1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
23 // E.g. An interleaved load (Factor = 2):
24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
34 // E.g. An interleaved store (Factor = 3):
35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/CodeGen/InterleavedAccess.h"
52 #include "llvm/CodeGen/TargetLowering.h"
53 #include "llvm/CodeGen/TargetPassConfig.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstIterator.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Transforms/Utils/Local.h"
77 #define DEBUG_TYPE "interleaved-access"
79 static cl::opt
<bool> LowerInterleavedAccesses(
80 "lower-interleaved-accesses",
81 cl::desc("Enable lowering interleaved accesses to intrinsics"),
82 cl::init(true), cl::Hidden
);
86 class InterleavedAccessImpl
{
87 friend class InterleavedAccess
;
90 InterleavedAccessImpl() = default;
91 InterleavedAccessImpl(DominatorTree
*DT
, const TargetLowering
*TLI
)
92 : DT(DT
), TLI(TLI
), MaxFactor(TLI
->getMaxSupportedInterleaveFactor()) {}
93 bool runOnFunction(Function
&F
);
96 DominatorTree
*DT
= nullptr;
97 const TargetLowering
*TLI
= nullptr;
99 /// The maximum supported interleave factor.
100 unsigned MaxFactor
= 0u;
102 /// Transform an interleaved load into target specific intrinsics.
103 bool lowerInterleavedLoad(LoadInst
*LI
,
104 SmallVector
<Instruction
*, 32> &DeadInsts
);
106 /// Transform an interleaved store into target specific intrinsics.
107 bool lowerInterleavedStore(StoreInst
*SI
,
108 SmallVector
<Instruction
*, 32> &DeadInsts
);
110 /// Transform a load and a deinterleave intrinsic into target specific
112 bool lowerDeinterleaveIntrinsic(IntrinsicInst
*II
,
113 SmallVector
<Instruction
*, 32> &DeadInsts
);
115 /// Transform an interleave intrinsic and a store into target specific
117 bool lowerInterleaveIntrinsic(IntrinsicInst
*II
,
118 SmallVector
<Instruction
*, 32> &DeadInsts
);
120 /// Returns true if the uses of an interleaved load by the
121 /// extractelement instructions in \p Extracts can be replaced by uses of the
122 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
123 /// replacements are also performed.
124 bool tryReplaceExtracts(ArrayRef
<ExtractElementInst
*> Extracts
,
125 ArrayRef
<ShuffleVectorInst
*> Shuffles
);
127 /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
128 /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
129 /// interleaving load. Any newly created shuffles that operate on \p LI will
130 /// be added to \p Shuffles. Returns true, if any changes to the IR have been
132 bool replaceBinOpShuffles(ArrayRef
<ShuffleVectorInst
*> BinOpShuffles
,
133 SmallVectorImpl
<ShuffleVectorInst
*> &Shuffles
,
137 class InterleavedAccess
: public FunctionPass
{
138 InterleavedAccessImpl Impl
;
143 InterleavedAccess() : FunctionPass(ID
) {
144 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
147 StringRef
getPassName() const override
{ return "Interleaved Access Pass"; }
149 bool runOnFunction(Function
&F
) override
;
151 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
152 AU
.addRequired
<DominatorTreeWrapperPass
>();
153 AU
.setPreservesCFG();
157 } // end anonymous namespace.
159 PreservedAnalyses
InterleavedAccessPass::run(Function
&F
,
160 FunctionAnalysisManager
&FAM
) {
161 auto *DT
= &FAM
.getResult
<DominatorTreeAnalysis
>(F
);
162 auto *TLI
= TM
->getSubtargetImpl(F
)->getTargetLowering();
163 InterleavedAccessImpl
Impl(DT
, TLI
);
164 bool Changed
= Impl
.runOnFunction(F
);
167 return PreservedAnalyses::all();
169 PreservedAnalyses PA
;
170 PA
.preserveSet
<CFGAnalyses
>();
174 char InterleavedAccess::ID
= 0;
176 bool InterleavedAccess::runOnFunction(Function
&F
) {
177 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
178 if (!TPC
|| !LowerInterleavedAccesses
)
181 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F
.getName() << "\n");
183 Impl
.DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
184 auto &TM
= TPC
->getTM
<TargetMachine
>();
185 Impl
.TLI
= TM
.getSubtargetImpl(F
)->getTargetLowering();
186 Impl
.MaxFactor
= Impl
.TLI
->getMaxSupportedInterleaveFactor();
188 return Impl
.runOnFunction(F
);
191 INITIALIZE_PASS_BEGIN(InterleavedAccess
, DEBUG_TYPE
,
192 "Lower interleaved memory accesses to target specific intrinsics", false,
194 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
195 INITIALIZE_PASS_END(InterleavedAccess
, DEBUG_TYPE
,
196 "Lower interleaved memory accesses to target specific intrinsics", false,
199 FunctionPass
*llvm::createInterleavedAccessPass() {
200 return new InterleavedAccess();
203 /// Check if the mask is a DE-interleave mask of the given factor
205 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
206 static bool isDeInterleaveMaskOfFactor(ArrayRef
<int> Mask
, unsigned Factor
,
208 // Check all potential start indices from 0 to (Factor - 1).
