1 //===- IndirectBrExpandPass.cpp - Expand indirectbr to switch -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Implements an expansion pass to turn `indirectbr` instructions in the IR
11 /// into `switch` instructions. This works by enumerating the basic blocks in
12 /// a dense range of integers, replacing each `blockaddr` constant with the
13 /// corresponding integer constant, and then building a switch that maps from
14 /// the integers to the actual blocks. All of the indirectbr instructions in the
15 /// function are redirected to this common switch.
17 /// While this is generically useful if a target is unable to codegen
18 /// `indirectbr` natively, it is primarily useful when there is some desire to
19 /// get the builtin non-jump-table lowering of a switch even when the input
20 /// source contained an explicit indirect branch construct.
22 /// Note that it doesn't make any sense to enable this pass unless a target also
23 /// disables jump-table lowering of switches. Doing that is likely to pessimize
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/Sequence.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/DomTreeUpdater.h"
32 #include "llvm/CodeGen/IndirectBrExpand.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Target/TargetMachine.h"
48 #define DEBUG_TYPE "indirectbr-expand"
52 class IndirectBrExpandLegacyPass
: public FunctionPass
{
54 static char ID
; // Pass identification, replacement for typeid
56 IndirectBrExpandLegacyPass() : FunctionPass(ID
) {
57 initializeIndirectBrExpandLegacyPassPass(*PassRegistry::getPassRegistry());
60 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
61 AU
.addPreserved
<DominatorTreeWrapperPass
>();
64 bool runOnFunction(Function
&F
) override
;
67 } // end anonymous namespace
69 static bool runImpl(Function
&F
, const TargetLowering
*TLI
,
72 PreservedAnalyses
IndirectBrExpandPass::run(Function
&F
,
73 FunctionAnalysisManager
&FAM
) {
74 auto *STI
= TM
->getSubtargetImpl(F
);
75 if (!STI
->enableIndirectBrExpand())
76 return PreservedAnalyses::all();
78 auto *TLI
= STI
->getTargetLowering();
79 auto *DT
= FAM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
80 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Lazy
);
82 bool Changed
= runImpl(F
, TLI
, DT
? &DTU
: nullptr);
84 return PreservedAnalyses::all();
86 PA
.preserve
<DominatorTreeAnalysis
>();
90 char IndirectBrExpandLegacyPass::ID
= 0;
92 INITIALIZE_PASS_BEGIN(IndirectBrExpandLegacyPass
, DEBUG_TYPE
,
93 "Expand indirectbr instructions", false, false)
94 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
95 INITIALIZE_PASS_END(IndirectBrExpandLegacyPass
, DEBUG_TYPE
,
96 "Expand indirectbr instructions", false, false)
98 FunctionPass
*llvm::createIndirectBrExpandPass() {
99 return new IndirectBrExpandLegacyPass();
102 bool runImpl(Function
&F
, const TargetLowering
*TLI
, DomTreeUpdater
*DTU
) {
103 auto &DL
= F
.getParent()->getDataLayout();
105 SmallVector
<IndirectBrInst
*, 1> IndirectBrs
;
107 // Set of all potential successors for indirectbr instructions.
108 SmallPtrSet
<BasicBlock
*, 4> IndirectBrSuccs
;
110 // Build a list of indirectbrs that we want to rewrite.
111 for (BasicBlock
&BB
: F
)
112 if (auto *IBr
= dyn_cast
<IndirectBrInst
>(BB
.getTerminator())) {
113 // Handle the degenerate case of no successors by replacing the indirectbr
114 // with unreachable as there is no successor available.
115 if (IBr
->getNumSuccessors() == 0) {
116 (void)new UnreachableInst(F
.getContext(), IBr
);
117 IBr
->eraseFromParent();
121 IndirectBrs
.push_back(IBr
);
122 for (BasicBlock
*SuccBB
: IBr
->successors())
123 IndirectBrSuccs
.insert(SuccBB
);
126 if (IndirectBrs
.empty())
129 // If we need to replace any indirectbrs we need to establish integer
130 // constants that will correspond to each of the basic blocks in the function
131 // whose address escapes. We do that here and rewrite all the blockaddress
132 // constants to just be those integer constants cast to a pointer type.
133 SmallVector
<BasicBlock
*, 4> BBs
;
135 for (BasicBlock
&BB
: F
) {
136 // Skip blocks that aren't successors to an indirectbr we're going to
138 if (!IndirectBrSuccs
.count(&BB
))
141 auto IsBlockAddressUse
= [&](const Use
&U
) {
142 return isa
<BlockAddress
>(U
.getUser());
144 auto BlockAddressUseIt
= llvm::find_if(BB
.uses(), IsBlockAddressUse
);
145 if (BlockAddressUseIt
== BB
.use_end())
148 assert(std::find_if(std::next(BlockAddressUseIt
), BB
.use_end(),
149 IsBlockAddressUse
) == BB
.use_end() &&
150 "There should only ever be a single blockaddress use because it is "
151 "a constant and should be uniqued.");
153 auto *BA
= cast
<BlockAddress
>(BlockAddressUseIt
->getUser());
155 // Skip if the constant was formed but ended up not being used (due to DCE
157 if (!BA
->isConstantUsed())
160 // Compute the index we want to use for this basic block. We can't use zero
161 // because null can be compared with block addresses.
