[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / InterleavedLoadCombinePass.cpp
blobf2d5c3c867c2dda6f0322c6d9efd19961045ea41
1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
11 // This file defines the interleaved-load-combine pass. The pass searches for
12 // ShuffleVectorInstruction that execute interleaving loads. If a matching
13 // pattern is found, it adds a combined load and further instructions in a
14 // pattern that is detectable by InterleavedAccesPass. The old instructions are
15 // left dead to be removed later. The pass is specifically designed to be
16 // executed just before InterleavedAccesPass to find any left-over instances
17 // that are not detected within former passes.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/InterleavedLoadCombine.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetMachine.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <list>
48 using namespace llvm;
50 #define DEBUG_TYPE "interleaved-load-combine"
52 namespace {
54 /// Statistic counter
55 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
57 /// Option to disable the pass
58 static cl::opt<bool> DisableInterleavedLoadCombine(
59 "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
60 cl::desc("Disable combining of interleaved loads"));
62 struct VectorInfo;
64 struct InterleavedLoadCombineImpl {
65 public:
66 InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
67 const TargetMachine &TM)
68 : F(F), DT(DT), MSSA(MSSA),
69 TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
70 TTI(TM.getTargetTransformInfo(F)) {}
72 /// Scan the function for interleaved load candidates and execute the
73 /// replacement if applicable.
74 bool run();
76 private:
77 /// Function this pass is working on
78 Function &F;
80 /// Dominator Tree Analysis
81 DominatorTree &DT;
83 /// Memory Alias Analyses
84 MemorySSA &MSSA;
86 /// Target Lowering Information
87 const TargetLowering &TLI;
89 /// Target Transform Information
90 const TargetTransformInfo TTI;
92 /// Find the instruction in sets LIs that dominates all others, return nullptr
93 /// if there is none.
94 LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
96 /// Replace interleaved load candidates. It does additional
97 /// analyses if this makes sense. Returns true on success and false
98 /// of nothing has been changed.
99 bool combine(std::list<VectorInfo> &InterleavedLoad,
100 OptimizationRemarkEmitter &ORE);
102 /// Given a set of VectorInfo containing candidates for a given interleave
103 /// factor, find a set that represents a 'factor' interleaved load.
104 bool findPattern(std::list<VectorInfo> &Candidates,
105 std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
106 const DataLayout &DL);
107 }; // InterleavedLoadCombine
109 /// First Order Polynomial on an n-Bit Integer Value
111 /// Polynomial(Value) = Value * B + A + E*2^(n-e)
113 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
114 /// significant bits. It is introduced if an exact computation cannot be proven
115 /// (e.q. division by 2).
117 /// As part of this optimization multiple loads will be combined. It necessary
118 /// to prove that loads are within some relative offset to each other. This
119 /// class is used to prove relative offsets of values loaded from memory.
121 /// Representing an integer in this form is sound since addition in two's
122 /// complement is associative (trivial) and multiplication distributes over the
123 /// addition (see Proof(1) in Polynomial::mul). Further, both operations
124 /// commute.
126 // Example:
127 // declare @fn(i64 %IDX, <4 x float>* %PTR) {
128 // %Pa1 = add i64 %IDX, 2
129 // %Pa2 = lshr i64 %Pa1, 1
130 // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
131 // %Va = load <4 x float>, <4 x float>* %Pa3
133 // %Pb1 = add i64 %IDX, 4
134 // %Pb2 = lshr i64 %Pb1, 1
135 // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
136 // %Vb = load <4 x float>, <4 x float>* %Pb3
137 // ... }
139 // The goal is to prove that two loads load consecutive addresses.
141 // In this case the polynomials are constructed by the following
142 // steps.
144 // The number tag #e specifies the error bits.
146 // Pa_0 = %IDX #0
147 // Pa_1 = %IDX + 2 #0 | add 2
148 // Pa_2 = %IDX/2 + 1 #1 | lshr 1
149 // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64
150 // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats
151 // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
153 // Pb_0 = %IDX #0
154 // Pb_1 = %IDX + 4 #0 | add 2
155 // Pb_2 = %IDX/2 + 2 #1 | lshr 1
156 // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64
157 // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats
158 // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
160 // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset
162 // Remark: %PTR is not maintained within this class. So in this instance the
163 // offset of 16 can only be assumed if the pointers are equal.
165 class Polynomial {
166 /// Operations on B
167 enum BOps {
168 LShr,
169 Mul,
170 SExt,
171 Trunc,
174 /// Number of Error Bits e
175 unsigned ErrorMSBs = (unsigned)-1;
177 /// Value
178 Value *V = nullptr;
180 /// Coefficient B
181 SmallVector<std::pair<BOps, APInt>, 4> B;
183 /// Coefficient A
184 APInt A;
186 public:
187 Polynomial(Value *V) : V(V) {
188 IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
189 if (Ty) {
190 ErrorMSBs = 0;
191 this->V = V;
192 A = APInt(Ty->getBitWidth(), 0);
196 Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
197 : ErrorMSBs(ErrorMSBs), A(A) {}
199 Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
200 : ErrorMSBs(ErrorMSBs), A(BitWidth, A) {}
202 Polynomial() = default;
204 /// Increment and clamp the number of undefined bits.
