // predecessors. Otherwise, add an unconditional branch to 'false'.
1713 bool FalseBBDead = false;
1714 bool IterIfcvt = true;
1715 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1716 if (!isFallThrough) {
1717 // Only merge them if the true block does not fallthrough to the false
1718 // block. By not merging them, we make it possible to iteratively
1719 // ifcvt the blocks.
1720 if (!HasEarlyExit &&
1721 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1722 !NextMBB.hasAddressTaken()) {
1723 MergeBlocks(BBI, *NextBBI);
1724 FalseBBDead = true;
1725 } else {
1726 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1727 BBI.HasFallThrough = false;
1729 // Mixed predicated and unpredicated code. This cannot be iteratively
1730 // predicated.
1731 IterIfcvt = false;
1734 // Update block info. BB can be iteratively if-converted.
1735 if (!IterIfcvt)
1736 BBI.IsDone = true;
1737 InvalidatePreds(*BBI.BB);
1738 CvtBBI->IsDone = true;
1739 if (FalseBBDead)
1740 NextBBI->IsDone = true;
1742 // FIXME: Must maintain LiveIns.
1743 return true;
1746 /// Common code shared between diamond conversions.
1747 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1748 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1749 /// and FalseBBI
1750 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1751 /// and \p FalseBBI
1752 /// \p RemoveBranch - Remove the common branch of the two blocks before
1753 /// predicating. Only false for unanalyzable fallthrough
1754 /// cases. The caller will replace the branch if necessary.
1755 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1756 /// unanalyzable fallthrough
1757 bool IfConverter::IfConvertDiamondCommon(
1758 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1759 unsigned NumDups1, unsigned NumDups2,
1760 bool TClobbersPred, bool FClobbersPred,
1761 bool RemoveBranch, bool MergeAddEdges) {
1763 if (TrueBBI.IsDone || FalseBBI.IsDone ||
1764 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1765 // Something has changed. It's no longer safe to predicate these blocks.
1766 BBI.IsAnalyzed = false;
1767 TrueBBI.IsAnalyzed = false;
1768 FalseBBI.IsAnalyzed = false;
1769 return false;
1772 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1773 // Conservatively abort if-conversion if either BB has its address taken.
1774 return false;
1776 // Put the predicated instructions from the 'true' block before the
1777 // instructions from the 'false' block, unless the true block would clobber
1778 // the predicate, in which case, do the opposite.
1779 BBInfo *BBI1 = &TrueBBI;
1780 BBInfo *BBI2 = &FalseBBI;
1781 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1782 if (TII->reverseBranchCondition(RevCond))
1783 llvm_unreachable("Unable to reverse branch condition!");
1784 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1785 SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1787 // Figure out the more profitable ordering.
1788 bool DoSwap = false;
1789 if (TClobbersPred && !FClobbersPred)
1790 DoSwap = true;
1791 else if (!TClobbersPred && !FClobbersPred) {
1792 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1793 DoSwap = true;
1794 } else if (TClobbersPred && FClobbersPred)
1795 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1796 if (DoSwap) {
1797 std::swap(BBI1, BBI2);
1798 std::swap(Cond1, Cond2);
1801 // Remove the conditional branch from entry to the blocks.
1802 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1804 MachineBasicBlock &MBB1 = *BBI1->BB;
1805 MachineBasicBlock &MBB2 = *BBI2->BB;
1807 // Initialize the Redefs:
1808 // - BB2 live-in regs need implicit uses before being redefined by BB1
1809 // instructions.
1810 // - BB1 live-out regs need implicit uses before being redefined by BB2
1811 // instructions. We start with BB1 live-ins so we have the live-out regs
1812 // after tracking the BB1 instructions.
1813 Redefs.init(*TRI);
1814 if (MRI->tracksLiveness()) {
1815 Redefs.addLiveInsNoPristines(MBB1);
1816 Redefs.addLiveInsNoPristines(MBB2);
1819 // Remove the duplicated instructions at the beginnings of both paths.
1820 // Skip dbg_value instructions.
1821 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(false);
1822 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(false);
1823 BBI1->NonPredSize -= NumDups1;
1824 BBI2->NonPredSize -= NumDups1;
1826 // Skip past the dups on each side separately since there may be
1827 // differing dbg_value entries. NumDups1 can include a "return"
1828 // instruction, if it's not marked as "branch".
1829 for (unsigned i = 0; i < NumDups1; ++DI1) {
1830 if (DI1 == MBB1.end())
1831 break;
1832 if (!DI1->isDebugInstr())
1833 ++i;
1835 while (NumDups1 != 0) {
1836 // Since this instruction is going to be deleted, update call
1837 // site info state if the instruction is call instruction.