209 for (Index
= 0; Index
< Factor
; Index
++) {
212 // Check that elements are in ascending order by Factor. Ignore undef
214 for (; i
< Mask
.size(); i
++)
215 if (Mask
[i
] >= 0 && static_cast<unsigned>(Mask
[i
]) != Index
+ i
* Factor
)
218 if (i
== Mask
.size())
225 /// Check if the mask is a DE-interleave mask for an interleaved load.
227 /// E.g. DE-interleave masks (Factor = 2) could be:
228 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
229 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
230 static bool isDeInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
231 unsigned &Index
, unsigned MaxFactor
,
232 unsigned NumLoadElements
) {
236 // Check potential Factors.
237 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
238 // Make sure we don't produce a load wider than the input load.
239 if (Mask
.size() * Factor
> NumLoadElements
)
241 if (isDeInterleaveMaskOfFactor(Mask
, Factor
, Index
))
248 /// Check if the mask can be used in an interleaved store.
250 /// It checks for a more general pattern than the RE-interleave mask.
251 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
252 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
253 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
254 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
256 /// The particular case of an RE-interleave mask is:
257 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
258 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
259 static bool isReInterleaveMask(ShuffleVectorInst
*SVI
, unsigned &Factor
,
260 unsigned MaxFactor
) {
261 unsigned NumElts
= SVI
->getShuffleMask().size();
265 // Check potential Factors.
266 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
267 if (SVI
->isInterleave(Factor
))
274 bool InterleavedAccessImpl::lowerInterleavedLoad(
275 LoadInst
*LI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
276 if (!LI
->isSimple() || isa
<ScalableVectorType
>(LI
->getType()))
279 // Check if all users of this load are shufflevectors. If we encounter any
280 // users that are extractelement instructions or binary operators, we save
281 // them to later check if they can be modified to extract from one of the
282 // shufflevectors instead of the load.
284 SmallVector
<ShuffleVectorInst
*, 4> Shuffles
;
285 SmallVector
<ExtractElementInst
*, 4> Extracts
;
286 // BinOpShuffles need to be handled a single time in case both operands of the
287 // binop are the same load.
288 SmallSetVector
<ShuffleVectorInst
*, 4> BinOpShuffles
;
290 for (auto *User
: LI
->users()) {
291 auto *Extract
= dyn_cast
<ExtractElementInst
>(User
);
292 if (Extract
&& isa
<ConstantInt
>(Extract
->getIndexOperand())) {
293 Extracts
.push_back(Extract
);
296 if (auto *BI
= dyn_cast
<BinaryOperator
>(User
)) {
297 if (!BI
->user_empty() && all_of(BI
->users(), [](auto *U
) {
298 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(U
);
299 return SVI
&& isa
<UndefValue
>(SVI
->getOperand(1));
301 for (auto *SVI
: BI
->users())
302 BinOpShuffles
.insert(cast
<ShuffleVectorInst
>(SVI
));
306 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(User
);
307 if (!SVI
|| !isa
<UndefValue
>(SVI
->getOperand(1)))
310 Shuffles
.push_back(SVI
);
313 if (Shuffles
.empty() && BinOpShuffles
.empty())
316 unsigned Factor
, Index
;
318 unsigned NumLoadElements
=
319 cast
<FixedVectorType
>(LI
->getType())->getNumElements();
320 auto *FirstSVI
= Shuffles
.size() > 0 ? Shuffles
[0] : BinOpShuffles
[0];
321 // Check if the first shufflevector is DE-interleave shuffle.
322 if (!isDeInterleaveMask(FirstSVI
->getShuffleMask(), Factor
, Index
, MaxFactor
,
326 // Holds the corresponding index for each DE-interleave shuffle.
327 SmallVector
<unsigned, 4> Indices
;
329 Type
*VecTy
= FirstSVI
->getType();
331 // Check if other shufflevectors are also DE-interleaved of the same type
332 // and factor as the first shufflevector.