205 void incErrorMSBs(unsigned amt) {
206 if (ErrorMSBs == (unsigned)-1)
207 return;
209 ErrorMSBs += amt;
210 if (ErrorMSBs > A.getBitWidth())
211 ErrorMSBs = A.getBitWidth();
214 /// Decrement and clamp the number of undefined bits.
215 void decErrorMSBs(unsigned amt) {
216 if (ErrorMSBs == (unsigned)-1)
217 return;
219 if (ErrorMSBs > amt)
220 ErrorMSBs -= amt;
221 else
222 ErrorMSBs = 0;
225 /// Apply an add on the polynomial
226 Polynomial &add(const APInt &C) {
227 // Note: Addition is associative in two's complement even when in case of
228 // signed overflow.
230 // Error bits can only propagate into higher significant bits. As these are
231 // already regarded as undefined, there is no change.
233 // Theorem: Adding a constant to a polynomial does not change the error
234 // term.
236 // Proof:
238 // Since the addition is associative and commutes:
240 // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
241 // [qed]
243 if (C.getBitWidth() != A.getBitWidth()) {
244 ErrorMSBs = (unsigned)-1;
245 return *this;
248 A += C;
249 return *this;
252 /// Apply a multiplication onto the polynomial.
253 Polynomial &mul(const APInt &C) {
254 // Note: Multiplication distributes over the addition
256 // Theorem: Multiplication distributes over the addition
258 // Proof(1):
260 // (B+A)*C =-
261 // = (B + A) + (B + A) + .. {C Times}
262 // addition is associative and commutes, hence
263 // = B + B + .. {C Times} .. + A + A + .. {C times}
264 // = B*C + A*C
265 // (see (function add) for signed values and overflows)
266 // [qed]
268 // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
269 // to the left.
271 // Proof(2):
273 // Let B' and A' be the n-Bit inputs with some unknown errors EA,
274 // EB at e leading bits. B' and A' can be written down as:
276 // B' = B + 2^(n-e)*EB
277 // A' = A + 2^(n-e)*EA
279 // Let C' be an input with c trailing zero bits. C' can be written as
281 // C' = C*2^c
283 // Therefore we can compute the result by using distributivity and
284 // commutativity.
286 // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
287 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
288 // = (B'+A') * C' =
289 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
290 // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
291 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
292 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
293 // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
295 // Let EC be the final error with EC = C*(EB + EA)
297 // = (B + A)*C' + EC*2^(n-e)*2^c =
298 // = (B + A)*C' + EC*2^(n-(e-c))
300 // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
301 // less error bits than the input. c bits are shifted out to the left.
302 // [qed]
304 if (C.getBitWidth() != A.getBitWidth()) {
305 ErrorMSBs = (unsigned)-1;
306 return *this;
309 // Multiplying by one is a no-op.
310 if (C.isOne()) {
311 return *this;
314 // Multiplying by zero removes the coefficient B and defines all bits.
315 if (C.isZero()) {
316 ErrorMSBs = 0;
317 deleteB();
320 // See Proof(2): Trailing zero bits indicate a left shift. This removes
321 // leading bits from the result even if they are undefined.
322 decErrorMSBs(C.countr_zero());
324 A *= C;
325 pushBOperation(Mul, C);
326 return *this;
329 /// Apply a logical shift right on the polynomial
330 Polynomial &lshr(const APInt &C) {
331 // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
332 // where
333 // e' = e + 1,
334 // E is a e-bit number,
335 // E' is a e'-bit number,
336 // holds under the following precondition:
337 // pre(1): A % 2 = 0
338 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
339 // where >> expresses a logical shift to the right, with adding zeros.
341 // We need to show that for every, E there is a E'
343 // B = b_h * 2^(n-1) + b_m * 2 + b_l
344 // A = a_h * 2^(n-1) + a_m * 2 (pre(1))
346 // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
348 // Let X = (B + A + E*2^(n-e)) >> 1
349 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
351 // X = [B + A + E*2^(n-e)] >> 1 =
352 // = [ b_h * 2^(n-1) + b_m * 2 + b_l +
353 // + a_h * 2^(n-1) + a_m * 2 +
354 // + E * 2^(n-e) ] >> 1 =
356 // The sum is built by putting the overflow of [a_m + b+n] into the term
357 // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
358 // this bit is discarded. This is expressed by % 2.