1838 if (DI2->shouldUpdateCallSiteInfo())
1839 MBB2.getParent()->eraseCallSiteInfo(&*DI2);
1841 ++DI2;
1842 if (DI2 == MBB2.end())
1843 break;
1844 if (!DI2->isDebugInstr())
1845 --NumDups1;
1848 if (MRI->tracksLiveness()) {
1849 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1850 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
1851 Redefs.stepForward(MI, Dummy);
1855 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1856 MBB2.erase(MBB2.begin(), DI2);
1858 // The branches have been checked to match, so it is safe to remove the
1859 // branch in BB1 and rely on the copy in BB2. The complication is that
1860 // the blocks may end with a return instruction, which may or may not
1861 // be marked as "branch". If it's not, then it could be included in
1862 // "dups1", leaving the blocks potentially empty after moving the common
1863 // duplicates.
1864 #ifndef NDEBUG
1865 // Unanalyzable branches must match exactly. Check that now.
1866 if (!BBI1->IsBrAnalyzable)
1867 verifySameBranchInstructions(&MBB1, &MBB2);
1868 #endif
1869 // Remove duplicated instructions from the tail of MBB1: any branch
1870 // instructions, and the common instructions counted by NumDups2.
1871 DI1 = MBB1.end();
1872 while (DI1 != MBB1.begin()) {
1873 MachineBasicBlock::iterator Prev = std::prev(DI1);
1874 if (!Prev->isBranch() && !Prev->isDebugInstr())
1875 break;
1876 DI1 = Prev;
1878 for (unsigned i = 0; i != NumDups2; ) {
1879 // NumDups2 only counted non-dbg_value instructions, so this won't
1880 // run off the head of the list.
1881 assert(DI1 != MBB1.begin());
1883 --DI1;
1885 // Since this instruction is going to be deleted, update call
1886 // site info state if the instruction is call instruction.
1887 if (DI1->shouldUpdateCallSiteInfo())
1888 MBB1.getParent()->eraseCallSiteInfo(&*DI1);
1890 // skip dbg_value instructions
1891 if (!DI1->isDebugInstr())
1892 ++i;
1894 MBB1.erase(DI1, MBB1.end());
1896 DI2 = BBI2->BB->end();
1897 // The branches have been checked to match. Skip over the branch in the false
1898 // block so that we don't try to predicate it.
1899 if (RemoveBranch)
1900 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1901 else {
1902 // Make DI2 point to the end of the range where the common "tail"
1903 // instructions could be found.
1904 while (DI2 != MBB2.begin()) {
1905 MachineBasicBlock::iterator Prev = std::prev(DI2);
1906 if (!Prev->isBranch() && !Prev->isDebugInstr())
1907 break;
1908 DI2 = Prev;
1911 while (NumDups2 != 0) {
1912 // NumDups2 only counted non-dbg_value instructions, so this won't
1913 // run off the head of the list.
1914 assert(DI2 != MBB2.begin());
1915 --DI2;
1916 // skip dbg_value instructions
1917 if (!DI2->isDebugInstr())
1918 --NumDups2;
1921 // Remember which registers would later be defined by the false block.
1922 // This allows us not to predicate instructions in the true block that would
1923 // later be re-defined. That is, rather than
1924 // subeq r0, r1, #1
1925 // addne r0, r1, #1
1926 // generate:
1927 // sub r0, r1, #1
1928 // addne r0, r1, #1
1929 SmallSet<MCPhysReg, 4> RedefsByFalse;
1930 SmallSet<MCPhysReg, 4> ExtUses;
1931 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1932 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1933 if (FI.isDebugInstr())
1934 continue;
1935 SmallVector<MCPhysReg, 4> Defs;
1936 for (const MachineOperand &MO : FI.operands()) {
1937 if (!MO.isReg())
1938 continue;
1939 Register Reg = MO.getReg();
1940 if (!Reg)
1941 continue;
1942 if (MO.isDef()) {
1943 Defs.push_back(Reg);
1944 } else if (!RedefsByFalse.count(Reg)) {
1945 // These are defined before ctrl flow reach the 'false' instructions.
1946 // They cannot be modified by the 'true' instructions.
1947 for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg))
1948 ExtUses.insert(SubReg);
1952 for (MCPhysReg Reg : Defs) {
1953 if (!ExtUses.count(Reg)) {
1954 for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg))
1955 RedefsByFalse.insert(SubReg);
1961 // Predicate the 'true' block.