333 for (auto *Shuffle
: Shuffles
) {
334 if (Shuffle
->getType() != VecTy
)
336 if (!isDeInterleaveMaskOfFactor(Shuffle
->getShuffleMask(), Factor
,
340 assert(Shuffle
->getShuffleMask().size() <= NumLoadElements
);
341 Indices
.push_back(Index
);
343 for (auto *Shuffle
: BinOpShuffles
) {
344 if (Shuffle
->getType() != VecTy
)
346 if (!isDeInterleaveMaskOfFactor(Shuffle
->getShuffleMask(), Factor
,
350 assert(Shuffle
->getShuffleMask().size() <= NumLoadElements
);
352 if (cast
<Instruction
>(Shuffle
->getOperand(0))->getOperand(0) == LI
)
353 Indices
.push_back(Index
);
354 if (cast
<Instruction
>(Shuffle
->getOperand(0))->getOperand(1) == LI
)
355 Indices
.push_back(Index
);
358 // Try and modify users of the load that are extractelement instructions to
359 // use the shufflevector instructions instead of the load.
360 if (!tryReplaceExtracts(Extracts
, Shuffles
))
363 bool BinOpShuffleChanged
=
364 replaceBinOpShuffles(BinOpShuffles
.getArrayRef(), Shuffles
, LI
);
366 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI
<< "\n");
368 // Try to create target specific intrinsics to replace the load and shuffles.
369 if (!TLI
->lowerInterleavedLoad(LI
, Shuffles
, Indices
, Factor
)) {
370 // If Extracts is not empty, tryReplaceExtracts made changes earlier.
371 return !Extracts
.empty() || BinOpShuffleChanged
;
374 append_range(DeadInsts
, Shuffles
);
376 DeadInsts
.push_back(LI
);
380 bool InterleavedAccessImpl::replaceBinOpShuffles(
381 ArrayRef
<ShuffleVectorInst
*> BinOpShuffles
,
382 SmallVectorImpl
<ShuffleVectorInst
*> &Shuffles
, LoadInst
*LI
) {
383 for (auto *SVI
: BinOpShuffles
) {
384 BinaryOperator
*BI
= cast
<BinaryOperator
>(SVI
->getOperand(0));
385 Type
*BIOp0Ty
= BI
->getOperand(0)->getType();
386 ArrayRef
<int> Mask
= SVI
->getShuffleMask();
387 assert(all_of(Mask
, [&](int Idx
) {
388 return Idx
< (int)cast
<FixedVectorType
>(BIOp0Ty
)->getNumElements();
392 new ShuffleVectorInst(BI
->getOperand(0), PoisonValue::get(BIOp0Ty
),
393 Mask
, SVI
->getName(), SVI
);
394 auto *NewSVI2
= new ShuffleVectorInst(
395 BI
->getOperand(1), PoisonValue::get(BI
->getOperand(1)->getType()), Mask
,
396 SVI
->getName(), SVI
);
397 BinaryOperator
*NewBI
= BinaryOperator::CreateWithCopiedFlags(
398 BI
->getOpcode(), NewSVI1
, NewSVI2
, BI
, BI
->getName(), SVI
);
399 SVI
->replaceAllUsesWith(NewBI
);
400 LLVM_DEBUG(dbgs() << " Replaced: " << *BI
<< "\n And : " << *SVI
401 << "\n With : " << *NewSVI1
<< "\n And : "
402 << *NewSVI2
<< "\n And : " << *NewBI
<< "\n");
403 RecursivelyDeleteTriviallyDeadInstructions(SVI
);
404 if (NewSVI1
->getOperand(0) == LI
)
405 Shuffles
.push_back(NewSVI1
);
406 if (NewSVI2
->getOperand(0) == LI
)
407 Shuffles
.push_back(NewSVI2
);
410 return !BinOpShuffles
.empty();
413 bool InterleavedAccessImpl::tryReplaceExtracts(
414 ArrayRef
<ExtractElementInst
*> Extracts
,
415 ArrayRef
<ShuffleVectorInst
*> Shuffles
) {
416 // If there aren't any extractelement instructions to modify, there's nothing
418 if (Extracts
.empty())
421 // Maps extractelement instructions to vector-index pairs. The extractlement
422 // instructions will be modified to use the new vector and index operands.
423 DenseMap
<ExtractElementInst
*, std::pair
<Value
*, int>> ReplacementMap
;
425 for (auto *Extract
: Extracts
) {
426 // The vector index that is extracted.
427 auto *IndexOperand
= cast
<ConstantInt
>(Extract
->getIndexOperand());
428 auto Index
= IndexOperand
->getSExtValue();
430 // Look for a suitable shufflevector instruction. The goal is to modify the
431 // extractelement instruction (which uses an interleaved load) to use one
432 // of the shufflevector instructions instead of the load.
433 for (auto *Shuffle
: Shuffles
) {
434 // If the shufflevector instruction doesn't dominate the extract, we
435 // can't create a use of it.