360 // The bit in position 0 cannot overflow into the term (b_m + a_m).
362 // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
363 // + ((b_m + a_m) % 2^(n-2)) * 2 +
364 // + b_l + E * 2^(n-e) ] >> 1 =
366 // The shift is computed by dividing the terms by 2 and by cutting off
367 // b_l.
369 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
370 // + ((b_m + a_m) % 2^(n-2)) +
371 // + E * 2^(n-(e+1)) =
373 // by the definition in the Theorem e+1 = e'
375 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
376 // + ((b_m + a_m) % 2^(n-2)) +
377 // + E * 2^(n-e') =
379 // Compute Y by applying distributivity first
381 // Y = (B >> 1) + (A >> 1) + E*2^(n-e') =
382 // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
383 // + (a_h * 2^(n-1) + a_m * 2) >> 1 +
384 // + E * 2^(n-e) >> 1 =
386 // Again, the shift is computed by dividing the terms by 2 and by cutting
387 // off b_l.
389 // = b_h * 2^(n-2) + b_m +
390 // + a_h * 2^(n-2) + a_m +
391 // + E * 2^(n-(e+1)) =
393 // Again, the sum is built by putting the overflow of [a_m + b+n] into
394 // the term 2^(n-1). But this time there is room for a second bit in the
395 // term 2^(n-2) we add this bit to a new term and denote it o_h in a
396 // second step.
398 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
399 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
400 // + ((b_m + a_m) % 2^(n-2)) +
401 // + E * 2^(n-(e+1)) =
403 // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
404 // Further replace e+1 by e'.
406 // = o_h * 2^(n-1) +
407 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
408 // + ((b_m + a_m) % 2^(n-2)) +
409 // + E * 2^(n-e') =
411 // Move o_h into the error term and construct E'. To ensure that there is
412 // no 2^x with negative x, this step requires pre(2) (e < n).
414 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
415 // + ((b_m + a_m) % 2^(n-2)) +
416 // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1)
417 // | out of the old exponent
418 // + E * 2^(n-e') =
419 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
420 // + ((b_m + a_m) % 2^(n-2)) +
421 // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of
422 // | the old exponent
424 // Let E' = o_h * 2^(e'-1) + E
426 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
427 // + ((b_m + a_m) % 2^(n-2)) +
428 // + E' * 2^(n-e')
430 // Because X and Y are distinct only in there error terms and E' can be
431 // constructed as shown the theorem holds.
432 // [qed]
434 // For completeness in case of the case e=n it is also required to show that
435 // distributivity can be applied.
437 // In this case Theorem(1) transforms to (the pre-condition on A can also be
438 // dropped)
440 // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
441 // where
442 // A, B, E, E' are two's complement numbers with the same bit
443 // width
445 // Let A + B + E = X
446 // Let (B >> 1) + (A >> 1) = Y
448 // Therefore we need to show that for every X and Y there is an E' which
449 // makes the equation
451 // X = Y + E'
453 // hold. This is trivially the case for E' = X - Y.
455 // [qed]
457 // Remark: Distributing lshr with and arbitrary number n can be expressed as
458 // ((((B + A) lshr 1) lshr 1) ... ) {n times}.
459 // This construction induces n additional error bits at the left.
461 if (C.getBitWidth() != A.getBitWidth()) {
462 ErrorMSBs = (unsigned)-1;
463 return *this;
466 if (C.isZero())
467 return *this;
469 // Test if the result will be zero
470 unsigned shiftAmt = C.getZExtValue();
471 if (shiftAmt >= C.getBitWidth())
472 return mul(APInt(C.getBitWidth(), 0));
474 // The proof that shiftAmt LSBs are zero for at least one summand is only
475 // possible for the constant number.
477 // If this can be proven add shiftAmt to the error counter
478 // `ErrorMSBs`. Otherwise set all bits as undefined.
479 if (A.countr_zero() < shiftAmt)
480 ErrorMSBs = A.getBitWidth();
481 else
482 incErrorMSBs(shiftAmt);
484 // Apply the operation.
485 pushBOperation(LShr, C);
486 A = A.lshr(shiftAmt);
488 return *this;
491 /// Apply a sign-extend or truncate operation on the polynomial.
492 Polynomial &sextOrTrunc(unsigned n) {
493 if (n < A.getBitWidth()) {
494 // Truncate: Clearly undefined Bits on the MSB side are removed
495 // if there are any.
496 decErrorMSBs(A.getBitWidth() - n);
497 A = A.trunc(n);
498 pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
500 if (n > A.getBitWidth()) {
501 // Extend: Clearly extending first and adding later is different
502 // to adding first and extending later in all extended bits.
503 incErrorMSBs(n - A.getBitWidth());
504 A = A.sext(n);
505 pushBOperation(SExt, APInt(sizeof(n) * 8, n));
508 return *this;
511 /// Test if there is a coefficient B.