1962 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1964 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1965 // a non-predicated in BBI2, then we don't want to predicate the one from
1966 // BBI2. The reason is that if we merged these blocks, we would end up with
1967 // two predicated terminators in the same block.
1968 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1969 // predicate them either. They were checked to be identical, and so the
1970 // same branch would happen regardless of which path was taken.
1971 if (!MBB2.empty() && (DI2 == MBB2.end())) {
1972 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1973 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1974 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1975 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1976 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1977 --DI2;
1980 // Predicate the 'false' block.
1981 PredicateBlock(*BBI2, DI2, *Cond2);
1983 // Merge the true block into the entry of the diamond.
1984 MergeBlocks(BBI, *BBI1, MergeAddEdges);
1985 MergeBlocks(BBI, *BBI2, MergeAddEdges);
1986 return true;
1989 /// If convert an almost-diamond sub-CFG where the true
1990 /// and false blocks share a common tail.
1991 bool IfConverter::IfConvertForkedDiamond(
1992 BBInfo &BBI, IfcvtKind Kind,
1993 unsigned NumDups1, unsigned NumDups2,
1994 bool TClobbersPred, bool FClobbersPred) {
1995 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1996 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1998 // Save the debug location for later.
1999 DebugLoc dl;
2000 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
2001 if (TIE != TrueBBI.BB->end())
2002 dl = TIE->getDebugLoc();
2003 // Removing branches from both blocks is safe, because we have already
2004 // determined that both blocks have the same branch instructions. The branch
2005 // will be added back at the end, unpredicated.
2006 if (!IfConvertDiamondCommon(
2007 BBI, TrueBBI, FalseBBI,
2008 NumDups1, NumDups2,
2009 TClobbersPred, FClobbersPred,
2010 /* RemoveBranch */ true, /* MergeAddEdges */ true))
2011 return false;
2013 // Add back the branch.
2014 // Debug location saved above when removing the branch from BBI2
2015 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
2016 TrueBBI.BrCond, dl);
2018 // Update block info.
2019 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2020 InvalidatePreds(*BBI.BB);
2022 // FIXME: Must maintain LiveIns.
2023 return true;
2026 /// If convert a diamond sub-CFG.
2027 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
2028 unsigned NumDups1, unsigned NumDups2,
2029 bool TClobbersPred, bool FClobbersPred) {
2030 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
2031 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
2032 MachineBasicBlock *TailBB = TrueBBI.TrueBB;
2034 // True block must fall through or end with an unanalyzable terminator.
2035 if (!TailBB) {
2036 if (blockAlwaysFallThrough(TrueBBI))
2037 TailBB = FalseBBI.TrueBB;
2038 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
2041 if (!IfConvertDiamondCommon(
2042 BBI, TrueBBI, FalseBBI,
2043 NumDups1, NumDups2,
2044 TClobbersPred, FClobbersPred,
2045 /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
2046 /* MergeAddEdges */ TailBB == nullptr))
2047 return false;
2049 // If the if-converted block falls through or unconditionally branches into
2050 // the tail block, and the tail block does not have other predecessors, then
2051 // fold the tail block in as well. Otherwise, unless it falls through to the
2052 // tail, add a unconditional branch to it.
2053 if (TailBB) {
2054 // We need to remove the edges to the true and false blocks manually since
2055 // we didn't let IfConvertDiamondCommon update the CFG.
2056 BBI.BB->removeSuccessor(TrueBBI.BB);
2057 BBI.BB->removeSuccessor(FalseBBI.BB, true);
2059 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
2060 bool CanMergeTail = !TailBBI.HasFallThrough &&
2061 !TailBBI.BB->hasAddressTaken();
2062 // The if-converted block can still have a predicated terminator
2063 // (e.g. a predicated return). If that is the case, we cannot merge
2064 // it with the tail block.
2065 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
2066 if (TI != BBI.BB->end() && TII->isPredicated(*TI))
2067 CanMergeTail = false;
2068 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
2069 // check if there are any other predecessors besides those.
2070 unsigned NumPreds = TailBB->pred_size();
2071 if (NumPreds > 1)
2072 CanMergeTail = false;
2073 else if (NumPreds == 1 && CanMergeTail) {
2074 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
2075 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
2076 CanMergeTail = false;
2078 if (CanMergeTail) {
2079 MergeBlocks(BBI, TailBBI);
2080 TailBBI.IsDone = true;
2081 } else {
2082 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
2083 InsertUncondBranch(*BBI.BB, *TailBB, TII);
2084 BBI.HasFallThrough = false;
2088 // Update block info.