436 if (!DT
->dominates(Shuffle
, Extract
))
439 // Inspect the indices of the shufflevector instruction. If the shuffle
440 // selects the same index that is extracted, we can modify the
441 // extractelement instruction.
442 SmallVector
<int, 4> Indices
;
443 Shuffle
->getShuffleMask(Indices
);
444 for (unsigned I
= 0; I
< Indices
.size(); ++I
)
445 if (Indices
[I
] == Index
) {
446 assert(Extract
->getOperand(0) == Shuffle
->getOperand(0) &&
447 "Vector operations do not match");
448 ReplacementMap
[Extract
] = std::make_pair(Shuffle
, I
);
452 // If we found a suitable shufflevector instruction, stop looking.
453 if (ReplacementMap
.count(Extract
))
457 // If we did not find a suitable shufflevector instruction, the
458 // extractelement instruction cannot be modified, so we must give up.
459 if (!ReplacementMap
.count(Extract
))
463 // Finally, perform the replacements.
464 IRBuilder
<> Builder(Extracts
[0]->getContext());
465 for (auto &Replacement
: ReplacementMap
) {
466 auto *Extract
= Replacement
.first
;
467 auto *Vector
= Replacement
.second
.first
;
468 auto Index
= Replacement
.second
.second
;
469 Builder
.SetInsertPoint(Extract
);
470 Extract
->replaceAllUsesWith(Builder
.CreateExtractElement(Vector
, Index
));
471 Extract
->eraseFromParent();
477 bool InterleavedAccessImpl::lowerInterleavedStore(
478 StoreInst
*SI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
482 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(SI
->getValueOperand());
483 if (!SVI
|| !SVI
->hasOneUse() || isa
<ScalableVectorType
>(SVI
->getType()))
486 // Check if the shufflevector is RE-interleave shuffle.
488 if (!isReInterleaveMask(SVI
, Factor
, MaxFactor
))
491 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI
<< "\n");
493 // Try to create target specific intrinsics to replace the store and shuffle.
494 if (!TLI
->lowerInterleavedStore(SI
, SVI
, Factor
))
497 // Already have a new target specific interleaved store. Erase the old store.
498 DeadInsts
.push_back(SI
);
499 DeadInsts
.push_back(SVI
);
503 bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic(
504 IntrinsicInst
*DI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
505 LoadInst
*LI
= dyn_cast
<LoadInst
>(DI
->getOperand(0));
507 if (!LI
|| !LI
->hasOneUse() || !LI
->isSimple())
510 LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI
<< "\n");
512 // Try and match this with target specific intrinsics.
513 if (!TLI
->lowerDeinterleaveIntrinsicToLoad(DI
, LI
))
516 // We now have a target-specific load, so delete the old one.
517 DeadInsts
.push_back(DI
);
518 DeadInsts
.push_back(LI
);
522 bool InterleavedAccessImpl::lowerInterleaveIntrinsic(
523 IntrinsicInst
*II
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
524 if (!II
->hasOneUse())
527 StoreInst
*SI
= dyn_cast
<StoreInst
>(*(II
->users().begin()));
529 if (!SI
|| !SI
->isSimple())
532 LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II
<< "\n");
534 // Try and match this with target specific intrinsics.
535 if (!TLI
->lowerInterleaveIntrinsicToStore(II
, SI
))
538 // We now have a target-specific store, so delete the old one.
539 DeadInsts
.push_back(SI
);
540 DeadInsts
.push_back(II
);
544 bool InterleavedAccessImpl::runOnFunction(Function
&F
) {
545 // Holds dead instructions that will be erased later.
546 SmallVector
<Instruction
*, 32> DeadInsts
;
547 bool Changed
= false;
549 for (auto &I
: instructions(F
)) {
550 if (auto *LI
= dyn_cast
<LoadInst
>(&I
))
551 Changed
|= lowerInterleavedLoad(LI
, DeadInsts
);
553 if (auto *SI
= dyn_cast
<StoreInst
>(&I
))
554 Changed
|= lowerInterleavedStore(SI
, DeadInsts
);
556 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
)) {
557 // At present, we only have intrinsics to represent (de)interleaving
558 // with a factor of 2.
559 if (II
->getIntrinsicID() == Intrinsic::experimental_vector_deinterleave2
)
560 Changed
|= lowerDeinterleaveIntrinsic(II
, DeadInsts
);
561 if (II
->getIntrinsicID() == Intrinsic::experimental_vector_interleave2
)
562 Changed
|= lowerInterleaveIntrinsic(II
, DeadInsts
);
566 for (auto *I
: DeadInsts
)
567 I
->eraseFromParent();