512 bool isFirstOrder() const { return V != nullptr; }
514 /// Test coefficient B of two Polynomials are equal.
515 bool isCompatibleTo(const Polynomial &o) const {
516 // The polynomial use different bit width.
517 if (A.getBitWidth() != o.A.getBitWidth())
518 return false;
520 // If neither Polynomial has the Coefficient B.
521 if (!isFirstOrder() && !o.isFirstOrder())
522 return true;
524 // The index variable is different.
525 if (V != o.V)
526 return false;
528 // Check the operations.
529 if (B.size() != o.B.size())
530 return false;
532 auto *ob = o.B.begin();
533 for (const auto &b : B) {
534 if (b != *ob)
535 return false;
536 ob++;
539 return true;
542 /// Subtract two polynomials, return an undefined polynomial if
543 /// subtraction is not possible.
544 Polynomial operator-(const Polynomial &o) const {
545 // Return an undefined polynomial if incompatible.
546 if (!isCompatibleTo(o))
547 return Polynomial();
549 // If the polynomials are compatible (meaning they have the same
550 // coefficient on B), B is eliminated. Thus a polynomial solely
551 // containing A is returned
552 return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
555 /// Subtract a constant from a polynomial,
556 Polynomial operator-(uint64_t C) const {
557 Polynomial Result(*this);
558 Result.A -= C;
559 return Result;
562 /// Add a constant to a polynomial,
563 Polynomial operator+(uint64_t C) const {
564 Polynomial Result(*this);
565 Result.A += C;
566 return Result;
569 /// Returns true if it can be proven that two Polynomials are equal.
570 bool isProvenEqualTo(const Polynomial &o) {
571 // Subtract both polynomials and test if it is fully defined and zero.
572 Polynomial r = *this - o;
573 return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero());
576 /// Print the polynomial into a stream.
577 void print(raw_ostream &OS) const {
578 OS << "[{#ErrBits:" << ErrorMSBs << "} ";
580 if (V) {
581 for (auto b : B)
582 OS << "(";
583 OS << "(" << *V << ") ";
585 for (auto b : B) {
586 switch (b.first) {
587 case LShr:
588 OS << "LShr ";
589 break;
590 case Mul:
591 OS << "Mul ";
592 break;
593 case SExt:
594 OS << "SExt ";
595 break;
596 case Trunc:
597 OS << "Trunc ";
598 break;
601 OS << b.second << ") ";
605 OS << "+ " << A << "]";
608 private:
609 void deleteB() {
610 V = nullptr;
611 B.clear();
614 void pushBOperation(const BOps Op, const APInt &C) {
615 if (isFirstOrder()) {
616 B.push_back(std::make_pair(Op, C));
617 return;
622 #ifndef NDEBUG
623 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
624 S.print(OS);
625 return OS;
627 #endif
629 /// VectorInfo stores abstract the following information for each vector
630 /// element:
632 /// 1) The memory address loaded into the element as Polynomial
633 /// 2) a set of load instruction necessary to construct the vector,
634 /// 3) a set of all other instructions that are necessary to create the vector and
635 /// 4) a pointer value that can be used as relative base for all elements.
636 struct VectorInfo {
637 private:
638 VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
639 llvm_unreachable(
640 "Copying VectorInfo is neither implemented nor necessary,");
643 public:
644 /// Information of a Vector Element
645 struct ElementInfo {
646 /// Offset Polynomial.
647 Polynomial Ofs;
649 /// The Load Instruction used to Load the entry. LI is null if the pointer
650 /// of the load instruction does not point on to the entry
651 LoadInst *LI;
653 ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
654 : Ofs(Offset), LI(LI) {}
657 /// Basic-block the load instructions are within
658 BasicBlock *BB = nullptr;
660 /// Pointer value of all participation load instructions
661 Value *PV = nullptr;
663 /// Participating load instructions
664 std::set<LoadInst *> LIs;
666 /// Participating instructions
667 std::set<Instruction *> Is;
669 /// Final shuffle-vector instruction
670 ShuffleVectorInst *SVI = nullptr;
672 /// Information of the offset for each vector element
673 ElementInfo *EI;
675 /// Vector Type
676 FixedVectorType *const VTy;
678 VectorInfo(FixedVectorType *VTy) : VTy(VTy) {
679 EI = new ElementInfo[VTy->getNumElements()];
682 VectorInfo &operator=(const VectorInfo &other) = delete;
684 virtual ~VectorInfo() { delete[] EI; }
686 unsigned getDimension() const { return VTy->getNumElements(); }
688 /// Test if the VectorInfo can be part of an interleaved load with the
689 /// specified factor.