162 int BBIndex
= BBs
.size() + 1;
165 auto *ITy
= cast
<IntegerType
>(DL
.getIntPtrType(BA
->getType()));
166 ConstantInt
*BBIndexC
= ConstantInt::get(ITy
, BBIndex
);
168 // Now rewrite the blockaddress to an integer constant based on the index.
169 // FIXME: This part doesn't properly recognize other uses of blockaddress
170 // expressions, for instance, where they are used to pass labels to
171 // asm-goto. This part of the pass needs a rework.
172 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(BBIndexC
, BA
->getType()));
176 // There are no blocks whose address is taken, so any indirectbr instruction
177 // cannot get a valid input and we can replace all of them with unreachable.
178 SmallVector
<DominatorTree::UpdateType
, 8> Updates
;
180 Updates
.reserve(IndirectBrSuccs
.size());
181 for (auto *IBr
: IndirectBrs
) {
183 for (BasicBlock
*SuccBB
: IBr
->successors())
184 Updates
.push_back({DominatorTree::Delete
, IBr
->getParent(), SuccBB
});
186 (void)new UnreachableInst(F
.getContext(), IBr
);
187 IBr
->eraseFromParent();
190 assert(Updates
.size() == IndirectBrSuccs
.size() &&
191 "Got unexpected update count.");
192 DTU
->applyUpdates(Updates
);
197 BasicBlock
*SwitchBB
;
200 // Compute a common integer type across all the indirectbr instructions.
201 IntegerType
*CommonITy
= nullptr;
202 for (auto *IBr
: IndirectBrs
) {
204 cast
<IntegerType
>(DL
.getIntPtrType(IBr
->getAddress()->getType()));
205 if (!CommonITy
|| ITy
->getBitWidth() > CommonITy
->getBitWidth())
209 auto GetSwitchValue
= [CommonITy
](IndirectBrInst
*IBr
) {
210 return CastInst::CreatePointerCast(
211 IBr
->getAddress(), CommonITy
,
212 Twine(IBr
->getAddress()->getName()) + ".switch_cast", IBr
);
215 SmallVector
<DominatorTree::UpdateType
, 8> Updates
;
217 if (IndirectBrs
.size() == 1) {
218 // If we only have one indirectbr, we can just directly replace it within
220 IndirectBrInst
*IBr
= IndirectBrs
[0];
221 SwitchBB
= IBr
->getParent();
222 SwitchValue
= GetSwitchValue(IBr
);
224 Updates
.reserve(IndirectBrSuccs
.size());
225 for (BasicBlock
*SuccBB
: IBr
->successors())
226 Updates
.push_back({DominatorTree::Delete
, IBr
->getParent(), SuccBB
});
227 assert(Updates
.size() == IndirectBrSuccs
.size() &&
228 "Got unexpected update count.");
230 IBr
->eraseFromParent();
232 // Otherwise we need to create a new block to hold the switch across BBs,
233 // jump to that block instead of each indirectbr, and phi together the
234 // values for the switch.
235 SwitchBB
= BasicBlock::Create(F
.getContext(), "switch_bb", &F
);
236 auto *SwitchPN
= PHINode::Create(CommonITy
, IndirectBrs
.size(),
237 "switch_value_phi", SwitchBB
);
238 SwitchValue
= SwitchPN
;
240 // Now replace the indirectbr instructions with direct branches to the
241 // switch block and fill out the PHI operands.
243 Updates
.reserve(IndirectBrs
.size() + 2 * IndirectBrSuccs
.size());
244 for (auto *IBr
: IndirectBrs
) {
245 SwitchPN
->addIncoming(GetSwitchValue(IBr
), IBr
->getParent());
246 BranchInst::Create(SwitchBB
, IBr
);
248 Updates
.push_back({DominatorTree::Insert
, IBr
->getParent(), SwitchBB
});
249 for (BasicBlock
*SuccBB
: IBr
->successors())
250 Updates
.push_back({DominatorTree::Delete
, IBr
->getParent(), SuccBB
});
252 IBr
->eraseFromParent();
256 // Now build the switch in the block. The block will have no terminator
258 auto *SI
= SwitchInst::Create(SwitchValue
, BBs
[0], BBs
.size(), SwitchBB
);
260 // Add a case for each block.
261 for (int i
: llvm::seq
<int>(1, BBs
.size()))
262 SI
->addCase(ConstantInt::get(CommonITy
, i
+ 1), BBs
[i
]);
265 // If there were multiple indirectbr's, they may have common successors,
266 // but in the dominator tree, we only track unique edges.
267 SmallPtrSet
<BasicBlock
*, 8> UniqueSuccessors
;
268 Updates
.reserve(Updates
.size() + BBs
.size());
269 for (BasicBlock
*BB
: BBs
) {
270 if (UniqueSuccessors
.insert(BB
).second
)
271 Updates
.push_back({DominatorTree::Insert
, SwitchBB
, BB
});
273 DTU
->applyUpdates(Updates
);
279 bool IndirectBrExpandLegacyPass::runOnFunction(Function
&F
) {
280 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
284 auto &TM
= TPC
->getTM
<TargetMachine
>();
285 auto &STI
= *TM
.getSubtargetImpl(F
);
286 if (!STI
.enableIndirectBrExpand())
288 auto *TLI
= STI
.getTargetLowering();
290 std::optional
<DomTreeUpdater
> DTU
;
291 if (auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>())
292 DTU
.emplace(DTWP
->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy
);
294 return runImpl(F
, TLI
, DTU
? &*DTU
: nullptr);