2089 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2090 InvalidatePreds(*BBI.BB);
2092 // FIXME: Must maintain LiveIns.
2093 return true;
2096 static bool MaySpeculate(const MachineInstr &MI,
2097 SmallSet<MCPhysReg, 4> &LaterRedefs) {
2098 bool SawStore = true;
2099 if (!MI.isSafeToMove(nullptr, SawStore))
2100 return false;
2102 for (const MachineOperand &MO : MI.operands()) {
2103 if (!MO.isReg())
2104 continue;
2105 Register Reg = MO.getReg();
2106 if (!Reg)
2107 continue;
2108 if (MO.isDef() && !LaterRedefs.count(Reg))
2109 return false;
2112 return true;
2115 /// Predicate instructions from the start of the block to the specified end with
2116 /// the specified condition.
2117 void IfConverter::PredicateBlock(BBInfo &BBI,
2118 MachineBasicBlock::iterator E,
2119 SmallVectorImpl<MachineOperand> &Cond,
2120 SmallSet<MCPhysReg, 4> *LaterRedefs) {
2121 bool AnyUnpred = false;
2122 bool MaySpec = LaterRedefs != nullptr;
2123 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2124 if (I.isDebugInstr() || TII->isPredicated(I))
2125 continue;
2126 // It may be possible not to predicate an instruction if it's the 'true'
2127 // side of a diamond and the 'false' side may re-define the instruction's
2128 // defs.
2129 if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2130 AnyUnpred = true;
2131 continue;
2133 // If any instruction is predicated, then every instruction after it must
2134 // be predicated.
2135 MaySpec = false;
2136 if (!TII->PredicateInstruction(I, Cond)) {
2137 #ifndef NDEBUG
2138 dbgs() << "Unable to predicate " << I << "!\n";
2139 #endif
2140 llvm_unreachable(nullptr);
2143 // If the predicated instruction now redefines a register as the result of
2144 // if-conversion, add an implicit kill.
2145 UpdatePredRedefs(I, Redefs);
2148 BBI.Predicate.append(Cond.begin(), Cond.end());
2150 BBI.IsAnalyzed = false;
2151 BBI.NonPredSize = 0;
2153 ++NumIfConvBBs;
2154 if (AnyUnpred)
2155 ++NumUnpred;
2158 /// Copy and predicate instructions from source BB to the destination block.
2159 /// Skip end of block branches if IgnoreBr is true.
2160 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2161 SmallVectorImpl<MachineOperand> &Cond,
2162 bool IgnoreBr) {
2163 MachineFunction &MF = *ToBBI.BB->getParent();
2165 MachineBasicBlock &FromMBB = *FromBBI.BB;
2166 for (MachineInstr &I : FromMBB) {
2167 // Do not copy the end of the block branches.
2168 if (IgnoreBr && I.isBranch())
2169 break;
2171 MachineInstr *MI = MF.CloneMachineInstr(&I);
2172 // Make a copy of the call site info.
2173 if (I.isCandidateForCallSiteEntry())
2174 MF.copyCallSiteInfo(&I, MI);
2176 ToBBI.BB->insert(ToBBI.BB->end(), MI);
2177 ToBBI.NonPredSize++;
2178 unsigned ExtraPredCost = TII->getPredicationCost(I);
2179 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2180 if (NumCycles > 1)
2181 ToBBI.ExtraCost += NumCycles-1;
2182 ToBBI.ExtraCost2 += ExtraPredCost;
2184 if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2185 if (!TII->PredicateInstruction(*MI, Cond)) {
2186 #ifndef NDEBUG
2187 dbgs() << "Unable to predicate " << I << "!\n";
2188 #endif
2189 llvm_unreachable(nullptr);
2193 // If the predicated instruction now redefines a register as the result of
2194 // if-conversion, add an implicit kill.
2195 UpdatePredRedefs(*MI, Redefs);
2198 if (!IgnoreBr) {
2199 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2200 FromMBB.succ_end());
2201 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2202 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2204 for (MachineBasicBlock *Succ : Succs) {
2205 // Fallthrough edge can't be transferred.
2206 if (Succ == FallThrough)
2207 continue;
2208 ToBBI.BB->addSuccessor(Succ);
2212 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2213 ToBBI.Predicate.append(Cond.begin(), Cond.end());
2215 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2216 ToBBI.IsAnalyzed = false;
2218 ++NumDupBBs;
2221 /// Move all instructions from FromBB to the end of ToBB. This will leave
2222 /// FromBB as an empty block, so remove all of its successor edges and move it
2223 /// to the end of the function. If AddEdges is true, i.e., when FromBBI's
2224 /// branch is being moved, add those successor edges to ToBBI and remove the old
2225 /// edge from ToBBI to FromBBI.