691 /// \param Factor of the interleave
692 /// \param DL Targets Datalayout
694 /// \returns true if this is possible and false if not
695 bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
696 unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
697 for (unsigned i = 1; i < getDimension(); i++) {
698 if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
699 return false;
702 return true;
705 /// Recursively computes the vector information stored in V.
707 /// This function delegates the work to specialized implementations
709 /// \param V Value to operate on
710 /// \param Result Result of the computation
712 /// \returns false if no sensible information can be gathered.
713 static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
714 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
715 if (SVI)
716 return computeFromSVI(SVI, Result, DL);
717 LoadInst *LI = dyn_cast<LoadInst>(V);
718 if (LI)
719 return computeFromLI(LI, Result, DL);
720 BitCastInst *BCI = dyn_cast<BitCastInst>(V);
721 if (BCI)
722 return computeFromBCI(BCI, Result, DL);
723 return false;
726 /// BitCastInst specialization to compute the vector information.
728 /// \param BCI BitCastInst to operate on
729 /// \param Result Result of the computation
731 /// \returns false if no sensible information can be gathered.
732 static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
733 const DataLayout &DL) {
734 Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
736 if (!Op)
737 return false;
739 FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType());
740 if (!VTy)
741 return false;
743 // We can only cast from large to smaller vectors
744 if (Result.VTy->getNumElements() % VTy->getNumElements())
745 return false;
747 unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
748 unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
749 unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
751 if (NewSize * Factor != OldSize)
752 return false;
754 VectorInfo Old(VTy);
755 if (!compute(Op, Old, DL))
756 return false;
758 for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
759 for (unsigned j = 0; j < Factor; j++) {
760 Result.EI[i + j] =
761 ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
762 j == 0 ? Old.EI[i / Factor].LI : nullptr);
766 Result.BB = Old.BB;
767 Result.PV = Old.PV;
768 Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
769 Result.Is.insert(Old.Is.begin(), Old.Is.end());
770 Result.Is.insert(BCI);
771 Result.SVI = nullptr;
773 return true;
776 /// ShuffleVectorInst specialization to compute vector information.
778 /// \param SVI ShuffleVectorInst to operate on
779 /// \param Result Result of the computation
781 /// Compute the left and the right side vector information and merge them by
782 /// applying the shuffle operation. This function also ensures that the left
783 /// and right side have compatible loads. This means that all loads are with
784 /// in the same basic block and are based on the same pointer.
786 /// \returns false if no sensible information can be gathered.
787 static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
788 const DataLayout &DL) {
789 FixedVectorType *ArgTy =
790 cast<FixedVectorType>(SVI->getOperand(0)->getType());
792 // Compute the left hand vector information.
793 VectorInfo LHS(ArgTy);
794 if (!compute(SVI->getOperand(0), LHS, DL))
795 LHS.BB = nullptr;
797 // Compute the right hand vector information.
798 VectorInfo RHS(ArgTy);
799 if (!compute(SVI->getOperand(1), RHS, DL))
800 RHS.BB = nullptr;
802 // Neither operand produced sensible results?
803 if (!LHS.BB && !RHS.BB)
804 return false;
805 // Only RHS produced sensible results?
806 else if (!LHS.BB) {
807 Result.BB = RHS.BB;
808 Result.PV = RHS.PV;
810 // Only LHS produced sensible results?
811 else if (!RHS.BB) {
812 Result.BB = LHS.BB;
813 Result.PV = LHS.PV;
815 // Both operands produced sensible results?
816 else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
817 Result.BB = LHS.BB;
818 Result.PV = LHS.PV;
820 // Both operands produced sensible results but they are incompatible.
821 else {
822 return false;
825 // Merge and apply the operation on the offset information.
826 if (LHS.BB) {
827 Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
828 Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
830 if (RHS.BB) {
831 Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
832 Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
834 Result.Is.insert(SVI);
835 Result.SVI = SVI;
837 int j = 0;
838 for (int i : SVI->getShuffleMask()) {
839 assert((i < 2 * (signed)ArgTy->getNumElements()) &&
840 "Invalid ShuffleVectorInst (index out of bounds)");
842 if (i < 0)
843 Result.EI[j] = ElementInfo();
844 else if (i < (signed)ArgTy->getNumElements()) {
845 if (LHS.BB)
846 Result.EI[j] = LHS.EI[i];
847 else
848 Result.EI[j] = ElementInfo();
849 } else {
850 if (RHS.BB)
851 Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
852 else
853 Result.EI[j] = ElementInfo();
855 j++;
858 return true;
861 /// LoadInst specialization to compute vector information.
863 /// This function also acts as abort condition to the recursion.
865 /// \param LI LoadInst to operate on
866 /// \param Result Result of the computation
868 /// \returns false if no sensible information can be gathered.
869 static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
870 const DataLayout &DL) {
871 Value *BasePtr;
872 Polynomial Offset;
874 if (LI->isVolatile())
875 return false;
877 if (LI->isAtomic())
878 return false;
880 // Get the base polynomial
881 computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
883 Result.BB = LI->getParent();
884 Result.PV = BasePtr;
885 Result.LIs.insert(LI);
886 Result.Is.insert(LI);
888 for (unsigned i = 0; i < Result.getDimension(); i++) {
889 Value *Idx[2] = {
890 ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
891 ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
893 int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, ArrayRef(Idx, 2));
894 Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
897 return true;
900 /// Recursively compute polynomial of a value.
902 /// \param BO Input binary operation
903 /// \param Result Result polynomial
904 static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
905 Value *LHS = BO.getOperand(0);
906 Value *RHS = BO.getOperand(1);
908 // Find the RHS Constant if any
909 ConstantInt *C = dyn_cast<ConstantInt>(RHS);
910 if ((!C) && BO.isCommutative()) {
911 C = dyn_cast<ConstantInt>(LHS);
912 if (C)
913 std::swap(LHS, RHS);
916 switch (BO.getOpcode()) {
917 case Instruction::Add:
918 if (!C)
919 break;
921 computePolynomial(*LHS, Result);
922 Result.add(C->getValue());
923 return;
925 case Instruction::LShr:
926 if (!C)
927 break;
929 computePolynomial(*LHS, Result);
930 Result.lshr(C->getValue());
931 return;
933 default:
934 break;
937 Result = Polynomial(&BO);
940 /// Recursively compute polynomial of a value
942 /// \param V input value
943 /// \param Result result polynomial
944 static void computePolynomial(Value &V, Polynomial &Result) {
945 if (auto *BO = dyn_cast<BinaryOperator>(&V))
946 computePolynomialBinOp(*BO, Result);
947 else
948 Result = Polynomial(&V);
951 /// Compute the Polynomial representation of a Pointer type.
953 /// \param Ptr input pointer value
954 /// \param Result result polynomial
955 /// \param BasePtr pointer the polynomial is based on
956 /// \param DL Datalayout of the target machine
957 static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
958 Value *&BasePtr,
959 const DataLayout &DL) {
960 // Not a pointer type? Return an undefined polynomial
961 PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
962 if (!PtrTy) {
963 Result = Polynomial();
964 BasePtr = nullptr;
965 return;
967 unsigned PointerBits =
968 DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
970 /// Skip pointer casts. Return Zero polynomial otherwise
971 if (isa<CastInst>(&Ptr)) {
972 CastInst &CI = *cast<CastInst>(&Ptr);
973 switch (CI.getOpcode()) {
974 case Instruction::BitCast:
975 computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
976 break;
977 default:
978 BasePtr = &Ptr;
979 Polynomial(PointerBits, 0);
980 break;
983 /// Resolve GetElementPtrInst.
984 else if (isa<GetElementPtrInst>(&Ptr)) {
985 GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
987 APInt BaseOffset(PointerBits, 0);
989 // Check if we can compute the Offset with accumulateConstantOffset
990 if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
991 Result = Polynomial(BaseOffset);
992 BasePtr = GEP.getPointerOperand();
993 return;
994 } else {
995 // Otherwise we allow that the last index operand of the GEP is
996 // non-constant.
997 unsigned idxOperand, e;
998 SmallVector<Value *, 4> Indices;
999 for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
1000 idxOperand++) {
1001 ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
1002 if (!IDX)
1003 break;
1004 Indices.push_back(IDX);
1007 // It must also be the last operand.
1008 if (idxOperand + 1 != e) {
1009 Result = Polynomial();
1010 BasePtr = nullptr;
1011 return;
1014 // Compute the polynomial of the index operand.
1015 computePolynomial(*GEP.getOperand(idxOperand), Result);
1017 // Compute base offset from zero based index, excluding the last
1018 // variable operand.
1019 BaseOffset =
1020 DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
1022 // Apply the operations of GEP to the polynomial.
1023 unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
1024 Result.sextOrTrunc(PointerBits);
1025 Result.mul(APInt(PointerBits, ResultSize));
1026 Result.add(BaseOffset);
1027 BasePtr = GEP.getPointerOperand();
1030 // All other instructions are handled by using the value as base pointer and
1031 // a zero polynomial.