2226 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2227 MachineBasicBlock &FromMBB = *FromBBI.BB;
2228 assert(!FromMBB.hasAddressTaken() &&
2229 "Removing a BB whose address is taken!");
2231 // If we're about to splice an INLINEASM_BR from FromBBI, we need to update
2232 // ToBBI's successor list accordingly.
2233 if (FromMBB.mayHaveInlineAsmBr())
2234 for (MachineInstr &MI : FromMBB)
2235 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2236 for (MachineOperand &MO : MI.operands())
2237 if (MO.isMBB() && !ToBBI.BB->isSuccessor(MO.getMBB()))
2238 ToBBI.BB->addSuccessor(MO.getMBB(), BranchProbability::getZero());
2240 // In case FromMBB contains terminators (e.g. return instruction),
2241 // first move the non-terminator instructions, then the terminators.
2242 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2243 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2244 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2246 // If FromBB has non-predicated terminator we should copy it at the end.
2247 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2248 ToTI = ToBBI.BB->end();
2249 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2251 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2252 // unknown probabilities into known ones.
2253 // FIXME: This usage is too tricky and in the future we would like to
2254 // eliminate all unknown probabilities in MBB.
2255 if (ToBBI.IsBrAnalyzable)
2256 ToBBI.BB->normalizeSuccProbs();
2258 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.successors());
2259 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2260 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2261 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2262 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2263 auto To2FromProb = BranchProbability::getZero();
2264 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2265 // Remove the old edge but remember the edge probability so we can calculate
2266 // the correct weights on the new edges being added further down.
2267 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2268 ToBBI.BB->removeSuccessor(&FromMBB);
2271 for (MachineBasicBlock *Succ : FromSuccs) {
2272 // Fallthrough edge can't be transferred.
2273 if (Succ == FallThrough) {
2274 FromMBB.removeSuccessor(Succ);
2275 continue;
2278 auto NewProb = BranchProbability::getZero();
2279 if (AddEdges) {
2280 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2281 // which is a portion of the edge probability from FromMBB to Succ. The
2282 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2283 // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2284 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2286 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2287 // only happens when if-converting a diamond CFG and FromMBB is the
2288 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2289 // could just use the probabilities on FromMBB's out-edges when adding
2290 // new successors.
2291 if (!To2FromProb.isZero())
2292 NewProb *= To2FromProb;
2295 FromMBB.removeSuccessor(Succ);
2297 if (AddEdges) {
2298 // If the edge from ToBBI.BB to Succ already exists, update the
2299 // probability of this edge by adding NewProb to it. An example is shown
2300 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2301 // don't have to set C as A's successor as it already is. We only need to
2302 // update the edge probability on A->C. Note that B will not be
2303 // immediately removed from A's successors. It is possible that B->D is
2304 // not removed either if D is a fallthrough of B. Later the edge A->D
2305 // (generated here) and B->D will be combined into one edge. To maintain
2306 // correct edge probability of this combined edge, we need to set the edge
2307 // probability of A->B to zero, which is already done above. The edge
2308 // probability on A->D is calculated by scaling the original probability
2309 // on A->B by the probability of B->D.
2311 // Before ifcvt: After ifcvt (assume B->D is kept):
2313 // A A
2314 // /| /|\
2315 // / B / B|
2316 // | /| | ||
2317 // |/ | | |/
2318 // C D C D
2320 if (ToBBI.BB->isSuccessor(Succ))
2321 ToBBI.BB->setSuccProbability(
2322 find(ToBBI.BB->successors(), Succ),
2323 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2324 else
2325 ToBBI.BB->addSuccessor(Succ, NewProb);
2329 // Move the now empty FromMBB out of the way to the end of the function so
2330 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2331 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2332 if (Last != &FromMBB)
2333 FromMBB.moveAfter(Last);
2335 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2336 // we've done above.
2337 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2338 ToBBI.BB->normalizeSuccProbs();
2340 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2341 FromBBI.Predicate.clear();
2343 ToBBI.NonPredSize += FromBBI.NonPredSize;
2344 ToBBI.ExtraCost += FromBBI.ExtraCost;
2345 ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2346 FromBBI.NonPredSize = 0;
2347 FromBBI.ExtraCost = 0;
2348 FromBBI.ExtraCost2 = 0;
2350 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2351 ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2352 ToBBI.IsAnalyzed = false;
2353 FromBBI.IsAnalyzed = false;
2356 FunctionPass *
2357 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2358 return new IfConverter(std::move(Ftor));