1032 else {
1033 BasePtr = &Ptr;
1034 Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
1038 #ifndef NDEBUG
1039 void print(raw_ostream &OS) const {
1040 if (PV)
1041 OS << *PV;
1042 else
1043 OS << "(none)";
1044 OS << " + ";
1045 for (unsigned i = 0; i < getDimension(); i++)
1046 OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
1047 OS << "]";
1049 #endif
1052 } // anonymous namespace
1054 bool InterleavedLoadCombineImpl::findPattern(
1055 std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
1056 unsigned Factor, const DataLayout &DL) {
1057 for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
1058 unsigned i;
1059 // Try to find an interleaved load using the front of Worklist as first line
1060 unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
1062 // List containing iterators pointing to the VectorInfos of the candidates
1063 std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
1065 for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
1066 if (C->VTy != C0->VTy)
1067 continue;
1068 if (C->BB != C0->BB)
1069 continue;
1070 if (C->PV != C0->PV)
1071 continue;
1073 // Check the current value matches any of factor - 1 remaining lines
1074 for (i = 1; i < Factor; i++) {
1075 if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
1076 Res[i] = C;
1080 for (i = 1; i < Factor; i++) {
1081 if (Res[i] == Candidates.end())
1082 break;
1084 if (i == Factor) {
1085 Res[0] = C0;
1086 break;
1090 if (Res[0] != Candidates.end()) {
1091 // Move the result into the output
1092 for (unsigned i = 0; i < Factor; i++) {
1093 InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
1096 return true;
1099 return false;
1102 LoadInst *
1103 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
1104 assert(!LIs.empty() && "No load instructions given.");
1106 // All LIs are within the same BB. Select the first for a reference.
1107 BasicBlock *BB = (*LIs.begin())->getParent();
1108 BasicBlock::iterator FLI = llvm::find_if(
1109 *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); });
1110 assert(FLI != BB->end());
1112 return cast<LoadInst>(FLI);
1115 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
1116 OptimizationRemarkEmitter &ORE) {
1117 LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1119 // The insertion point is the LoadInst which loads the first values. The
1120 // following tests are used to proof that the combined load can be inserted
1121 // just before InsertionPoint.
1122 LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
1124 // Test if the offset is computed
1125 if (!InsertionPoint)
1126 return false;
1128 std::set<LoadInst *> LIs;
1129 std::set<Instruction *> Is;
1130 std::set<Instruction *> SVIs;
1132 InstructionCost InterleavedCost;
1133 InstructionCost InstructionCost = 0;
1134 const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency;
1136 // Get the interleave factor
1137 unsigned Factor = InterleavedLoad.size();
1139 // Merge all input sets used in analysis
1140 for (auto &VI : InterleavedLoad) {
1141 // Generate a set of all load instructions to be combined
1142 LIs.insert(VI.LIs.begin(), VI.LIs.end());
1144 // Generate a set of all instructions taking part in load
1145 // interleaved. This list excludes the instructions necessary for the
1146 // polynomial construction.
1147 Is.insert(VI.Is.begin(), VI.Is.end());
1149 // Generate the set of the final ShuffleVectorInst.
1150 SVIs.insert(VI.SVI);
1153 // There is nothing to combine.
1154 if (LIs.size() < 2)
1155 return false;
1157 // Test if all participating instruction will be dead after the
1158 // transformation. If intermediate results are used, no performance gain can
1159 // be expected. Also sum the cost of the Instructions beeing left dead.
1160 for (const auto &I : Is) {
1161 // Compute the old cost
1162 InstructionCost += TTI.getInstructionCost(I, CostKind);
1164 // The final SVIs are allowed not to be dead, all uses will be replaced
1165 if (SVIs.find(I) != SVIs.end())
1166 continue;
1168 // If there are users outside the set to be eliminated, we abort the
1169 // transformation. No gain can be expected.
1170 for (auto *U : I->users()) {
1171 if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
1172 return false;
1176 // We need to have a valid cost in order to proceed.
1177 if (!InstructionCost.isValid())
1178 return false;
1180 // We know that all LoadInst are within the same BB. This guarantees that
1181 // either everything or nothing is loaded.
1182 LoadInst *First = findFirstLoad(LIs);
1184 // To be safe that the loads can be combined, iterate over all loads and test
1185 // that the corresponding defining access dominates first LI. This guarantees
1186 // that there are no aliasing stores in between the loads.
1187 auto FMA = MSSA.getMemoryAccess(First);
1188 for (auto *LI : LIs) {
1189 auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
1190 if (!MSSA.dominates(MADef, FMA))
1191 return false;
1193 assert(!LIs.empty() && "There are no LoadInst to combine");
1195 // It is necessary that insertion point dominates all final ShuffleVectorInst.
1196 for (auto &VI : InterleavedLoad) {
1197 if (!DT.dominates(InsertionPoint, VI.SVI))
1198 return false;
1201 // All checks are done. Add instructions detectable by InterleavedAccessPass
1202 // The old instruction will are left dead.
1203 IRBuilder<> Builder(InsertionPoint);
1204 Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
1205 unsigned ElementsPerSVI =
1206 cast<FixedVectorType>(InterleavedLoad.front().SVI->getType())
1207 ->getNumElements();
1208 FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI);
1210 auto Indices = llvm::to_vector<4>(llvm::seq<unsigned>(0, Factor));
1211 InterleavedCost = TTI.getInterleavedMemoryOpCost(
1212 Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(),
1213 InsertionPoint->getPointerAddressSpace(), CostKind);
1215 if (InterleavedCost >= InstructionCost) {
1216 return false;
1219 // Create the wide load and update the MemorySSA.
1220 auto Ptr = InsertionPoint->getPointerOperand();
1221 auto LI = Builder.CreateAlignedLoad(ILTy, Ptr, InsertionPoint->getAlign(),
1222 "interleaved.wide.load");
1223 auto MSSAU = MemorySSAUpdater(&MSSA);
1224 MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
1225 LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
1226 MSSAU.insertUse(MSSALoad, /*RenameUses=*/ true);
1228 // Create the final SVIs and replace all uses.
1229 int i = 0;
1230 for (auto &VI : InterleavedLoad) {
1231 SmallVector<int, 4> Mask;
1232 for (unsigned j = 0; j < ElementsPerSVI; j++)
1233 Mask.push_back(i + j * Factor);
1235 Builder.SetInsertPoint(VI.SVI);
1236 auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle");
1237 VI.SVI->replaceAllUsesWith(SVI);
1238 i++;
1241 NumInterleavedLoadCombine++;
1242 ORE.emit([&]() {
1243 return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
1244 << "Load interleaved combined with factor "
1245 << ore::NV("Factor", Factor);
1248 return true;
1251 bool InterleavedLoadCombineImpl::run() {
1252 OptimizationRemarkEmitter ORE(&F);
1253 bool changed = false;
1254 unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
1256 auto &DL = F.getParent()->getDataLayout();
1258 // Start with the highest factor to avoid combining and recombining.
1259 for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
1260 std::list<VectorInfo> Candidates;
1262 for (BasicBlock &BB : F) {
1263 for (Instruction &I : BB) {
1264 if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
1265 // We don't support scalable vectors in this pass.
1266 if (isa<ScalableVectorType>(SVI->getType()))
1267 continue;
1269 Candidates.emplace_back(cast<FixedVectorType>(SVI->getType()));
1271 if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
1272 Candidates.pop_back();
1273 continue;
1276 if (!Candidates.back().isInterleaved(Factor, DL)) {
1277 Candidates.pop_back();
1283 std::list<VectorInfo> InterleavedLoad;
1284 while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
1285 if (combine(InterleavedLoad, ORE)) {
1286 changed = true;
1287 } else {
1288 // Remove the first element of the Interleaved Load but put the others
1289 // back on the list and continue searching
1290 Candidates.splice(Candidates.begin(), InterleavedLoad,
1291 std::next(InterleavedLoad.begin()),
1292 InterleavedLoad.end());
1294 InterleavedLoad.clear();
1298 return changed;
1301 namespace {
1302 /// This pass combines interleaved loads into a pattern detectable by
1303 /// InterleavedAccessPass.
1304 struct InterleavedLoadCombine : public FunctionPass {
1305 static char ID;
1307 InterleavedLoadCombine() : FunctionPass(ID) {
1308 initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1311 StringRef getPassName() const override {
1312 return "Interleaved Load Combine Pass";
1315 bool runOnFunction(Function &F) override {
1316 if (DisableInterleavedLoadCombine)
1317 return false;
1319 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1320 if (!TPC)
1321 return false;
1323 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
1324 << "\n");
1326 return InterleavedLoadCombineImpl(
1327 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1328 getAnalysis<MemorySSAWrapperPass>().getMSSA(),
1329 TPC->getTM<TargetMachine>())
1330 .run();
1333 void getAnalysisUsage(AnalysisUsage &AU) const override {
1334 AU.addRequired<MemorySSAWrapperPass>();
1335 AU.addRequired<DominatorTreeWrapperPass>();
1336 FunctionPass::getAnalysisUsage(AU);
1339 private:
1341 } // anonymous namespace
1343 PreservedAnalyses
1344 InterleavedLoadCombinePass::run(Function &F, FunctionAnalysisManager &FAM) {
1346 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1347 auto &MemSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA();
1348 bool Changed = InterleavedLoadCombineImpl(F, DT, MemSSA, *TM).run();
1349 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1352 char InterleavedLoadCombine::ID = 0;
1354 INITIALIZE_PASS_BEGIN(
1355 InterleavedLoadCombine, DEBUG_TYPE,
1356 "Combine interleaved loads into wide loads and shufflevector instructions",
1357 false, false)
1358 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1359 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1360 INITIALIZE_PASS_END(
1361 InterleavedLoadCombine, DEBUG_TYPE,
1362 "Combine interleaved loads into wide loads and shufflevector instructions",
1363 false, false)
1365 FunctionPass *
1366 llvm::createInterleavedLoadCombinePass() {
1367 auto P = new InterleavedLoadCombine();
1368 return P;